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Abstract

Resequencing is an emerging tool for identification of rare disease-associated mutations. Rare mutations are difficult to tag
with SNP genotyping, as genotyping studies are designed to detect common variants. However, studies have shown that
genetic heterogeneity is a probable scenario for common diseases, in which multiple rare mutations together explain a
large proportion of the genetic basis for the disease. Thus, we propose a weighted-sum method to jointly analyse a group
of mutations in order to test for groupwise association with disease status. For example, such a group of mutations may
result from resequencing a gene. We compare the proposed weighted-sum method to alternative methods and show that it
is powerful for identifying disease-associated genes, both on simulated and Encode data. Using the weighted-sum method,
a resequencing study can identify a disease-associated gene with an overall population attributable risk (PAR) of 2%, even
when each individual mutation has much lower PAR, using 1,000 to 7,000 affected and unaffected individuals, depending
on the underlying genetic model. This study thus demonstrates that resequencing studies can identify important genetic
associations, provided that specialised analysis methods, such as the weighted-sum method, are used.
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Introduction

New technologies allow sequencing of parts of the genome of

large groups of individuals [1], and hereby initiate the next

generation of large scale association studies. Resequencing studies

can directly identify millions of rare mutations in the genome, and

may therefore be able to identify disease-mutations that are not

tagged by panels of common SNPs [2]. Resequencing may thus

hold the key to detecting associations in the presence of genetic

heterogeneity, where the genetic component of disease-risk is

determined by multiple rare mutations, each with a low marginal

effect on disease-risk (i.e. low population attributable risk; PAR).

Recent studies support the hypothesis that multiple rare mutations,

each with a low marginal effect, may be a major player in genetic

determination of susceptibility for some complex diseases [3–13].

Examples of genetically heterogeneous diseases include cystic

fibrosis [14,15], colorectal cancer [16] and probably schizophrenia

[13]. Different genetic models may underlie genetic heterogeneity.

One possibility is that multiple different variants located across the

genome have independent influence on disease risk, such that each

variant explains only a small fraction of all affected individuals.

Another scenario is that the function of each haplotype of a gene is

destroyed if one (or more) lethal mutations occur on the haplotype.

In this manner, an individual must have at least one mutation on

each of the two haplotypes to be predisposed for the disease (see

the Recessive-Set model in Figure 1). In both of these models, the

marginal PAR of each mutation may be very low, even when the

disease is highly heritable.

Association studies using panels of common SNPs are well

suited for identifying variants each with a relatively high PAR,

whereas multiple rare variants, each with a small PAR, are difficult

to identify using these methods [17–24]. In cases where a single (or

very few) common variants are expected to be associated with a

disease, a variant-by-variant approach using the strongest

marginal signal for each tested variant may be beneficial (as

discussed in [25] and [26]). On the other hand, when multiple rare

mutations are expected to influence disease risk, an obvious

approach is to group the variants according to function, such as

genes, pathways and ultra conserved regions, and compare the

group counts rather than the counts for each variant in the group.

The rationale behind this grouping approach is that if many

different mutations in a group affect disease risk, it may be

beneficial to focus on the group rather than on each variant

individually.

The cohort allelic sums test (CAST) is an existing grouping

method in which the number of individuals with one or more

mutations in a group (e.g. gene) is compared between affected and

unaffected individuals [5,26,27]. An alternative method using a

grouping approach is the Combined Multivariate and Collapsing

(CMC) method [26]. In this method all rare variants are collapsed,

as in the CAST method, and the collapsed variants are treated as a

single common variant which is analysed together with the other

common variants using multivariate analysis [26]. In the CMC

version used in [26], rare variants are defined as those having a

minor allele frequency (MAF) of at most 1%.

In this study, we focus on a scenario in which a group of

multiple rare mutations has been identified. In functional regions,

one may choose to include only probable disease susceptibility

mutations (non-synonymous substitutions, frame shift mutations,

etc) in the group of mutations. Using only probable disease
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susceptibility mutations has the benefit that random variation due

to non-associated variants may decrease. In this manner,

association studies of groups of rare probable disease-susceptibility

variants may be able to identify genetically heterogeneous

mutations, and hence complement genome-wide analysis of

common SNPs. Grouping of mutations according to functional

elements, such as genes, has the added advantage of focusing on

causal relations between genes and diseases, rather than just

identifying highly associated genomic regions. Furthermore, since

many (millions of) mutations are expected to be identified in a

resequencing study of thousands of individuals [28], grouping

lowers the burden of multiple testing.

We propose a weighted-sum method in which mutations are

grouped according to function (e.g. gene), and each individual is

scored by a weighted sum of the mutation counts. To test for an

excess of mutations in affected individuals, we use permutation of

disease status among affected and unaffected individuals. By using

permutation, the method adjusts for the weighting of the

mutations and the requirement that a mutation must be observed

to be included in the study. Note that permutation of disease status

results in correct type I error even in the presence of linkage

disequilibrium (LD) [29,30], although relatively low LD is

expected between rare variants [26,31,32].

The weighted-sum method deviates from the CAST method

[5,27] by weighting the variants differently when determining the

genetic load of an individual. By weighting the signals from each

mutation, the weighted sum method accentuates mutations that

are rare in the unaffected individuals, so that the test is not

completely dominated by common mutations. In the CAST

method, common variants will have a high impact on the group

signal, and if many common mutations are present in a group,

almost all individuals will have one or more mutations. To avoid

this effect it may be necessary to use a threshold on the mutation-

frequencies, as suggested in the CMC method [26]. A drawback of

such frequency thresholds is that it can be difficult to select them in

a biological meaningful way, and the outcome of the test will

depend on the selection of thresholds. In the weighted-sum

method we include mutations of all frequencies, but mutations are

weighted according to their frequency in the unaffected individ-

uals.

Methods

Weighted-Sum Method
The weighted-sum method compares the number of mutations

in a group of variants between samples of affected and unaffected

unrelated individuals. It is designed to identify an excess of

mutations in the affected individuals, compared to the unaffected

individuals. Each variant belongs to a group (gene, pathway, ultra

conserved area, etc.) and, for a group with L variants, the method

is comprised of the following steps:

(A) For each variant i ( = 1,…,L), we choose which allele of the

variant to consider as the mutation (usually this will be the

rarer allele, unless other information suggests that the

common allele may be implicated in disease susceptibility)

and calculate a weight

ŵwi~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni
:qi 1{qið Þ

p
,

where

qi~
mU

i z1

2nU
i z2

, ð1Þ

mi
U is the number of mutant alleles observed for variant i in

the unaffected individuals, ni
U is the number of unaffected

individuals genotyped for variant i, and ni is the total

number of individuals genotyped for variant i (affected and

unaffected).

The weight, ŵwi, is the estimated standard deviation of the

total number of mutations in the sample (including affected

and unaffected individuals), under the null hypothesis of no

frequency differences between affected and unaffected

Author Summary

Resequencing is an emerging tool for the identification of
rare disease-associated mutations. Recent studies have
shown that groups of multiple rare mutations together can
explain a large proportion of the genetic basis for some
diseases. Therefore, we propose a new statistical method
for analysing a group of mutations in order to test for
groupwise association with disease status. We compare
the proposed weighted-sum method to alternative meth-
ods and show that it is powerful for identifying disease-
associated groups of mutations, both on computer-
simulated and real data. By using computer simulations,
we further show that resequencing a few thousand
individuals is sufficient to perform a genome-wide study
of all human genes, if the proposed method is used. This
study thus demonstrates that resequencing studies can
identify important genetic associations, provided that
specialised analysis methods, such as the proposed
weighted-sum method, are used.

Figure 1. Genetic models. Model descriptions and examples of predisposing genotypes are shown for the genetic models used. Lines symbolise
haplotypes and dots symbolise disease-risk mutations.
doi:10.1371/journal.pgen.1000384.g001

Weighted-Sum Method
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individuals. It is used to down-weight mutation counts in

constructing the weighted-sum score; see (B) and (C) below.

We estimate qi according to the mutation-frequency in the

unaffected individuals only, rather than the frequency in the

combined population of affected and unaffected individuals.

We use this approach so that a true signal from an excess of

mutations in the affected individuals is not deflated by using

the total number of mutations in both affected and

unaffected individuals. By using a permutation-based test,

we account for using only the unaffected individuals when

scaling the mutation frequency, and we are hence able to

increase the power of detecting very rare disease-associated

mutations. The drawback of this approach is a higher

variance of the scaled mutation-frequency, and hence a loss

of power when the frequency of the mutation is high.

Adding one to the numerator and two to the denominator of

the frequency estimate, qi, avoids zero estimates which

would lead to numerical problems in the genetic score used

below, and is based on the Bayesian posterior-mean

estimate of a binomial proportion when using a uniform

prior.

(B) The genetic score of each individual j is calculated as

cj~
XL

i~1

Iij

ŵwi

,

where Iij is the number of mutations in variant i for

individual j. Under a general genetic model IijM{0,1,2}.

However, if a variant (or group) is known to act recessively

or dominantly IijM{0,1}, and the components of mi
UM{0,1}

accordingly in equation (1); in the recessive case only

homozygote mutants are assigned the value 1, and in the

dominant case both the heterozygote and homozygote

mutants are assigned the value 1.

(C) All individuals (affected and unaffected together) are ranked

according to their genetic scores (cj), and the sum of the

ranks for affected individuals is calculated as

x~
X

j[A

rank cj

� �
,

where A is the population of affected individuals. Under the

null-hypothesis (no disease association) and the assumption

that the genotypes of the affected individuals are indepen-

dent, x is a sum of nA independently and identically

distributed (i.i.d.) random variables, and is thus approxi-

mately normally distributed according to the central limit

theorem. Note that using ranking to determine x is

equivalent to the procedure in the Wilcoxon test [33].

(D) The affected/unaffected status is permuted among the

individuals, and steps (A)–(C) are repeated k times to sample

x1
*,…,xk

* under the null-hypothesis.

(E) The average (m̂m) and sample standard deviation (ŝs) of

x1
*,…,xk

* are calculated and the standardized score-sum is

found as

z~
x{m̂m

ŝs
:

Under the null hypothesis, z has an approximately standard

normal distribution (see Figure S1 for an example). Thus, a

p-value for the association test can be obtained by

comparing z to the quantiles of the standard normal.

Alternatively a p-value can be found by using a standard

permutation test, where the p-value is found by (k0+1)/(k+1), and

k0 is the number of the k permutations that are at least as extreme

as x. In such a testing framework, the permuting routine can be

stopped if the estimated p-value (and its precision) reaches a

certain level; e.g. if the p-value, minus three times the estimated

standard deviation of the p-value, is above the significance

threshold. Such a permutation strategy may be as fast as the

approximation strategy, since fewer than 1000 permutations are

needed to reject the hypothesis of association in many cases.

Throughout this paper, the approximation strategy is used

because it runs fast for power simulations. Another reason for

using the approximation strategy (rather than standard permuta-

tion with a stopping rule) is to produce Uniform(0,1) distributed p-

values (under the null hypothesis; see Figure S2) for all the tests

conducted, which is preferred if further analyses of the p-values are

conducted in e.g. a pathway analysis. The standard permutation

approach can only produce uniformly distributed p-values under

the null hypothesis if no stopping rule is used, which is a

computationally expensive approach.

Whether using the approximation or standard permutation

strategy, permutation of the case-control labels maintains the LD

structure of the genetic data. Thus, the test is valid (i.e. has correct

false positive rate) whether or not the variants are in LD.

Power Simulations
The weighted-sum method is compared to the CAST, CMC,

and variant-by-variant methods, which were discussed in the

introduction and are described in more detail in Comparison with

other Methods. For each set of parameters, 100 datasets are

simulated, the four methods are applied, and the proportions of

significant outcomes are used as the power estimates. To mimic a

genome wide study of about 20,000 fairly independent human

genes, we calculate a p-value for each gene, and use a significance

threshold of 0.05/20000 = 2.561026 in all power simulations.

Genetic Models. Four genetic models are investigated (see

Figure 1). For the Recessive, Additive and Dominant models the

disease-related variants act independently, whereas for the

Recessive-Set model the outcome of a mutation at one variant

depends on the presence of a mutation at another variant (see

Figure 1). We do not sample Dominant-Set or Additive-Set

models, since in these models the heterozygote predisposes for

disease, and hence they perform like the Dominant and Additive

models respectively. We sample the variants independently for

simplicity and because rare variants are not expected to be in high

LD with the surrounding variants [31,32].

Frequency Spectra. For the Recessive, Additive and

Dominant models, we sampled the unaffected population

frequency spectrum of the mutations at each variant according

to Wright’s formula [34,35]:

f pð Þ~c p bs{1ð Þ 1{pð Þ bN{1ð Þ
es 1{pð Þ,

where f(p) is the probability function of the mutation-probability p,

bS is the scaled mutation rate of disease mutations, bN is the scaled

back-mutation rate and s is the scaled selection rate [32]. The

constant c normalizes the integral of f(p) to 1. The frequency

spectrum for each variant is sampled with parameters for mildly

deleterious mutations, bS = 0.001, bN = bS/3 and s = 12, as

discussed by [32].

Weighted-Sum Method
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For computational simplicity, under the Recessive-Set model,

mutations are drawn with the same probability for each variant in

a group. The mutation probability is calculated such that the

probability (pM) that a haplotype contains at least one disease-risk

mutation is fixed in unaffected individuals. In concordance with

human resequencing studies we use pM = 10% as baseline [5,16],

but we have investigated other values also.

Sampling Individuals. To control the PAR (population

attributable risk) of each group, and ensure that all variants have a

low effect, we sample each variant in a group using the same

marginal PAR (a), so that a is the group-PAR divided by the

number of disease-risk contributing variants (D-variants). Each

variant is sampled independently. The mutation probability in

unaffected individuals is sampled according to the frequency

spectrum described above, and the genotype probabilities in

unaffected individuals are calculated assuming Hardy-Weinberg

proportions. The odds ratio (r) of each genotype is calculated from

the genotype probability in the unaffected individuals (qU) using

r~
a

1{að ÞqU

z1,

and the genotype probability in the affected individuals (qA) is

calculated as

qA~
rqU

1z r{1ð ÞqU

:

See e.g. Ref. [36]. The population of affected and population of

unaffected individuals are sampled using qA and qU respectively.

We simulate nA = 1000 affected and nU = 1000 unaffected

individuals unless otherwise stated.

Disease-risk contributing variants and disease-risk

neutral variants. Because not all probable disease

susceptibility mutations (non-synonymous substitutions,

frameshift mutations etc.) contribute to disease-risk, we simulate

both disease-risk contributing variants (D-variants) and disease-risk

neutral variants (N-variants). Under all genetic models, the N-

variants are sampled with the same genotype probabilities in

affected and unaffected individuals, and the frequency spectrum of

mutations follows Wright’s formula.

It has been reported that about 70% of all rare missense

mutations are deleterious [4], but since not all deleterious

mutations necessarily contribute to disease-risk, we simulate 50%

D-variants as the baseline, but investigate other levels also (see

Results). As discussed in [32], a human gene may contain up to

1000 disease susceptibility variants, whereof only a part are

polymorphic in a given sample. Resequencing studies of the

coding parts of human genes suggest that 50 disease susceptibility

variants is a realistic level [5,7,16], and we therefore simulate

groups with 50 D-variants and 50 N-variants as the baseline, but

investigate other levels also (see Results).

Tested Variants. The mutation probabilities (p) can be very

low for some of the sampled variants. This means that some

variants contain no mutations in any of the sampled individuals,

and these variants are hence omitted in the tests.

Encode Data
To evaluate the weighted-sum method on rare variants with the

frequency-spectrum of a naturally occurring population, we used

resequencing data from the Encode III project (ftp://ftp.hgsc.bcm.

tmc.edu/pub/data/Encode). In the Encode III project ten 100 kb

Encode regions were resequenced in different human populations,

and all substitutions were identified (see http://www.hgsc.bcm.tmc.

edu/projects/human/). To mimic a disease-resequencing study, we

grouped all exonic variants of each Encode region, and compared

the number of rare variants between the two largest populations: the

African YRI population (120 individuals; including 60 individuals

from HapMap phase I and II) and the Central European CEU

population (119 individuals; including 60 individuals from HapMap

phase I and II). Only variants that passed the quality control filter

for the ENCODE III study were used (see http://www.hgsc.bcm.

tmc.edu/projects/human/). The genotype data were downloaded

as the ENCODE III draft release I (on August 11th, 2008), and the

‘‘Gencode Ref (encodeGencodeGeneKnownMar07)’’ track in the

UCSC Genome Browser [37] was used to define exon positions in

each ENCODE region. Exonic variations were reported for only

five of the ten ENCODE regions, and hence only these five regions

were used.

Comparison with Other Methods
The CAST method, as described in [27], corresponds to the

method used in [5]. In brief, for each group of variants, it

compares the number of individuals with one or more mutations

between affected and unaffected individuals, using a standard x2

or Fisher exact test. In this study, we use the Fisher exact test

throughout to avoid bias due to distributional approximation.

In the variant-by-variant approach the genotype frequencies of

each variant are compared using the one-sided Fisher’s exact test,

and the significance level of the group is found by Dunn-Sidak

correction [38] of the smallest p-value in the group. Note that the

Dunn-Sidak correction is very similar to the Bonferroni correction,

as the Bonferroni correction is an approximation of the Dunn-

Sidak correction. Whereas the Bonferroni correction is slightly

conservative for independent tests (such as the independent

variants in the power simulations), the Dunn-Sidak correction

has the benefit of being exact.

The CMC method is implemented according to the description

in [26]. In brief, for the CMC method all rare variants are

collapsed, as in the CAST method, and the collapsed variants are

treated as a single common variant which is analysed together with

the other common variants using multivariate analysis [26]. We

used the Fisher product method [42,43] for multivariate analysis,

rather than the Hotelling’s T2 method, because it allows for one-

sided testing, and hence allowed a fair comparison for the CMC

method. Note that if a two-sided test were used for the CMC

method, the power estimates would then have been too low

compared to the variant-by-variant and weighted-sum methods.

The weighted-sum method is implemented as described above,

using k = 1000 permutations in step C. In all power simulations

IijM{0,1,2} is used in step B (even when the dataset is simulated

under a recessive or dominant model).

Results

Proportion of Variants Containing Mutations
The mutation frequencies are sampled according to Wright’s

formula (see Methods), and hence mutations are very rare for

some variants. Using 1000 affected and 1000 unaffected

individuals, mutations are on average observed at only 49.4% of

the variants (sd: 4.9%). This means that when e.g. 100 variants are

sampled, on average 49.4 variants contain at least one mutation,

and are hence tested for association. This level is in concordance

with the level from human resequencing studies [5,7,16].

Power versus PAR
Under the baseline parameter settings (see Methods) it is seen that

the CMC method, as reported in [26], has better performance than

Weighted-Sum Method

PLoS Genetics | www.plosgenetics.org 4 February 2009 | Volume 5 | Issue 2 | e1000384



the variant-by-variant and CAST methods, but the weighted sum

method has even better performance (Figure 2). The weighted-sum

method identifies groups with a PAR of 10%, with at least 80%

power, for all genetic models (Figure 2). To investigate whether the

weighted-sum method is robust under other model parameters, we fix

the group PAR at 10%, and vary the other parameters one by one.

Figure 2. Power versus PAR of group. The power of the investigated methods is shown for different levels of group-PAR. The power simulations
were performed using nA = nU = 1000 individuals, 50 D-variants, 50 N-variants and pM = 10%.
doi:10.1371/journal.pgen.1000384.g002

Weighted-Sum Method
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Power under Varying Model Parameters
The number of variants that contribute to the disease-risk (D-

variants) determines the marginal PAR of each variant in the

group, such that a low number of D-variants yields a high

marginal PAR. Accordingly, all investigated methods perform well

when the number of D-variants is low, and hence the marginal

PAR is high (Figure 3). When the number of D-variants rises, and

hence the marginal PAR of each variant drops, the power to

identify a disease-group falls (Figure 3). For the weighted-sum

method, the effect of the number of D-variants depends on the

genetic model. For the recessive models, it is able to identify even

large groups of variants, whereas it is more sensitive to the number

of D-variants when the heterozygote contributes to disease-risk

(Figure 3).

The proportion of D-variants likewise influences the power.

Under the Recessive-Set model, both the CAST and the CMC

methods perform well when a reasonably high proportion of the

variants contribute to disease-risk, whereas both the variant-by-

variant and the CAST method are unable to identify disease-

groups under the other scenarios (Figure 4). On the other hand,

the weighted-sum method is generally robust to a low proportion

of D-variants in the group, but a higher proportion of D-variants

yields higher power (Figure 4).

Note that the probability of mutant-haplotypes (pM) in

unaffected individuals under the Recessive-Set model does not

have a large impact on the power (Figure S3).

Number of Individuals Needed
The number of individuals needed to identify a disease-

associated group depends strongly on the underlying genetic

scenario. With n = nA = nU = 1000 individuals, a group with a PAR

of 1% can be identified under the Recessive-Set model, while a

group with a PAR of 5%–10% can be identified under the other

models. A study with n = 7000 individuals can identify a group

with a PAR of 2% under all genetic models (Table 1; see Tables S1

and S2 for equivalent tables for the CMC and CAST methods).

Encode Data
To cover a scenario where the mutation-frequencies are

distributed according to a natural existing population, we used

resequencing data from 120 individuals from the African YRI

population and 119 individuals from the Central European CEU

population. In this example, we test for overrepresentation of rare

exonic variants in the YRI population compared to the CEU

population in each Encode region. Such an overrepresentation is

expected since the YRI population generally shows higher

diversity than the CEU population [39], and hence more rare

variants are expected. Exonic variants are grouped for each

ENCODE region, to mimic a disease-resequencing study like the

ones reported in human resequencing studies [5,7,16]; as a result,

5 groups of 2–72 polymorphic variants are obtained (see Table 2).

As with the simulated data, the weighted-sum method generally

shows higher power than the alternative methods to identify an

excess of rare variants in the Encode data (Table 2).

Table 2 shows that large groups of variants generally yield lower

p-values than small groups. This is expected in the case of

heterogeneity, where inclusion of more variants will lead to a

stronger combined signal, and hence a lower p-value.

Computational Speed
In the current un-optimized implementation of the weighted-

sum method, a genome wide analysis of 20,000 groups, with 50

polymorphic variants each, using nA = nU = 1000 individuals can

be completed in approximately 600 CPU hours on a standard

stand-alone machine (Intel Pentium Dual 2 GHz, 2GB RAM).

When the number of permutations (k) is 500 instead of 1000, the

results are unaffected (results not shown) but the computing time is

halved, however since the test is fast we use k = 1000 in this study.

Note that the computation time is linear in number of individuals

and number of permutations (see Table S3).

Discussion

In this work, we propose a specialised method to identify multiple

rare mutations underlying a genetically heterogeneous disease.

Analysis of real data and power simulations show that the proposed

weighted-sum method performs very well compared to existing

methods. This demonstrates that the use of specialised analytical

methods can improve power to identify genetic components of

complex (genetically heterogeneous) diseases. On the other hand, it

must be kept in mind that the power of such specialisation is at the

cost of generality, and therefore the methods must be used in

combination with other strategies covering other biological

scenarios such as the common variant common disease scenario.

It must further be noticed that all methods using the grouping

approach (i.e. CMC, CAST and weighted-sum) are sensitive to

misclassification of which allele is treated as the mutation (i.e.

disease-related allele). If disease-related alleles from some variants

are grouped with wild-type alleles from other variants it may hide a

true signal. As stated in the Background section, it may be natural to

treat e.g. non-synonymous substitutions, frame shift indels and very

rare alleles as mutations, but when there is no information to classify

the alleles, grouping methods may not be useful. Instead the idea

from the CMC method can be used, such that the variants that can

be grouped are analysed with a grouping statistic (e.g. the weighted-

sum method), and all other variants are analysed variant by variant

or by multivariate analysis.

The weighted-sum method is designed for resequencing data,

since this technology allows rare mutations to be observed directly.

The use of inferred haplotypes from tag SNP studies is a current

approach to evaluation of unobserved variants, but this approach

fails when the unobserved variants are rare; the tag SNP approach

is hence not suited for the scenario of multiple rare disease-

mutations [2]. Alternatively, familial linkage studies are a strategy

to identify mutations underlying genetically heterogeneous diseas-

es, but when the marginal effect of each mutation is low, it may be

difficult to obtain a sufficient number of affected individuals to

detect a disease association [40,41].

The weighted-sum method can be adapted to a wide range of

study designs, by e.g. the following: (A) Using the posterior

probability of each genotype rather than the most probable

genotype. (B) Analysing mutations in conserved areas by weighting

each mutation according to the measure of conservation; this is an

extension of the conservation base selection criterion from [7]. (C)

Analysing continuous traits by testing for correlation between

genetic ranks (or scores) and the trait measure. Furthermore, the

weighted-sum method can be used for other types of data that can

be grouped according to function. Such data include for example

methylation measures, where multiple regions/sites can be

methylated in promotor regions (i.e. the CpG islands). Note that

ranking can be omitted in the test procedure, so the test statistic is

the sum of the genetic scores (ci) of all affected individuals, rather

than the sum of ranks. In the tests performed in this study, the two

procedures yield very similar results (results not shown), but we

prefer to use the ranking procedure because it is robust to outliers.

The mutation weights (ŵwi) can be chosen in an infinite

number of ways. We suggest using the estimated standard

Weighted-Sum Method
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deviation of the total number of mutations in the sample

(including affected and unaffected individuals), under the null

hypothesis of no frequency differences between affected and

unaffected individuals. This choice of weight ensures that all

variants in a group contribute equally to the weighted sum,

under the null hypothesis. The weight of each mutation is

Figure 3. Power versus number of D-variants. The power of the investigated methods is shown for different number of D-variants (disease-risk
contributing variants). The power simulations were performed using nA = nU = 1000 individuals, 50% D-variants, group PAR of 10% and pM = 10%.
Note that the jump in the power for the CMC method under the Recessive-set model occurs because a low number of variants yields a high allele-
frequency of each variant, and the variants are hence not grouped by the CMC method.
doi:10.1371/journal.pgen.1000384.g003
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determined by its frequency in the population of unaffected

individuals only. In this way, a mutation which is common

among unaffected individuals has lower weight than a mutation

which is rare among the unaffected individuals. If further

information about the mutations is available, it may be

incorporated in the weights. Such information could include

the estimated impact of a mutation or a measure of

conservation of the surrounding region (as discussed above).

Figure 4. Power versus proportion of D-variants. The power of the investigated methods is shown for different proportions of D-variants
(disease-risk contributing variants). The power simulations were performed using nA = nU = 1000 individuals, 50 D-variants, group PAR of 10% and
pM = 10%.
doi:10.1371/journal.pgen.1000384.g004
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Analysis of pathways can be done in two different ways. One

way is to use the pathway as a group, and run the test on the entire

pathway. On the other hand, for large pathways, it may be

beneficial to use a method that allows a gene with a strong signal

to have a high impact on the combined pathway test-statistic (T). If

a pathway contains G non-overlapping genes, a method to do this

is to use the weighted-sum method on each gene, and combine

the resulting p-values (p1,…,pG) with the Fisher product test

statistic

T~{2
XG

g~1

ln pg

� �
:

Since p1,…,pG are i.i.d. uniformly(0,1) distributed under the null-

hypothesis, T is x2-distributed with 2G degrees of freedom, and

can be evaluated accordingly [42,43]. This method allows for fast

analysis of different pathways, using the results from the gene-

analysis, and can thereby assist in the functional analysis of a

disease association study.

Simulating inheritance of a genetically heterogeneous disease

can be performed in different ways. To ensure that all variants

have a low effect, we have chosen to simulate all variants within a

group with the same PAR. An alternative scenario is to simulate all

variants, in a group, with the same relative risk (RR), and let the

PAR vary according to the mutation-frequency. Under this

scenario, a single, or few, common mutations may carry a large

part of the total risk, and this scenario is hence equivalent to a

scenario with a single, or few, disease-contributing variants. A few

common variants carrying a relatively large risk is exactly the what

studies using panels of SNPs are designed for, and our focus has

therefore been on scenarios where the disease risk can not be

explained by a few variants. Note further that all investigated

methods are able to identify cases where a few mutations carry a

large part of the total risk (see Figure 3). We have further included

the comparison of the Encode populations, to cover a scenario

where the mutation-frequencies are distributed according to an

actual population.

In summary, we show that the weighted-sum method is

powerful for identifying multiple rare mutations underlying

Table 1. Number of individuals needed to identify a disease-associated group.

Recessive-Set

n

500 1000 2000 4000 7000 10000

Group PAR 1 2 99 100 100 100 100

2 12 100 100 100 100 100

5 18 100 100 100 100 100

10 63 100 100 100 100 100

Recessive

n

500 1000 2000 4000 7000 10000

Group PAR 1 0 0 1 18 66 95

2 0 1 24 95 100 100

5 0 80 100 100 100 100

10 0 100 100 100 100 100

Additive

n

500 1000 2000 4000 7000 10000

Group PAR 1 0 0 0 2 11 29

2 0 0 4 29 88 100

5 0 8 84 100 100 100

10 1 90 100 100 100 100

Dominant

n

500 1000 2000 4000 7000 10000

Group PAR 1 0 0 0 2 13 35

2 0 0 5 33 93 100

5 0 11 85 100 100 100

10 0 90 100 100 100 100

The power (in %) of the weighted-sum method is shown for different numbers of individuals n = nA = nU, and different levels of group PAR (in %). Combinations with at
least 80% power are shown in bold. The power simulations were performed using 50 D-variants, 50 N-variants and pM = 10%.
doi:10.1371/journal.pgen.1000384.t001
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genetically heterogeneous diseases. Under some genetic scenarios,

1000 affected and 1000 unaffected individuals are sufficient to

identify e.g. a gene with a PAR of only 1%, corresponding to an

odds ratio of 1.1. These findings thus demonstrate that resequen-

cing studies have the potential to identify important genetic

associations, provided specialised analysis methods are used.

Supporting Information

Figure S1 Distribution of permuted ranked score sums x1
*,…,xk

*

for ENCODE region ENm010. The distribution of the ranked

score sums (x1
*,…,xk

*) from the k = 1000 permutations is consistent

with normality, as the points follow the line of identity. The data

set is an example containing all exonic variants with MAF#5%

from the ENCODE III project, region ENm010 (see Encode Data

in Methods for details). The permuted data (x1
*,…,xk

*) show

similar Gaussian properties for the other tested scenarios (data not

shown).

Found at: doi:10.1371/journal.pgen.1000384.s001 (.006 MB TIF)

Figure S2 Distribution of p-values under the null hypothesis of

no disease association. The distribution of 20,000 p-values under

the null hypothesis is consistent with a uniform distribution, as the

points follow the line of identity. The simulations were performed

using nA = nU = 1000 individuals and 100 N-variants.

Found at: doi:10.1371/journal.pgen.1000384.s002 (.005 MB TIF)

Figure S3 Power versus probability of mutant-haplotypes in the

Recessive-Set model. The power of the investigated methods is

Table 2. Tests for excess of rare exonic variants in the YRI population compared to the CEU population.

MAF cut-off

1% 2% 3% 4% 5%

ENm010

# variants 42 (30/13) 57 (40/18) 66 (48/20) 69 (51/20) 72 (54/20)

Weighted-sum 2.7261023 2.2261023 5.7561026 5.7661027 5.44610212

CMC 2.5361023 0.01 0.10 0.05 0.01

CAST 2.5361023 0.01 5.3461024 4.6661025 1.2161029

Variant-by-variant 1.00 1.00 1.00 0.37 0.12

ENr133

# variants 40 (23/20) 43 (26/20) 48 (30/21) 49 (30/22) 51 (32/23)

Weighted-sum 0.41 0.06 3.4961024 3.2261023 7.2861024

CMC 0.51 0.11 0.04 0.04 3.2261023

CAST 0.51 0.11 1.6861023 0.03 5.8961023

Variant-by-variant 1.00 1.00 0.69 0.34 0.04

ENr232

# variants 19 (11/8) 23 (15/9) 28 (19/11) 28 (19/11) 29 (20/11)

Weighted-sum 0.32 0.05 0.02 0.02 4.9961024

CMC 0.42 0.22 0.20 0.20 6.6961023

CAST 0.42 0.10 0.07 0.07 4.8261023

Variant-by-variant 1.00 1.00 0.19 0.19 0.02

ENr123

# variants 4 (3/1) 5 (4/1) 5 (4/1) 5 (4/1) 6 (5/2)

Weighted-sum 0.73 0.21 0.21 0.21 0.97

CMC 0.88 0.35 0.35 0.35 0.57

CAST 0.88 0.35 0.35 0.35 0.98

Variant-by-variant 1.00 1.00 1.00 1.00 0.08

ENr213

# variants 2 (0/2) 2 (0/2) 3 (1/3) 3 (1/3) 4 (2/4)

Weighted-sum 0.93 0.93 0.51 0.51 0.79

CMC 1.00 1.00 0.57 0.57 0.72

CAST 1.00 1.00 0.64 0.64 0.86

Variant-by-variant 1.00 1.00 1.00 1.00 1.00

For each Encode region, we test whether rare exonic variants are overrepresented in the African (YRI) population compared to the central European (CEU) population.
To mimic studies of rare variants, five different minor allele frequency (MAF) cut-off values (1%–5%) are used; all variants with a MAF over the cut-off value are omitted
in the analysis. For each set of variants, the number of tested variants is reported along with the number of variants that are only polymorphic in the YRI population (the
first number in the parenthesis), and the number of variants that are only polymorphic in the CEU population (the second number in the parenthesis). Below the
number of variants, p-values from the investigated methods are reported. It is seen that the proposed test yields lower p-values than the alternative tests in nearly all
cases where the rare variants are significantly overrepresented in the YRI population. The only exception is for the ENm010 region with MAF cut-off at 1%; in that case,
the weighted-sum method yields a slightly higher p-value than the CMC and CAST methods.
doi:10.1371/journal.pgen.1000384.t002
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shown for different levels of probability of mutant-haplotypes (pM).

The power simulations were performed using nA = nU = 1000

individuals, 50 D-variants, 50 N-variants and group PAR of 10%.

Found at: doi:10.1371/journal.pgen.1000384.s003 (0.6 MB TIF)

Table S1 Number of individuals needed to identify a disease-

associated group, using the CMC method. The power (in %) of the

CMC method is shown for different number of individuals

n = nA = nU, and different levels of group PAR (in %). The power

simulations were performed using 50 D-variants, 50 N-variants

and pM = 10%.

Found at: doi:10.1371/journal.pgen.1000384.s004 (0.02 MB PDF)

Table S2 Number of individuals needed to identify a disease-

associated group, using the CAST method. The power (in %) of

the CAST method is shown for different number of individuals

n = nA = nU, and different levels of group PAR (in %). The power

simulations were performed using 50 D-variants, 50 N-variants

and pM = 10%.

Found at: doi:10.1371/journal.pgen.1000384.s005 (0.02 MB PDF)

Table S3 Computational Speed. The computation time (in CPU

hours) is shown for testing 20,000 groups with 50 polymorphic

variants each, using the weighted-sum method. The speed

computation is done for different number of individuals

(n = nA = nU), and different number of permutations (k). It is seen

that the computation time is linear in the number of individuals

and in the number of permutations.

Found at: doi:10.1371/journal.pgen.1000384.s006 (0.01 MB PDF)
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