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Abstract

The propagation of a two-dimensional fluid-driven pre-existing fluid-filled fracture in perme-

able rock by the injection of a viscous, incompressible Newtonian fluid is considered. The

fluid flow in the fracture is laminar. By the application of lubrication theory, a partial differen-

tial equation relating the half-width of the fracture to the fluid pressure and leak-off velocity

is obtained. The leak-off velocity is an unspecified function whose form is derived from the

similarity solution. The model is closed by the adoption of the PKN formulation in which the

fluid pressure is proportional to the fracture half-width. The constant of proportionality de-

pends on the material properties of the rock through its Young modulus and Poisson ratio . The

group invariant solutions obtained describe hydraulic fracturing in a permeable rock. Results

are also obtained for the case in which the rock is impermeable. Applications in which the

rate of fluid injection into the fracture and the pressure at the fracture entry are independent of

time are analysed. The limiting solution in which the fracture length and fracture half-width

grow exponentially with time is derived. Approximate power law solutions for large values

of time for the fracture length and volume are derived. Finally, the case in which the fluid is

injected by a pump working at a constant rate is investigated. The results are illustrated by

computer generated graphs.
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Chapter 1

INTRODUCTION

1.1 Introduction

A particular class of fractures in rock develops as a result of internal pressurisation by a viscous

fluid. These fractures are either man-made hydraulic fractures created by injecting a viscous

fluid from a bore hole into the subsurface reservoir rock in order to increase production from

oil and gas reservoirs or natural fractures such as kilometers-long volcanic dykes driven by

magma coming from the upper mantle beneath the Earth’s crust or fissures in rocks in mining

opened up by the use of ultra high pressure water.

The problem of a pre-existing fluid-driven fracture propagating in rock, either permeable

or not, arises in hydraulic fracturing, a technique widely used in the petroleum and mining

industries, as well as in the formation of sills and dykes and in magma transport in the Earth’s

crust by means of magma-driven fractures. In this dissertation, we will investigate the problem

of a pre-existing fluid-driven fracture propagating in permeable rock.

1.2 Hydraulic fracturing

Hydraulic fracturing is a technique which was first introduced in the 1940’s and has proved

to be a very useful and standard technique for the enhancement of the production of oil and

natural gas from a reservoir rock and for the opening up of fissures in rocks in mining. It occurs

naturally in the formation of intrusive dykes and sills in the Earth’s crust[1]. In this technique,
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ultra high pressure fluid, usually water with some additive substances to increase viscosity, is

injected into the underground reservoir rock. For tensile cracks to form, the pressure created

by the fluid must exceed the fracture toughness of the rock. Hence, new fractures are created

and existing ones are opened up. Sand grains, aluminium pellets, glass beads, or similar

materials are carried in suspension by the fluid into the fractures. These are called propping

agents or proppants. When the pressure is released at the surface, the fracturing fluid returns

to the wellbore as the fractures partially close on the proppants, leaving paths with increased

permeability for fluid flow.

In the mining industry, the use of explosives, usually dynamite, to break unmined rock

poses several problems which include:

• the creation of solid particles of small dimensions (radius 1µm) in the working atmo-

sphere which are very harmful to the lungs as they are too small to be ejected by cough-

ing and too large to pass through the alveoli,

• high level of destructiveness in which a great deal of chemical energy is wasted in the

form of noise and vibrations,

• the blasting site has to be cleared of personnel during the blasting operation.

In the petroleum industry, the process of hydrocarbon recovery from the subsurface reservoir

rock involves the flow of oil and gas from the reservoir into the wellbore and then to the

surface. This process of hydraulic fracturing consists of pumping a fluid into the wellbore in

order to enlarge a pre-existing fracture and facilitate the flow of oil and gas through the rock

formation. The main concept in hydraulic fracturing is to induce a crack in the rock formation

to facilitate the flow of oil and gas through the formation. Hence hydraulic fracturing has

proved to be an alternative method for the breaking of rocks in the mining industry and in the

opening up of fissures for hydrocarbon recovery in the petroleum industry.

Modelling hydraulic fracturing of rocks requires consideration of both fluid and solid me-

chanics.

• On the one hand, the lubrication equations to characterize the flow of fluid in the thin

fracture and
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• on the other, the elasticity equations to describe the deformation and propagation of the

fracture.

1.2.1 Lubrication theory and elasticity equations

Lubrication theory is the analysis of fluid in thin layers. For an incompressible fluid, it be-

comes applicable in the governing of fluid flow in the fracture on the assumption that the ratio

of the fracture half-width, H , to the length of the fracture, L, is much less than one. This

concept is dealt with extensively in Chapter 2.

The elasticity equations which control the rock deformation produced by the internal fluid

pressure in the fracture are also applicable because many investigators[2] have shown that

rocks behave elastically over some range of stress. Obviously, if the compressive stress applied

on a rock exceeds some limiting value, the rock will fail in tension. In a similar manner, there

are some limiting shear stresses that can be imposed upon rocks. The shear conditions that will

lead to failure have been discussed in Hubbert and Willis[3]. When fracturing hydraulically,

and when pressure due to the injected fluid is applied rapidly, most rocks will fail in a brittle

or ductile manner. A rock behaves in a ductile manner if it is able to support an increasing

load as it deforms. When the load supported by the rock decreases as the strain increases, the

rock is then said to be in a brittle state. A rock exhibits either of these two types of behaviour

in a range of stresses which depend essentially on the mineralogy, microstructure, and also on

factors such as temperature[4].

1.3 Dynamics of fracture width

Under static conditions, fractures will be very narrow. If fluid is injected at reasonable pump-

rates into narrow fractures under high injection pressure, the fracture walls are forced apart.

As the fracture width increases, the pressure necessary to keep the fracture propagating will

have to increase, otherwise the fracture width will remain small. This is easily seen from the

PKN model which states that

p = Λh(x, t), (1.3.1)
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where Λ is a constant that is determined from the material properties of the rock[5]. Also,

p = pf − σ0 (1.3.2)

is the net pressure of the fluid, pf , the internal fluid pressure and σ0 is the far-field compressive

stress perpendicular to the fracture and h(x, t) is the half-width of the fracture. One of the

important possible predictions of the PKN theory is the behaviour to be expected when there is

no fluid injection into the fracture at the fracture entry. This is investigated in this dissertation.

1.4 Literature review

In the last half century a significant amount of work has been done in the mathematical mod-

elling of hydraulic fractures in rocks. Some of the work involves modelling fluid-driven frac-

ture in permeable rock while some is in impermeable rock. These models, which aim at

calculating the net fluid pressure, leak-off, opening, size and shape of the fracture given the

properties of the rock, injection rate and fluid characteristics, have to account for the primary

physical mechanisms involved, namely, deformation of the rock, fracturing or creation of new

surfaces in the rock, flow of viscous fluid in the fracture and leak-off of the fracturing fluid

into the permeable rock.

A number of significant contributions have been made to the solution of the fluid-driven

fracture problem in the past fifty years. Some of these are analytical models with analytical

solutions while others are numerical models with numerical solutions.

Earlier work on mathematical modelling of hydraulic fractures involved finding approx-

imate solutions for simple fracture geometries[1, 6, 7, 8]. Recent work has been concerned

with developing numerical algorithms to simulate three dimensional propagation of hydraulic

fractures[9, 10]. One of the first analytical solutions was developed by Perkins and Kern[6].

Their model, called the PK model, adapted the classic plane strain crack solution of Sneddon

and Elliot[11]. An extension of the work by Perkins and Kern was made by Nordgren[7] and

is called the PKN model. In the PKN model, the effect of fluid loss into the surrounding rock

mass was investigated.

Another model, known as the KGD model was developed by Khristianovic and Zheltov[8]
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and also by Geertsma and de Klerk[12]. The geometry and properties of these models are

discussed in Section 1.5 that follows.

A major contribution was made by Spence and Sharp [13] towards the mathematical mod-

elling of fluid-driven fractures. They initiated the work on self-similar solutions and scaling

for a KGD crack propagating in an elastic, impermeable medium with finite toughness. The

toughness of a rock is a quantitative value that represents its resistance to fracture when ex-

posed to a high strain rate impact stress.

A new direction of analytical study is based on the application of Lie group analysis to

the investigation of problems arising from pre-existing fluid-driven fracturing of rock. The

group invariant solution for a pre-existing fluid-driven fracture in an impermeable rock has

been derived using the Lie point symmetries of the nonlinear partial differential equation for

the half-width of the fracture[5]. The research work of this dissertation investigates applying

Lie group analysis to the problem of a pre-existing fluid driven fracture in permeable rock.

1.5 Fracture geometry models

A number of fracture geometry models have previously been proposed for the process of

hydraulic fracturing in rock. These models are two-dimensional and they arose in the early

1960’s from the need to have analytical solutions to the complex solid and fluid mechanics

interaction, given the properties of the rock, injection rate and fluid characteristics. These

analytical solutions are for the fluid pressure, leak-off, opening, size and shape of the fracture.

It is worth noting that most models proposed in hydraulic fracturing consider planar fractures

rather than kinked or curved ones[14, 15, 16].

1.5.1 The PKN model

This model was developed by Perkins and Kern[6] and Norgren[7]. It makes the assumption

that the fracture has a constant height and an elliptical cross-section as shown in Figure 1.5.1.

It also assumes that the fluid flow and fracture propagation are one-dimensional in a direction

perpendicular to the elliptic cross-section. The fluid pressure is taken to be constant in the
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Figure 1.5.1: The PKN model.

vertical plane perpendicular to the direction of propagation and it is also assumed that the

fluid pressure in the fracture decreases towards the fracture tip so that, at the tip, the fluid

pressure equals the compressive stress.

1.5.2 The KGD or plane strain model

This model was developed by Khristianovic and Zheltov[8] and Geertsma and de Klerk[12].

This model assumes that the fracture deformation and propagation evolve in a situation of

plane strain. Fluid flow in the fracture and the fracture propagation are assumed to be one-

dimensional and fracture height is constant, each horizontal plane deforming independently,

as shown in Figure 1.5.2.

1.5.3 The Penny-shape or radial model.

In this model, the fracture propagates within a given plane and is symmetrical with respect to

the point at which fluid is injected as shown in Figure 1.5.3.
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Figure 1.5.2: The KGD model.

Figure 1.5.3: The penny-shaped or radial model. Q0 is the fluid flux.
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1.6 Mathematical method of solution

Modelling the problem of a pre-existing fluid-driven fracture in impermeable rock using the

PKN theory results in a nonlinear partial differential equation. This equation is a nonlinear

diffusion equation.

In this dissertation, we investigate the case when the rock in question is permeable. This

implies that the fluid injected into the fracture leaks off into the surrounding rock. The leak-off

plays a crucial role in the overall reaction of the rock to the pressure of the fluid being injected.

For the case in which the rock is permeable, the nonlinear diffusion equation contains a leak-

off term, vn. This further complicates the solution of the nonlinear partial differential equation

which now has two dependent variables and two independent variables.

A good way of obtaining analytical solutions of this nonlinear diffusion equation is to use

Lie group analysis. In this technique, we derive the Lie point symmetries of the partial differ-

ential equation. The existence of these Lie point symmetries leads to the leak-off velocity, vn,

satisfying a first order linear partial differential equation. The fluid flow in the fracture obeys

the Navier-Stokes and mass conservation equations. Lubrication theory is used to simplify the

equation governing the fluid motion in the fracture[17]. This simplification stems from the fact

that the characteristic half-width, H , of the fracture, is small compared to the characteristic

length, L, of the fracture; that is

H

L
<< 1. (1.6.1)

It is also assumed that

Re

(

H

L

)2

<< 1, (1.6.2)

which implies that the inertia term in the Navier-Stokes equation can be neglected. In (1.6.2),

Re is the Reynolds number defined by

Re =
UL

ν
, (1.6.3)

where U is the characteristic fluid velocity in the direction of propagation of the fracture and

ν is the kinematic viscosity of the fluid. Lubrication theory is developed in Chapter 2. The

invariant solutions for a pre-existing fluid-driven fracture in permeable rock are obtained using

the Lie point symmetry method.
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1.7 Numerical methods

The initial value solver ODE 45 in MATLAB and the computer algebra package, MATHE-

MATICA, with the built-in numerical differential equation solver, NDSolve, are used to nu-

merically solve the system of two initial value problems encountered in this research. The two

initial value problems are obtained by transformations derived from a scaling analysis of the

original boundary value problem.

1.8 Outline of research work

Two related problems will be considered and their analytic and numerical solutions anal-

ysed. The problems are hydraulic fracture in permeable rock when the leak-off velocity at

the fluid/rock interface is proportional to the fracture half-width and secondly when the leak-

off velocity at the fluid/rock interface is proportional to the gradient of the fracture half-width.

In Chapter 2 a concise outline of the theory of group analysis of differential equations, the

mathematical method of solution of the partial differential equation derived in this research

work, is made. The thin fluid film theory is briefly introduced and reviewed and the approxi-

mations to the Navier-Stokes equation are explained.

Chapter 3 commences with the presentation of a two-dimensional PKN fracture model for

a permeable rock. The initial fracture shape is unspecified and is only determined from the

group invariant and numerical solutions obtained. By using the thin fluid film approxima-

tions of lubrication theory, the Navier-Stokes equation is reduced to a lubrication equation. A

nonlinear diffusion equation for the half-width h(x, t) of the fracture is derived using the thin

film approximation and the PKN formulation (1.3.1). This equation contains a term which

is the leak-off velocity, vn. The Lie point symmetries of the partial differential equation are

derived and a condition on vn for the Lie point symmetries to exist is obtained. The general

form of the group invariant solution for h(x, t), vn(x, t) and p(x, t) is derived. The partial

differential equation reduces to a nonlinear second order ordinary differential equation in two

dependent variables when the similarity form of h(x, t) and vn(x, t) are substituted into it.

Lastly, the physical significance of some special values of the ratio c3
c2

which features in the
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group invariant solutions is discussed.

In Chapter 4 analysis is given for the problem of a fluid-driven fracture in permeable rock

when the leak-off velocity, vn, is proportional to the fracture half-width h. Exact solutions are

obtained for some special cases and discussion is given on the physical significance of these

cases. The general numerical solution is obtained and discussed.

In Chapter 5, a corresponding analysis is given for the problem of a fluid-driven fracture

in permeable rock when the leak-off velocity is proportional to the gradient of the fracture

half-width. Exact solutions are also obtained and discussed for some special cases and the

general numerical solution is derived.

Finally, the general conclusions and a summary of the results are given in Chapter 6.
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Chapter 2

BACKGROUND

2.1 Introduction

This chapter presents the main results from the theory of Lie group analysis of differential

equations that will be used in solving the nonlinear partial and ordinary differential equations

derived in this research. The theory of Lie group analysis of differential equations which has

extensively been dealt with in several books[18, 19, 20, 21, 22] was initiated by the 19th cen-

tury Norwegian mathematician, Sophus Lie (1842-1899). It is a systematic way of obtaining

exact solutions of linear and nonlinear ordinary and partial differential equations.

A concise introduction is also given of the theory of thin fluid films, also known as lubri-

cation theory. Lubrication theory describes the fluid flow inside the thin layer fracture.

2.2 Lie point symmetries

We consider the nonlinear second order partial differential equation

F (t, x, h, ht, hx, htx, htt, hxx) = 0, (2.2.1)

in the two independent variables x and t and dependent variable h, which is the fracture half-

width, where a subscript denotes partial differentiation.

The Lie point symmetry generators

X = ξ1(t, x, h)
∂

∂t
+ ξ2(t, x, h)

∂

∂x
+ η(t, x, h)

∂

∂h
(2.2.2)
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of equation (2.2.1) are derived by solving the determining equation,

X [2]F (t, x, h, ht, hx, htx, htt, hxx)

∣

∣

∣

∣

F=0

= 0, (2.2.3)

for ξ1(t, x, h), ξ2(t, x, h) and η(t, x, h), where X [2], called the second prolongation of X , is

given by

X [2] = X + ζ1
∂

∂ht

+ ζ2
∂

∂hx

+ ζ11
∂

∂htt

+ ζ12
∂

∂htx

+ ζ22
∂

∂hxx

, (2.2.4)

where

ζi = Di(η) − hkDi(ξ
k), i = 1, 2, (2.2.5)

ζij = Dj(ζi) − hikDj(ξ
k), i, j = 1, 2, (2.2.6)

with summation over the repeated index k from 1 to 2. The total derivatives with respect to

the independent variables t and x in (2.2.5) and (2.2.6) are

D1 = Dt =
∂

∂t
+ ht

∂

∂h
+ htt

∂

∂ht

+ hxt

∂

∂hx

+ ... , (2.2.7)

D2 = Dx =
∂

∂x
+ hx

∂

∂h
+ htx

∂

∂ht

+ hxx

∂

∂hx

+ .... . (2.2.8)

The partial differential equation obtained in the pre-existing fluid-driven fracture problem is

second order and therefore we only need the second prolongation of X . The unknown func-

tions ξ1(t, x, h), ξ2(t, x, h) and η(t, x, h) in the Lie point symmetry do not depend on the

derivatives of h. The derivatives of h in the determining equation are independent. Hence, the

coefficient of each derivative of h in the determining equation (2.2.3) must be zero.

The determining equation (2.2.3) can therefore be separated according to derivatives of h

and the coefficient of each derivative set to zero. Solving this overdetermined system of equa-

tions produces expressions for ξ1(t, x, h), ξ2(t, x, h) and η(t, x, h). These solutions contain

constants. By setting all the constants to zero except one in turn, we obtain all the Lie point

symmetry generators Xi, i = 1, 2, ..., n. We also obtain a linear partial differential equation

for the leak-off velocity vn which must be satisfied for the Lie point symmetries to exist.

2.3 Lie’s equations

The one parameter group of transformations

xi = f i(x, a), i = 1, 2, . . . , n (2.3.1)
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where a is the group parameter, generated by the Lie point symmetry

X = ξi ∂

∂xi
(2.3.2)

where there is summation over the repeated index i, is obtained by solving the Lie equations

dxi

da
= ξi(x), (2.3.3)

subject to the initial conditions

xi
∣

∣

a=0
= xi. (2.3.4)

Lie equations will be used in Chapters 4 and 5 to derive the coordinate transformation which

will transform a boundary value problem to two initial value problems.

2.4 Group invariant solutions

The symmetry generators obtained are of the form

Xi = ξ1
i (t, x, h)

∂

∂t
+ ξ2

i (t, x, h)
∂

∂x
+ ηi(t, x, h)

∂

∂h
(2.4.1)

for i = 1, 2, ...n, where n is the number of admitted Lie point symmetries. Since a constant

multiple of a Lie point symmetry is also a Lie point symmetry, any linear combination of Lie

point symmetries is also a Lie point symmetry. Denote by Xc this linear combination:

Xc = c1X1 + c2X2 + c3X3 + ..... + cnXn, (2.4.2)

where ci, i = 1, 2, ...n, are constants.

The group invariant solution, h = φ(t, x), of the nonlinear partial differential equation is

obtained by solving the equation

Xc(h − φ(t, x))

∣

∣

∣

∣

h=φ(t,x)

= 0. (2.4.3)

The group invariant solution is then substituted into the nonlinear partial differential equation.

This substitution reduces the partial differential equation to an ordinary differential equation

in a new variable, called the similarity variable.
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In the analysis of the fluid-driven fracturing of a permeable rock, the time rate of change

of mass of fluid in the fracture is the net difference between the rate at which mass of fluid is

entering the fracture and the rate at which mass of fluid is leaked-off into the rock formation.

The fracturing fluid is incompressible, hence the volume of a fluid element is also conserved

and the balance law can be expressed in terms of volume of fluid instead of mass of fluid.

When the balance law is expressed in terms of the similarity variable a condition is obtained

on the ratios of the unknown constants ci, i = 1, 2, ..., n. The ratios of the constants ci in the

linear combination (2.4.2) are further obtained from the boundary condition at the fracture tip

and the given initial total volume V0 of the fracture.

2.5 Thin fluid film approximation

In the analysis of a fluid-driven fracture of rock, the relevant equations are the Navier-Stokes

and continuity equations for a homogenous, viscous, incompressible Newtonian fluid which

in vectorial form are

∂v

∂t
+ (v · ∇)v =

−1

ρ
∇p + ν∇2v + F , (2.5.1)

∇ · v = 0, (2.5.2)

where v is the fluid velocity, p, the fluid pressure, ν, the kinematic viscosity of the fluid and F ,

the body force per unit mass. Consider a thin film of viscous incompressible fluid in the region

between two elastic half-spaces, bounded above by z = h(t, x) and below by z = −h(t, x), as

shown in Figure 2.5.1. We choose L to be a suitable characteristic length of the fracture and

H a suitable characteristic half-width of the fracture. Let U be the characteristic fluid velocity

in the fracture in the x-direction. Under the consideration that the characteristic half-width,

H , of the fracture is small compared to the characteristic length L of the fracture, the thin

fluid film approximation[17] is given by (1.6.1) and (1.6.2) where Re, the Reynolds number,

is defined by Re = UL
ν

. The thin film approximation removes the time derivative
∂v

∂t
and the

nonlinear term (v · ∇)v from the Navier-Stokes equation [17]. It is important to note that

the thin film approximation applies even for high Reynolds number flow provided (1.6.2) is

satisfied.
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H

L

z

z = h(x, t)

viscous incompressible fluid

z = −h(x, t)

x

Figure 2.5.1: Thin film of viscous incompressible fluid of characteristic thickness H and

characteristic lenght L

In summary, the Navier-Stokes equation is linear in the thin fluid film approximation. The

linearity of the Navier-Stokes equation in the thin fluid film approximation does not imply

that the problem of a fluid-driven fracture of rock is linear. Nonlinearity of the problem enters

from the boundary condition at the fluid-rock interface.
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Chapter 3

TWO DIMENSIONAL HYDRAULIC

FRACTURE IN PERMEABLE ROCK

3.1 Introduction

In this chapter, we will consider a two-dimensional PKN fluid-driven fracture model for per-

meable rock. It is worth noting that the permeability of the rock implies that the injected fluid

leaks off into the surrounding rock formation. A review of hydraulic fracture modelling has

been given by Mendelsohn[23]. The fluid used to drive the fracture is a viscous incompressible

Newtonian fluid.

One of the objectives of this chapter is to enumerate the assumptions on which our model

depends in Section 3.3. Using these assumptions, we will formulate the mathematics under-

lying the fluid-driven fracture. The thin fluid film equations for the fluid flow in the two-

dimensional fracture are derived. In Section 3.5, we derive the nonlinear diffusion equation

in the dependent variable h(x, t) and leak-off term vn(x, t). The symmetries of the nonlinear

diffusion equation are obtained in Section 3.6. These symmetries exist provided the leak-off

velocity satisfies a first order linear partial differential equation. Finally in Section 3.7, we

discuss the special values for the parameter c3
c2

that are of clear physical significance.
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3.2 Thin fluid film equations for the flow in a two-dimensional

fracture

In this section, we will derive the two-dimensional thin fluid film equations for the flow of

the injected viscous incompressible fluid in the fracture. Consider the flow in the region be-

0

vz

vz

vx

vx

vx(0, z, t)

vx(0, z, t)

x

V (t)

vn

vn

vn

vn

vn

vn

α

α

z = h(x, t)

z = −h(x, t)

z

x = L(t)

σ0

Figure 3.2.1: A crack propagating in an elastic permeable medium(the coordinate direction y

points into the page). The leak-off velocity, vn, is perpendicular to the interface.

tween the two boundaries z = h(x, t) and z = −h(x, t) where h(x, t) is the half-width of the

fracture. The cartesian coordinate system is as shown in Figure 3.2.1. The fluid flow is in-

dependent of y and obeys the two-dimensional Navier-Stokes equation for an incompressible

fluid:

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p + ν∇2v (3.2.1)

and the conservation of mass equation

∇.v = 0, (3.2.2)
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where v = (vx(x, z, t), 0, vz(x, z, t)) denotes the fluid velocity, p(x, z, t), the fluid pressure, ρ,

the density of the fluid which is a constant and ν, the kinematic viscosity. The body force per

unit mass is neglected. The fluid flow is symmetrical about the line z = 0.

In order to simplify equations (3.2.1) and (3.2.2), we first introduce the characteristic quantities

and justification is then made of their choice:

characteristic length in x-direction =L

characteristic lenght in z-direction = H

characteristic fluid velocity in x-direction = U

characteristic fluid velocity in z-direction W =
H

L
U

characteristic fluid pressure P =
µUL

H2

characteristic time T=
L

U
.

We now justify the expression for the characteristic velocity in the z- direction. The continuity

equation, (3.2.2), written in cartesian coordinates, is

∂vx

∂x
+

∂vz

∂z
= 0. (3.2.3)

The order of magnitude of terms in (3.2.3) is

U

L
+

W

L
∼ 0 (3.2.4)

and therefore

W =
H

L
U. (3.2.5)

To justify the expression for the characteristic fluid pressure, consider the x-component of the

Navier-Stokes equation

ρ
Dvx

Dt
= −∂p

∂x
+ µ

(

∂2vx

∂x2
+

∂2vx

∂z2

)

. (3.2.6)

The order of magnitude of the terms in (3.2.6) is

ρ
U

T
∼ −P

L
+ µ

(

U

L2
+

U

H2

)

. (3.2.7)

Since equation (1.6.1) is satisfied,

U

H2
≫ U

L2
. (3.2.8)

18



Therefore, the viscous term can be approximated by νU
H2 and equation (3.2.7) becomes

ρ
U2

L
∼ −P

L
+

µU

H2
, (3.2.9)

where T = L
U

. Now

inertia term

viscous term
=

ρU2

L
µU

H2

= Re

(

H

L

)2

≪ 1 (3.2.10)

by (1.6.2) and (3.2.9) reduces to

P ∼ µ
UL

H2
, (3.2.11)

which is the characteristic fluid pressure.

Introduce the dimensionless variables:

t=
Ut

L
, x=

x

L
, z=

z

H
, vx=

vx

U
, vz=

vzL

UH
, p=

H2p

µLU

and write the mass conservation equation and each component of the Navier-Stokes equation

in dimensionless form. This gives:

the mass conservation equation:

∂vx

∂x
+

∂vz

∂z
= 0, (3.2.12)

the x-component of Navier-Stokes equation:

Re

(

H

L

)2(
∂vx

∂t
+ vx

∂vx

∂x
+ vz

∂vx

∂z

)

= −∂p

∂x
+

(

H

L

)2
∂2vx

∂x2 +
∂2vx

∂z2 , (3.2.13)

the z-component of Navier-Stokes equation:

Re

(

H

L

)4(
∂vz

∂t
+ vx

∂vz

∂x
+ vz

∂vz

∂z

)

= −∂p

∂z
+

(

H

L

)4
∂2vz

∂x2 +

(

H

L

)2
∂2vz

∂z2 . (3.2.14)

The motivation for putting the Navier-Stokes and mass conservation equations in dimension-

less form arises from the need to know which terms can be neglected in the thin fluid film

approximation of the concerned equations.

Impose the thin fluid film approximation, (1.6.1) and (1.6.2). Equations (3.2.12) to (3.2.14)

reduce to

∂vx

∂x
+

∂vz

∂z
= 0, (3.2.15)

∂p

∂x
=

∂2vx

∂z2 , (3.2.16)

∂p

∂z
= 0. (3.2.17)
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The two-dimensional continuity equation (3.2.15) is unaltered by the thin film approximation.

Equations (3.2.16) and (3.2.17) are the x-component and z- component of the Navier-Stokes

equation in the thin fluid film approximation in dimensionless form.

3.3 Mathematical formulation

We consider the two-dimensional PKN model of a pre-existing fluid-filled hydraulic fracture

propagating in a permeable linear elastic medium and driven by a viscous incompressible

Newtonian fluid as shown in Figure 3.2.1. The case when the fracture is driven by a non-

Newtonian fluid is of importance and will be considered in future work. The fracture is driven

by a fluid injected into it at the rate dV
dt

per unit length in the y direction at the entry to the

fracture. The injected fluid causes the fracture to propagate along the x-axis, perpendicular to

the compressive stress of magnitude σ0. As the fracture is being propagated in the permeable

medium, fluid is being leaked-off into the rock formation through the interface between the

rock and the injected fluid.

To build a mathematical model for the rock fracturing process, it will be necessary to

consider both the mechanics of the fluid inside the fracture and the way that this interacts with

the elasticity of the surrounding rock. We begin by making the following assumptions for our

model:

• The rock is a permeable medium and there is fluid leak-off into it. The fluid leak-off

into the rock mass is in the direction perpendicular to the fluid/rock interface.

• The rock is a linearly elastic material which assumes small displacement gradients.

• The fracture propagates along the positive x-direction, is one-sided, 0 ≤ x ≤ L(t),

identical in every plane y=constant and has length L(t) and half-width h(x, t).

• In every plane y= constant, the fracture is symmetrical about the x-axis. The upper

surface is y = h(x, t) and the lower surface is y=-h(x, t).

• The fracture is completely filled with the injected fluid. That is, the fluid front concides

with the tip of the fracture and there is no fluid lag.

20



• The flow of fluid inside the fracture is laminar.

• The flow of fluid inside the fracture is modelled using lubrication theory.

3.4 Governing equations

3.4.1 Fluid problem: Lubrication theory

The coordinate system is as chosen in Figure 3.2.1. The fluid flow in the fracture is inde-

pendent of the y-coordinate and obeys the two-dimensional Navier-Stokes equation for an

incompressible fluid. For a thin fracture whose length is much greater than its width, the thin

fluid film approximation, (1.6.1) and (1.6.2), is satisfied. The fluid flow in the fracture is then

governed by the dimensionless equations (3.2.15) to (3.2.17). These thin fluid film equations

are valid as long as the thin fluid film approximations, (1.6.1) and (1.6.2), hold through-out the

process of the hydraulic fracturing. Lubrication theory breaks down when equations (1.6.1)

and (1.6.2) no longer hold.

The fluid variables are

vx = vx(x, z, t), vy = 0, vz = vz(x, z, t), p = p(x, z, t). (3.4.1)

By dropping the overhead bars for simplicity, the thin film equations of lubrication theory in

dimensionless form, (3.2.15) to (3.2.17), become

∂p

∂x
=

∂2vx

∂z2
,

∂p

∂z
= 0,

∂vx

∂x
+

∂vz

∂z
= 0. (3.4.2)

Fracture problem: Elasticity equation

Under the linear theory of elasticity, if an elastic half-space z > 0 is subjected to the normal

traction σzz = −pf (x, t) on the internal face of the fracture, then for a fracture that propagates

in the positive x−direction, the pressure is related to the half-width of the fracture by the plane

strain elastic equation of the form

p(x, t) = pf(x, t) − σ0 = −
(

E

π(1 − ν)

)
∫ L(t)

0

hs(s, t)

s − x
ds, (3.4.3)

21



where E is the Young’s modulus and ν is the Poisson ratio of the rock. At the fluid-rock

interface, it is assumed that there is a no-slip condition so that the shear traction is negligible.

Equation (3.4.3) is a non-trivial singular integral equation which describes the normal surface

stresses resulting from the deformation of the interface of the elastic material from a planar

state.

An alternative to this classical two-dimensional modelling is the PKN theory discussed

in Sections 1.3 and 1.5 and which is used throughout this dissertation. The PKN theory is

adopted in this dissertation because of its simplicity, unlike the plane strain equation (3.4.3)

which is difficult to solve analytically when coupled with other equations of hydraulic fracture.

The elastic constitutive law for the two-dimensional model of a fluid driven fracture prop-

agating in a permeable linear elastic medium in PKN theory[5] is given as

p = Λh(x, t), (3.4.4)

where[6]

Λ =
EH3

(1 − σ2)µULB
. (3.4.5)

In (3.4.5) E and σ are the Young’s modulus and Poisson ratio of the rock, B is the breadth in

the y−direction of the fracture, µ the dynamic viscosity and H , L and U are the characteristic

quantities defined earlier. Also,

p = pf − σ0 (3.4.6)

is the net pressure of the fluid that will be determined, pf is the internal fluid pressure in the

fracture and σ0 is the far field compressive stress perpendicular to the fracture.

3.4.2 Initial and boundary conditions

At the solid boundary of the fracture, the boundary conditions are the no-slip condition for a

viscous fluid and the leak-off condition.

Denote by vn(x, t) the fluid velocity at the interface, measured relative to the interface in

the direction perpendicular to the interface. The velocity vn(x, t) is referred to as the leak-off

velocity.

From Figures 3.4.1 and 3.4.2, we obtain the following boundary conditions at z = ±h(x, t).
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Figure 3.4.1: Tangent plane at a point on the

surface, z = h(x, t).
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α

Figure 3.4.2: Tangent plane at a point on the

surface, z = −h(x, t).

No slip condition:

Tangential component of the fluid velocity at the boundary equals the tangential compo-

nent of the velocity of the boundary.

z = h(x, t) : vx(x, h, t)cosα = −Dh

Dt
sinα, (3.4.7)

z = −h(x, t) : vx(x,−h, t)cosα = −Dh

Dt
sinα, (3.4.8)

where D
Dt

denotes the material time derivative.

Leak-off condition:

Normal component of the fluid velocity at the boundary equals the normal component

of the velocity of the boundary + normal component of the velocity of fluid relative to the

boundary.

z = h(x, t) : vz(x, h, t)cosα =
Dh

Dt
cosα + vn(x, t), (3.4.9)

z = −h(x, t) : vz(x,−h, t)cosα = −Dh

Dt
cosα − vn(x, t). (3.4.10)

Now

tanα = −∂h

∂x
= ©

(

H

L

)

(3.4.11)

and in the thin film approximation H
L

<< 1. Thus α is small and

tanα = ©(α) = ©
(

H

L

)

, sinα = ©(α) = ©
(

H

L

)

, cosα = ©(1) (3.4.12)

and the boundary conditions (3.4.7) to (3.4.10) reduce to the following conditions.
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No-slip condition:

z = h(x, t) : vx(x, h, t) = 0, (3.4.13)

z = −h(x, t) : vx(x,−h, t) = 0. (3.4.14)

Leak-off condition:

z = h(x, t) : vz(x, h, t) =
Dh

Dt
+ vn(x, t), (3.4.15)

z = −h(x, t) : vz(x,−h, t) = −Dh

Dt
− vn(x, t). (3.4.16)

The thin film approximation H
L

<< 1 is a good approximation except near the tip of the

fracture. The boundary conditions (3.4.13) to (3.4.16) will therefore be valid except near the

fracture tip where the thin film approximation breaks down. Equations (3.4.15) and (3.4.16)

are expressed in dimensionless form. The leak-off velocity vn has been made dimensionless

by division by the characteristic velocity in the z-direction H
L
U . By expanding the material

time derivative, (3.4.15) becomes

vz(x, h, t) =
∂h

∂t
+ vx(x, h, t)

∂h

∂x
+ vn(x, t)

=
∂h

∂t
+ vn(x, t), (3.4.17)

since vx(x, h, t) = 0 from the no slip boundary condition (3.4.13). Similarly, the boundary

condition (3.4.16) becomes

vz(x,−h, t) = −∂h

∂t
− vn(x, t). (3.4.18)

Initial conditions:

In the model, the rock has a pre-existing fracture. Hence, the initial fracture shape is such that

t = 0 : h(x, 0) = ho(x). (3.4.19)

In general, it will not be possible for a similarity solution to satisfy condition (3.4.19). We will

investigate the initial condition h(x, 0) given by the similarity solution in Chapters 4 and 5.

The initial dimensionless length and volume of the fracture is also specified:

t = 0 : L(0) = 1, (3.4.20)

t = 0 : V (0) = 1. (3.4.21)
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This is equivalent to taking the characteristic length of the fracture to be the initial dimensional

length and the characteristic volume of the fracture to be the initial dimensional volume.

Condition at the fracture tip:

x = L(t) : h(L(t), t) = 0. (3.4.22)

The mathematical formulation is summarized as follows:

Governing equations:

∂p

∂x
=

∂2vx

∂z2
, (3.4.23)

∂p

∂z
= 0, (3.4.24)

∂vx

∂x
+

∂vz

∂z
= 0. (3.4.25)

Boundary conditions:

z = h(x, t) : vx(x, h, t) = 0, (3.4.26)

z = −h(x, t) : vx(x,−h, t) = 0, (3.4.27)

z = h(x, t) : vz(x, h, t) =
∂h

∂t
(x, t) + vn(x, t), (3.4.28)

z = −h(x, t) : vz(x,−h, t) = −∂h

∂t
(x, t) − vn(x, t). (3.4.29)

Initial conditions:

t = 0 : h(x, 0) = ho(x), (3.4.30)

t = 0 : L(0) = 1, (3.4.31)

t = 0 : V (0) = 1. (3.4.32)

condition at the fracture tip:

x = L(t) : h(L(t), t) = 0. (3.4.33)

Using equations (3.4.23) to (3.4.25) and boundary conditions (3.4.26) to (3.4.29), a nonlinear

partial differential equation relating the half-width of the fracture h(x, t) to the fluid pressure

p(x, t) and leak-off velocity vn(x, t) will be derived in the next section.
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3.5 Nonlinear diffusion equation with leak-off term

We will now derive the nonlinear diffusion equation for the half-width of the fracture h(x, t).

This equation also contains a term describing fluid leak-off at the fluid/rock interface.

We first obtain an expression for vx(x, z, t). By integrating equation (3.4.23) twice with

respect to z and applying the no slip boundary conditions (3.4.26) and (3.4.27) at the interface

between the fluid and the solid boundary, we obtain

vx(x, z, t) = −1

2

(

h2(x, t) − z2
) ∂p

∂x
. (3.5.1)

The continuity equation (3.4.25) is integrated with respect to z across the two-dimensional

fracture. This gives

vz(x, h, t) − vz(x,−h, t) +

∫ h

−h

∂vx

∂x
(x, z, t)dz = 0. (3.5.2)

Using boundary conditions (3.4.28) and (3.4.29), equation (3.5.2) becomes

∂h

∂t
+ vn(x, t) +

1

2

∫ h

−h

∂vx

∂x
(x, z, t)dz = 0. (3.5.3)

The partial derivative inside the integral is taken outside the integral using Leibnitz formula

for differentiation under the integral sign[24]:

∂

∂x

∫ h(x,t)

−h(x,t)

vx(x, z, t)dz =

∫ h(x,t)

−h(x,t)

∂vx

∂x
(x, z, t)dz + vx(x, h, t)

∂h

∂x
− vx(x,−h, t)

(

−∂h

∂x

)

(3.5.4)

which using the no-slip boundary conditions (3.4.26) and (3.4.27), simplifies to

∂

∂x

∫ h(x,t)

−h(x,t)

vx(x, z, t)dz =

∫ h(x,t)

−h(x,t)

∂vx

∂x
(x, z, t)dz. (3.5.5)

Using (3.5.5), equation (3.5.3) becomes

∂h

∂t
+

1

2

∂

∂x

∫ h

−h

vx(x, z, t)dz = −vn(x, t). (3.5.6)

Equation (3.5.6) has the form of a conservation equation with a sink term. We now substitute

equation (3.5.1) into equation (3.5.6) to obtain:

∂h

∂t
− 1

4

∂

∂x

[

∂p

∂x
(x, t)

∫ h

−h

(h2(x, t) − z2)dz

]

= −vn(x, t). (3.5.7)
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This gives the nonlinear partial differential equation

∂h

∂t
=

1

3

∂

∂x

(

h3 ∂p

∂x

)

− vn. (3.5.8)

Using equation (3.4.4), we obtain the nonlinear diffusion equation

∂h

∂t
=

Λ

3

∂

∂x

(

h3 ∂h

∂x

)

− vn. (3.5.9)

We will now derive the equation relating the rate of change of total volume of the fracture

per unit length in the y-direction to the resultant area flux into the fracture at the entry and at

the fluid-rock interface.

The total volume of the fracture, V (t), per unit length in the y-direction is

V (t) = 2

∫ L(t)

0

h(x, t)dx. (3.5.10)

Equation (3.5.10) is dimensionless. The total volume V(t) was made dimensionless by division

by the characteristic volume per unit length in the y− direction, HL. The injected fluid is

incompressible. Therefore, per unit length in the y-direction,

the time rate of change of the total volume of the fracture = the rate of fluid flow into the

fracture at the entry to the fracture - rate of fluid leak-off at the fluid-rock interface.

At x = 0, the rate of fluid flow into the fracture per unit length in the y-direction, which is the

area flux into the fracture per unit length in the y-direction, is

q1 =

∫ h(0,t)

−h(0,t)

vx(0, z, t)dz = 2

∫ h(0,t)

0

vx(0, z, t)dz. (3.5.11)

The rate of flow of leaked-off fluid into the rock mass per unit length in the y-direction, which

is the area flux of the leaked-off fluid per unit length in the y-direction, is

q2 = 2

∫ L(t)

0

vn(x, t)dx. (3.5.12)

Hence, per unit length in the y-direction, the rate of increase of the total volume of the fracture,

dV
dt

, is

dV

dt
= q1 − q2

= 2

∫ h(0,t)

0

vx(0, z, t)dz − 2

∫ L(t)

0

vn(x, t)dx. (3.5.13)
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We substitute (3.5.1) evaluated at x = 0 into equation (3.5.13) and integrate to obtain

dV

dt
= −2

3
h3(0, t)

∂p

∂x
(0, t) − 2

∫ L(t)

0

vn(x, t)dx. (3.5.14)

Applying equation (3.4.4) we obtain

dV

dt
= −2Λ

3
h3(0, t)

∂h

∂x
(0, t) − 2

∫ L(t)

0

vn(x, t)dx. (3.5.15)

A statement of the problem is as follows: Solve for h(x, t), vn(x, t) and L(t) the partial

differential equation

∂h

∂t
=

Λ

3

∂

∂x

(

h3 ∂h

∂x

)

− vn, (3.5.16)

subject to the boundary condition

h(L(t), t) = 0 (3.5.17)

and the initial condition

L(0) = 1 (3.5.18)

and the balance law

dV

dt
= −2Λ

3
h3(0, t)

∂h

∂x
(0, t) − 2

∫ L(t)

0

vn(x, t)dx, (3.5.19)

where

V (t) = 2

∫ L(t)

0

h(x, t)dx. (3.5.20)

Once h(x, t) has been obtained, p(x, t) is given by

p(x, t) = Λh(x, t). (3.5.21)

Problem (3.5.16) to (3.5.21) is not a closed problem since equation (3.5.16) is not sufficient to

determine the leak-off term vn(x, t). Further modelling will be required for vn(x, t) in order

to have a well posed closed problem. However, in this dissertation, Lie group analysis is used

to determine the form of vn(x, t).

We will derive a group invariant solution for h(x, t), vn(x, t) and L(t). The first step in

achieving this goal is to investigate the Lie point symmetries of equation (3.5.16).
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3.6 Lie point symmetries and general properties of group

invariant solutions

We will use a linear combination of the Lie point symmetries of the nonlinear diffusion equa-

tion

∂h

∂t
=

Λ

3

∂

∂x

(

h3∂h

∂x

)

− vn (3.6.1)

to construct a group invariant solution for h(x, t), vn(x, t), L(t), p(x, t) and V (t). We will

first outline in a concise manner the derivation of the Lie point symmetries of (3.6.1) and then

establish some general properties of the group invariant solution. The complete derivation of

the Lie point symmetries of equation (3.6.1) is presented in Appendix A.

The Lie point symmetries

X = ξ1(t, x, h)
∂

∂t
+ ξ2(t, x, h)

∂

∂x
+ η(t, x, h)

∂

∂h
(3.6.2)

of equation (3.6.1) are derived by solving the determining equation[19]

X [2]

(

ht −
Λ

3
h3hxx − Λh2h2

x + vn

)
∣

∣

∣

∣

eq(3.6.1)

= 0 (3.6.3)

for ξ1, ξ2 and η where X [2] is the second prolongation of the Lie point symmetry generator X .

The subscripts in equation (3.6.3) denote partial differentiation. It can be verified that

X = (c1 + c2t)
∂

∂t
+ (c4 + c3x)

∂

∂x
+

1

3
(2c3 − c2)h

∂

∂h

= c1X1 + c2X2 + c3X3 + c4X4, (3.6.4)

where

X1 =
∂

∂t
, (3.6.5)

X2 = t
∂

∂t
− 1

3
h

∂

∂h
, (3.6.6)

X3 = x
∂

∂x
+

2

3
h

∂

∂h
, (3.6.7)

X4 =
∂

∂x
, (3.6.8)
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and c1, c2, c3 and c4 are constants, provided the fluid leak-off velocity, vn(x, t), satisfies the

first order linear partial differential equation

(c1 + c2t)
∂vn

∂t
+ (c4 + c3x)

∂vn

∂x
=

2

3
(c3 − 2c2)vn. (3.6.9)

Now, h(x, t) is a group invariant solution of (3.6.1) provided

X (h − φ(x, t))

∣

∣

∣

∣

h=φ

= 0, (3.6.10)

that is, provided

(c1 + c2t)
∂φ

∂t
+ (c4 + c3x)

∂φ

∂x
=

1

3
(2c3 − c2)φ. (3.6.11)

The system of first order differential equations of the characteristic curves of (3.6.11) are

dt

c1 + c2t
=

dx

c4 + c3x
=

dφ
1
3
(2c3 − c2)φ

(3.6.12)

It is equivalently rewritten as

dt

c1 + c2t
=

dx

c4 + c3x
,

dt

c1 + c2t
=

dφ
1
3
(2c3 − c2)φ

. (3.6.13)

On integrating each of the differential equations in (3.6.13), one arrives at the following two

independent first integrals, respectively:

I1 =
c4 + c3x

(c1 + c2t)
c3
c2

, I2 =
φ

(c1 + c2t)
2c3−c2

3c2

. (3.6.14)

The constants I1 and I2 form a basis of invariants of (3.6.11) since they are independent. The

general form of the solution of (3.6.11) is

I2 = f(I1), (3.6.15)

where f is an arbitrary function. Hence

φ(x, t) = (c1 + c2t)
2c3−c2

3c2 f(ξ), (3.6.16)

where

ξ =
c4 + c3x

(c1 + c2t)
c3
c2

. (3.6.17)
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But since φ(x, t) = h(x, t), it follows that

h(x, t) = (c1 + c2t)
2c3−c2

3c2 f(ξ), (3.6.18)

where f(ξ) is an arbitrary function of ξ.

Consider now the fluid leak-off velocity, vn(x, t). We note that the existence of the group

invariant solution (3.6.18) requires that vn(x, t) satisfies equation (3.6.9). The differential

equations of the characteristic curves of (3.6.9) are

dt

c1 + c2t
=

dx

c4 + c3x
=

dvn

2
3
(c3 − 2c2)vn

, (3.6.19)

which may equivalently be written as

dt

c1 + c2t
=

dx

c4 + c3x
,

dt

c1 + c2t
=

dvn

2
3
(c3 − 2c2)vn

. (3.6.20)

We integrate the two differential equations in (3.6.20) to obtain the basis of invariants

I3 =
c4 + c3x

(c1 + c2t)
c3
c2

, I4 =
vn

(c1 + c2t)
2(c3−2c2)

3c2

, (3.6.21)

respectively.

The general form of the solution of (3.6.19) is

I4 = g(I3), (3.6.22)

where g is an arbitrary function. Hence

vn(x, t) = (c1 + c2t)
2(c3−2c2)

3c2 g(ξ) (3.6.23)

and ξ is as defined by equation (3.6.17).

We have suceeded in obtaining the general form of the group invariant solution for the frac-

ture half-width, h(x, t), and velocity of leak-off fluid, vn(x, t). We now express the problem

in terms of the variable ξ and the functions f(ξ) and g(ξ).

Consider first the partial differential equation (3.6.1). We substitute (3.6.18) and (3.6.23)

for h(x, t) and vn(x, t) into equation (3.6.1). The partial differential equation (3.6.1) becomes

the second order nonlinear ordinary differential equation

Λ

3
c2
3

d

dξ

(

f 3 df

dξ

)

+ c3
d

dξ
(ξf) +

c3

3
(
c2

c3

− 5)f − g = 0. (3.6.24)
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Equation (3.6.24) does not depend on c4. We can therefore choose c4 = 0 in (3.6.17) so that

ξ = 0 when x = 0.

Consider next the boundary condition (3.4.22),

h(L(t), t) = 0. (3.6.25)

From equation (3.6.18), the boundary condition (3.6.25) becomes

f(ξ) = 0 at ξ =
c3L(t)

(c1 + c2t)
c3
c2

. (3.6.26)

But the fracture half-width, h(x, t) is not a zero function. For instance at time t = 0, h(x, t)

satisfies the initial condition (3.4.19). Therefore, from (3.6.26), f cuts the ξ-axis at ξ =

c3L(t)

(c1+c2t)
c3
c2

which must be a constant. Thus

c3L(t)

(c1 + c2t)
c3
c2

= constant = A (3.6.27)

and therefore

L(t) =
A

c3
(c1 + c2t)

c3
c2 . (3.6.28)

But from (3.4.31), the initial condition is L(0) = 1. Thus

A = c3c
−

c3
c2

1 . (3.6.29)

The length of the fracture, L(t), as a function of time is therefore derived as

L(t) =

(

1 +
c2

c1
t

)

c3
c2

. (3.6.30)

For large times, L(t) becomes the power law

L(t) =

(

c2

c1

)

c3
c2

t
c3
c2 . (3.6.31)

The boundary condition (3.6.26) becomes

f(c3c
−

c3
c2

1 ) = 0 (3.6.32)

and the variable ξ, given by (3.6.17) can be expressed in terms of L(t) as

ξ = c3c
−

c3
c2

1

x

L(t)
. (3.6.33)
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Consider next the balance law (3.5.15). Substituting (3.6.18) and (3.6.23) into (3.5.15) and

using (3.6.30) for L(t) gives

dV

dt
= −2Λ

3
c3(c1 + c2t)

5
3

c3
c2

−
4
3 f 3(0)

df

dξ
(0) − 2

c3
(c1 + c2t)

5
3

c3
c2

−
4
3

∫ c3c
−

c3
c2

1

0

g(ξ)dξ. (3.6.34)

In order to evaluate the left hand side of (3.6.34), consider the total volume, V (t), of the

fracture per unit length in the y-direction which is given by (3.5.20). Using (3.6.17) and

(3.6.18) for ξ and h(x, t) respectively and (3.6.30) for L(t), (3.5.20) becomes

V (t) =
2

c3
(c1 + c2t)

5
3

c3
c2

−
1
3

∫ c3c
−

c3
c2

1

0

f(ξ)dξ. (3.6.35)

Differentiating equation (3.6.35) with respect to t gives

dV

dt
=

2

3

(

5 − c2

c3

)

(c1 + c2t)
5
3

c3
c2

−
4
3

∫ c3c
−

c3
c2

1

0

f(ξ)dξ. (3.6.36)

Substituting (3.6.36) into (3.6.34) yields

Λc3f
3(0)

df

dξ
(0) =

(

c2

c3

− 5

)
∫ c3c

−

c3
c2

1

0

f(ξ)dξ − 3

c3

∫ c3c
−

c3
c2

1

0

g(ξ)dξ. (3.6.37)

Lastly, from (3.6.35) the total volume V (t) of the fracture per unit length in the y-direction

can be expressed as

V (t) = V0

(

1 +
c2

c1

t

)
5
3
(

c3
c2

−
1
5
)

, (3.6.38)

where

V0 =
2

c3

c
5
3
(

c3
c2

−
1
5
)

1

∫ c3c
−

c3
c2

1

0

f(ξ)dξ. (3.6.39)
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A summary of the mathematical formulation is as follows:

Λ

3
c2
3

d

dξ

(

f 3 df

dξ

)

+ c3
d

dξ
(ξf) +

c3

3

(

c2

c3

− 5

)

f − g = 0, (3.6.40)

f

(

c3c
−

c3
c2

1

)

= 0, (3.6.41)

Λc3f
3(0)

df

dξ
(0) =

(

c2

c3
− 5

)
∫ c3c

−

c3
c2

1

0

f(ξ)dξ − 3

c3

∫ c3c
−

c3
c2

1

0

g(ξ)dξ, (3.6.42)

V0 =
2

c3
c

5
3

c3
c2

−
1
3

1

∫ c3c
−

c3
c2

1

0

f(ξ)dξ, (3.6.43)

c2

c1
=

c2

c3

c3

c1
, (3.6.44)

V (t) = V0

(

1 +
c2

c1
t

)
5
3

c3
c2

−
1
3

, (3.6.45)

L(t) =

(

1 +
c2

c1
t

)

c3
c2

, (3.6.46)

h(x, t) = (c1 + c2t)
2c3−c2

3c2 f(ξ) = c
2
3

c3
c2

−
1
3

1

(

1 +
c2

c1
t

)
2
3

c3
c2

−
1
3

f(ξ), (3.6.47)

vn = (c1 + c2t)
2(c3−2c2)

3c2 g(ξ) = c
2
3

c3
c2

−
4
3

1

(

1 +
c2

c1

t

)
2
3

c3
c2

−
4
3

g(ξ), (3.6.48)

p = Λh(x, t), (3.6.49)

ξ = c3c
−

c3
c2

1

x

L(t)
. (3.6.50)

We now make a change of variables in order to simplify equations (3.6.40) to (3.6.50).

Let

u =
x

L(t)
. (3.6.51)

The range of u is 0 ≤ u ≤ 1. From (3.6.50),

ξ = c3c
−

c3
c2

1 u. (3.6.52)

Also let

f(ξ) = c
1
3
3 c

−
2
3

c3
c2

1 F (u), (3.6.53)
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g(ξ) = c
4
3
3 c

−
2
3

c3
c2

1 G(u). (3.6.54)

Equations (3.6.40) to (3.6.50) expressed in terms of u, F (u) and G(u) become :

Λ
d

du

(

F 3dF

du

)

+ 3
d

du
(uF (u)) +

(

c2

c3

− 5

)

F (u) − 3G(u) = 0, (3.6.55)

F (1) = 0, (3.6.56)

ΛF 3(0)
dF

du
(0) =

(

c2

c3

− 5

)
∫ 1

0

F (u)du − 3

∫ 1

0

G(u)du, (3.6.57)

V0 = 2

(

c3

c1

)
1
3
∫ 1

0

F (u)du, (3.6.58)

c2

c1
=

c2

c3

c3

c1
, (3.6.59)

V (t) = V0

(

1 +
c2

c1
t

)
5
3

c3
c2

−
1
3

, (3.6.60)

L(t) =

(

1 +
c2

c1
t

)

c3
c2

, (3.6.61)

h(x, t) =

(

c3

c1

)
1
3
(

1 +
c2

c1

t

)
2
3

c3
c2

−
1
3

F (u), (3.6.62)

vn(x, t) =

(

c3

c1

)
4
3
(

1 +
c2

c1

t

)
2
3

c3
c2

−
4
3

G(u), (3.6.63)

p(x, t) = Λh(x, t), (3.6.64)

where 0 ≤ u ≤ 1. This completes the mathematical formulation of the problem.

We see that the solution depends on the ratios c1
c2

, c2
c3

, c3
c1

of the constants and not on the con-

stants separately. This is because only the ratio of the constants in (3.6.4) can be determined

since a constant multiple of a Lie point symmetry is also a Lie point symmetry.

In order to solve the system of equations (3.6.55) to (3.6.64), the ratio c2
c3

, the initial total

volume V0 and G(u), or a relation between G(u) and F (u), need to be given. Equation

(3.6.55) is then an ordinary differential equation for F (u) subject to the boundary conditions

(3.6.56) and (3.6.57). The ratio c3
c1

is obtained from (3.6.58) and the ratio c2
c1

from (3.6.59). The

solutions for V (t), L(t), h(x, t), vn(x, t) and p(x, t) are then given by (3.6.60) to (3.6.64).
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In Chapters 4 and 5 we will consider the solution for two special relations between G(u)

and F (u) and for a range of values of c3
c2

.

3.7 Special values for the ratio c3
c2

When analysing the results it is more convenient to work with the ratio c3
c2

than with c2
c3

. We

investigate here the values taken by c3
c2

when a range of physical conditions are imposed on the

fluid-driven fracture. The constants c3 and c1 are assumed to be positive while c2 takes on all

values on the real line.

The results derived here do not depend on the choice for G(u) or the relation between G(u)

and F (u).

3.7.1 Length of the fracture

The length of the fracture, L(t), is given by (3.6.61). As c3
c2

→ 0, the length L(t) of the fracture

tends to unity. Consider the limit c3
c2

→ ∞. Then rewriting (3.6.61) as

L(t) = exp

[

c3

c2
ln

(

1 +
c2

c3

c3

c1
t

)]

(3.7.1)

and using the expansion

ln(1 + ǫ) = ǫ − ǫ2

2
+

ǫ3

3
+ ©(ǫ4), (3.7.2)

as ǫ → 0, it follows that in the limit c3
c2

= ∞,

L(t) = exp

(

c3

c1
t

)

. (3.7.3)

As t → ∞ and for all values of c3
c2

the fracture length, L(t), behaves as the power law

(

c2

c1

)

c3
c2

t
c3
c2 . (3.7.4)

The speed of propagation of the fracture is

dL

dt
=

c3

c2

(

1 +
c2

c1
t

)

c3
c2

−1

. (3.7.5)
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The fracture propagates at constant speed if

c3

c2
= 1. (3.7.6)

The speed of propagation of the fracture has an exponential time-dependence in the limit

c3
c2

→ ∞ given by

dL

dt
=

c3

c1
exp

(

c3

c1
t

)

. (3.7.7)

3.7.2 Total volume of the fracture

The total volume of the fracture per unit length in the y-direction, V (t), is given by (3.6.60).

The total volume of the fracture remains constant if

c3

c2
= 0.2. (3.7.8)

In the limit c3
c2

= ∞, V (t) has exponential time-dependence given by

V (t) = V0exp

(

5

3

c3

c1

t

)

. (3.7.9)

As t → ∞ and for all values of c3
c2

the fracture volume, V (t), behaves as the power law

V0

(

c2

c1

)
5
3

c3
c2

−
1
3

t

“

5
3

c3
c2

−
1
3

”

. (3.7.10)

Also

dV

dt
=

5

3

c2

c1

(

c3

c2

− 1

5

)

V0

(

1 +
c2

c1

t

)
5
3

c3
c2

−
4
3

. (3.7.11)

The rate of change of the total volume of the fracture per unit length in the y-direction is

constant if

c3

c2
= 0.8. (3.7.12)

3.7.3 Pressure at the fracture entry

From (3.6.64) and (3.6.62) the pressure at the fracture entry, x = 0, is

p(0, t) = Λ

(

c3

c1

)
1
3
(

1 +
c2

c1
t

)
2
3

c3
c2

−
1
3

F (0). (3.7.13)
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The pressure at the entry to the fracture remains constant if

c3

c2
= 0.5. (3.7.14)

For values of c3
c2

< 0.5 the pumping pressure at the fracture entry, x = 0, is a decreasing

function of time while for values of c3
c2

> 0.5, the pumping pressure at the fracture entry is an

increasing function of time.

3.7.4 Rate of working of the pressure at the fracture entry

The rate of working of the pressure at the fracture entry per unit length in the y-direction,

W (t), is

W (t) = p(0, t)
dV

dt
. (3.7.15)

Using (3.7.11) and (3.7.13) we obtain

p(0, t)
dV

dt
=

5

3
Λ

c2

c1

(

c3

c2

− 1

5

)(

c3

c1

)
1
3

V0

(

1 +
c2

c1

t

)
7
3

c3
c2

−
5
3

F (0). (3.7.16)

Thus, the rate of working of the pressure at the fracture entry per unit length in the y-direction

(which we can interpret as the rate of working of the pump) is constant if

c3

c2

=
5

7
= 0.7143. (3.7.17)

3.7.5 Rate of fluid injection into the fracture

The rate of fluid injection into the fracture per unit length in the y-direction, q1, is given by

(3.5.11):

q1 = 2

∫ h(0,t)

0

vx(0, z, t)dz. (3.7.18)

But from (3.5.1) evaluated at x = 0,

vx(0, z, t) = −1

2

(

h2(0, t) − z2
) ∂p

∂x
(0, t). (3.7.19)

Substituting (3.7.19) into (3.7.18) gives

q1 = −2

3
h3(0, t)

∂p

∂x
(0, t). (3.7.20)
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Using (3.6.64) and (3.6.62), (3.7.20) becomes

q1 = −2

3
Λ

(

c3

c1

)
4
3
(

1 +
c2

c1

t

)
5
3

c3
c2

−
4
3

F 3(0)
dF

du
(0). (3.7.21)

Thus the rate of fluid injection into the fracture is independent of time if

c3

c2

= 0.8. (3.7.22)

3.7.6 Rate of fluid leak-off at the fluid/rock interface

The rate of fluid leak-off at the interface between the fluid and rock per unit length in the

y-direction, q2, is given by (3.5.12):

q2 = 2

∫ L(t)

0

vn(x, t)dx. (3.7.23)

Using (3.6.63), (3.7.23) becomes

q2 = 2

(

c3

c1

)
4
3
(

1 +
c2

c1
t

)
5
3

c3
c2

−
4
3
∫ 1

0

G(u)du. (3.7.24)

Thus the rate of fluid leak-off at the fluid-rock interface is independent of time if

c3

c2

= 0.8. (3.7.25)

3.7.7 Balance law for flux of fluid

By considering the balance law for the flux of fluid into the fracture a useful expression for

the rate of fluid injection can be obtained. From (3.5.13), per unit length in the y-direction,

rate of fluid injection into the fracture = rate of change of the total volume of the fracture +

rate of fluid leak-off at the fluid-rock interface.

Thus

q1 =
dV

dt
+ q2 (3.7.26)

and using (3.7.11), (3.6.58) for V0 and (3.7.24), (3.7.26) becomes

q1 =
2

3

(

c3

c1

)
4
3
(

1 +
c2

c1
t

)
5
3

c3
c2

−
4
3
[

3

∫ 1

0

G(u)du +

(

5 − c2

c3

)
∫ 1

0

F (u)du

]

. (3.7.27)

Equation (3.7.27) for the rate of fluid injection into the fracture will be useful for interpreting

the results. The results derived in this section are summarized in Table (3.7.1).
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Length of the fracture is constant c3
c2

= 0

Total volume of the fluid in the fracture is constant c3
c2

= 0.2

Pressure at the fracture entry is constant c3
c2

= 0.5

Rate of working of the pressure at the fracture entry is constant c3
c2

= 0.714

Rate of fluid injection into the fracture is constant c3
c2

= 0.8

Rate of fluid leak-off at the fluid/rock interface is constant c3
c2

= 0.8

Rate of change of the total volume of the fracture is constant c3
c2

= 0.8

Speed of propagation of the fracture is constant c3
c2

= 1.0

Table 3.7.1: Physical significance of values of the ratio c3
c2

.
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Chapter 4

LEAK-OFF VELOCITY

PROPORTIONAL TO FRACTURE

HALF-WIDTH

4.1 Introduction

In order to solve the boundary value problem (3.6.55) to (3.6.64), either G(u) must be given

or a relation between G(u) and F (u) stated. In this chapter, we begin by specifying a form for

G(u) which is in direct proportion to F (u). The constant of proportionality is β and it plays

an important role in this chapter and in subsequent chapters. Equations (4.2.4) to (4.2.13)

which are now in terms of the dependent variable F (u) are solved for special cases which

yield exact solutions. We have identified two special cases of exact solutions. The first case

which yields exact solutions corresponds to the condition in which the net flow of viscous

incompressible fluid into the fracture at the fracture entry is zero. The second case of exact

solutions corresponds to a condition in which the net flow of viscous incompressible fluid into

the fracture at the fracture entry is positive. Another possible physical condition is when there

is fluid extraction out of the fracture at the fracture entry. No exact solution has been found

for this condition.

In Section 4.3, analytical solutions are obtained for the case when the rate of fluid injection
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into the fracture at the fracture entry is zero while in Section 4.5, analytical solutions for which

the rate of fluid injection is positive at the fracture entry are obtained. The results for the two

cases of analytical solutions are discussed and analysed in Sections 4.4 and 4.6. Numerical

analysis of the boundary value problem (4.2.4) to (4.2.13) commences in Section 4.7 with the

transformation of the boundary value problem into two intial value problems which are easier

to solve.

4.2 Leak-off velocity proportional to half-width of fracture

Consider the case where G(u) is proportional to F (u):

G(u) = βF (u), (4.2.1)

where β is a constant. It follows from (3.6.62) and (3.6.63) that

vn = β
c3

(c1 + c2t)
h(x, t) = β

c3

c1

h(x, t)

L(t)
c2
c3

. (4.2.2)

For large times,

vn ∼ β
h(x, t)

c2
c3

t
. (4.2.3)

Hence, vn(x, t) is proportional to the half-width of the fracture, h(x, t). It follows immediately

from (4.2.2) that vn vanishes at the fracture tip since h(x, t) vanishes there. From (4.2.2), the

case β > 0 describes fluid leak-off into the rock mass and β < 0 describes fluid inflow into

the fracture at the fluid-rock interface. The case β = 0 represents no leak-off of fluid into the

rock mass and this means that the rock is impermeable.
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The boundary value problem is then stated as follows:

Λ
d

du

(

F 3 dF

du

)

+ 3
d

du
(uF (u)) +

(

c2

c3
− 5 − 3β

)

F (u) = 0, (4.2.4)

F (1) = 0, (4.2.5)

ΛF 3(0)
dF

du
(0) =

(

c2

c3
− 5 − 3β

)
∫ 1

0

F (u)du, (4.2.6)

V0 = 2

(

c3

c1

)
1
3
∫ 1

0

F (u)du, (4.2.7)

c2

c1
=

c2

c3

c3

c1
, (4.2.8)

V (t) = V0

(

1 +
c2

c1

t

)
5
3

c3
c2

−
1
3

, (4.2.9)

L(t) =

(

1 +
c2

c1
t

)

c3
c2

, (4.2.10)

h(x, t) =

(

c3

c1

)
1
3
(

1 +
c2

c1
t

)
2
3

c3
c2

−
1
3

F (u), (4.2.11)

vn(x, t) = β

(

c3

c1

)
4
3
(

1 +
c2

c1
t

)
2
3

c3
c2

−
4
3

F (u), (4.2.12)

p(x, t) = Λh(x, t), (4.2.13)

where

u =
x

L(t)
, 0 ≤ u ≤ 1. (4.2.14)

Firstly, we determine how F (u) behaves as u → 1. The asymptotic behaviour of F (u) as

u → 1 is required in the numerical solution for F (u). We seek a solution having asymptotic

series expansion of the form

F (u) ∼
∞
∑

n=1

an(b − u)sn as u → 1, (4.2.15)

where b, an, sn are constants and an 6= 0 for some n ≥ 1 and sn > 0 with s1 < s2 < s3 · · · .
Using boundary condition (4.2.5), we obtain b = 1. Hence, (4.2.15) becomes:

F (u) ∼
∞
∑

n=1

an(1 − u)sn, as u → 1. (4.2.16)
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The asymptotic sequence of functions {(1 − u)sn} is such that

(1 − u)sn+1

(1 − u)sn

→ 0 as u → 1. (4.2.17)

Therefore, we approximate F (u) by the first and leading term of the series. Thus

F (u) ∼ a1(1 − u)s1. (4.2.18)

We substitute (4.2.18) for F (u) into the differential equation (4.2.4) to obtain

a4
1Λs1(4s1−1)(1−u)4s1−2−3a1s1(1−u)s1−1+(

c2

c3
−2−3β+3s1)a1(1−u)s1 ∼ 0, (4.2.19)

as u → 1. In order that the dominant terms in (4.2.19) balance each other

4s1 − 2 = s1 − 1, (4.2.20)

which implies that

s1 =
1

3
. (4.2.21)

Substituting equation (4.2.21) into (4.2.19) gives

1

9
Λa4

1(1 − u)−
2
3 − a1(1 − u)−

2
3 + (

c2

c3

− 1 − 3β)a1(1 − u)
1
3 ∼ 0 (4.2.22)

as u → 1, and therefore

1

9
Λa4

1 − a1 +

(

c2

c3
− 1 − 3β

)

a1(1 − u) ∼ 0 (4.2.23)

as u → 1. Hence, setting u = 1 in (4.2.23), we obtain

a1 =

(

9

Λ

)
1
3

. (4.2.24)

Thus, the asymptotic solution of (4.2.4) as u → 1 is

F (u) ∼
(

9

Λ

)
1
3

(1 − u)
1
3 . (4.2.25)

The asymptotic solution (4.2.25) for F (u) is true for all the values of c2
c3

and β.

We now consider two special cases which yield exact analytical solutions for the differen-

tial equation (4.2.4).
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4.3 Exact solution for zero fluid injection rate at fracture

entry

We first consider the special case when

c2

c3
− 5 − 3β = 0. (4.3.1)

The differential equation (4.2.4) reduces to

Λ
d

du

(

F 3dF

du

)

+ 3
d

du
(uF (u)) = 0, (4.3.2)

subject to the boundary conditions (4.2.5) and (4.2.6):

F (1) = 0. (4.3.3)

dF

du
(0) = 0. (4.3.4)

In (4.2.6), F (0) 6= 0 and finite because h(0, t) 6= 0 and finite in (4.2.11). Integrate (4.3.2) with

respect to u:

ΛF 3dF

du
+ 3uF (u) = A, (4.3.5)

where A is a constant. To obtain A impose the boundary condition (4.3.4) at u = 0. Since

F (0) is finite, A = 0 and (4.3.5) becomes

F 2 dF

du
= − 3

Λ
u, (4.3.6)

which is variables separable differential equation. Integrating (4.3.6) gives

F 3(u) = − 9

2Λ
u2 + B, (4.3.7)

where B is a constant. Imposing the boundary condition (4.3.3) at u = 1 gives

B =
9

2Λ
(4.3.8)

and therefore

F (u) =

(

9

2Λ

)
1
3
(

1 − u2
)

1
3 . (4.3.9)
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Substituting (4.3.9) into (4.2.7) gives

c3

c1
=

Λ

36

(

V0

I

)3

, (4.3.10)

where

I =

∫ 1

0

(1 − u2)
1
3 du = 0.8413 (4.3.11)

and therefore from (4.2.8)

c2

c1
=

c2

c3

(

V0

I

)3
Λ

36
. (4.3.12)

Also from (4.2.14),

u =
x

L(t)
. (4.3.13)

The solution can be expressed in terms of either β or c2
c3

. We will express the solution in terms

of c2
c3

. From (4.3.1),

β =
1

3

(

c2

c3
− 5

)

(4.3.14)

and from (4.2.9) to (4.2.13),

V (t) = V0

[

1 +
c2

c3

(

V0

I

)3
Λt

36

]
5
3
(

c3
c2

−
1
5
)

, (4.3.15)

L(t) =

[

1 +
c2

c3

(

V0

I

)3
Λt

36

]

c3
c2

, (4.3.16)

h(x, t) =
V0

2I

[

1 +
c2

c3

(

V0

I

)3
Λt

36

]
2
3
(

c3
c2

−
1
2
)
[

1 − x2

L2(t)

]
1
3

, (4.3.17)

vn(x, t) =
βΛ

72

(

V0

I

)4
[

1 +
c2

c3

(

V0

I

)3
Λt

36

]
2
3
(

c3
c2

−2)
[

1 − x2

L2(t)

]
1
3

, (4.3.18)

p(x, t) = Λh(x, t). (4.3.19)

By expressing β in terms of c2
c3

, (4.3.18) becomes

vn(x, t) =

(

c2

c3
− 5

)

2Λ

27

(

V0

2I

)4
[

1 +
c2

c3

(

V0

I

)3
Λt

36

]
2
3
(

c3
c2

−2)
[

1 − x2

L2(t)

]
1
3

. (4.3.20)

The solution for h(x, t), vn(x, t) and p(x, t) can be expressed in terms of L(t):

h(x, t) =
V0

2I
L(t)

1
3
(2−

c2
c3

)

[

1 − x2

L2(t)

]
1
3

, (4.3.21)
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vn(x, t) =

(

c2

c3

− 5

)

2Λ

27

(

V0

2I

)4

L(t)
4
3
( 1
2
−

c2
c3

)

[

1 − x2

L2(t)

]
1
3

(4.3.22)

and p(x, t) is related to h(x, t) by (4.3.19).

In the limit c3
c2

→ ∞, β → −1.66, L(t), h(x, t), V (t), vn(x, t) and p(x, t) have exponential

time-dependence and (4.3.15) to (4.3.19) tend to

V (t) = V0 exp

(

5

108

(

V0

I

)3

Λt

)

, (4.3.23)

L(t) = exp

(

1

36

(

V0

I

)3

Λt

)

, (4.3.24)

h(x, t) =
V0

2I
exp

(

1

54

(

V0

I

)3

Λt

)

[

1 − x2

L(t)2

]
1
3

, (4.3.25)

vn(x, t) = −10Λ

27

(

V0

2I

)4

exp

(

1

54

(

V0

I

)3

Λt

)

[

1 − x2

L(t)2

]
1
3

(4.3.26)

and p(x, t) and h(x, t) are related by (4.3.19).

4.4 Discussion of results for β =
1
3

(

c2
c3
− 5

)

Consider now the physical significance of the special case (4.3.14). Equation (4.3.14) defines

a dividing curve between solutions of interest in the
(

c3
c2

, β
)

plane. The rate of fluid injection

into the fracture at the fracture entry, q1, is given by (3.7.27) and the rate of fluid leak-off at

the fluid/rock interface, q2, is given by (3.7.24). When G(u) = βF (u), and after substituting

(4.3.9), (4.3.10) and (4.3.12), equation (3.7.27) for the rate of fluid injection into the fracture

at the fracture entry becomes

q1 =
Λ

108

(

V0

I

)4
[

1 +
1

36

(

V0

I

)3
c2

c3

Λt

]
5
3

c3
c2

−
4
3 (

3β + 5 − c2

c3

)

I. (4.4.1)

and equation (3.7.24) for the rate of fluid leak-off at the fluid/rock interface becomes

q2 =
Λ

36

(

V0

I

)4
[

1 +
1

36

(

V0

I

)3
c2

c3
Λt

]
5
3

c3
c2

−
4
3

βI. (4.4.2)

When condition (4.3.14) is substituted into (4.4.1), we obtain

q1 = 0. (4.4.3)
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This implies that the rate of fluid injection into the fracture at the fracture entry vanishes for

all values of c3
c2

and β that satisfiy (4.3.14). This occurs when the net flow of viscous fluid into

and out of the fracture at the fracture entry is zero. Physically this could correspond to the

case in which pumping has ceased and the entrance to the fracture sealed. The fracture then

relaxes and evolves due to leak-off or inflow at the fluid/rock interface. For the case in which

β <
1

3

(

c2

c3

− 5

)

, (4.4.4)

we have a negative net flux and the rate of fluid injection at the fracture entry

q1 < 0. (4.4.5)

Physically, (4.4.4) describes fluid suction out of the fracture. The condition

β >
1

3

(

c2

c3

− 5

)

(4.4.6)

describes fluid injection into the fracture.

Condition (4.3.14) can be solved for β in terms of c3
c2

to give

β =

5
3

(

1
5
− c3

c2

)

c3
c2

(4.4.7)

and for c3
c2

in terms of β as

c3

c2

=
1

5 + 3β
. (4.4.8)

The graph of β against c3
c2

given by equation (4.4.7) is plotted in Figure 4.4.1. For values of

β above the curve there is fluid injection into the fracture at the entry to the fracture while

for values of β below the curve fluid is extracted at the fracture entry. We will investigate the

whole range −∞ < c3
c2

< ∞ to determine the results produced by the solution. Table (3.7.1)

shows that the range of values of practical interest is 0 < c3
c2

≤ 1. In the graphical results that

follow, we have redefined

t′ = Λt. (4.4.9)

and for simplicity dropped the dash.
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Fluid injection at fracture entryFluid injection at fracture entry

Fluid suction out of fracture at entry
Fluid suction out of fracture at entry
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-10

-5

-
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3
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10
Β

Figure 4.4.1: Graph of β =
5
3

“

1
5
−

c3
c2

”

c3
c2

plotted against c3
c2

for the range −2 < c3
c2

< 2.

4.4.1 Fracture length and volume

Consider first the length of the fracture L(t) given by (4.3.16) and (4.3.24) and plotted in

Figure 4.4.2. As c3
c2

increases from 0 to 0.2, β decreases from +∞ to 0 and there is fluid

leak-off at the fluid-rock interface. At c3
c2

= 0.2, β = 0 and there is no fluid leak-off. As

c3
c2

increases from 0.2 to +∞, β decreases from 0 to −5
3

and fluid enters the fracture at the

fluid-rock interface. For 0 < c3
c2

< ∞, L(t) is an increasing function of time and L(t) → ∞

as t → ∞. As c3
c2

increases from −∞ to 0, β decreases from −5
3

to −∞. Since c3
c2

< 0, c2
c1

< 0
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and it follows that L(t) → +∞ in the finite time

t = −c3

c2

(

I

V0

)3
36

Λ
. (4.4.10)

In Figure 4.4.2, L(t) → ∞ in finite time t′ = Λt = 36 when c3
c2

= −1 and V0

I
= 1. The length

of the fracture increases for −∞ < c3
c2

< ∞ except at c3
c2

= 0 even though there is no fluid

injection at the entry to the fracture. Finally for c3
c2

= ∞, L(t) → ∞ exponentially as t → ∞.
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c3�c2=0.5

c3�c2=1

c3�c2=0.2

c3�c2=0.1

c3�c2=0.001

Figure 4.4.2: Leak-off velocity proportional to fracture half-width: Graph of fracture length

L(t) given by (4.3.16) and (4.3.24) plotted against t for a selection of values of the parameter

c3
c2

and for V0

I
= 1.
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Consider next the total volume of the fracture V (t) given by (4.3.15) and (4.3.23) and

plotted in Figure 4.4.3. For the analytical solutions considered in this section, the rate of fluid

injection into the fracture at the fracture entry is zero. Hence the total volume of the fracture

V (t) can only change due to leak-off or inflow at the fluid-rock interface. For 0 < c3
c2

< 0.2,

β > 0 and there is leak-off at the fluid-rock interface. The time rate of change of fracture

volume is negative, dV
dt

< 0, and V (t) → 0 as t → ∞. For c3
c2

= 0.2, the rock is impermeable

and V (t) is constant for all time. This compares with the length of the fracture, L(t), which

still increases when c3
c2

= 0.2. For 0.2 < c3
c2

< ∞, β < 0 and the fluid enters the fracture at the

fluid-rock interface. Then V (t) is an increasing function of time, dV
dt

> 0 and V (t) → ∞ as

t → ∞. We have a time dependent exponential solution when c3
c2

= ∞. As c3
c2

increases from

−∞ to 0, β decreases from −5
3

to −∞ and fluid enters the fracture at the fluid-rock interface.

Since c3
c2

< 0 and c2
c1

< 0, V (t) → ∞ in the finite time (4.4.10).
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c3�c2=0.1

Figure 4.4.3: Leak-off velocity proportional to fracture half-width: Total volume of the frac-

ture
V (t)
V0

given by (4.3.15) and (4.3.23) plotted against t for a selection of values of the param-

eter c3
c2

and for V0

I
= 1.
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4.4.2 Fracture half-width and leak-off velocity

Consider now h(x, t) which is given by (4.3.17) and (4.3.25) and plotted in Figures 4.4.4a to

4.4.11a. The initial fracture shape h(x, 0) cannot be specified arbitrarily. Since L(0) = 1, it

follows from (4.3.17) and (4.3.25) that

h(x, 0) =
V0

2I

(

1 − x2
)

1
3 . (4.4.11)

Also,

h(0, 0) =
V0

2I
. (4.4.12)

Now consider the half-width of the fracture at x = 0. From (4.3.17) for c3
c2

finite,

h(0, t) =
V0

2I

[

1 +
c2

c3

(

V0

I

)3
Λt

36

]
2
3
(

c3
c2

−
1
2
)

, (4.4.13)

and from (4.3.25) for c3
c2

= ∞,

h(0, t) =
V0

2I
exp

(

1

54

(

V0

I

)3

Λt

)

. (4.4.14)

For 0 < c3
c2

< 1
2
, the width of the fracture at the entry, h(0, t), decreases as t increases. When

c3
c2

= 1
2
, the width of the fracture at the entry, h(0, t), remains constant. For 1

2
< c3

c2
≤ ∞,

h(0, t) increases as t increases. For −∞ < c3
c2

< 0, h(0, t) → ∞ in the finite time given

by (4.4.10). The results are illustrated in Figures 4.4.4a to 4.4.11a. Also from (4.3.17) and

(4.3.25),

∂h

∂x
= −V0x

3I

[

1 +
1

36

c2

c3

(

V0

I

)3

Λt

]

−
4
3

“

c3
c2

+ 1
4

”

[

1 − x2

L(t)2

]

−
2
3

, (4.4.15)

∂h

∂x
= −V0x

3I
exp

(

− 1

27

(

V0

I

)3

Λt

)

[

1 − x2

L(t)2

]

−
2
3

, (4.4.16)

and therefore
∂h

∂x
→ −∞ as x → L(t). The thin film approximation breaks down in the

vicinity of the fracture tip, x = L(t).

Finally, consider vn(x, t) which is given by (4.3.18) and (4.3.26) and is also plotted in

Figures 4.4.4b to 4.4.11b. From (4.3.18) for c3
c2

finite

vn(0, t) =
βΛ

72

(

V0

I

)4
[

1 +
c2

c3

(

V0

I

)3
Λt

36

]
2
3
(

c3
c2

−2)

(4.4.17)
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and for c3
c2

= ∞,

vn(0, t) = −10Λ

27

(

V0

2I

)4

exp

(

1

54

(

V0

I

)3

Λt

)

. (4.4.18)

For 0 < c3
c2

< 0.2, vn > 0 and there is leak-off of fluid at the fluid/rock interface. Also vn(0, t)

decreases as t increases. For 0.2 < c3
c2

< ∞, vn(x, t) < 0 and there is fluid inflow at the

fluid/rock interface. For 0 ≤ c3
c2

< 2, the magnitude of vn(0, t) decreases as t increases except

at c3
c2

= 0.2 where vn vanishes. When c3
c2

= 2, the magnitude of vn(0, t) remains constant

and when 2 < c3
c2

< ∞ the magnitude of the inflow at the fluid/rock interface increases as t

increases. For −∞ < c3
c2

< 0, β < 0 and there is fluid inflow at the fluid/rock interface. Also

vn(x, t) → −∞ in the finite time (4.4.10).
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Figure 4.4.4: (a) Fracture half-width, h(x, t), given by (4.3.17) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (4.3.18), plotted against x for a range of values of t and for

c3
c2

= 0.0008, β = 415.
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Figure 4.4.5: (a) Fracture half-width, h(x, t), given by (4.3.17) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (4.3.18), plotted against x for a range of values of t and for

c3
c2

= 0.1, β = 1.66.
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Figure 4.4.6: Fracture halfwidth, h(x, t), given by (4.3.17) plotted against x for a range of values of t

and for c3
c2

= 0.2, β = 0. The leak-off velocity at the fluid/rock interface, vn(x, t), given by (4.3.18) is

zero.
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Figure 4.4.7: (a) Fracture half-width, h(x, t), given by (4.3.17) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (4.3.18), plotted against x for a range of values of t and for

c3
c2

= 0.5, β = −1.
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Figure 4.4.8: (a) Fracture half-width, h(x, t), given by (4.3.17) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (4.3.18), plotted against x for a range of values of t and for

c3
c2

= 2, β = −1.5.
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Figure 4.4.9: (a) Fracture half-width, h(x, t), given by (4.3.17) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (4.3.18), plotted against x for a range of values of t and for

c3
c2

= 5, β = −1.6.
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Figure 4.4.10: (a) Fracture half-width, h(x, t), given by (4.3.25) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (4.3.26), plotted against x for a range of values of t and for

c3
c2

= ∞, β = −1.66.
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Figure 4.4.11: (a) Fracture half-width, h(x, t), given by (4.3.17) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (4.3.18), plotted against x for a range of values of t and for c3
c2

=

-1, β = -2.
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4.5 Exact solution for non-zero fluid injection rate at frac-

ture entry

We now look for a solution of (4.2.4) subject to (4.2.5) and (4.2.6) which is of the form

F (u) = a(α − u)σ, (4.5.1)

where a, α and σ are constants to be determined such that a 6= 0 and σ > 0. The value of α

for which F (u) satisfies (4.2.5) is α = 1. Equation (4.5.1) becomes

F (u) = a(1 − u)σ. (4.5.2)

Substituting (4.5.2) into (4.2.4), we obtain

Λa4σ(4σ − 1)(1− u)4σ−2 − 3aσ(1− u)σ−1 + a

(

c2

c3

+ 3σ − 2 − 3β

)

(1− u)σ = 0. (4.5.3)

Equation (4.5.3) will be satisfied if

Λa4σ(4σ − 1)(1 − u)4σ−2 − 3aσ(1 − u)σ−1 = 0 (4.5.4)

and

c2

c3

+ 3σ − 2 − 3β = 0. (4.5.5)

Equating the powers of 1 − u in (4.5.4) gives

σ =
1

3
. (4.5.6)

When σ is substituted into (4.5.4) and (4.5.5), we obtain

Λ

9
a4 − a = 0, (4.5.7)

c2

c3
− 1 − 3β = 0. (4.5.8)

Solving (4.5.7) gives

a =

(

9

Λ

)
1
3

. (4.5.9)
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Hence, the solution of the form (4.5.1) is

F (u) =

(

9

Λ

)
1
3

(1 − u)
1
3 , (4.5.10)

provided that (4.5.8) is satisfied.

We note that the boundary condition (4.2.6) was not used to obtain (4.5.10), but it must be

satisfied for (4.5.10) to be a solution of the problem. We will now show that (4.2.6) is satisfied.

Substituting (4.5.10) into the left hand side of (4.2.6) gives

ΛF 3(0)
dF

du
(0) = −3

(

9

Λ

)
1
3

, (4.5.11)

while substituting (4.5.10) into the right hand side gives

(

c2

c3
− 5 − 3β

)
∫ 1

0

F (u)du =
3

4

(

c2

c3
− 5 − 3β

)(

9

Λ

)
1
3

. (4.5.12)

Hence, the boundary condition (4.2.6) is satisfied provided (4.5.8) holds.

By substituting (4.5.10) into (4.2.7) we obtain

c3

c1
=

8ΛV 3
0

243
, (4.5.13)

and hence from (4.2.8),

c2

c1
=

8ΛV 3
0

243

c2

c3
. (4.5.14)

We also have from (4.2.14)

u =
x

L(t)
, 0 ≤ u ≤ 1. (4.5.15)

The solution can be written either in terms of β or c2
c3

. As in the first special solution we

will express the results in terms of c2
c3

. From (4.5.8),

β =
1

3

(

c2

c3
− 1

)

. (4.5.16)

63



From (4.2.9) to (4.2.13),

V (t) = V0

[

1 +
8V 3

0

243

c2

c3
Λt

]
5
3
(

c3
c2

−
1
5
)

, (4.5.17)

L(t) =

[

1 +
8V 3

0

243

c2

c3

Λt

]

c3
c2

, (4.5.18)

h(x, t) =
2V0

3

[

1 +
8V 3

0

243

c2

c3

Λt

]
2
3

“

c3
c2

−
1
2

”

[

1 − x

L(t)

]
1
3

, (4.5.19)

vn(x, t) =
16

2187

(

c2

c3
− 1

)

ΛV 4
0

[

1 +
8V 3

0

243

c2

c3
Λt

]
2
3
(

c3
c2

−2) [

1 − x

L(t)

]
1
3

, (4.5.20)

p(x, t) = Λh(x, t). (4.5.21)

The solution for h(x, t), vn(x, t) and p(x, t) can be expressed alternately in terms of L(t):

h(x, t) =
2

3
V0L(t)

1
3

“

2−
c2
c3

”

[

1 − x

L(t)

]
1
3

, (4.5.22)

vn(x, t) =
16

2187

(

c2

c3

− 1

)

ΛV 4
0 L(t)

4
3

“

1
2
−

c2
c3

”

[

1 − x

L(t)

]
1
3

, (4.5.23)

and p(x, t) is given by (4.5.21) and (4.5.22).

In the limit c3
c2

→ ∞, we have β → −1
3

and the group invariant solutions for L(t), V (t),

h(x, t), vn(x, t) and p(x, t) have an exponential time-dependence given as

V (t) = V0exp

(

40

729
V 3

0 Λt

)

, (4.5.24)

L(t) = exp

(

8V 3
0

243
Λt

)

, (4.5.25)

h(x, t) =
2V0

3
exp

(

16V 3
0

729
Λt

)[

1 − x

L(t)

]
1
3

, (4.5.26)

vn(x, t) = −16ΛV 4
0

2187
exp

(

16V 3
0

729
Λt

)[

1 − x

L(t)

]
1
3

(4.5.27)

and p(x, t) is given by (4.5.21) and (4.5.26). The constant Λ is as defined in (3.4.5).
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4.6 Discussion of results for β =
1
3

(

c2
c3
− 1

)

Consider now the physical significance of the special case

β =
1

3

(

c2

c3
− 1

)

. (4.6.1)

Unlike the condition (4.3.14), condition (4.6.1) does not make a physical quantity vanish,

neither does it define a dividing curve between solutions in the
(

c3
c2

, β
)

plane. Substituting

(4.2.1), (4.5.10), (4.5.13) and (4.5.14) firstly, into (3.7.27) and secondly, into (3.7.24) gives

the rate of fluid injection at the fracture entry

q1(t) =
8

729
ΛV 4

0

[

1 +
8

243
V 3

0

c2

c3
Λt

]
5
3

“

c3
c2

−
4
5

”

(4.6.2)

and the rate of fluid leak-off at the fluid/rock interface

q2(t) =
8

243
βΛV 4

0

[

1 +
8

243
V 3

0

c2

c3
Λt

]
5
3

“

c3
c2

−
4
5

”

(4.6.3)

respectively. Thus q1(t) > 0 and fluid is always injected into the fracture at the fracture entry

for the special case (4.6.1). The strength of the injected fluid either increases or decreases with

time depending on the value taken by the parameter c3
c2

and it is constant when c3
c2

= 0.8.

Condition (4.6.1) can be written as

β =
1 − c3

c2

3 c3
c2

(4.6.4)

and as

c3

c2
=

1

1 + 3β
. (4.6.5)

In Fig 4.6.1, β given by (4.6.4) is plotted against c3
c2

. As with the special case (4.3.14) we

investigate the whole range −∞ < c3
c2

< ∞. Table 3.7.1 shows that the range of values of

practical interest is 0 < c3
c2

≤ 1.

4.6.1 Fracture length and volume

Consider now the length of the fracture given by (4.5.18) and (4.5.25) and plotted in Figure

4.6.2 for a selection of values of c3
c2

. For 0 < c3
c2

< 1, L(t) increases even when there is leak-off
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Figure 4.6.1: Graph of β =
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”

3
c3
c2

against c3
c2

for the range −2 < c3
c2

< 2.
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at the fluid/rock interface. For c3
c2

= 1, β = 0 and the rock is impermeable. The linear growth

in L(t) is due entirely to the fluid injection at the fracture entry:

q1(t) =
8

729
ΛV 4

0

[

1 +
8

243
V 3

0 Λt

]
1
3

, (4.6.6)

the strenght of which increases at t increases. For c3
c2

< 0, L(t) → ∞ algebraically in the finite

time

Λt =
243

8V 3
0

(

−c3

c2

)

. (4.6.7)
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Figure 4.6.2: Leak-off velocity proportional to fracture half-width: Graph of fracture length,

L(t), given by (4.5.18) and (4.5.25) plotted against t for V0 = 1 and a selection of values of

the parameter c3
c2

.
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In Figure 4.6.3, the fracture volume V (t) given by (4.5.17) and (4.5.24) is plotted against

t for the same values of c3
c2

as used in Figure 4.4.3 for V (t). When 0 < c3
c2

< 0.2, V (t) → 0 as

t → ∞. When c3
c2

= 0.2, β = 4
3

and leak-off at the fluid/rock interface balances the decreasing

inflow rate at the fracture entry so that V (t) remains constant. When c3
c2

= +1, β = 0 and

the rock is impermeable. The rate of fluid injection, q1(t) increases with time and hence V (t)

increases. The fracture volume V (t) → ∞ in the finite time (4.6.7) when c3
c2

< 0.
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Figure 4.6.3: Leak-off velocity proportional to fracture half-width: Total volume of the frac-

ture, V
V0

(t), given by (4.5.17) and (4.5.24) plotted against t for V0 = 1 and a selection of values

of c3
c2

.
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4.6.2 Fracture half-width and leak-off velocity

Consider next h(x, t) which is given by (4.5.19) and (4.5.26) and is plotted in Figures 4.6.4 to

4.6.9. For the second case of exact solution, the initial fracture shape h(0, t) is

h(x, 0) =
2

3
V0 (1 − x)

1
3 . (4.6.8)

From (4.5.19), when c3
c2

is finite,

h(0, t) =
2V0

3

[

1 +
8V 3

0

243

c2

c3
Λt

]
2
3

“

c3
c2

−
1
2

”

(4.6.9)

and for c3
c2

= ∞,

h(0, t) =
2V0

3
exp

(

16V 3
0

729
Λt

)

. (4.6.10)

For 0 < c3
c2

< 1
2
, 1

3
< β < ∞, h(0, t) decreases as t increases and the width of the fracture

at the entry decreases as t increases. The maximum leak-off occurs always near the fracture

entry where h(x, t) is highest and its strenght decreases with time. For this range of c3
c2

the rate

of fluid injection at the entry decreases with time. The pressure at the entry p(0, t) required

to induce fracture also decreases with time, a consequence from the PKN formulation (1.3.1).

When c3
c2

= 1
2
, β = 1

3
and h(0, t) remains constant. The pressure at the fracture entry p(0, t)

is constant from (1.3.1) even though the rate of fluid injection at the entry and leak-off at the

interface decrease with time. These operating conditions result in the width of the fracture

at the entry remaining constant. For the special case discussed in Section (4.4), there was no

inflow at the fracture entry and h(0, t) remained constant when c3
c2

= 1
2

and L(t) increased due

to inflow at the fluid/rock interface. For 1
2

< c3
c2

< ∞, the fluid pressure p(0, t) increases with

time and hence h(0, t) increases as t increases. For −∞ < c3
c2

< 0, h(0, t) → ∞ in the finite

time (4.6.7).

From (4.5.19) and (4.5.26), the gradient of the fracture half-width is given for 0 < c3
c2

< ∞ by

∂h

∂x
= −2V0

9

[

1 +
8V 3

0

243

c2

c3
Λt

]

−
1
3

“

c3
c2

+1
”

(

1 − x

L(t)

)

−
2
3

(4.6.11)

and in the limit c3
c2

= ∞, by

∂h

∂x
= −2V0

9
exp

(

−8V 3
0

729
Λt

)(

1 − x

L(t)

)

−
2
3

. (4.6.12)
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At the fracture entry when t = 0 and for −∞ < c3
c2

≤ ∞,

∂h

∂x
(0, 0) = −2V0

9
. (4.6.13)

In the limit t → ∞ and for c3
c2

> 0,

∂h

∂x
(0,∞) → 0. (4.6.14)

As x → L(t),
∂h

∂x
→ −∞. The thin film approximation (1.6.1) and (1.6.2) therefore breaks

down in the neighbourhood of the fracture tip.

Lastly, consider vn(x, t) which is given by (4.5.20) and (4.5.27) and plotted in Figures

4.6.4 to 4.6.9. From (4.5.20), for c3
c2

finite,

vn(0, t) =
16

2187
ΛV 4

0

(

c2

c3
− 1

)[

1 +
8V 3

0

243

c2

c3
Λt

]
2
3
(

c3
c2

−2)

(4.6.15)

and for c3
c2

= ∞,

vn(0, t) = −16ΛV 4
0

2187
exp

(

16V 3
0

729
Λt

)

. (4.6.16)

For 0 < c3
c2

< 1, vn(x, t) > 0, there is leak-off at the fluid/rock interface and vn decreases

as t increases. For 1 < c3
c2

< ∞, vn(x, t) < 0 and there is inflow of fluid at the fluid/rock

interface. For 0 < c3
c2

< 2, the magnitude of vn(0, t) decreases as t increases. When c3
c2

= 2,

the magnitude of vn(0, t) remains constant and when 2 < c3
c2

< ∞ the magnitude of vn(0, t)

increases as t increases. For −∞ < c3
c2

< 0, β < 0 and there is fluid inflow at the fluid/rock

interface and vn(0, t) → −∞ in the finite time (4.6.7).
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Figure 4.6.4: (a) Fracture half-width, h(x, t), given by (4.5.19) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (4.5.20), plotted against x for a range of values of t and for

c3
c2

= 10−5, β = 33333.
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Figure 4.6.5: (a) Fracture half-width, h(x, t), given by (4.5.19) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (4.5.20), plotted against x for a range of values of t and for

c3
c2

= 0.5, β = 0.33.
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Figure 4.6.6: Fracture half-width, h(x, t), given by (4.5.19) plotted against x for a range of values of

t and for c3
c2

= 1, β = 0. The leak-off velocity at the fluid/rock interface, vn(x, t), given by (4.5.20), is

zero.
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Figure 4.6.7: (a) Fracture half-width, h(x, t), given by (4.5.19) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (4.5.20), plotted against x for a range of values of t and for

c3
c2

= 2, β = −0.166.
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Figure 4.6.8: (a) Fracture half-width, h(x, t), given by (4.5.26) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (4.5.27), plotted against x for a range of values of t and for

c3
c2

= ∞, β = −0.33.
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Figure 4.6.9: (a) Fracture half-width, h(x, t), given by (4.5.19) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (4.5.20), plotted against x for a range of values of t and for

c3
c2

= −1, β = −0.66.
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4.7 Transformation of boundary value problem into two ini-

tial value problems

When

β 6= 1

3

(

c2

c3
− 5

)

and β 6= 1

3

(

c2

c3
− 1

)

(4.7.1)

the problem is solved numerically. In this section, we present a method of solving numerically

the boundary value problem (4.2.4), (4.2.5) and (4.2.6) by transforming it to two initial value

problems. This method will also be used in Chapter 5 to transform the boundary value problem

derived there to two initial value problems. It is shown in Appendix B that any differential

equation of the form

Λ
d

du

(

F 3dF

du

)

+ A
d

du
(uF ) + BF = 0 (4.7.2)

admits only one Lie point symmetry generator and it exists only if A 6= 0. Equation (4.2.4) is

of the form (4.7.2) with A = 3 and B =
c2

c3
− 5 − 3β. Equation (4.2.4) therefore cannot be

integrated completely in general to give an analytical solution. It is solved numerically for a

range of values of c3
c2

and β. It has been shown that invariance of a boundary value problem

for an ordinary differential equation under a scaling transformation allows the boundary value

problem to be transformed to two initial value problems which are easier to solve[25]. This

method was first used to solve the Blasius boundary value problem for steady two-dimensional

flow of an incompressible fluid past a flat plate placed edgewise to the stream[26]. Several

extensions of the technique have been made[27, 28, 29].

The Lie point symmetry generator admitted by any differential equation of the form (4.7.2)

is, from Appendix B,

X = 3u
d

du
+ 2F

d

dF
. (4.7.3)

The transformation (u, F ) → (u, F ), generated by the Lie point symmetry (4.7.3) is derived

by solving Lie’s equations subject to initial conditions as described in Section 2.3. Lie’s

equations and the initial conditions for the transformation generated by the Lie point symmetry

77



(4.7.3) are

du

da
= 3u, u(0) = u,

dF

da
= 2F, F (0) = F. (4.7.4)

where a is the group parameter. The solution of (4.7.4) is

u = e3au, F = e2aF. (4.7.5)

Let λ = e3a, then (4.7.5) becomes

u = λu, F = λ
2
3 F. (4.7.6)

The boundary value problem (4.2.4) to (4.2.6) is

Λ
d

du

(

F 3 dF

du

)

+ 3
d

du
(uF (u)) +

(

c2

c3
− 5 − 3β

)

F (u) = 0, (4.7.7)

F (1) = 0, (4.7.8)

ΛF 3(0)
dF

du
(0) =

(

c2

c3
− 5 − 3β

)
∫ 1

0

F (u)du. (4.7.9)

Under the transformation (4.7.6), equations (4.7.7) to (4.7.9) become

Λ
d

du

(

F
3 dF

du

)

+ 3
d

du

(

uF (u)
)

+

(

c2

c3
− 5 − 3β

)

F (u) = 0, (4.7.10)

F (λ) = 0, (4.7.11)

ΛF
3
(0)

dF

du
(0) =

(

c2

c3
− 5 − 3β

)
∫ λ

0

F (u)du. (4.7.12)

We see that the differential equation (4.7.7) is invariant under the transformation (4.7.6). This

is the basic property of a transformation generated by a Lie point symmetry of a differential

equation.

We now choose

F (0) = 1. (4.7.13)

Then from (4.7.6),

F (0) =
1

λ
2
3

. (4.7.14)
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The parameter λ is defined by (4.7.11). The boundary value problem, (4.7.7) to (4.7.9), can

therefore be transformed into the following two initial value problems:

Initial Value Problem 1

Λ
d

du

(

F
3 dF

du

)

+ 3
d

du

(

uF (u)
)

+

(

c2

c3
− 5 − 3β

)

F (u) = 0, (4.7.15)

F (0) = 1, (4.7.16)

Λ
dF

du
(0) =

(

c2

c3
− 5 − 3β

)
∫ λ

0

F (u)du, (4.7.17)

where 0 ≤ u ≤ λ and λ is defined by

F (λ) = 0. (4.7.18)

Initial Value Problem 2

Λ
d

du

(

F 3 dF

du

)

+ 3
d

du
(uF (u)) +

(

c2

c3

− 5 − 3β

)

F (u) = 0, (4.7.19)

F (0) = λ−
2
3 , (4.7.20)

Λ
dF

du
(0) = λ2

(

c2

c3
− 5 − 3β

)
∫ 1

0

F (u)du, (4.7.21)

where 0 ≤ u ≤ 1 and the parameter λ is obtained from Problem 1.

The Initial Value Problem 1 is used only to calculate λ. The solution F (u) is obtained

by solving the Initial Value Problem 2. The remainder of the solution is given by (4.2.7)

to (4.2.13). Before we consider the numerical solution for general values of β and c3
c2

we

will transform the boundary value problem for the two special cases for which an analytical

solution has been found into two Initial Value Problems. These Initial Value Problems will be

solved. It will give a check on the numerical method.
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Special case: β = 1
3

(

c2

c3

− 5
)

The boundary value problem (4.7.7) to (4.7.9) reduces to

Λ
d

du

(

F 3dF

du

)

+ 3
d

du
(uF (u)) = 0, (4.7.22)

F (1) = 0, (4.7.23)

dF

du
(0) = 0. (4.7.24)

This boundary value problem can be transformed to the following two initial value problems:

Initial Value Problem 1:

Λ
d

du

(

F
3dF

du

)

+ 3
d

du

(

uF (u)
)

= 0, (4.7.25)

F (0) = 1, (4.7.26)

dF

du
(0) = 0, (4.7.27)

where 0 ≤ u ≤ λ and λ is defined by

F (λ) = 0. (4.7.28)

Initial Value Problem 2 :

Λ
d

du

(

F 3 dF

du

)

+ 3
d

du
(uF (u)) , (4.7.29)

F (0) = λ−
2
3 , (4.7.30)

dF

du
(0) = 0, (4.7.31)

where 0 ≤ u ≤ 1 and λ is obtained from Problem 1.

Solving the Initial Value Problem 1 for F (u) gives

F (u) =

(

9

2Λ

)
1
3
(

2Λ

9
− u2

)
1
3

. (4.7.32)

Using (4.7.28), we obtain

λ =

√
2Λ

3
. (4.7.33)
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The solution of the Initial Value Problem 2 is

F (u) =

(

9

2Λ

)
1
3
(

1 − u2
)

1
3 . (4.7.34)

Equation (4.7.34) agrees with (4.3.9) derived for F (u) in Section 4.3.

Special case: β = 1
3

(

c2

c3

− 1
)

For this special case the boundary value problem (4.7.7) to (4.7.9) is transformed to the fol-

lowing two Initial Value Problems:

Initial Value Problem 1

Λ
d

du

(

F
3 dF

du

)

+ 3
d

du

(

uF
)

− 4F (u) = 0, (4.7.35)

F (0) = 1, Λ
dF

du
(0) = −4

∫ λ

0

F (u)du, (4.7.36)

where 0 ≤ u ≤ λ and λ is defined by

F (λ) = 0. (4.7.37)

Initial Value Problem 2

Λ
d

du

(

F 3dF

du

)

+ 3
d

du
(uF ) − 4F (u) = 0, (4.7.38)

F (0) = λ−
2
3 , Λ

dF

du
(0) = −4λ2

∫ 1

0

F (u)du, (4.7.39)

where 0 ≤ u ≤ 1 and the parameter λ is obtained from Problem 1.

In order to solve Problem 1, look for a solution of (4.7.35) of the form

F (u) = A (B − u)n
, (4.7.40)

where A, B and n are constants to be determined such that A 6= 0 and n > 0. Using (4.7.36a)

we have

ABn = 1. (4.7.41)

Substituting (4.7.40) into (4.7.35) and solving gives

n =
1

3
, A3 =

9B

Λ
(4.7.42)
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and therefore using (4.7.41),

A =

(

9

Λ

)
1
6

, B =

(

Λ

9

)
1
2

. (4.7.43)

Thus

F (u) =

(

9

Λ

)
1
6

[

(

Λ

9

)
1
2

− u

]
1
3

(4.7.44)

and hence from (4.7.37),

λ =

(

Λ

9

)
1
2

. (4.7.45)

It can be verified that the boundary condition (4.7.36b) is identically satisfied by (4.7.44). The

solution of the Initial Value Problem 2 is performed in a similar way by looking for a solution

of (4.7.38) of the form (4.7.40). It is found out that

F (u) =

(

9

Λ

)
1
3

(1 − u)
1
3 . (4.7.46)

Equation (4.7.46) agrees with (4.5.10) derived for F (u) in Section 4.5.

4.8 Numerical solution

In order to transform Λ from the equations, redefine

t′ = Λt, v′

n =
vn

Λ
(4.8.1)

and then suppress the dash. The partial differential equation (3.6.1) becomes

∂h

∂t
=

1

3

∂

∂x

(

h3∂h

∂x

)

− vn. (4.8.2)

The boundary value problem (4.2.4) to (4.2.6) becomes

d

du

(

F 3dF

du

)

+ 3
d

du
(uF (u)) +

(

c2

c3
− 5 − 3β

)

F (u) = 0, (4.8.3)

F (1) = 0, (4.8.4)

F 3(0)
dF

du
(0) =

(

c2

c3

− 5 − 3β

)
∫ 1

0

F (u)du, (4.8.5)

which is transformed into the two initial value problems (4.7.15) to (4.7.18) and (4.7.19) to

(4.7.21) with Λ = 1:
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Initial Value Problem 1

d

du

(

F
3dF

du

)

+ 3
d

du

(

uF (u)
)

+

(

c2

c3
− 5 − 3β

)

F (u) = 0, (4.8.6)

F (0) = 1, (4.8.7)

dF

du
(0) =

(

c2

c3
− 5 − 3β

)
∫ λ

0

F (u)du, (4.8.8)

where 0 ≤ u ≤ λ and λ is defined by

F (λ) = 0. (4.8.9)

Initial Value Problem 2

d

du

(

F 3dF

du

)

+ 3
d

du
(uF (u)) +

(

c2

c3

− 5 − 3β

)

F (u) = 0, (4.8.10)

F (0) = λ−
2
3 , (4.8.11)

dF

du
(0) = λ

1
3
dF

du
(0), (4.8.12)

where 0 ≤ u ≤ 1 and the parameter λ is obtained from Problem 1.

We present the numerical method employed to solve equations (4.8.6) to (4.8.9) of the

Initial Value Problem 1 and (4.8.10) to (4.8.12) of the Initial Value Problem 2. The second

order differential equation (4.8.6) can be transformed into the coupled system of first order

differential equations

dF

du
= y2, (4.8.13)

dy2

du
= − 1

F
3

[

3F
2
y2

2 + 3uy2 +

(

c2

c3

− 2 − 3β

)

F

]

, (4.8.14)

subject to the initial and boundary conditions

F (0) = 1, y2(0) = K1, F (λ) = 0 (4.8.15)

where K1 is to be determined. The second order differential equation (4.8.10) is transformed

into the convenient set of coupled first order differential equations

dF

du
= y3, (4.8.16)

dy3

du
= − 1

F 3

[

3F 2y2
3 + 3uy3 +

(

c2

c3

− 2 − 3β

)

F

]

, (4.8.17)
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subject to the initial conditions

F (0) = λ−
2
3 , y3(0) = λ

1
3 y2(0). (4.8.18)

The solution of the coupled system (4.8.16) to (4.8.17) subject to the initial conditions (4.8.18a)

and (4.8.18b) is also the solution of the original boundary value problem (4.2.4) subject to

the boundary conditions (4.2.5) and (4.2.6). The values of λ and y2(0) are obtained directly

by solving (4.8.13)-(4.8.14) subject to (4.8.15a), (4.8.15b) and (4.8.15c) using the shooting

method.

The algorithm for the shooting method is as follows

• STEP 1

For fixed values of the parameters c3
c2

and β, solve the first order system (4.8.13) and

(4.8.14) of the Initial Value Problem 1 subject to (4.8.15a), (4.8.15b) and (4.8.15c) for

F and λ using the IVP solver-ODE 45 in MATLAB. The first step in determining F and

λ involves integration of (4.8.13) and (4.8.14) backward from u = λ∗ to u = 0 with

varying values of λ∗ until the condition

|F λ∗
(0) − 1| < ε1, (4.8.19)

where ε1 = 10−5 is satistied. Because of the singularity at u = λ, it is necessary to

commence the backward integration with the asymptotic representations for F (u) and

y2(u) as initial conditions at an ǫ−neighbourhood of the point u = λ where the solution

F (u) faces singularity. These asymptotic representations can be derived directly from

(4.2.25) using the transformation (4.7.6) with Λ = 1 as

F ∼ (9λ)
1
3 (λ − u)

1
3 , (4.8.20)

y2 ∼ −1

3
(9λ)

1
3 (λ − u)−

2
3 . (4.8.21)

When (4.8.19) is satisfied the value of the slope K1 for the coupled first order system

(4.8.13)-(4.8.14) then satisfies

|F ′

λ∗

(0) − K1| < ε2, (4.8.22)

84



that is

F
′

λ∗

(0) − ε2 < K1 < F
′

λ∗

(0) + ε2, (4.8.23)

where ε2 is taken to be 10−5.

STEP 1 therefore provides us with an interval inside which we know that the slope K1

lies and this ensures a faster rate of convergence of K1.

• STEP 2

Use the symbolic property of MATHEMATICA to solve the first order system (4.8.13)

and (4.8.14) of IVP 1 on the domain 0 ≤ u ≤ ̟ where ̟ > λ∗, subject to the initial

conditions

F (0) = 1,
dF

du
(0) = K1, (4.8.24)

where K1 is an iterate from F
′

λ∗

(0) − ε2 to F
′

λ∗

(0) + ε2.

In order to ensure an accurate value of the slope K1 used as initial condition, the step

size for the iteration must be of order say 10−8. This also ensures the accuracy of the

value of λ obtained.

For each iteration, solve for λ,

F (λ) = 0.

• STEP 3

If
∣

∣

∣

∣

K1 − (
c3

c2

− 5 − 3β)

∫ λ−0.00001

0

F (u)du

∣

∣

∣

∣

< ε3 (4.8.25)

where ε3 = 10−7, then the value of λ obtained in STEP 2 is the required value. Because

there is a singularity at u = λ, the upper limit in the integral is set equal to λ−0.000001.

By obtaining λ in STEPS 1, 2 and 3, we now solve for F (u) the coupled system (4.8.16)

to (4.8.17) subject to known initial conditions (4.8.18a) and (4.8.18b). The initial condition

(4.8.18b) must satisfy
∣

∣

∣

∣

dF

du
(0) − λ

1
3 y2(0)

∣

∣

∣

∣

< ε4, (4.8.26)

where ε4 = 10−6. During the numerical computation it turns out that the accurary of the

shooting method at the fracture tip depends strongly on the value of the slope λ
1
3 y2(0) used as
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initial condition for the coupled system (4.8.16) to (4.8.17) which in turn depends on ε3. Cal-

culations made when ε3 = 10−9 and ε3 = 10−12 in (4.8.26) show that the overall properties of

the solution F (u) differed little from those for ε3 = 10−7 and solutions overlap on the domain

[0, 1) except in the neighbourhood of the fracture tip where u = 1. Calculations made with

ε3 = 10−3 and ε3 = 10−5 in (4.8.26) show a good agreement between the numerical solution

and the exact solution in the region away from the fracture tip but as the tip is approached the

agreement begins to fail. Tables 4.8.1 and 4.8.2 show the numerical and analytical solutions

for F (u) for the two cases in Sections 4.3 and 4.5 in which exact solutions are known. The

results shown are obtained for ε3 = 10−7 and solutions only agree to 3 decimal places in the

fracture tip neighbourhood.

4.9 Numerical Results

In this section, we analyse the general results obtained from the numerical computation of the

similarity dependent variable F (u) for a range of values of the parameters β and c3
c2

. It was

discovered numerically while doing the calculations that for each value of the parameter c3
c2

there exists a minimum value for the leak-off parameter β. Below this value of β there is no

solution of the Initial Value Problem (4.8.16) to (4.8.18). The set of values of the parameters

c3
c2

and β in the ( c3
c2

, β) plane for which a solution exists to the Initial Value Problem (4.8.16)

to (4.8.18) is bounded below. This is shown in Fig 4.9.1.

4.9.1 Physical significance of curves

Consider the curve

β =
5
(

1
5
− c3

c2

)

3 c3
c2

. (4.9.1)

The set of values of the parameters ( c3
c2

, β) satisfying (4.9.1) describes an operating condition

in which there is no fluid injection or extraction at the fracture entry. That is, (4.9.1) is the

curve for no injection or extraction of fluid at the fracture entry.
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Special Case c2
c3
− 3β − 5 =0

u Exact Solution Numerical Solution

0.000 1.650960 1.650960

0.200 1.628650 1.628650

0.400 1.557750 1.557750

0.600 1.422760 1.422760

0.800 1.174460 1.174460

0.900 0.949122 0.949122

0.920 0.884168 0.884168

0.940 0.806099 0.806100

0.960 0.706604 0.706605

0.980 0.562733 0.562734

0.982 0.543496 0.543496

0.984 0.522747 0.522747

0.986 0.500157 0.500158

0.988 0.475266 0.475266

0.990 0.447392 0.447393

0.992 0.415461 0.415462

0.994 0.377598 0.377598

0.996 0.329972 0.329973

0.998 0.261987 0.261987

1.000 0.000000 0.000860

Table 4.8.1: Comparison of the numerical and analytical solutions for F (u) for the special

case c2
c3
− 3β − 5 =0.
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Special Case c2
c3
− 3β − 1 =0

u Exact Solution Numerical Solution

0.000 2.080080 2.080090

0.200 1.930980 1.930980

0.400 1.754410 1.754410

0.600 1.532620 1.532620

0.800 1.216440 1.216440

0.900 0.965489 0.965491

0.920 0.896281 0.896283

0.940 0.814325 0.814327

0.960 0.711379 0.711381

0.980 0.564622 0.564624

0.982 0.545136 0.545138

0.984 0.524148 0.524150

0.986 0.501330 0.501332

0.988 0.476220 0.476222

0.990 0.448140 0.448142

0.992 0.416017 0.416019

0.994 0.377976 0.377978

0.996 0.330193 0.330195

0.998 0.262074 0.262076

1.000 0.000000 0.001045

Table 4.8.2: Comparison of the numerical and analytical solutions for F (u) for the special

case c2
c3
− 3β − 1 =0.
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The limiting curve for solutions is described by

βmin =
8
(

1

8
− c3

c2

)

3 c3

c2

, (4.9.2)

where βmin is the minimum value of β for a given value of c3

c2
. For

βmin <
8
(

1

8
− c3

c2

)

3 c3

c2

, (4.9.3)

there are no solutions. Equation (4.9.2) was found numerically. We are not able to give an

analytical proof that there no solutions when (4.9.3) is satisfied or provide a physical explana-

tion. In the region bounded by the curve (4.9.1) and (4.9.2), there is extraction of fluid at the

fracture entry. Hence the solution of the Initial Value Problems 1 and 2 obtained using values

of the parameters c3

c2
and β in this bounded region describes an operating condition in which

there is fluid extraction out of the fracture at the fracture entry. This may have application in

the extraction of oil from a fracture in permeable rock.

4.9.2 Graphical results for fixed c3

c2

and varying values of β

We present in this section the graphical results obtained for h(x, t), vn(x, t) and L(t) from

the numerical solution of the two Initial Value Problems in Section 4.8 when the parameter

c3

c2
is fixed and β is varied. For the two analytical solutions we investigated a wide range of

values of c3

c2
and β because it was not difficult to produce graphs from the analytical results.

It requires more work to derive the numerical results and therefore a smaller range of values

of the parameters, β and c3

c2
, will be considered. The values of the parameters used are those

of clear physical significance. The results show how β affects the propagation of the fracture

length and growth of the fracture half-width.

In Figure 4.9.2, c3

c2
= 0.1 and from equation (4.9.2), βmin = 0.66. Therefore only the

case in which fluid leaks off at the fluid/rock interface can be considered. The values of β

considered in order of increasing leak-off are 0.66, 1, 1.66, 3 and 10. In Figure 4.9.2 (a), leak-

off reduces the extent of propagation of the fracture length in a given time, with the fracture

length propagating farthest when β = 0.66. For c3

c2
= 0.1 and when β = 1.66, equation (4.9.1)

is satisfied and we have the exact solution for which the rate of fluid injection into the fracture
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at the entry, q1 = 0. When β = 3, (4.6.1) is satisfied and we obtain the exact solution of

Section 4.5 for which there is fluid injection into the fracture which increases with time. In

Figure 4.9.2 (b), the gradient of the fracture half-width ∂h

∂x
→ −∞ as x → L(t). The thin

film approximation therefore breaks down in the neighbourhood of the fracture tip. In Figure

4.9.2 (c), the graph for vn(x, t) clearly reflects the underlying assumption that vn ∝ h. For

low values of β, leak-off is approximately uniform over the fracture and an unexpected shape

in which ∂h

∂x
(0, t) > 0 is obtained. For higher values of β, the expected shape is obtained.

The case in which there is no leak-off cannot be analysed since solution does not exist when

β = 0.

In Figure 4.9.3, L(t), h(x, t) and vn(x, t) are plotted for c3

c2
= 0.2 . When c3

c2
= 0.2 the total

volume of the fracture remains constant. There is no solution for β < −1 and the values of

β used are those of significance and they are β = −1, 0, 1.33, 5, 10. When β = 0, there is no

leak-off of fluid and equation (4.9.1) for which the rate of fluid injection into the fracture at the

fracture entry, q1 = 0, is satisfied. When β = 1.33, equation (4.6.1) for which the rate of fluid

injection at the entry, q1, is positive is satisfied. In Figure 4.9.3 (a), the rate of increase of the

fracture length decreases as leak-off increases. Fluid injection at the fluid/rock interface also

increases the fracture length. When there is leak-off, the fracture shape is as expected with

h(x, t) decreasing as x increases. Fluid injection at the interface gives an unexpected result in

which ∂h

∂x
> 0 initially and the maximum width occurs near the mid-point of the fracture.

In Figure 4.9.4, L(t), h(x, t) and vn(x, t) are plotted for c3

c2
= 0.5. When c3

c2
= 0.5, the

pressure at the entry, p(0, t), is constant. No solution was found when β < −2. Solutions

for −2 ≤ β < −1 correspond to fluid extraction at the fracture entry and an unexpected

shape is obtained. When β = −1, equation (4.9.1) for which the rate of fluid injection at the

entry, q1, is zero is satisfied and when β = 0.33, (4.6.1) for which the rate of fluid injection at

entry, q1, is positive is satisfied. Injection of fluid at the interface causes the fracture length to

propagate further in a given time than when the rock is impermeable or when there is leak-off.

This occurs even when fluid is extracted at the entry. In Figure 4.9.4 (a), fluid leak-off at the

interface decreases the rate of propagation of the fracture length.

In Figure 4.9.5, L(t), h(x, t) and vn(x, t) are plotted for c3

c2
= 0.8. When c3

c2
= 0.8, the rate

of fluid injection at the fracture entry is constant. No solution was found when β < −2.25.
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Equation (4.9.1) is satisfied when β = −1.25 and (4.6.1) is satisfied when β = 0.083. There

is no fluid leak off into the rock mass when β = 0 while for β = 5 there is leak-off. Fluid

injection at the interface increases the rate of propagation of the fracture length even although

there is fluid extraction at the fracture entry. When there is fluid injection at the interface the

unexpected shape of the fracture in which h(x, t) first increases with x before decreasing is

again obtained.

In Figure 4.9.6, L(t), h(x, t) and vn(x, t) are plotted for c3

c2
= 1. When c3

c2
= 1, the length

of the fracture grows linearly with time for all values of β. The speed of propagation of the

fracture, dL

dt
, is constant. No solution exist when β < −2.33. When β = −1.33, there is no

fluid injection at the entry and equation (4.9.1) is satisfied. For β = 0, there is no leak-off

at the interface and equation (4.6.1) is also satisfied. Fluid injection through the interface

increases the rate of propagation of the fracture length even if there is fluid extraction at the

entry. The unexpected shape for the half-width of the fracture is obtained again.

In all cases the maximum rate of growth of the length of the fracture occured for the

limiting solution given by (4.9.2).
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Figure 4.9.2: Graphs for c3
c2

= 0.1 and a selection of values of β : (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 4.9.3: Graphs for c3
c2

= 0.2 and a selection of values of β : (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 4.9.4: Graphs for c3
c2

= 0.5 and a selection of values of β : (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 4.9.5: Graphs for c3
c2

= 0.8 and a selection of values of β : (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 4.9.6: Graphs for c3
c2

= 1 and a selection of values of β : (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.

97



4.9.3 Graphical results for fixed β and varying values of c3

c2

We present in this section the graphical results obtained for L(t), h(x, t) and vn(x, t) when the

parameter c3

c2
is varied and β is fixed. The values of c3

c2
used are those of physical significance

in the range 0 < c3

c2
< 1. The results obtained show how the parameter c3

c2
affects the rate of

propagation of the fracture length and growth of the fracture half-width.

In Figure 4.9.7, β = −2 and solution exists for 0.5 ≤ c3

c2
< ∞. All solutions have fluid

injection at the fluid/rock interface and extraction of fluid at the fracture entry. The maximum

width of the fracture does not depend greatly on the parameter c3

c2
and occurs at the middle of

the fracture, not at the entry since fluid extraction occurs there. The fracture length increases

as c3

c2
increases, even although fluid extraction occurs at the entry. In Figure 4.9.7(c), the graph

of vn(x, t), which is negative across the fracture for all values of c3

c2
, verifies that fluid is always

injected at the fluid/rock interface.

In Figure 4.9.8, β = −1 and the solution exists for 0.2 ≤ c3

c2
< ∞. All solutions have

fluid injection at the interface. For 0.2 ≤ c3

c2
< 0.5, there is extraction of fluid at the entry.

For c3

c2
= 0.2 and c3

c2
= 0.35, the half-width of the fracture initially increases with x before

decreasing. For 0.5 < c3

c2
< ∞, there is fluid injection always at the entry to the fracture.

When c3

c2
= 0.5, equation (4.9.1) is satisfied and the rate of fluid injection at the entry, q1,

vanishes. Equation (4.6.1) is not satisfied for any value of c3

c2
when β = −1. The length of the

fracture at a given time t increases as c3

c2
increases. It is greater when there is fluid injection at

the entry
(

c3

c2
> 0.5

)

than when there is fluid extraction at the entry (0.2 ≤ c3

c2
< 0.5).

In Figure 4.9.9, β = 0 and the solution exists for 0.125 ≤ c3

c2
< ∞. All solutions have

no fluid exchange at the interface. Hence the rock mass is impermeable. The fracture length

increases as c3

c2
increases and the rate of increase is small when fluid extraction occurs at the

entry. The shape of h(x, t) when 0.125 ≤ c3

c2
< 0.2 is due to fluid extraction at the entry. For

0.2 < c3

c2
< ∞, there is fluid injection at the entry and the maximum width always occurs

at the entry to the fracture. When c3

c2
= 0.2, there is no injection or extraction of fluid at the

fracture entry.

In Figure 4.9.10, β = 1 and the solution exists for 0.091 ≤ c3

c2
< ∞. All solutions have

leak-off of fluid at the interface. Fluid extraction at the entry occurs for 0.091 ≤ c3

c2
< 0.125.
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Fluid injection at the entry occurs for 0.125 < c3

c2
< ∞. When c3

c2
= 0.125, equation (4.9.1) is

satisfied and q1 = 0. For c3

c2
= 0.25, equation (4.6.1) is satisfied and q1 > 0. In Figure 4.9.10

(a), L(t) increases as c3

c2
increases. The growth of L(t) is stronger when there is injection of

fluid at the entry than when fluid is being extracted at the entry.

In Figure 4.9.11, β = 2 and the solution exists for 0.0714 ≤ c3

c2
< ∞. All solutions

have leak-off of fluid at the interface. Fluid extraction occurs for 0.0714 < c3

c2
< 0.091. The

shape of the fracture for c3

c2
= 0.0714 again is due to the extraction of fluid at the entrance

to the fracture. Injection of fluid at the entry occurs for 0.091 < c3

c2
< ∞ and a special case

for which equation (4.6.1) is satisfied occurs when c3

c2
= 0.143. Equation (4.9.1), for which

q1 = 0, is satisfied when c3

c2
= 0.091. The fracture length L(t) increases as c3

c2
increases. The

leak-off velocity vn is almost uniform as c3

c2
increases to unity.

In Figure 4.9.12, β = 5 and the solution exists for 0.043 ≤ c3

c2
< ∞. All solutions have

leak-off of fluid at the interface. Extraction of fluid at the entry occurs for 0.043 ≤ c3

c2
< 0.05

while injection of fluid at the entry occurs for 0.05 < c3

c2
< ∞. The rate of fluid injection at

the entry vanishes when c3

c2
= 0.05. When c3

c2
= 0.0625, equation (4.6.1) is satisfied and the

exact solution, (4.5.17) to (4.5.21), applies.

In all cases the fracture length at a given time increases as c3

c2
increases to unity. This

corresponds physically to the transition from fluid extraction at the fracture entry for small

values of c3

c2
to fluid injection at the entry with increasing strength as c3

c2
increases.
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Figure 4.9.7: Graphs for β = −2 and a selection of values of c3
c2

: (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 4.9.8: Graphs for β = −1 and a selection of values of c3
c2

: (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 4.9.9: Graphs for β = 0 and a selection of values of c3
c2

: (a) Fracture length L(t) plotted

against time ; (b) Fracture half-width h(x, t) plotted against x at time t = 50. The leak-off velocity

vn(x, t) = 0
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Figure 4.9.10: Graphs for β = 1 and a selection of values of c3
c2

: (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 4.9.11: Graphs for β = 2 and a selection of values of c3
c2

: (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 4.9.12: Graphs for β = 5 and a selection of values of c3
c2

: (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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4.10 Conclusion

We have presented solutions to the fluid-driven fracture problem for the case in which the rock

permeability is such that the velocity of fluid leak-off is proportional to the half-width of the

fracture. The solutions contain the parameters c3

c2
and β. The leak-off parameter β determines

the condition of flow at the fluid/rock interface. When β > 0, fluid leaks off into the rock mass

at the interface and when β < 0, there is backward flow into the fracture at the interface. This

may occur when the rock mass is saturated with fluid. For β = 0, there is no fluid exchange at

the interface and the rock is impermeable.

Numerical and analytical solutions were found for the volume of the fracture, V (t), frac-

ture length, L(t), fracture half-width, h(x, t), leak-off velocity, vn(x, t) and the fluid presssure

p(x, t) for values of c3

c2
and β of physical significance in the range −∞ < c3

c2
< ∞ and

−2.66 < β < ∞. In the limit c3

c2
→ ∞, time dependent exponential solutions were derived

for V (t), L(t), h(x, t), vn(x, t) and p(x, t). For large times, approximate power law solutions

can also be derived.

Three categories of solution were obtained that depend on the values of the parameters.

The curve

β =
5
(

1

5
− c3

c2

)

3 c3

c2

(4.10.1)

partitions the ( c3

c2
, β) plane into two parts. For values of ( c3

c2
, β) above the curve (4.10.1), the

rate of fluid injection into the fracture at the fracture entry is always positive. This could de-

scribe the process of hydraulic fracturing. Analytical group invariant solutions were obtained

for the operating condition

β =

(

1 − c3

c2

)

3 c3

c2

(4.10.2)

in which fluid is always injected at the entry. For the values of ( c3

c2
, β) below the curve (4.10.1),

the rate of fluid injection is negative and fluid is always extracted from the fracture at the entry.

The lower limit curve for solutions is

β =
8
(

1

8
− c3

c2

)

3 c3

c2

. (4.10.3)

An analytical proof of the curve (4.10.3) could not be established and its physical significance
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could not be determined. Solutions with parameters in the range

8
(

1

8
− c3

c2

)

3 c3

c2

< β <
5
(

1

5
− c3

c2

)

3 c3

c2

(4.10.4)

could describe the process of extraction of fluid from a fracture in a permeable rock. Group

invariant solutions and numerical solutions were obtained for this case. For the values of

( c3

c2
, β) on the dividing curve (4.10.1), the rate of fluid injection at the entry, q1, vanishes and

we obtained analytical solutions for which there is no fluid injection or extraction at the entry.

This could describe the evolution of a fluid-filled fracture, sealed at its entrance, in permeable

rock.

The rate of fluid injection at the entry, q1, is further controlled by the parameter c3

c2
. For

c3

c2
= 0.8, q1 is constant and fluid injection at the entry is constant. For c3

c2
< 0.8, q1 decreases

as t increases and for c3

c2
> 0.8, q1 increases as t increases.

The graphical solutions in Sections 4.9.2 and 4.9.3 illustrate that the length of the fracture,

L(t), always increases even if there is leak-off of fluid at the interface and fluid extraction at the

entry. Of interest is the behaviour that is observed when there is no fluid injection at the entry.

The fracture relaxes to different final states depending on whether β < 0, β = 0 or β > 0.

In particular, when β ≥ 0 the fracture width will become narrower and the fracture length

longer until the interface grips the propping material that holds the interface apart . Indeed,

when β > 0, fluid will continue to leak off over the whole fracture area and particularly near

the entry where h(x, t) is maximum. This leak-off limits the additional length obtained when

there is no fluid injection at the entry.

From Figures 4.9.2a to 4.9.6a, the speed of propagation dL

dt
increases as β decreases and

its maximum value occurs always on the limiting solution curve. In fact fluid injection at the

interface is always greatest and extraction of fluid at the fracture entry stongest for all values

of β and c3

c2
on the limiting solution curve. When β is large and negative the maximum width

of the fracture occurs at approximately the mid-point of the fracture. This is due to large

negative values of β being associated with extraction of fluid at entry. This fluid extraction

prevents the width of the fracture at the entry from increasing as much as at the mid-point. In

all the solutions obtained, the graphs for the leak-off velocity, vn, reflect that it is proportional

to the fracture half-width, h(x, t). From Figures 4.9.7a to 4.9.12a, the speed of propagation
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of fracture length, dL

dt
, increases as c3

c2
increases. Smaller values of c3

c2
are associated with

extraction of fluid at the fracture entry while larger values are associated with injection of

fluid at the entry. For all solutions obtained, the gradient of the fracture half-width, ∂h

∂x
, tends

to −∞ as x → L(t). Hence, the thin film approximation breaks down in the neighbourhood

of the tip of the fracture, x = L(t).

Finally, to check the accuracy of the numerical solution, we solved the two Initial Value

Problems numerically for the special cases (4.3.1) and (4.5.8) which yield exact analytical

solutions. We found that the numerical solution is in good agreement with the analytical

solutions as shown in Tables 4.8.1 and 4.8.2. The solutions agree to five decimal places except

at the fracture tip. In Table 4.8.1 the solutions at the fracture tip agree to three decimal places

while the agreement at the fracture tip in Table 4.8.2 is to two decimal places.
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Chapter 5

LEAK-OFF VELOCITY

PROPORTIONAL TO GRADIENT OF

FRACTURE HALF-WIDTH

5.1 Introduction

In this Chapter we consider the second special case in which G(u) is proportional to dF

du
. The

leak-off velocity is therefore proportional to the gradient of the fluid/rock interface. The result-

ing boundary value problem for F (u) is solved analytically for two special cases which yield

exact solutions. For the first special case which is considered in Section 5.3, the rate of fluid

injection into the fracture at the fracture entry is zero while for the second special case which

is considered in Section 5.4, there is always inflow of fluid at the fracture entry. Numerical

computation is used to obtain results in general and this begins with the transformation of the

boundary value problem into two Initial Value Problems using the invariance of the boundary

value problem under a scaling transformation. The algorithm outlined in Chapter 4 for solving

the two initial value problems also applies in this Chapter.
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5.2 Leak-off velocity proportional to gradient of fluid-rock

interface

We now consider the case

G(u) = −βu
dF

du
, (5.2.1)

where β is a constant. It follows from the similarity solution (3.6.61), (3.6.62) and (3.6.63)

that

vn = −β
c3

c1

x∂h

∂x

(1 + c2

c1
t)

= −β
c3

c1

x∂h

∂x

L(t)
c2

c3

. (5.2.2)

Hence, vn is proportional to the gradient of the fracture half-width. The boundary value prob-

lem (3.6.55) to (3.6.64) becomes

Λ
d

du

(

F 3
dF

du

)

+ 3(1 + β)
d

du
(uF ) +

(

c2

c3

− 5 − 3β

)

F = 0, (5.2.3)

F (1) = 0, (5.2.4)

ΛF 3(0)
dF

du
(0) =

(

c2

c3

− 5 − 3β

)
∫

1

0

F (u)du, (5.2.5)

V0 = 2

(

c3

c1

)
1

3

∫

1

0

F (u)du, (5.2.6)

c2

c1

=
c2

c3

c3

c1

, (5.2.7)

V (t) = V0

(

1 +
c2

c1

t

)
5

3

c3

c2
−

1

3

, (5.2.8)

L(t) =

(

1 +
c2

c1

t

)

c3

c2

, (5.2.9)

h(x, t) =

(

c3

c1

)
1

3

(

1 +
c2

c1

t

)
2

3

c3

c2
−

1

3

F (u), (5.2.10)

vn(x, t) = −β

(

c3

c1

)
4

3

(

1 +
c2

c1

t

)
2

3

c3

c2
−

4

3

u
dF

du
, (5.2.11)

p(x, t) = Λh(x, t), (5.2.12)

where

u =
x

L(t)
, 0 ≤ u ≤ 1. (5.2.13)
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When dF

du
< 0, β > 0 describes leak-off while β < 0 describes inflow at the fluid/rock

interface. For the case dF

du
> 0, β > 0 describes inflow at the fluid/rock interface while β < 0

describes leak-off. When dF

du
= 0, there is no leak-off even for non-zero values of β.

We now seek to determine the asymptotic solution of the differential equation (5.2.3) sub-

ject to the boundary condition (5.2.4) as u → 1. This asymptotic solution is required when

deriving the numerical solution for F (u) . Look for an asymptotic solution of the form

F (u) ∼ a(η − u)n as u → 1, (5.2.14)

where a, η and n are constants to be determined. The boundary condition (5.2.4) gives η = 1

and therefore (5.2.14) becomes

F (u) ∼ a(1 − u)n as u → 1. (5.2.15)

We substitute (5.2.15) into (5.2.3) to obtain

Λa4n(4n−1)(1−u)4n−2−3an(1+β)(1−u)n−1+

(

c2

c3

− 2 + 3n(1 + β)

)

a(1−u)n ∼ 0,

(5.2.16)

as u → 1. The dominant terms balance each other in (5.2.16) provided

4n − 2 = n − 1, (5.2.17)

that is, provided

n =
1

3
. (5.2.18)

Equation (5.2.16) becomes

Λ

9
a4 − (1 + β)a +

(

c2

c3

− 1 + β

)

a(1 − u) ∼ 0 as u → 1. (5.2.19)

Let u → 1 in (5.2.19). This gives

a =

(

9(1 + β)

Λ

)
1

3

. (5.2.20)

Hence, the asymptotic solution is

F (u) ∼

(

9(1 + β)

Λ

)
1

3

(1 − u)
1

3 as u → 1. (5.2.21)
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Equation (5.2.21) is satisfied for all values of c2

c3
but requires β > −1. This compares with the

asymptotic solution for F (u) as u → 1 when G(u) = βF (u) in Chapter 4 which placed no

condition on β.

In order to interpret the results we will require the rate of fluid injection into the fracture at

the fracture entry, q1, given by (3.7.27) and the rate of leak-off at the fluid/rock interface, q2,

which is given by (3.7.24). Using (5.2.1), equations (3.7.27) and (3.7.24) become

q1 =
2

3

(

c3

c1

)
4

3

(

1 +
c2

c1

t

)
5

3

c3

c2
−

4

3

[

−3β

∫

1

0

u
dF

du
du +

(

5 −
c2

c3

)
∫

1

0

F (u)du

]

, (5.2.22)

q2 = −2β

(

c3

c1

)
4

3

(

1 +
c2

c1

t

)
5

3

c3

c2
−

4

3
∫

1

0

u
dF

du
du. (5.2.23)

But, integrating by parts and using the boundary condition F (1) = 0 gives

∫

1

0

u
dF

du
(u)du = −

∫

1

0

F (u)du. (5.2.24)

Equations (5.2.22) and (5.2.23) become

q1 = −
2

3

(

c2

c3

− 5 − 3β

)(

c3

c1

)
4

3

(

1 +
c2

c1

t

)
5

3

c3

c2
−

4

3
∫

1

0

F (u)du (5.2.25)

and

q2 = 2β

(

c3

c1

)
4

3

(

1 +
c2

c1

t

)
5

3

c3

c2
−

4

3
∫

1

0

F (u)du. (5.2.26)

We now consider two special cases for which an exact analytical solution of the differential

equation (5.2.3) subject to boundary conditions (5.2.4) and (5.2.5) can be derived.

5.3 Exact analytical solutions: Case 1

We first consider the case

c2

c3

− 5 − 3β = 0. (5.3.1)

Equation (5.2.3) becomes

Λ
d

du

(

F 3
dF

du

)

+ 3(1 + β)
d

du
(uF ) = 0, (5.3.2)
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subject to the boundary conditions

F (1) = 0, (5.3.3)

dF

du
(0) = 0. (5.3.4)

In boundary condition (5.2.5), F (0) 6= 0 because if F (0) = 0 then from (5.2.10), h(0, t) = 0

which is not satisfied. Integrating (5.3.2) once with respect to u gives

ΛF 3(u)
dF

du
+ 3(1 + β)uF (u) = C (5.3.5)

where C is a constant. Imposing the boundary condition (5.3.4) at u = 0 gives C = 0.

Equation (5.3.5) becomes

F 2
dF

du
= −3

(1 + β)

Λ
u, (5.3.6)

which is variables separable. Thus

F 3(u) = −
9(1 + β)

2Λ
u2 + K, (5.3.7)

where K is a constant. Since F (1) = 0 it follows that

K =
9(1 + β)

2Λ
(5.3.8)

and therefore

F (u) =

(

9(1 + β)

2Λ

)
1

3

(1 − u2)
1

3 , (5.3.9)

provided β > −1. Using (5.3.1), the solution (5.3.9) can be written as

F (u) =

(

3

2Λ

(

c2

c3

− 2

))
1

3
(

1 − u2
)

1

3 , (5.3.10)

where c2

c3
> 2 for a non-zero real solution to exist. When (5.3.1) is satisfied the solution exists

provided β > −1 or 0 < c3

c2
< 0.5. This compares with the corresponding solution (4.3.9)

when G(u) = βF (u) which requires only that β and c3

c2
satisfy (5.3.1). Substituting (5.3.10)

into (5.2.6) gives

c3

c1

=
Λ

12

(

c2

c3

− 2

)

(

V0

I

)3

, (5.3.11)
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where

I =

∫

1

0

(1 − u2)
1

3 du = 0.8413. (5.3.12)

Thus from (5.2.7),

c2

c1

=
Λ

24

(

1

2
−

c3

c2

)

(

V0

I

)3

(5.3.13)

and

u =
x

L(t)
. (5.3.14)

The group invariant solution can be written either in terms of β or c3

c2
. We will write the

solution in terms of c3

c2
. From (5.2.8) to (5.2.12),

V (t) = V0



1 +
1

24
(

1

2
− c3

c2

)

(

V0

I

)3

Λt





5

3

“

c3

c2
−

1

5

”

, (5.3.15)

L(t) =



1 +
1

24
(

1

2
− c3

c2

)

(

V0

I

)3

Λt





c3

c2

, (5.3.16)

h(x, t) =
V0

2I



1 +
1

24
(

1

2
− c3

c2

)

(

V0

I

)3

Λt





2

3

“

c3

c2
−

1

2

”

[

1 −
x2

L(t)2

]
1

3

, (5.3.17)

vn(x, t) =
10Λ

27

(

1

5
− c3

c2

1

2
− c3

c2

)

(

V0

2I

)4



1 +
1

24
(

1

2
− c3

c2

)

(

V0

I

)3

Λt





−

4

3

“

c3

c2
+1

”

× x2

(

1 −
x2

L(t)2

)

−

2

3

, (5.3.18)

p(x, t) = Λh(x, t). (5.3.19)

The solutions exist provided

0 <
c3

c2

< 0.5. (5.3.20)

The results for h(x, t), vn(x, t) and p(x, t) can be expressed in terms of L(t) as follows

h(x, t) =
V0

2I
L(t)

1

3

“

2−
c2

c3

”

[

1 −
x2

L(t)2

]
1

3

, (5.3.21)

vn(x, t) =
10Λ

27

(

1

5
− c3

c2

1

2
− c3

c2

)

(

V0

2I

)4

L(t)
−

4

3

“

c2

c3
+1

”

x2

[

1 −
x2

L(t)2

]

−

2

3

(5.3.22)
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and p(x, t) is given in terms of h(x, t) by (5.3.19).

Consider now the physical significance of condition (5.3.1) when

G(u) = −βu
dF

du
. (5.3.23)

From (5.2.22), when (5.3.1) is satisfied, q1 = 0. Thus the rate of fluid injection into the fracture

at the fracture entry is zero. Condition (5.3.1) therefore has the same physical significance as

when G(u) = βF (u). Figures 5.3.2 to 5.3.8 illustrate how a fracture of length L(t) may relax

after pumping at the entry has ceased and the entry to the fracture is sealed.

Condition (5.3.1) can be written as

β =

5

3

(

1

5
− c3

c2

)

c3

c2

(5.3.24)

and also as

c3

c2

=
1

5 + 3β
. (5.3.25)

Equation (5.3.24) is plotted in the
(

c3

c2
, β
)

plane in Figure 5.3.1 together with other curves.

Since the solution exists only for β > −1, it exists only for 0 < c3

c2
< 0.5. Unlike the special

case G(u) = βF (u), there is no solution for c3

c2
> 0.5. Also the solutions for L(t), h(x, t) and

vn(x, t) do not behave exponentially in time as c3

c2
→ ∞ which compares with the exponential

behaviour of the solutions for the special case G(u) = βF (u) as c3

c2
→ ∞. In the numerical

results that follow, t is as defined in (4.4.9).
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5.3.1 Fracture length and volume

Consider first the fracture length L(t) given by (5.3.16) and plotted in Figure 5.3.2. We restrict

our discussion to values of c3
c2

in the range 0 < c3
c2

< 0.5 for which the solution exists. For

0 < c3
c2

< 0.2, 0 < β < ∞ and there is fluid leak-off at the interface. When c3
c2

= 0.2, β = 0

and there is no fluid exchange at the interface. For 0.2 < c3
c2

< 0.5, −1 < β < 0 and fluid

enters the fracture from the interface. The fracture length L(t) is an increasing function of

time for values of c3
c2

in the range 0 < c3
c2

< 0.5 and L(t) → ∞ as t → ∞. Even although

the rate of fluid injection at the entry is zero, the fracture length grows for 0 < c3
c2

< 0.5. The

length L(t) increases as c3
c2

increases from 0 to 0.5 and L(t) → ∞ as c3
c2

→ 0.5 which is the

limiting value of c3
c2

for solutions to exist.

c3 � c2 = 0.499

c3 � c2 = 0.4

c3 � c2 = 0.3

c3 � c2 = 0.2

c3 � c2 = 0.001
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LHtL

Figure 5.3.2: Leak-off velocity proportional to gradient of fracture half-width: Graph of frac-

ture length L(t) given by (5.3.16) plotted against t for a selection of values of the parameter

c3
c2

and for V0

I
= 1.

Consider next the total volume of the fracture given by (5.3.15) and plotted in Figure 5.3.3.

Since the fluid injection rate at the entry is zero, the fracture volume, V (t), therefore changes
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due to exchange of fluid at the fluid/rock interface. For 0 < c3
c2

< 0.2, β > 0 and there is

leak-off at the fluid/rock interface. The time rate of change of fracture volume, dV
dt

< 0 and

V (t) → 0 as t → ∞. For c3
c2

= 0.2, no fluid exchange occurs at the interface and V (t) is

constant for all time. Fluid enters the interface for 0.2 < c3
c2

< 0.5 and the fracture volume

increases as t increases. Therefore dV
dt

> 0 and V (t) → ∞ as t → ∞.

c3 � c2 = 0.499

c3 � c2 = 0.45

c3 � c2 = 0.4

c3 � c2 = 0.2

c3 � c2 = 0.001
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14
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V  HtL

V0

Figure 5.3.3: Leak-off velocity proportional to gradient of fracture half-width: Graph of frac-

ture volume
V (t)
V0

given by (5.3.15) plotted against t for a selection of values of the parameter

c3
c2

and for V0

I
= 1.

5.3.2 Fracture half-width and leak-off velocity

Consider now h(x, t) which is given by (5.3.17) and plotted in Figures 5.3.4 to 5.3.8. For all

Figures 5.3.4 to 5.3.8 there is no fluid injection at the fracture entry. Fluid can therefore only

enter or leave the fracture at the fluid/rock interface. Figures (5.3.4) and (5.3.5) clearly show

that the length of the fracture increases even if there is leak-off at the fluid/rock interface or if

the rock is impermeable. When there is injection of fluid at the fluid/rock interface, Figures
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(5.3.6) to (5.3.8) show that the rate of increase in the length of the fracture increases as the

rate of fluid injection at interface increases and tends to infinity as c3
c2

→ 0.5. Most of the fluid

injection occurs in the neighbourhood of the fracture tip.

From (5.3.17),

h(0, t) =
V0

2I



1 +
Λt

24
(

1
2
− c3

c2

)

(

V0

I

)3




2

3

“

c3

c2
−

1

2

”

. (5.3.26)

In this section, the analytical solution exists only for 0 < c3
c2

< 0.5 and therefore h(0, t) always

decreases as t increases and the width of the fracture at the entry decreases as t increases. The

gradient of the fracture half-width is

∂h

∂x
(x, t) = −

V0x

3I



1 +
Λt

24
(

1
2
− c3

c2

)

(

V0

I

)3




−
4

3

“

c3

c2
+ 1

4

”

(

1 −
x2

L2

)

−
2

3

. (5.3.27)

Therefore ∂h
∂x

→ −∞ as x → L(t). Lubrication theory breaks down in the neighbourhood of

the tip of the fracture, x = L(t).

Finally, consider vn(x, t) which is given by (5.3.18) and is plotted in Figures 5.3.4 to 5.3.8.

From (5.3.18),

vn(0, t) = 0, (5.3.28)

and

vn(L, t) =







+∞, 0 < c3
c2

< 0.2,

−∞, 0.2 < c3
c2

< 0.5.
(5.3.29)

For all values, 0 < c3
c2

< 0.5, vn(x, t) is approximately zero at the interface in the neigh-

bourhood of the fracture entry and vn = ±∞ at the fracture tip depending on whether β > 0

or β < 0. For 0 < c3
c2

< 0.2, β > 0 and vn(x, t) > 0. There is therefore fluid leak-off in the

region 0 < x ≤ L(t). When 0.2 < c3
c2

< 0.5 , β < 0 and vn(x, t) < 0. Fluid injection at the

fluid/rock interface takes place in the region 0 < x ≤ L(t).
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Figure 5.3.4: (a) Fracture half-width, h(x, t), given by (5.3.17) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (5.3.18), plotted against x for a range of values of t and for

c3
c2

= 0.1, β = 1.66.
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Figure 5.3.5: (a) Fracture half-width, h(x, t), given by (5.3.17) plotted against x for a range of values

of t and for c3
c2

= 0.2, β = 0. The leak-off velocity at the fluid/rock interface, vn(x, t), given by

(5.3.18) is zero.
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Figure 5.3.6: (a) Fracture half-width, h(x, t), given by (5.3.17) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (5.3.18), plotted against x for a range of values of t and for

c3
c2

= 0.3, β = −0.55.
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Figure 5.3.7: (a) Fracture half-width, h(x, t), given by (5.3.17) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (5.3.18), plotted against x for a range of values of t and for

c3
c2

= 0.4, β = −0.833.
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Figure 5.3.8: (a) Fracture half-width, h(x, t), given by (5.3.17) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (5.3.18), plotted against x for a range of values of t and for

c3
c2

= 0.499, β = −0.99.
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5.4 Exact analytical solutions: Case 2

We now look for a solution of (5.2.3) subject to (5.2.4) and (5.2.5) which is of the form

F (u) = a(1 − u)n, (5.4.1)

where a and n are constants to be determined such that a 6= 0 and n > 0. The boundary

condition (5.2.4) is satisfied by (5.4.1). We substitute (5.4.1) into (5.2.3) to obtain

Λa4n(4n− 1)(1− u)4n−2 − 3a(1 + β)n(1− u)n−1 + a

(

3n(1 + β) +
c2

c3
− 2

)

(1− u)n = 0.

(5.4.2)

The equation (5.4.2) will be satisfied if

Λa4n(4n − 1)(1 − u)4n−2 − 3a(1 + β)n(1 − u)n−1 = 0 (5.4.3)

and

3n(1 + β) +
c2

c3
− 2 = 0. (5.4.4)

Equating the powers of (1 − u) in (5.4.3) gives

n =
1

3
. (5.4.5)

By substituting (5.4.5) into (5.4.3) and (5.4.4) we obtain

Λ

9
a4 − a(1 + β) = 0, (5.4.6)

β = 1 −
c2

c3
. (5.4.7)

Solving (5.4.6) for a gives

a =

(

9

Λ
(1 + β)

)
1

3

. (5.4.8)

Hence, the solution of (5.2.3) of the form (5.4.1) is

F (u) =

(

9

Λ

(

2 −
c2

c3

))
1

3

(1 − u)
1

3 . (5.4.9)

A non-zero real solution exists for −∞ < c2
c3

< 2.
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Equation (5.4.9) must satisfy the second boundary condition (5.2.5). We now show that the

boundary condition (5.2.5) is identically satisfied. Substituting (5.4.9) into the left hand side

of (5.2.5) gives

ΛF 3(0)
dF

du
(0) = −3

(

9

Λ

)
1

3

(

2 −
c2

c3

)
4

3

, (5.4.10)

while substituting (5.4.9) into the right hand side of (5.2.5) gives

(

c2

c3
− 5 − 3β

)
∫ 1

0

F (u)du =
3

4

(

c2

c3
− 5 − 3β

)(

9

Λ

(

2 −
c2

c3

))
1

3

. (5.4.11)

On using (5.4.7) for β it is readily verified that the boundary condition (5.2.5) is satisfied.

By substituting (5.4.9) into (5.2.6) we obtain

c3

c1
=

8

243

ΛV 3
0

(

2 − c2
c3

) (5.4.12)

and hence from (5.2.7),

c2

c1
=

4

243

ΛV 3
0

(

c3
c2
− 1

2

) . (5.4.13)

We will express the results in terms of the parameter c3
c2

.

From (5.2.8) to (5.2.12),

L(t) =



1 +
4

243

V 3
0

(

c3
c2
− 1

2

)Λt





c3

c2

, (5.4.14)

V (t) = V0



1 +
4

243

V 3
0

(

c3
c2
− 1

2

)Λt





5

3

c3

c2
−

1

3

, (5.4.15)

h(x, t) =
2

3
V0



1 +
4

243

V 3
0

(

c3
c2
− 1

2

)Λt





2

3

c3

c2
−

1

3
(

1 −
x

L(t)

)
1

3

, (5.4.16)

vn(x, t) =
8ΛV0

2187

(

c3
c2
− 1

c3
c2
− 1

2

)



1 +
4

243

V 3
0

(

c3
c2
− 1

2

)Λt





−
1

3

“

c3

c2
+4

”

× x

(

1 −
x

L(t)

)

−
2

3

, (5.4.17)

p(x, t) = Λh(x, t). (5.4.18)
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The solution exists provided the values of c3
c2

do not lie in the range 0 < c3
c2

≤ 0.5. This is

shown in Figure 5.3.1. In the limit c3
c2

→ ∞, β → 1 and the group invariant solutions for L(t),

V (t), h(x, t) and p(x, t) have an exponential time-dependence given by

L(t) = exp

(

4V 3
0

243
Λt

)

, (5.4.19)

V (t) = V0exp

(

20V 3
0

729
Λt

)

, (5.4.20)

h(x, t) =
2V0

3
exp

(

8V 3
0

729
Λt

)[

1 −
x

L(t)

]
1

3

, (5.4.21)

vn(x, t) =
8ΛV0

2187
exp

(

−4V 3
0

729
Λt

)

x

(

1 −
x

L(t)

)

−
2

3

(5.4.22)

and p(x, t) is given by (5.4.18) and (5.4.21).

5.5 Discussion of results for β = 1 − c2
c3

When (5.4.7), (5.4.9), (5.4.12) and (5.4.13) are substituted into (5.2.25) and (5.2.26) it is found

that the rate of fluid injection at the fracture entry is

q1(t) =
32

729
ΛV 4

0



1 +
4

243

V 3
0

(

c3
c2
− 1

2

)Λt





5

3

“

c3

c2
−

4

5

”

(5.5.1)

and the rate of fluid leak-off at the fluid/rock interface is

q2(t) =
4

243

(

c3
c2
− 1

c3
c2
− 1

2

)

ΛV 4
0



1 +
4

243

V 3
0

(

c3
c2
− 1

2

)Λt





5

3

“

c3

c2
−

4

5

”

. (5.5.2)

Therefore q1(t) > 0 and fluid is always injected into the fracture at entry. The rate of fluid

leak-off satisfies

q2(t)







> 0 if c3
c2

> 1

< 0 if 1
2

< c3
c2

< 1.
(5.5.3)

Equation (5.5.1) is plotted in Figure 5.5.1 and (5.5.2) is plotted in Figure 5.5.2. The rate of

fluid injection at the fracture entry is always positive. The rate of fluid inflow at the fluid/rock
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Figure 5.5.1: Leak-off velocity proportional to gradient of fracture half-width and β =

1 − c2
c3

. Rate of fluid injection at entry, q1(t), given by (5.5.1) plotted against t for c3
c2

=

0.51, 0.6, 0.8, 1, 2 and for V0 = 1 and Λ = 1.
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Figure 5.5.2: Leak-off velocity proportional to gradient of fracture half-width and β = 1− c2
c3

.

Rate of fluid leak-off at fluid/rock interface, q2(t), given by (5.5.2) plotted against t for c3
c2

=

0.51, 0.6, 0.8, 1, 2 and for V0 = 1 and Λ = 1.
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interface tends to negative infinity as c3
c2

→ 1
2

which is a point on the limiting curve for solu-

tions.

Condition (5.4.7) can be written as

β =
c3
c2
− 1
c3
c2

(5.5.4)

and as

c3

c2

=
1

1 − β
. (5.5.5)

In Figure 5.3.1, β given by (5.5.4) is plotted against c3
c2

for the whole range −∞ < c3
c2

< ∞.

In Figures 5.5.3 to 5.5.10 which follow, β is given by (5.5.4), V0 = 1 and t is as defined by

(4.4.9).

5.5.1 Fracture length and volume

Consider first the length of the fracture L(t) given by (5.4.14) and plotted in Figure 5.5.3. The

values of the parameter c3
c2

for which the solution exists satisfy −∞ < c3
c2

< 0 (1 < β < ∞)

and 0.5 < c3
c2

< ∞ (−1 < β < 1). When 0.5 < c3
c2

< 1, −1 < β < 0 and there is always fluid

inflow at the fluid/rock interface. We see from Figure 5.5.3 that for c3
c2

= 0.51 the length of

the fracture grows strongly due to the inflow of fluid at the interface. For c3
c2

= 1, β = 0 and

no fluid leaves or enters the fracture through the interface. For 1 < c3
c2

< ∞, 0 < β ≤ 1 and

fluid leaks off into the rock formation through the interface. As c3
c2

increases from −∞ to 0, β

increases from 1 to +∞. Therefore there is leak-off of fluid at the interface and L(t) → ∞ in

the finite time

Λt =
243

(

1
2
− c3

c2

)

4V 3
0

. (5.5.6)

Consider next the total volume of the fracture given by equation (5.4.15) and plotted in

Figure 5.5.4. When 0.5 < c3
c2

< 1, then −1 < β < 0 and fluid is always injected at the

interface in the region 0 < x < L(t). For 1 < c3
c2

< ∞, 0 < β < 1 and there is fluid leak-off

at the interface in the region 0 < x < L(t). When β = 0, there is no exchange of fluid at the

interface. For 0.5 < c3
c2

< ∞, the time rate of change of fracture volume is positive, dV
dt

> 0,

and V (t) → ∞ as t → ∞. For −∞ < c3
c2

< 0, dV
dt

> 0 and V (t) → ∞ in the finite time

(5.5.6). In Figure 5.5.4, when c3
c2

= −1 and V0 = 1, V (t) → ∞ in the finite t′ = Λt = 91.125.
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Figure 5.5.3: Leak-off velocity proportional to gradient of fracture half-width: Graph of frac-

ture length L(t) given by (5.4.14) plotted against t for a selection of values of the parameter

c3
c2

and for V0 = 1.

The total volume of the fracture always increases for all the values of c3
c2

for which V (t) exists.

5.5.2 Fracture half-width and leak-off velocity

Consider now the fracture half-width given by (5.4.16) and plotted in Figures 5.5.5 to 5.5.10.

There is always inflow of fluid at the fracture entry for all cases presented in Figures 5.5.5 to

5.5.10. Fluid inflow at the fluid/rock interface occurs in Figures 5.5.5 to 5.5.9 and we see that

the fracture length at time t = 20 decreases as the rate of fluid injection at the interface, q2(t),

decreases and as the rate of fluid injection at the fracture entry, q1(t), increases. This seems

to imply that fluid inflow at the interface is more important than fluid injection at the entry to

the fracture. But as t becomes sufficiently large, fluid injection at the entry becomes gradually

more effective than fluid inflow at interface. This is shown in Figure 5.5.3. In Figure 5.5.10

for which the rate of fluid inflow at the interface, q2, vanishes, the fracture length, L(t), grows

linearly due entirely to injection at the fracture entry.
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Figure 5.5.4: Leak-off velocity proportional to gradient of fracture half-width: Total volume

of the fracture
V (t)
V0

given by (5.4.15) plotted against t for a selection of values of the parameter

c3
c2

and for V0 = 1.

From (5.4.16),

h(0, t) =
2

3
V0



1 +
4

243

V 3
0

(

c3
c2
− 1

2

)Λt





2

3

“

c3

c2
−

1

2

”

. (5.5.7)

For 0.5 < c3
c2

< ∞, h(0, t) increases as t increases and the width of the fracture at the entry

increases as t increases. This result is illustrated in Figures 5.5.5 to 5.5.10. Also,

∂h

∂x
(x, t) = −

2

9
V0



1 +
4

243

V 3
0

(

c3
c2
− 1

2

)Λt





−
1

3

“

c3

c2
+1

”

(

1 −
x

L(t)

)

−
2

3

. (5.5.8)

and therefore ∂h
∂x

(x, t) → −∞ as x → L(t). Lubrication theory therefore breaks down in the

neighbourhood of the fracture tip.

The graphs of the leak-off velocity, vn(x, t), given by (5.4.17), are shown in Figures 5.5.5b

to 5.5.10b. On the interface at the fracture entry,

vn(0, t) = 0 (5.5.9)
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for all values 0.5 < c3
c2

< ∞. In the neighbourhood of the fracture tip,

vn(L, t) =







−∞ 0.5 < c3
c2

< 1

+∞ 1 < c3
c2

< ∞
. (5.5.10)
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Figure 5.5.5: (a) Fracture half-width, h(x, t), given by (5.4.16) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (5.4.17), plotted against x for a range of values of t and for

c3
c2

= 0.51, β = −0.96.
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Figure 5.5.6: (a) Fracture half-width, h(x, t), given by (5.4.16) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (5.4.17), plotted against x for a range of values of t and for

c3
c2

= 0.6, β = −0.66.
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Figure 5.5.7: (a) Fracture half-width, h(x, t), given by (5.4.16) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (5.4.17), plotted against x for a range of values of t and for

c3
c2

= 0.7, β = −0.42.
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Figure 5.5.8: (a) Fracture half-width, h(x, t), given by (5.4.16) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (5.4.17), plotted against x for a range of values of t and for

c3
c2

= 0.8, β = −0.25.
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Figure 5.5.9: (a) Fracture half-width, h(x, t), given by (5.4.16) and (b) leak-off velocity at the

fluid/rock interface, vn(x, t), given by (5.4.17), plotted against x for a range of values of t and for

c3
c2

= 0.9, β = −0.11.
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Figure 5.5.10: (a) Fracture half-width, h(x, t), given by (5.4.16) plotted against x for a range of values

of t and for c3
c2

= 1.0, β = 0. The leak-off velocity vn = 0 and the rock is impermeable.

5.6 Transformation of boundary value problem to two

initial value problems

In this section we present a method for numerically solving the boundary value problem

(5.2.3), (5.2.4) and (5.2.5) by transforming it to two initial value problems as discussed in

Chapter 4. Equation (5.2.3) is of the form

Λ
d

du

(

F 3dF

du

)

+ A
d

du
(uF ) + BF = 0, (5.6.1)

with A = 3(1 + β) and B =

(

c2

c3
− 3β − 5

)

and it admits only one Lie point symmetry gen-

erator. Equation (5.2.3) is not completely integrable to yield an analytical solution and hence

it is solved numerically for some values of c3
c2

and β which are of clear physical significance.

Equation (5.2.3) is invariant under the scaling transformation

u = λu, F = λ
2

3 F, (5.6.2)

as discussed in Section 4.7.
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The boundary value problem (5.2.3) to (5.2.5) is

Λ
d

du

(

F 3dF

du

)

+ 3(1 + β)
d

du
(uF ) +

(

c2

c3

− 5 − 3β

)

F = 0, (5.6.3)

F (1) = 0, (5.6.4)

ΛF 3(0)
dF

du
(0) =

(

c2

c3
− 5 − 3β

)
∫ 1

0

F (u)du. (5.6.5)

Under the transformation (5.6.2), equations (5.6.3) to (5.6.5) become

Λ
d

du

(

F
3 dF

du

)

+ 3(1 + β)
d

du

(

uF
)

+

(

c2

c3

− 5 − 3β

)

F (u) = 0, (5.6.6)

F (λ) = 0, (5.6.7)

ΛF
3
(0)

dF

du
(0) =

(

c2

c3
− 5 − 3β

)∫ λ

0

F (u)du. (5.6.8)

We now choose

F (0) = 1. (5.6.9)

Then from (5.6.2),

F (0) =
1

λ
2

3

(5.6.10)

where λ is defined by (5.6.7). The boundary value problem (5.2.3) to (5.2.5) can therefore be

transformed to the following two Initial Value Problems:

Initial Value Problem 1:

Λ
d

du

(

F
3dF

du

)

+ 3 (1 + β)
d

du

(

uF (u)
)

+

(

c2

c3

− 5 − 3β

)

F (u) = 0, (5.6.11)

F (0) = 1, Λ
dF

du
(0) =

(

c2

c3
− 5 − 3β

)
∫ λ

0

F (u)du, (5.6.12)

where 0 ≤ u ≤ λ and λ is defined by

F (λ) = 0. (5.6.13)

Initial Value Problem 2:

Λ
d

du

(

F 3dF

du

)

+ 3 (1 + β)
d

du
(uF (u)) +

(

c2

c3
− 5 − 3β

)

F (u) = 0, (5.6.14)

F (0) = λ−
2

3 , Λ
dF

du
(0) = λ2

(

c2

c3

− 5 − 3β

)
∫ 1

0

F (u)du, (5.6.15)
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where 0 ≤ u ≤ 1.

The value of λ is obtained from the Initial Value Problem 1. The solution F (u) is obtained

from the Initial Value Problem 2. The remainder of the solution is then given by (5.2.6) to

(5.2.12). We will transform the boundary value problems for the cases (5.3.1) and (5.4.7)

in which exact analytical solutions exist to two Initial Value Problems. These Initial Value

Problems will be solved for F (u) to obtained the results found in Sections 5.3 and 5.4. This

was done in Section 4.7 and it gives a check on the numerical method.

Special Case 1: β = 1
3

(

c2

c3

− 5
)

For this special case the boundary value problem (5.6.3) to (5.6.5) is transformed into the

following two Initial Value Problems:

Initial Value Problem 1:

Λ
d

du

(

F
3dF

du

)

+

(

c2

c3
− 2

)

d

du

(

uF (u)
)

= 0, (5.6.16)

F (0) = 1,
dF

du
(0) = 0, (5.6.17)

where 0 ≤ u ≤ λ and λ is defined by

F (λ) = 0. (5.6.18)

Initial Value Problem 2:

Λ
d

du

(

F 3dF

du

)

+

(

c2

c3
− 2

)

d

du
(uF (u)) = 0, (5.6.19)

F (0) = λ−
2

3 ,
dF

du
(0) = 0, (5.6.20)

where 0 ≤ u ≤ 1 and the parameter λ is obtained from Problem 1.

Integrating (5.6.16) once with respect to u gives

ΛF
3 dF

du
+

(

c2

c3
− 2

)

uF (u) = A, (5.6.21)

where A is a constant. Applying the initial conditions (5.6.17a) and (5.6.17b) at u = 0 gives

A = 0. Equation (5.6.21) becomes

ΛF
2dF

du
= −

(

c2

c3

− 2

)

u, (5.6.22)
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which is variables separable. Thus

ΛF
3
(u) = −

3

2

(

c2

c3

− 2

)

u2 + B (5.6.23)

where B is a constant. Using (5.6.17a) it follows from (5.6.23) that B = Λ and therefore

F (u) =

(

1 −
3

2Λ

(

c2

c3
− 2

)

u2

)
1

3

. (5.6.24)

By using (5.6.18), λ is obtained as

λ =





2Λ

3
(

c2
c3
− 2
)





1

2

, (5.6.25)

provided c2
c3

> 2.

Similarly, equation (5.6.19) of the Initial Value Problem 2 is solved for F (u) to obtain

F (u) =

[

3

2Λ

(

c2

c3

− 2

)]
1

3
(

1 − u2
)

1

3 , (5.6.26)

provided c2
c3

> 2 . Equation (5.6.26) agrees with (5.3.10) derived for F (u) in Section 5.3.

Special Case 2: β = 1 − c2

c3

For this special case the boundary value problem (5.6.3) to (5.6.5) is transformed into the

following two Initial Value Problems:

Initial Value Problem 1

Λ
d

du

(

F
3 dF

du

)

− 3

(

c2

c3
− 2

)

u
dF

du
+

(

c2

c3
− 2

)

F = 0, (5.6.27)

F (0) = 1, Λ
dF

du
(0) = 4

(

c2

c3
− 2

)
∫ λ

0

F (u)du, (5.6.28)

where 0 ≤ u ≤ λ and λ is defined by

F (λ) = 0. (5.6.29)

Initial Value Problem 2

Λ
d

du

(

F 3dF

du

)

− 3

(

c2

c3
− 2

)

u
dF

du
+

(

c2

c3
− 2

)

F = 0, (5.6.30)

F (0) = λ−
2

3 , Λ
dF

du
(0) = 4λ2

(

c2

c3

− 2

)
∫ 1

0

F (u)du. (5.6.31)
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where 0 ≤ u ≤ 1 and the parameter λ is obtained from Problem 1.

In order to solve Problem 1 look for a solution of (5.6.27) of the form

F (u) = A (B − u)n
, (5.6.32)

where A, B and n are constants to be determined such that A 6= 0 and n > 0. Using (5.6.28a)

we have

1 = ABn. (5.6.33)

Substituting (5.6.32) into (5.6.27) and solving as described in Section 5.4 gives

n =
1

3
,

Λ

9
A3 =

(

2 −
c2

c3

)

B (5.6.34)

and therefore using (5.6.33),

A =

[

9

Λ

(

2 −
c2

c3

)]
1

6

, B =





Λ

9
(

2 − c2
c3

)





1

2

, (5.6.35)

provided c2
c3

< 2. Thus

F (u) =

[

9

Λ

(

2 −
c2

c3

)]
1

6











Λ

9
(

2 − c2
c3

)





1

2

− u







1

3

(5.6.36)

and hence from (5.6.29),

λ =





Λ

9
(

2 − c2
c3

)





1

2

. (5.6.37)

It can be verified that the boundary condition (5.6.28b) is identically satisfied by (5.6.36). The

solution of the Initial Value Problem 2 is performed in a similar way by looking for a solution

of (5.6.30) of the form F (u) = A (B − u)n
. It is found that

F (u) =

[

9

Λ

(

2 −
c2

c3

)]
1

3

(1 − u)
1

3 , (5.6.38)

where c2
c3

< 2 for a non-zero real solution to exist. Equation (5.6.38) agrees with (5.4.9)

derived for F (u) in Section 5.4.
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5.7 Numerical solution

Using 4.8.1, the boundary value problem (5.2.3) to (5.2.5) is transformed to the two Initial

Value Problems (5.6.11) to (5.6.13) and (5.6.14) to (5.6.15) with Λ = 1.

Initial value Problem 1:

d

du

(

F
3dF

du

)

+ 3 (1 + β)
d

du

(

uF (u)
)

+

(

c2

c3
− 5 − 3β

)

F (u) = 0, (5.7.1)

F (0) = 1,
dF

du
(0) =

(

c2

c3

− 5 − 3β

)
∫ λ

0

F (u)du, (5.7.2)

where 0 ≤ u ≤ λ and λ is defined by

F (λ) = 0. (5.7.3)

Initial value Problem 2:

d

du

(

F 3dF

du

)

+ 3 (1 + β)
d

du
(uF (u)) +

(

c2

c3

− 5 − 3β

)

F (u) = 0, (5.7.4)

F (0) = λ−
2

3 ,
dF

du
(0) = λ

1

3

dF

du
(0). (5.7.5)

We will solve numerically equations (5.7.1) to (5.7.3) of the Initial Value Problem 1 and

equations (5.7.4) and (5.7.5) of the Initial Value Problem 2 using the computer algebra package

MATHEMATICA. Firstly, we rewrite the second order differential equation (5.7.1) as the

coupled first order differential equations

dF

du
= y2, (5.7.6)

dy2

du
= −

1

F
3

[

3F
2
y2

2 + 3(1 + β)uy2 +

(

c2

c3
− 2

)

F

]

. (5.7.7)

subject to the initial and boundary conditions

F (0) = 1, y2(0) = k, F (λ) = 0, (5.7.8)

where k is to be determined from the algorithm outlined in Section 4.8. The second order

differential equation (5.7.4) is rewritten as the set of coupled differential equations

dF

du
= y3, (5.7.9)

dy3

du
= −

1

F 3

[

3F 2y2
3 + 3(1 + β)uy3 +

(

c2

c3

− 2

)

F

]

, (5.7.10)
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subject to the initial conditions

F (0) = λ−
2

3 , y3(0) = λ
1

3 y2(0). (5.7.11)

As also outlined in Section 4.8, we first determine the value of λ, starting the backward inte-

gration of the system of first order equations (5.7.6) and (5.7.7) with the asymptotic represen-

tations

F (u) ∼ (9λ(1 + β))
1

3 (λ − u)
1

3 as u → λ, (5.7.12)

y2(u) ∼ −
1

3
(9λ(1 + β))

1

3 (λ − u)−
2

3 as u → λ, (5.7.13)

which are obtained from (5.2.21) using the scaling transformation (5.6.2). The algorithm for

solving the coupled systems (5.7.6) to (5.7.7) and (5.7.9) to (5.7.10) of first order ordinary

differential equations subject to (5.7.8) and (5.7.11), respectively, is similar to that described

in Section 4.8. Tables 5.8.1 and 5.8.2 compare the numerical and analytical solutions for F (u)

for the two cases in which analytical solutions were derived in Sections 5.3 and 5.4. The

results shown are obtained for ε3 = 10−7 and the analytical and numerical solutions agree

to six decimal place everywhere except in the neighbourhood of the fracture tip where the

solutions agree to 3 decimal places.

5.8 Numerical Results

We analyse the results obtained for the numerical solution of the two Initial Value Problems

for a selection of values of c3
c2

and β. We found that the set of values of ( c3
c2

, β) for which

a solution exists of the two Initial Value Problems is bounded below by a limit curve in the

( c3
c2

, β) plane.

The limiting curve for solutions is described by

βmin =











4
“

1

8
−

c3

c2

”

3
c3

c2

, 0 < c3
c2

≤ 0.5,

−1, 0.5 ≤ c3
c2

< ∞,

(5.8.1)

where βmin is the minimum value of β for a given value of c3
c2

. The limiting curve (5.8.1)

is plotted in Figure 5.3.1. No solution exists for values of ( c3
c2

, β) below the limiting curve.
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Special Case c2
c3
− 3β − 5 =0

u Exact Solution Numerical Solution

0.000 2.289430 2.289430

0.200 2.258490 2.258490

0.400 2.160160 2.160160

0.600 1.972970 1.972970

0.800 1.628650 1.628650

0.900 1.316170 1.316170

0.920 1.226100 1.226100

0.940 1.117840 1.117840

0.960 0.979864 0.979864

0.980 0.780355 0.780355

0.982 0.753678 0.753678

0.984 0.724905 0.724905

0.986 0.693579 0.693580

0.988 0.659062 0.659062

0.990 0.620409 0.620409

0.992 0.576130 0.576130

0.994 0.523624 0.523624

0.996 0.457580 0.457581

0.998 0.363303 0.363303

1.000 0.000000 0.000838

Table 5.8.1: Comparison of the numerical and analytical solution for F (u) for the special case

c2
c3
− 3β − 5 =0.
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Special Case β = 1 − c2
c3

u Exact Solution Numerical Solution

0.000 1.889880 1.889880

0.200 1.754410 1.754410

0.400 1.593990 1.593990

0.600 1.392480 1.392480

0.800 1.105210 1.105210

0.900 0.877205 0.877205

0.920 0.814325 0.814325

0.940 0.739864 0.739863

0.960 0.646330 0.646330

0.980 0.512993 0.512992

0.982 0.495289 0.495289

0.984 0.476220 0.476220

0.986 0.455488 0.455488

0.988 0.432675 0.432674

0.990 0.407163 0.407162

0.992 0.377976 0.377976

0.994 0.343414 0.343414

0.996 0.300000 0.299999

0.998 0.238110 0.238110

1.000 0.000000 0.000884

Table 5.8.2: Comparison of the numerical and analytical solution for F (u) for the special case

β = 1 − c2
c3

.
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Equation (5.8.1) was found numerically and no analytical proof has been found that no solu-

tion exists for values of ( c3
c2

, β) below the limiting curve. For the two special cases for which

analytical solutions were derived in Sections 5.3 and 5.4, we found that the solutions did not

exist for β < −1. The special analytical results are therefore consistent with the general

numerical result for non-existence of solutions. The values of ( c3
c2

, β) in the region bounded

by the curves (5.8.1) and (5.3.1) in the ( c3
c2

, β) plane describe operating conditions in which

fluid is extracted out of the fracture at the entry to the fracture. Solutions in this region could

have application in the extraction of oil from a fracture. The physical significance of the curve

(5.8.1) is not known.

5.8.1 Graphical results for fixed c3

c2

and varying values of β

We present in this section a discussion on the graphs obtained from the numerical solution of

the two Initial Value Problems in Section 5.7. The graphs are those for which c3
c2

is fixed and

β is varied. Hence the effect of β on h(x, t), L(t) and vn(x, t) can be studied.

In Figure 5.8.1, c3
c2

= 0.1 and the numerical solution exists for 0.33 ≤ β < ∞. Solutions

describing fluid extraction at the fracture entry occur for 0.33 ≤ β < 1.66. For 1.66 ≤ β < ∞,

solutions for fluid injection into the fracture at the entry are obtained. When β = 1.66, we

have a particular case of the exact solution for which the fluid injection rate, q1, is zero. When

β = 0.4, the shape of h(x, t) was unexpected since the half-width first increases with x before

decreasing. This may be due to fluid extraction at the fracture entry. Fluid inflow at the

interface occurs for 0 < x < 0.6 due to ∂h
∂x

> 0 and leak-off occurs in the remaining region

0.6 < x ≤ L(t).

In Figure 5.8.2, c3
c2

= 0.125 and the numerical solution exists for 0 ≤ β < ∞. All solutions

have leak-off at the interface except when β = 0 in which case no fluid exchange occurs at the

interface. For 0 < β < 1, we obtain solutions describing fluid extraction out of the fracture

at the entry and fluid injection into the fracture at the entry occurs for 1 < β < ∞. The

analytical solution for which the rate of fluid injection at the entry, q1, is zero exists when

β = 1. In Figure 5.8.2a, we see that as the leak-off parameter, β, increases, the increase in

length decreases.
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In Figure 5.8.3, c3
c2

= 0.2 and the numerical solution exists for −0.5 ≤ β < ∞. The vol-

ume of the fracture is always conserved when c3
c2

= 0.2. Solutions describing fluid extraction

at the entry occur for −0.5 ≤ β < 0 while solutions that describe fluid injection at the entry

occur for 0 < β < ∞. When β = 0, vn(x, t) = 0 and there is no fluid leak-off at interface.

An analytical solution exists for this case. In all cases the length of the fracture increases. The

increase is greater than for an impermeable rock when there is fluid injection at the interface

(β < 0) and is less than for an impermeable rock when there is fluid leak-off at the interface

(β > 0).

In Figure 5.8.4, c3
c2

= 0.5 and the numerical solution exists for −1 ≤ β < ∞. The fluid

pressure at the fracture entry is always constant when c3
c2

= 0.5. All solutions have fluid

injection at the fracture entry. No solution exist for fluid extraction out of the fracture at the

entry. When β = −0.9 and β = −0.5, fluid injection occurs at the interface while for β = 5

and β = 10, there is fluid leak-off at the interface. For β = 0, no fluid exchange occurs at the

interface. In all cases the length of the fracture increases and the rate of increase decreases as

β increases from negative to positive values.

In Figure 5.8.5, c3
c2

= 0.8 and the numerical solution exists for −1 ≤ β < ∞. The rate of

fluid injection at the fracture entry, q1, is always constant for c3
c2

= 0.8. All solutions have fluid

injection at entry. When β = −0.25, the analytical solutions (5.4.14) to (5.4.18) applies. No

leak-off occurs for β = 0.

In Figure 5.8.6, c3
c2

= 1 and the numerical solution exists for −1 ≤ β < ∞. The length of

the fracture, L(t), always grows linearly with time when c3
c2

= 1 and the velocity of propaga-

tion of the fracture is constant. The graphs of L(t) against t in Figure 5.8.6a are straight lines.

When β = 0, the exact solution (5.4.14) to (5.4.18) is satisfied.
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Figure 5.8.1: Graphs for c3
c2

= 0.1 and a selection of values of β : (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 5.8.2: Graphs for c3
c2

= 0.125 and a selection of values of β : (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 5.8.3: Graphs for c3
c2

= 0.2 and a selection of values of β : (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 5.8.4: Graphs for c3
c2

= 0.5 and a selection of values of β : (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 5.8.5: Graphs for c3
c2

= 0.8 and a selection of values of β : (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 5.8.6: Graphs for c3
c2

= 1 and a selection of values of β : (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.

154



5.8.2 Graphical results for fixed β and varying values of c3

c2

In this section we will discuss the graphs obtained from the numerical solution of the two

Initial Value Problems of Section 5.7. The graphs are those for which c3
c2

is varied and β

is kept fixed. This allows us to study the effect of c3
c2

on the evolution of the fracture half-

width and propagation of the fracture length. The physical significance of the parameter c3
c2

for

0 ≤ c3
c2

≤ 1 is given in Table 3.7.1.

In Figure 5.8.7, β = −0.9 and the solution exists for 0.38 ≤ c3
c2

< ∞. The solutions

obtained using the values of c3
c2

in the range 0.38 ≤ c3
c2

< 0.43 describe fluid extraction out of

the fracture at the entry. For 0.43 < c3
c2

< ∞, the solutions obtained describe fluid injection

into the fracture at the fracture entry. When c3
c2

= 0.43, the fluid injection rate at the fracture

entry vanishes and the analytical solution, (5.3.15) to (5.3.19), applies. All solutions have fluid

injection at the fluid/rock interface. For all solutions presented, L(t) increases with time and

the increase is greater for larger values of c3
c2

.

In Figure 5.8.8, β = −0.5 and the solution exists for 0.2 ≤ c3
c2

< ∞. For 0.2 ≤ c3
c2

< 0.285,

the solutions describe fluid extraction out of fracture at the fracture entry while for 0.285 <

c3
c2

< ∞, solutions for which fluid is injected into the fracture at the entry are obtained. When

c3
c2

= 0.285, equation (5.3.1) for which the rate of fluid injection, q1, is zero is satisfied and the

analytical solution (5.3.15) to (5.3.19) is valid. Equation (5.4.7) is satisfied when c3
c2

= 0.67

and the second analytical solution (5.4.14) to (5.4.18) applies. When c3
c2

= 0.2, the total

volume of the fluid in the fracture is constant and the graph of h(x, t) against x shows that the

half-width first increases with x before decreasing. This may be as a result of the extraction

of fluid at the fracture entry.

In Figure 5.8.9, β = 0 and the solution exists for 0.125 ≤ c3
c2

< ∞. The solutions

describing fluid extraction at the entry occur for 0.125 ≤ c3
c2

< 0.2 and those describing

fluid injection at the entry occur for 0.2 < c3
c2

< ∞. Since β = 0, all solutions have no

fluid exchange at the fluid/rock interface and therefore the rock mass is impermeable. When

c3
c2

= 0.2, equation (5.3.1) for which the rate of fluid injection, q1, vanishes is satisfied and

the total volume of the fracture remains constant. When c3
c2

= 0.125, fluid is extracted at the

fracture entry and the graph of h(x, t) against x again increases with x before decreasing.
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In Figure 5.8.10, β = 1 and the solution exists for 0.0714 ≤ c3
c2

< ∞. Solutions that

describe fluid extraction at the fracture entry occur for 0.0714 ≤ c3
c2

< 0.125 while solutions

describing fluid injection at the entry occur for 0.125 < c3
c2

< ∞. Since β = 1, all solutions

have leak-off at the fluid/rock interface. When c3
c2

= 0.125, equation (5.3.1), for which the rate

of fluid injection at the fracture entry vanishes, is satisfied. The line β = 1 is an asymptote

for (5.4.7) in the ( c3
c2

, β) plane. Hence no numerical solution exists when (5.4.7) is satisfied

because β = 1 is only attained asymptotically. When c3
c2

= 0.0714, h(x, t) initially increases

with x before decreasing. The smaller half-width at the fracture entry is due to the extraction

of fluid at the entry.

In Figure 5.8.11, β = 5 and the solution exists for 0.026 ≤ c3
c2

< ∞. Solutions that

describe fluid extraction at the fracture entry occur for 0.026 ≤ c3
c2

< 0.05 while for 0.05 <

c3
c2

< ∞, there is always fluid injection at the entry. When c3
c2

= 0.05, the rate of fluid injection

at the fracture entry vanishes and the analytical solution, (5.3.15) to (5.3.19), applies. The

fracture length increases as c3
c2

increases and when c3
c2

= 0.026 the graph of h(x, t) against x

has a smaller half-width at the fracture entry due to the extraction of fluid at the entry.

We see that as β increases corresponding to larger leak-off velocity, the growth of the

fracture length in Figures 5.8.7a to 5.8.11a decreases.
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Figure 5.8.7: Graphs for β = −0.9 and a selection of values of c3
c2

: (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 5.8.8: Graphs for β = −0.5 and a selection of values of c3
c2

: (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 5.8.9: Graphs for β = 0 and a selection of values of c3
c2

: (a) Fracture length L(t) plotted against

time; (b) Fracture half-width h(x, t) plotted against x at time t = 50. The leak-off velocity, vn(x, t), is

zero for all values of c3
c2

and the rock is impermeable.
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Figure 5.8.10: Graphs for β = 1 and a selection of values of c3
c2

: (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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Figure 5.8.11: Graphs for β = 5 and a selection of values of c3
c2

: (a) Fracture length L(t) plotted

against time; (b) Fracture half-width h(x, t) plotted against x at time t = 50; (c) Leak-off fluid velocity

vn(x, t) plotted against x at time t = 50.
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5.9 Conclusions

When the leak-off velocity vn is proportional to the gradient of the fracture half-width, solu-

tions depending essentially on the parameters c3
c2

and β are obtained.

Numerical and analytical solutions were found for the volume of the fracture, V (t), frac-

ture length, L(t), fracture half-width, h(x, t), leak-off velocity, vn(x, t) and the fluid presssure

p(x, t) for values of c3
c2

and β of physical significance in the range −∞ < c3
c2

< ∞ and

−1 < β < ∞. Unlike in Chapter 4 where exponential solutions were obtained for the two

special cases leading to exact analytical solutions, exponential solutions exist only for the sec-

ond special case which was derived in Section 5.4. They do not exist for the first special case

which was derived in Section 5.3. The non-existence of exponential solutions in Section 5.3

is because the exact analytical solutions obtained are valid only for values of the parameter c3
c2

satisfying 0 < c3
c2

< 0.5. Exponential solutions exists only in the limit c3
c2

→ ∞. Approximate

power law solutions for L(t) and V (t) which exist for large times can be found for the two

special cases.

Three regions of the ( c3
c2

, β) plane were found for c3
c2

> 0. The role of the curve

β =
5
(

1
5
− c3

c2

)

3 c3
c2

(5.9.1)

as a dividing curve between solutions for which fluid is injected at the fracture entry and for

which fluid is extracted at the fracture entry was explained in Chapter 4. The rate of fluid

injection or extraction at the entry vanishes when (5.9.1) is satisfied. The curve

β =
4
(

1
8
− c3

c2

)

3 c3
c2

(5.9.2)

separates the solution space from the space for which solutions do not exist.

In Figures 5.8.1a to 5.8.6a, the length of the fracture increases when there is leak-off or

fluid injection at the fluid/rock interface and also when the rock is impermeable. When there

is leak-off the increase in length is less than when the rock is impermeable while when there

is fluid injection at the interface the length is greater than when the rock is impermeable.

We saw from Figures 5.8.7a to 5.8.11a that an increase in the parameter c3
c2

is associated

with an increase in fracture length. This applies both when there is leak-off and when there is
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fluid injection at the interface. It also applies when the rock is impermeable. As β is increased,

corresponding to weaker fluid injection at interface or stronger leak-off, the extent of growth

of the length of the fracture decreased.

The graphs of the leak-off velocity in Figures 5.8.1c to 5.8.11c reflect the fact that vn is

proportional to −β ∂h
∂x

.

The gradient of the fracture half-width, ∂h
∂x

, tends to −∞ as x → L(t) for all the numerical

and analytical solutions. Hence the thin film theory breaks down in the neighbourhood of the

tip of the fracture.

By solving the two Initial Value Problems for the special cases (5.3.1) and (5.4.7) which

yield exact analytical solutions, we were able to check the accuracy of the numerical solution.

We found that for the two special cases the agreement between the analytical and numerical

solutions was to five decimal places except near the fracture tip where the agreement was to

three decimal places. The graphs of the numerical and analytical solutions overlap.
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Chapter 6

Conclusions

We have shown in this work that similarity solutions can be derived for a fluid-driven pre-

existing fracture in permeable rock in a similar way to that in an impermeable rock (Fitt et al,

2007) by the adoption of the PKN elasticity hypothesis, lubrication theory and using the Lie

point symmetries of the resulting nonlinear diffusion equation. Numerical results were also

obained by reformulating the boundary value problem as a pair of initial value problems which

are easier to solve than the original boundary value problem. The pair of initial value problems

was solved using a shooting method. The boundary value problem obtained in this work was

in terms of two dependent variables F and G. In order to solve completely the problem, two

special relations between F and G were considered. In the first relation, G is proportional to

F and in the second relation, G is proportional to dF
du

. The proportionality constant β plays a

key role in understanding flow conditions at the fluid/rock interface. Similarity solutions were

obtained for each of these relations.

The similarity solutions have several features. They describe the fluid-driven propaga-

tion of a pre-existing fracture under varying operating conditions shown in Table 3.7.1. Pre-

existing fractures play a key role in the success of hydraulic fracturing as a means of fracturing

rock in the mining and petroleum industries. The solutions depend essentially on two undeter-

mined parameters, c3
c2

and β, which can be chosen to impose a range of operating conditions

at the fracture entry and at the fluid/rock interface. These parameters were varied to obtain a

range of models which were solved numerically. For each of the two special relations between

F and G two sets of analytical solutions were derived and each set of analytical solutions sat-
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isfies a special relation between the parameters c3
c2

and β.

Solutions were also found for a two-dimensional fluid-driven pre-existing fracture with

length and volume proportional to exp(αt) where α is a constant. For large times the fracture

length and volume behave approximately as power law solutions of the form atb where a and

b are constants.

Various operating conditions were considered. For example, constant rate of fluid injection

into the fracture at the entry as well as constant rate of fluid leak-off at the fluid/rock interface

occur when c3
c2

= 0.8 while constant pressure at the entry, p(0, t), occurs for c3
c2

= 0.5. Operat-

ing conditions resulting in a constant growth rate of the fracture volume occur for c3
c2

= 0.2.

In our model, fluid can enter into the fracture at the fluid/rock interface. This is possible

when the rock mass is saturated with fluid. We assumed that the fluid in the rock mass is the

same as the fluid in the fracture. When vn ∝ h, the velocity at which fluid enters the fracture

through the interface is bounded since F (u) is bounded and β has a minimum value of −2.66.

The discovery of an n-shaped fracture due to fluid extraction at the entry was unexpected.

Fluid extraction at the entry reduces the speed of evolution of the interface near the entry

relative to the interface away from the fracture entry.

When G(u) = βF (u) the n-shaped fracture exists when

8
(

1
8
− c3

c2

)

3 c3
c2

< β <
5
(

1
5
− c3

c2

)

3 c3
c2

,
c3

c2
> 0, (6.0.1)

or equivalently when

1

(8 + 3β)
<

c3

c2
<

1

(5 + 3β)
, β > −

8

3
, (6.0.2)

which is the range for extraction of fluid at the fracture entry to exist when c3
c2

> 0. When

G(u) = −βudF
du

the corresponding ranges are

4
(

1
8
− c3

c2

)

3 c3
c2

< β <
5
(

1
5
− c3

c2

)

3 c3
c2

, 0 <
c3

c2

<
1

2
(6.0.3)

and

1

2 (4 + 3β)
<

c3

c2
<

1

(5 + 3β)
, β > −1. (6.0.4)

The n-shape is maximum at the lower limit and vanishes at the upper limit since

∂h

∂x
(0, t) = 0 when β =

5
(

1
5
− c3

c2

)

3 c3
c2

. (6.0.5)
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The lubrication theory velocity profile

vx(x, z, t) = −
1

2

(

h2 − z2
) ∂p

∂x
, (6.0.6)

which was derived using the thin film approximation and which represents parallel flow is

totally incorrect in the neighbourhood of the fracture tip. Yet by using it, solutions to the

governing equations can be obtained without invoking any further condition at the fracture

tip. The asymptotic relation used to commence the numerical integration of the differential

equation was obtained from (6.0.6) and is not an externally imposed condition. Also, at the tip

of the fracture, the gradient of the half-width satisfies ∂h
∂x

= −∞. Lubrication theory breaks

down only in the neighbourhood of the tip of the fracture.

In the solutions which were considered the length of the fracture always increased even

when there was extraction of fluid at the fracture entry or leak-off of fluid at the fluid/rock

interface. When there is leak-off of fluid the increase in length is less than in an impermeable

rock while when there is injection of fluid at the interface the increase in length is greater than

in an impermeable rock.

The two exact analytical solutions which were derived for

β =
5
(

1
5
− c3

c2

)

3 c3
c2

, (6.0.7)

one when G(u) = βF (u) and the other when G(u) = −βudF
du

, describe the evolution of the

fluid-filled fracture when there is no injection of fluid at the entry. They may be useful in

modelling the evolution of the fracture when the entrance is sealed and it evolves as a result

of leak-off or fluid inflow at the fluid/rock interface

For both G(u) = βF (u) and G(u) = −βudF
du

regions of the
(

c3
c2

, β
)

plane were found

which describe solutions with fluid extraction at the fracture entry. These solutions may be

useful in industries such as the oil industry in which fluid is extracted from the fracture.

In the PKN model, the excess fluid pressure, p(x, t), is proportional to the half-width,

h(x, t), of the fracture. Hence operating conditions based on pressure can be imposed at the

fracture entry to obtain models which are solved either analytically or, in general, numerically.

However, the shortcoming of this model is that the excess pressure necessarily vanishes at the

fracture tip and therefore no stress intensity factor can be defined.
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Conservation laws for the nonlinear diffusion equations were not investigated in this work.

Further work can be done, for example in the case when the fluid is non-Newtonian. Flow

of non-Newtonian fluids in fractures is of interest in several geophysical and industrial ap-

plications. At ultra-high pressure the dependence of viscosity on pressure can be important.

Finally, the problem of a fluid-driven fracture in which the fluid flow in the fracture is turbulent

can be investigated.

167



APPENDIX A

Derivation of the Lie point symmetries of the nonlinear diffu-

sion equation for fluid driven fracture of permeable rock

In this section we will show completely the derivation of the Lie point symmetries of the

nonlinear diffusion equation

∂h

∂t
=

Λ

3

∂

∂x

(

h3 ∂h

∂x

)

− vn(x, t). (A.1)

The diffusion equation (A.1) describes the evolution of the fracture half-width during the

process of hydraulic fracturing in a permeable rock. Since the rock is permeable fluid leaks off

into the surrounding rock formation. The leak off velocity relative to the fluid/rock interface

is vn(x, t).

Equation (A.1) is rewritten as

ht −
Λ

3
h3hxx − Λh2h2

x + vn = 0. (A.2)

The Lie point symmetry generator

X = ξ1(t, x, h)
∂

∂t
+ ξ2(t, x, h)

∂

∂x
+ η(t, x, h)

∂

∂h
(A.3)

of equation (A.1) is derived by solving the determining equation

X [2][ht −
Λ

3
h3hxx − Λh2h2

x + vn]

∣

∣

∣

∣

ht=
Λ

3
h3hxx+Λh2h2

x
−vn

= 0, (A.4)
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for ξ1(t, x, h), ξ2(t, x, h) and η(t, x, h) where X [2], the second prolongation of X , is given by

X [2] = X + ζ1
∂

∂ht

+ ζ2
∂

∂hx

+ ζ11
∂

∂htt

+ ζ12
∂

∂htx

+ ζ22
∂

∂hxx

(A.5)

and ζi and ζij are defined by

ζi = Di(η) − hkDi(ξ
k), i = 1, 2, (A.6)

ζij = Dj(ζi) − hikDj(ξ
k), i, j = 1, 2, (A.7)

with summation over the repeated index k from 1 to 2. The total derivatives with respect to

the independent variables t and x are given by

D1 = Dt =
∂

∂t
+ ht

∂

∂h
+ htt

∂

∂ht

+ hxt

∂

∂hx

+ ... , (A.8)

D2 = Dx =
∂

∂x
+ hx

∂

∂h
+ htx

∂

∂ht

+ hxx

∂

∂hx

+ .... . (A.9)

The leak-off velocity vn is treated as an arbitrary function of the independent variables t and

x.

From the determining equation (A.4), we obtain

ξ1∂vn

∂t
+ ξ2∂vn

∂x
+ η

(

−Λh2hxx − 2Λhh2
x

)

+ ζ1

+ζ2

(

−2Λh2hx

)

+ ζ22

(

−
Λ

3
h3

) ∣

∣

∣

∣

ht=
Λ

3
h3hxx+Λh2h2

x
−vn

= 0. (A.10)

We now calculate the expressions for ζ1, ζ2, and ζ22 according to equations (A.6) and (A.7):

ζ1 = Dt(η) − htDt(ξ
1) − hxDt(ξ

2), (A.11)

ζ2 = Dx(η) − htDx(ξ
1) − hxDx(ξ

2), (A.12)

ζ22 = Dx(ζ2) − hxtDx(ξ
1) − hxxDx(ξ

2). (A.13)
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Expanding equations (A.11), (A.12) and (A.13) using (A.8) and (A.9), we obtain

ζ1 = ηt + htηh − ht

(

ξ1
t + htξ

1
h

)

− hx

(

ξ2
t + htξ

2
h

)

, (A.14)

ζ2 = ηx + hxηh − ht

(

ξ1
x + hxξ

1
h

)

− hx

(

ξ2
x + hxξ

2
h

)

, (A.15)

ζ22 = Dx

(

Dx(η) − htDx(ξ
1) − hxDx(ξ

2)
)

− hxtDx(ξ
1) − hxxDx(ξ

2)

= D2
x(η) − htD

2
x(ξ

1) − 2hxtDx(ξ
1) − 2hxxDx(ξ

2) − hxD
2
x(ξ

2)

= ηxx + 2hxηxh + h2
xηhh + hxxηh − htξ

1
xx − 2hxhtξ

1
xh − hth

2
xξ

1
hh − hthxxξ

1
h

−2hxtξ
1
x − 2hxhxtξ

1
h − 2hxxξ

2
x − 3hxhxxξ

2
h − hxξ

2
xx − 2h2

xξ
2
xh − h3

xξ
2
hh. (A.16)

The expressions for ζ1, ζ2 and ζ22 are substituted into the determining equation (A.10) to

obtain

ξ1∂vn

∂t
+ ξ2∂vn

∂x
+ η

(

−Λh2hxx − 2Λhh2
x

)

+ ηt + htηh − ht

(

ξ1
t + htξ

1
h

)

−hx

(

ξ2
t + htξ

2
h

)

− 2Λh2hx

(

ηx + hxηh − ht

(

ξ1
x + hxξ

1
h

)

− hx

(

ξ2
x + hxξ

2
h

))

−
Λ

3
h3
(

ηxx + 2hxηxh + h2
xηhh + hxxηh − htξ

1
xx − 2hxhtξ

1
xh

−hth
2
xξ

1
hh − hthxxξ

1
h − 2hxtξ

1
x − 2hxhxtξ

1
h − 2hxxξ

2
x

−3hxhxxξ
2
h − hxξ

2
xx − 2h2

xξ
2
xh − h3

xξ
2
hh

)

∣

∣

∣

∣

ht=
Λ

3
h3hxx+Λh2h2

x
−vn

= 0. (A.17)

We now expand equation (A.17), replacing ht using the partial differential equation. This

gives a linear homogenous partial differential equation of order 2 for the unknown functions
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ξ1(t, x, h), ξ2(t, x, h) and η(t, x, h):

ξ1∂vn

∂t
+ ξ2∂vn

∂x
− Λh2hxxη − 2Λhh2

xη + ηt +
Λ

3
h3hxxηh + Λh2h2

xηh

−vnηh −
Λ

3
h3hxxξ

1
t − Λh2h2

xξ
1
t + vnξ1

t −
Λ2

9
h6h2

xxξ
1
h −

Λ2

3
h5h2

xhxxξ
1
h

+
Λ

3
h3hxxvnξ1

h −
Λ2

3
h5h2

xhxxξ
1
h − Λ2h4h4

xξ
1
h + Λh2h2

xvnξ1
h +

Λ

3
h3hxxvnξ

1
h + Λh2h2

xvnξ1
h

−v2
nξ1

h − hxξ
2
t −

Λ

3
h3hxhxxξ

2
h − Λh2h3

xξ
2
h + vnhxξ

2
h − 2Λh2hxηx

−2Λh2h2
xηh +

2Λ2

3
h5hxhxxξ

1
x +

2Λ2

3
h5h2

xhxxξ
1
h + 2Λ2h4h3

xξ
1
x + 2Λ2h4h4

xξ
1
h − 2Λh2hxvnξ1

x

−2Λh2h2
xvnξ1

h + 2Λh2h2
xξ

2
x + 2Λh2h3

xξ
2
h −

Λ

3
h3ηxx −

2Λ

3
h3hxηxh −

Λ

3
h3h2

xηhh

−
Λ

3
h3hxxηh +

Λ2

9
h6hxxξ

1
xx +

Λ2

9
h6hxxξ

1
xx +

Λ2

3
h5h2

xξ
1
xx −

Λ

3
h3vnξ1

xx +
2Λ2

9
h6hxhxxξ

1
xh

+
2Λ2

3
h5h3

xξ
1
xh −

2Λ

3
h3hxvnξ1

xh +
Λ2

9
h6h2

xhxxξ
1
hh +

Λ2

3
h5h4

xξ
1
hh −

Λ

3
h3h2

xvnξ1
hh +

Λ2

9
h6h2

xxξ
1
h

+
Λ2

3
h5h2

xhxxξ
1
h −

Λ

3
h3hxxvnξ1

h +
2Λ

3
h3hxtξ

1
x +

2Λ

3
h3hxhxtξ

1
h +

2Λ

3
h3hxxξ

2
x

+Λh3hxhxxξ
2
h +

Λ

3
h3hxξ

2
xx +

2Λ

3
h3h2

xξ
2
xh +

Λ

3
h3h3

xξ
2
hh = 0. (A.18)

Since the functions to be determined do not depend on the derivatives of h, equation (A.18) is

separated according to partial derivatives of h. One then equates the coefficients of the partial

derivatives of h to zero. In this manner, (A.18) decomposes into an overdetermined system of

equations in which there are more equations than unknown variables.
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Equating the coefficients of the partial derivatives of h to zero yields

h2
xhxx :

h

3
ξ1
hh + ξ1

h = 0, (A.19)

hxhxx : ξ2
h + Λh2ξ1

x +
Λ

3
h3ξ1

xh = 0, (A.20)

hxhxt : ξ1
h = 0. (A.21)

hxt : ξ1
x = 0, (A.22)

h2
xx : 0 = 0 (A.23)

hxx : η +
h

3
ξ1
t −

Λ

9
h4ξ1

xx −
2h

3
ξ2
x −

h

3
ξ1
hvn = 0, (A.24)

h4
x : ξ1

h +
1

3
hξ1

hh = 0, (A.25)

h3
x : ξ2

h + 2Λh2ξ1
x +

2Λ

3
h3ξ1

xh +
1

3
hξ2

hh = 0, (A.26)

h2
x : 2η + hηh + hξ1

t − 2hξ2
x +

1

3
h2ηhh

−
Λ

3
h4ξ1

xx +
1

3
h2ξ1

hhvn −
2

3
h2ξ2

xh = 0, (A.27)

hx : ξ2
t − ξ2

hvn + 2Λh2ηx + 2Λh2ξ1
xvn +

2Λ

3
h3ηxh +

2Λ

3
h3ξ1

xhvn −
Λ

3
h3ξ2

xx = 0, (A.28)

1 : ξ1∂vn

∂t
+ ξ2∂vn

∂x
+ ηt − vnηh + vnξ

1
t − v2

nξ1
h −

Λ

3
h3ηxx −

Λ

3
h3vnξ1

xx = 0. (A.29)

From (A.21) and (A.22),

ξ1
h = 0 and ξ1

x = 0. (A.30)

It then follows from (A.30) that

ξ1 = ξ1(t) (A.31)

Equation (A.20) reduces to

ξ2
h = 0, (A.32)

which implies that

ξ2 = ξ2(x, t). (A.33)
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Equations (A.19) to (A.29) reduce to

hxx : η +
1

3
hξ1

t −
2

3
hξ2

x = 0, (A.34)

h2
x : 2η + hηh + hξ1

t − 2hξ2
x +

1

3
h2ηhh = 0, (A.35)

hx : ξ2
t + 2Λh2ηx +

2Λ

3
h3ηxh −

Λ

3
h3ξ2

xx = 0. (A.36)

1 : ξ1∂vn

∂t
+ ξ2∂vn

∂x
+ ηt − ηhvn + ξ1

t vn −
Λ

3
h3ηxx = 0. (A.37)

From (A.34), we have

η =
h

3

(

2ξ2
x − ξ1

t

)

. (A.38)

Differentiating η with respect to x and then with respect to h, we obtain

ηx =
2

3
hξ2

xx and ηxh =
2

3
ξ2
xx. (A.39)

We substitute ηx and ηxh given by (A.39) into (A.36) to obtain

ξ2
t +

13Λ

9
h3ξ2

xx = 0. (A.40)

Since ξ2 is independent of h, we equate the coefficients of the powers of h to zero:

h0 : ξ2
t = 0, (A.41)

h3 : ξ2
xx = 0. (A.42)

Hence, we conclude from (A.41) and (A.32) that

ξ2 = ξ2(x) (A.43)

and from (A.42) we have

ξ2(x) = c4 + c3x, (A.44)

where c3 and c4 are constants. Substitute (A.44) into (A.38). Hence (A.38) becomes

η(t, h) =
1

3
h
(

2c3 − ξ1
t

)

. (A.45)
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If (A.45) for η(t, h) is substituted into (A.35) then (A.35) is identically satisfied. If (A.45) for

η(t, h) is substituted into (A.37) then (A.37) becomes

ξ1∂vn

∂t
+ ξ2∂vn

∂x
+

2

3

(

2ξ1
t − c3

)

vn −
1

3
hξ1

tt = 0. (A.46)

The functions ξ1, ξ2, vn are all independent of h. Hence equating the coefficients of powers of

h on each side of (A.46) gives

h : ξ1
tt = 0, (A.47)

h0 : ξ1∂vn

∂t
+ ξ2∂vn

∂x
+

2

3

(

2ξ1
t − c3

)

vn = 0. (A.48)

From (A.47), we obtain

ξ1 = c1 + c2t. (A.49)

On substituting (A.44) and (A.49) into (A.48), we obtain

(c1 + c2t)
∂vn

∂t
+ (c4 + c3x)

∂vn

∂x
=

2

3
(c3 − 2c2) vn. (A.50)

Finally, substituting (A.49) into (A.45) gives

η =
1

3
(2c3 − c2)h. (A.51)

The Lie point symmetry generator is therefore of the form

X = (c1 + c2t)
∂

∂t
+ (c4 + c3x)

∂

∂x
+

1

3
(2c3 − c2)h

∂

∂h

= c1X1 + c2X2 + c3X3 + c4X4, (A.52)

where

X1 =
∂

∂t
, (A.53)

X2 = t
∂

∂t
−

1

3
h

∂

∂h
, (A.54)

X3 = x
∂

∂x
+

2

3
h

∂

∂h
, (A.55)

X4 =
∂

∂x
, (A.56)

(A.57)

provided that the leak-off velocity vn(x, t) satisfies the first order linear partial differential

equation (A.50).
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APPENDIX B

Derivation of the Lie point symmetries of a nonlinear second

order ordinary differential equation

We derive the Lie point symmetry of the second order nonlinear differential equation

Λ
d

du

(

F 3dF

du

)

+ A
d

du
(uF ) + BF = 0, (B.1)

where A, B are constants. We will require that A 6= 0 but we will see that there is no condition

on B.

Equation (B.1) can be written in the form

H(u, F, Fu, Fuu) = 0, (B.2)

where

H = ΛF 3d2F

du2
+ 3ΛF 2

(

dF

du

)2

+ Au
dF

du
+ (A + B)F. (B.3)

The Lie point symmetry generator,

X = ξ(u, F )
∂

∂u
+ η(u, F )

∂

∂F
, (B.4)

of equation (B.1) is derived by solving the determining equation,

X [2]H

∣

∣

∣

∣

H=0

= 0, (B.5)

for the unknown functions ξ(u, F ) and η(u, F ) where X [2], the second prolongation of X , is

given by

X [2] = X + ζ1(u, F, Fu)
∂

∂Fu

+ ζ2(u, F, Fu, Fuu)
∂

∂Fuu

, (B.6)
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where

ζ1 = D(η) − FuD(ξ), (B.7)

ζ2 = D(ζ1) − FuuD(ξ) (B.8)

and

D =
d

du
+ Fu

d

dF
+ Fuu

d

dFu

+ · · · . (B.9)

The expanded form of ζ1 and ζ2 is

ζ1 = ηu + Fu (ηF − ξu) − F 2
uξF , (B.10)

ζ2 = ηuu + 2ηuFFu + ηFFF 2
u + ηF Fuu − ξuuFu

−2F 2
uξuF − F 3

uξFF − 2ξuFuu − 3ξFFuFuu. (B.11)

The determining equation (B.5) becomes

ξ(AFu) + η
(

3ΛF 2Fuu + 6ΛFF 2
u + A + B

)

+ ζ1

(

6ΛF 2Fu + Au
)

+ ζ2(ΛF 3)

∣

∣

∣

∣

H=0

= 0.

(B.12)

We now substitute the expressions (B.10) and (B.11) for ζ1 and ζ2 into (B.12) to obtain the

determining equation

AξFu + 3ηΛF 2Fuu + 6ηΛFF 2
u + (A + B)η + 6ΛF 2Fuηu + Auηu

+6ΛF 2F 2
uηF + AuFuηF − 6ΛF 2F 2

uξu − AuFuξu − 6ΛF 2F 3
uξF

−AuF 2
uξF + ΛF 3ηuu + 2ΛFuF

3ηuF + ΛF 3F 2
uηFF + ΛF 3FuuηF − ΛF 3Fuξuu

−2ΛF 3F 2
uξuF − ΛF 3F 3

uξFF − 3ΛFuFuuF
3ξF − 2ΛF 3Fuuξu

∣

∣

∣

∣

H=0

= 0. (B.13)

To impose the condition H = 0 on (B.13) we use (B.3) for H to give

ΛF 3Fuu = −
(

3ΛF 2F 2
u + AuFu + (A + B)F

)

(B.14)

176



and replace Fuu in (B.13) by (B.14). The determining equation (B.13) then becomes

AξFFu − 9ΛF 2F 2
uη − 3AuFuη − 3(A + B)Fη + 6ΛF 2F 2

uη + (A + B)Fη

+6ΛF 3Fuηu + AuFηu + 6ΛF 3F 2
uηF + AuFFuηF − 6ΛF 3F 2

uξu

−AuFFuξu − 6ΛF 3F 3
uξF − AuFF 2

uξF + ΛF 4ηuu + 2ΛFuF
4ηuF

+ΛF 4F 2
uηFF − 3ΛF 3F 2

uηF − AuFFuηF − (A + B)F 2ηF − ΛF 4Fuξuu

−2ΛF 4F 2
uξuF − ΛF 4F 3

uξFF + 9ΛF 3F 3
uξF + 3AuFF 2

uξF

+3(A + B)F 2FuξF + 6ΛF 3F 2
u ξu + 2AuFFuξu + 2(A + B)F 2ξu = 0. (B.15)

Since ξ and η do not depend on the derivatives of F , equation (B.15) is separated according to

the coefficients of the derivatives of F . Setting each of these coefficients to zero, we obtain

F 3
u : FξFF − 3ξF = 0, (B.16)

F 2
u : −3ΛFη + ΛF 3ηFF + 3ΛF 2ηF + 2AuξF − 2ΛF 3ξuF = 0, (B.17)

Fu : AFξ − 3Auη + 6ΛF 3ηu + AuFξu + 2ΛF 4ηuF

−ΛF 4ξuu + 3(A + B)F 2ξF = 0, (B.18)

1 : −2(A + B)η + Auηu + ΛF 3ηuu − (A + B)FηF + 2(A + B)Fξu = 0. (B.19)

Integrate (B.16) to obtain

ξ(u, F ) = F 4G(u) + H(u). (B.20)

Substitute (B.20) into (B.17) to obtain

∂2η

∂F 2
+

3

F

∂η

∂F
−

3

F 2
η = 8F 3dG

du
−

8A

Λ
uG(u), (B.21)

which may be rewritten as

∂2η

∂F 2
+ 3

∂

∂F

( η

F

)

= 8F 3dG

du
−

8A

Λ
uG(u). (B.22)

Integrating (B.22) once with respect to F gives

∂η

∂F
+

3

F
η = 2

dG

du
F 4 −

8A

Λ
uG(u)F + 4D(u) (B.23)
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where 4D(u) is used instead of D(u) to simplify the result for η. The integrating factor for

(B.23) is F 3. Integrating (B.23) with respect to F gives

η(u, F ) =
1

4

dG

du
F 5 −

8

5Λ
AuG(u)F 2 + D(u)F +

E(u)

F 3
. (B.24)

Substitute (B.20) and (B.24) into (B.18) and separate the resulting equation according to pow-

ers of F . This gives

F 8 :
d2G

du2
= 0, (B.25)

F 5 :
21

4
Au

dG

du
+ (A − 4B) G(u) = 0, (B.26)

F 4 :
d2H

du2
− 8

dD

du
= 0, (B.27)

F 2 : A2u2G(u) = 0, (B.28)

F : A

(

u
dH

du
+ H(u) − 3uD(u)

)

= 0, (B.29)

F−3 : AuE(u) = 0, (B.30)

1 : 0 = 0. (B.31)

Assume that A 6= 0. Equations (B.28) and (B.30) then gives

G(u) = 0, (B.32)

E(u) = 0. (B.33)

When (B.32) and (B.33) are substituted into (B.20) and (B.24), we obtain

ξ(u, F ) = H(u), (B.34)

η(u, F ) = D(u)F, (B.35)

subject to the conditions (B.27) and (B.29) which are

d2H

du2
− 8

dD

du
= 0, (B.36)

u
dH

du
+ H(u) − 3uD(u) = 0. (B.37)
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Equations (B.25) and (B.26) are identically satisfied by (B.32). Substituting (B.34) and (B.35)

into (B.19), we obtain

ΛF 4d2D

du2
+ AuF

dD

du
− 3(A + B)FD(u) + 2(A + B)F

dH

du
= 0. (B.38)

We separate (B.38) according to powers of F :

F 4 :
d2D

du2
= 0, (B.39)

F : Au
dD

du
− 3(A + B)D(u) + 2(A + B)

dH

du
= 0. (B.40)

Integrate (B.39) to obtain

D = d1u + d2, (B.41)

where d1 and d2 are constants. We substitute (B.41) into (B.36) and on integrating we have

H = 4d1u
2 + h1u + h2. (B.42)

where h1 and h2 are constants. We now substitute (B.41) and (B.42) into (B.37) and (B.40) to

obtain

9d1u
2 + (2h1 − 3d2)u + h2 = 0, (B.43)

(14Ad1 + 13Bd1) u + 2h1(A + B) − 3d2(A + B) = 0. (B.44)

We separate (B.43) according to powers of u to obtain

u2 : d1 = 0, (B.45)

u : 2h1 − 3d2 = 0, (B.46)

1 : h2 = 0. (B.47)

Equation (B.44) reduces to

(A + B)(2h1 − 3d2) = 0 (B.48)

which is identically satisfied. From (B.46), we obtain

h1 =
3

2
d2. (B.49)
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Hence (B.34) and (B.35) become

ξ(u, F ) =
3

2
ud2, η(u, F ) = d2F (B.50)

and therefore

X =
d2

2

(

3u
∂

∂u
+ 2F

∂

∂F

)

.

Hence if A 6= 0, equation (B.1) admits one Lie point symmetry generator

X = 3u
∂

∂u
+ 2F

∂

∂F
. (B.51)
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