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Abstract 
Some results in growth theory based on the Cobb-Douglas production func-
tion model are generalized when the production function is chosen to be the 
Constant Elasticity of Substitution (CES) function. Such a generalization is of 
considerable interest because it is known that the Cobb-Douglas function 
cannot be used as a suitable model for some production technologies (like the 
US economy and climate changes). It is shown that in the steady state the 
growth rate of the output is equal to the Solow residual and that the capital 
deepening term becomes zero. The CES function is a homogeneous function 
of degree two and a result is obtained on the wage of a worker using the Eu-
ler’s theorem. 
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1. Introduction 

In growth theory, a “production function” is taken to be a mathematical 
expression that is used to model a production technology with distinct inputs 
and outputs. Several types of production functions have been proposed in the 
past based on either empirical or theoretical considerations (for general surveys, 
see e.g., [1] [2]). For example, the Cobb-Douglas production function ([3]) is 
widely used as a simple model to study economic growth in spite of some of its 
limitations (that we shall discuss later). 

The CES (“Constant Elasticity of Substitution”) function was introduced by 
Solow ([4]), and later expounded by Arrow et al. ([5]) to synthesize several types 
of production functions. The CES function has been applied extensively to study 
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economic growth (e.g., [6]-[17]). It has also applications in high energy physics 
[18]. Many generalizations of the format of the CES function (including the 
multi-input case) have been proposed, for details see e.g. [6] [7]. The shape of 
the frontier of the CES function is also of significant interest in economic 
analysis and its connection with the differential geometry of hyperspaces has 
been studied. (e.g., [19] [20] [21]). 

The elasticity of substitution between any two input variables in a production 
function measures how easily one variable can be substituted for the other 
variable and it measures the curvature of the isoquant (the concept was first 
introduced by Hicks [22]). So, an elasticity of substitution equal to 0 indicates no 
substitution between the input variables can be possible and an elasticity of 
substitution equal to infinity indicates the perfect substitution. More formally, 
the elasticity of substitution between two factors of production is an index that 
measures the percentage of response of the relative marginal products of the two 
factors to a percentage of change in the ratio of the two quantities. In order to 
make the paper self-contained, we shall briefly review in Appendix I the formal 
definition of the elasticity of substitution for the case of a production function 
with n input variables. 

For the Cobb-Douglas function the elasticity of substitution between the input 
variables is always equal to 1 (for a proof see, e.g., [7]) and this fact restricts its 
use as a suitable production model in several applications, as claimed by many 
authors. For example, Antrás [23] has shown that the US economy is not 
amenable to the elasticity of substitution being taken as 1. Also Werf [24] has 
shown that it is not suitable to take the Cobb-Douglas function as a production 
function for modeling climate change policies. Furthermore, Young [25] has 
shown that the elasticity of substitution for U.S. aggregate and of most industries 
cannot be equal to 1 and it is estimated to be less than 0.620; thus it follows that 
the Cobb-Douglas production model (whose elasticity of substitution is fixed to 
be 1) is not suitable for such applications. 

The CES function has a constant elasticity of substitution (as the name suggests) 
and it can have any pre-determined value as its elasticity of sub-stitution (as we 
shall show later). Thus, it offers a wider flexibility than the Cobb-Douglas function 
and is still computationally tractable, as remarked in ([6], p. 54). These reasons 
have partially motivated us to extend some results of the neoclassical growth 
theory based on the Cobb-Douglas function by using the more general setting of 
the CES production function. 

We now briefly review some definitions and results. 
Definition 1 ([5]) The Constant Elasticity of Substitution (CES) production 

function for the three factors-capital K, labor L and the total factor of 
productivity F, is given by 

( )
1

   with 1Y F K Lγ γ γα β α β= + + =                    (1) 

where Y is the output and , ,K L F  are smooth functions of time t; α  is a 
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certain constant, called the share parameter between the capital and labor; and 
γ  is another constant, called the substitution parameter. 

The following result indicates that the CES production function is a 
generalization of the Cobb-Douglas function: 

Proposition 1 ([5]) When 0γ → , the CES production function (1) 
approaches the Cobb-Douglas production function 

Y FK Lα β=                         (2) 

where ,α β  are constants such that 1α β+ = . 
It is known that the elasticity of substitution of the CES production function 

as defined by (1), is equal to ( )1 1 γ−  ([5], p. 230) when 1γ ≠ , and using this 
result we can easily construct (as indicated in Example 1) an infinite family of 
CES production functions each of whose members has the same elasticity of 
substitution equal to any given nonzero number. 

Example 1 Suppose we want to construct a CES production function whose 
elasticity of substitution,  , is equal to, say, 2. Solving the equation 

( )1 1 2γ− =                            (3) 

gives 0.5γ = . Substituting 0.5γ =  into (1) and taking F to be any smooth 
function of t, and by varying α , we get an infinite family of CES production 
functions given by 

( ){ }2
1Y F K Lα α= + −                      (4) 

where 0 1α< <  and each member of the family has the same elasticity of 
substitution equal to 2. Similarly, if 1= , then by solving the equation  
( )1 1 1γ− =  we get 0γ =  and this corresponds to the Cobb-Douglas  

production function (compare with Proposition 1). 
In defining the CES production function, in the form given by (1), many 

authors take F to be a parameter (e.g., [5], p. 230; [7], p. 397; [26], p. 397). 
However, we shall consider here a more general model where F is assumed to be 
a function of time. Such a model would be able to handle some situations that 
cannot be accommodated by a CES function where F is a parameter. For 
example, the output of a factory may increase at a time when the production 
manager is replaced by a more efficient one (i.e. when F increases) even when 
there are no increases in investments in capital and labor. We note that ([6], p. 
54) takes F to be a function of time, like us. Furthermore we shall exclude the 
cases when the output is either identically zero, or a negative number as these 
cases are not of interest. Thus we make the following assumption: 

Assumption 1 We assume in (1) that F is a function of time and that 0F > . 
As remarked in ([27], p. 107), the wages and salaries in USA and many other 

countries form about 70 percent of the national income. Consequently, the value 
of 0.3α =  has been used in ([27], p. 107-109) as the share of the capital for the 
Cobb-Douglas production function model (2) to estimate the growth rate for a 
number of countries. However, such an estimate for the growth rate of countries 
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based solely on a Cobb-Douglas production function model may not be realistic 
because the Cobb-Douglas production function (2) has the unitary elasticity of 
substitution and as [23] has shown, it is not suitable to model the US economy 
with the elasticity of substitution equal to 1 (also, it is not known whether we can 
realistically assume that the elasticity of substitution is 1 for all the other 
countries involved in that study). So, it would be of significant interest to 
estimate the economic growth for various countries using the same data but for 
a more general setting involving the CES production function model for a range 
of values of the parameter γ  in (1) with 0.3α = , and then to estimate an 
optimal value of γ  to fit the data set. 

The structure of the rest of the paper is as follows. In Section 2 we obtain a 
growth equation for the CES production function and define the (generalized) 
Solow residual and the corresponding capital deepening term. In Section 3 we 
obtain some bounds for the (generalized) Solow residual and the capital 
deepening term. In Section 4 we investigate the growth rates corresponding to 
the CES production function. In Section 5 we investigate the homogeneous 
property of the CES production function. Section 6 gives our conclusions. 
Appendix I reviews the definition of the elasticity of substitution, The proofs of 
all the results are given in the Appendix II. 

2. Growth Equation for CES Production Model 

In this section, we generalize some results obtained earlier in the setting of the 
Cobb-Douglas production model (e.g., as in [27], Chap. 5) to the case of the CES 
production function. First, we shall derive a growth equation corresponding to 
the CES production function. Continuing with the notation introduced in 
Definition 1, we now define the variables y and k given by 

,  y Y L k K L= =                     (5) 

where we assume that L is nonzero (for, if 0L = , the CES production function 
takes the simple form Y FK=  and that is a special case of the Cobb-Douglas 
function with 1α =  and 0β = ; and so we omit this case). Thus, y and k are 
well-defined and y represents the output per worker (i.e., per capita output) and 
k is the capital stock per worker. Also, L cannot be negative because we have not 
given any interpretation to negative labor. So, we shall make the following 
assumption: 

Assumption 2 
We assume that 0L > . 
We note that ([6], p. 36) also makes a similar assumption. 
From (1), dividing both sides of the equation by L, and using (5), we get 

( )
1

y F k γ γα β= +                        (6) 

Log differentiating both sides of (6) with respect to t and denoting y y  by G, 
we get the following growth equation when the CES production function is 
taken as the production model: 
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1F k kG
F k

γ

γ

α
α β

−

= +
+




                 (7) 

where ⋅  denotes differentiation with respect t. Both the terms on the right hand 
side of (7) are well-defined because their denominators are nonzero (F is 
nonzero by the Assumption 1, and ( )k γα β+  is nonzero since otherwise it will 
follow from (6) that 0y =  and we shall exclude this trivial case when the 
output is identically equal to zero); also G is well-defined (since otherwise from 
the expression G y y=  , it will follow that 0y = ). 

Taking the limit as 0γ →  in (7) and using Proposition 1, we can easily 
obtain the growth equation corresponding to the Cobb-Douglas production 
function (2) and the resulting equation matches with the corresponding 
Equation (5.3) derived in ([27], p. 106). 

Definition 2 For the CES production function, the expression 

G y y=                                (8) 

is called the growth rate of the output per worker, and the growth rate of the total 
factor of productivity, F F , will be called the Solow residual corresponding to 
the CES production function. 

Using (7), the Solow residual can be expressed as: 

F G D
F
= −


                            (9) 

where 
1k kD

k

γ

γ

α
α β

−

=
+



                           (10) 

is called the capital deepening term corresponding to the CES production 
function. From (9), we observe that G, the growth rate of the output per worker, 
is the sum of two components: (i) the Solow residual, and (ii) the capital 
deepening component D (we note that a similar observation is made for the 
Cobb-Douglas production function (2), in ([27], p. 106)). 

Next, we consider the form of the growth equation (7) in the steady state. 
Proposition 2 (i) When a steady state of production is reached, the growth 

rate of the output per worker is equal to the Solow residual, and the capital 
deepening term is zero. As a partial converse, if the production is not entirely 
labor intensive, a steady state of production is reached when the growth rate of 
the output per worker is equal to the Solow residual (or equivalently when the 
capital deepening term is zero). 

(ii) The total factor of productivity is in a steady state if and only if the growth 
rate of the output per worker is equal to the capital deepening term. 

3. Estimates for Solow Residual 

We now obtain some bounds for the capital deepening term D and the Solow 
residual. 
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Proposition 3 For the CES production function given by (6), if the ratio of the 
share parameters is less than k γ , i.e. if 

( )1k γβ α>                       (11) 

then (i) the capital deepening term is less than the growth rate of capital per 
worker, and 

(ii) the Solow residual is greater than the difference between the growth rates 
per worker, of the output and the capital. 

Corollary 1 (i) When γ →∞ , the estimates given in Proposition 3 hold for 
any 1k > . 

(ii) When 0γ → , (i.e., when the production function is approaching the 
Cobb-Douglas function (2), see Proposition 1), the estimates given in 
Proposition 3 hold for any 1 2α > . 

We now give some examples to illustrate what happens to the inequality (11) 
as we progressively increase the value of γ . 

Example 2 (i) Suppose, as an illustration, we choose 0.3α =  and so 0.7β = . 
In Figure 1, we plot the values of ( )1:u γβ α=  where the horizontal axis 
corresponds to γ  and the vertical axis corresponds to u. We know from 
Corollary 1 (i) that as γ  becomes larger and larger, the value of u would tend 
to 1 and this property is being exhibited in Figure 1. We mention that similar 
illustrations can also be given by taking other values of α . 

(ii) If 0.5α =  (that is, when the capital and labor are shared equally in the 
CES production model), the condition (11) reduces to 1k >  and so the 
estimates described in Proposition 3 hold for any 1k >  and for any value of γ . 
In other words, when the distributions of resources between the capital and 
labor in the production are equal and the capital stock per worker is greater than 
one, the results of Proposition 3 hold for any value of γ . 

Now we obtain further interpretations of the estimates that were given in 
Proposition 3. 

Proposition 4 For any set of values of , ,α β γ  and k satisfying the condition 
 

 
Figure 1. Plot of ( )1u γβ α=  against γ . 
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(11), the estimates given in Proposition 3 would continue to hold when we keep 
increasing the value of either, α  or, k. 

4. Marginal Rate of Substitution 

For any arbitrary production function with output Y and the factors of 
production, K, L and F, the marginal products with respect to the capital, labor 
and the factor of productively are defined as Y K∂ ∂ , Y L∂ ∂  and Y F∂ ∂  
respectively. Also, the marginal rate of substitution (MRS) is defined as the ratio 
of the marginal product with respect to the capital by the marginal product with 
respect to labor, i.e., 

( ) ( )MRS Y K Y L= ∂ ∂ ∂ ∂                     (12) 

We now consider the growth of the marginal products with respect to the 
three factors appearing in the CES production function. 

Proposition 5 
For the CES production function, the marginal products with respect to all the 

three factors of production are increasing functions of time. Further, the 
marginal rate of substitution (MRS) is given by 

( ) 1MRS k γα β −=                             (13) 

We note that (13) is well defined since by Assumption 2 we have 0L ≠  and 
so 0β ≠ . It follows from (13) that the MRS is independent of both the total 
factor of productivity and the output per worker. Also, for 1γ > , (13) implies 
that MRS→+∞  as k →+∞ . For 1γ < , (13) implies that MRS 0→  as 
k →+∞ . 

For the Cobb-Douglas function (2), the marginal rate of substitution can be 
easily obtained by taking the limit as 0γ →  in (13) and using Proposition 1; 
and the result thus obtained matches with the corresponding expression in ([27], 
p. 107). 

5. Homogeneity of CES Function and Wages 

We recall the standard definition that a function ( )1 2, , , nY f x x x=   of n in-
dependent variables 1, , nx x  is a homogenous function of degree k if 

( ) ( )1 2 1 2, , , , , ,k
n nf tx tx tx t f x x x=   

for any positive scalar t. A classical theorem due to L. Euler (1703-1783) on 
homogeneous functions (see, e.g., [28] for a proof) states that if  

( )1 2, , , nY f x x x=   is a homogeneous function of degree k with continuous 
partial derivatives then 

( )1 2
1

, , ,
n

i n
i i

fx kf x x x
x=

∂
=

∂∑                     (14) 

Now, it is easy to see that the CES production function, given by (1), is a 
homogeneous function of degree 2 in the variables K, L and F. So, from (14) 
with 2, 3k n= =  and 1 2 3, ,x K x L x F= = =  and writing Y for f, we have 
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2Y Y YK L F Y
K L F
∂ ∂ ∂

+ + =
∂ ∂ ∂

                 (15) 

Using (15) we now obtain a result for the wage of a worker in the context of 
the CES production function model (the result is closely along the lines of ([29], 
p. 7), Equation (15)): 

Proposition 6 Assume that in the short run the relative price of the factors 
adjust so that capital and labor are fully employed. Then, for the CES production 
function, the wage of a worker is equal to the balance remaining from the output 
per worker when we spend the rental price of capital times the capital per 
worker (assuming that there is no wage differentiation, i.e. all the workers 
receive the same wages). 

We remark that if F is a constant (in temporary contravention of Assumption 
1), then the degree of homogeneity of the CES function is unity, and the Euler’s 
theorem on homogeneous function (14) now gives (compare with (15)) 

Y YK L Y
K L
∂ ∂

+ =
∂ ∂

                   (16) 

and it is easy to verify that the statement of Proposition 6 still holds for this case 
by rearranging slightly the proof of Proposition 6. 

6. Conclusion 

We have extended some results of the neoclassical growth theory when the 
production function is taken to be the CES function instead of the Cobb- 
Douglas function. Such generalizations are of considerable interest because the 
Cobb-Douglas function is not suitable for some application areas because its 
elasticity of substation has always the fixed value 1 whereas a CES function can 
be designed to have any pre-determined value as its elasticity of substitution. We 
assume that the total factor of productivity is a variable instead of being a 
parameter and under this assumption the CES production function becomes a 
homogenous function of degree two, and so it gives increasing returns to scale. 
When the total factor of productivity is steady, we show that the growth rate is 
equal to the Solow residual. We obtain some estimates of the Solow residual and 
the capital deepening term. We show that when the production is not entirely 
capital-intensive, an increase in capital implies an increase in the ratio of the 
production rate. We have considered here a CES production function where the 
input variables are the capital, labor and the total factor of productivity; and it 
would be of interest to extend our results to the more general cases of several 
input variables and also several output variables. 
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APPENDIX I: Elasticity of Substitution-Review 

We briefly review here the definition of the elasticity of substitution (for further 
details see, e.g., [6] [7]). Consider a general production function with output Y 
given by 

( )1 2, , , nY f x x x=                         (17) 

where ix  (1 i n≤ ≤ ) are some independent variables and f is an arbitrary 
function that is differentiable partially with respect to each of the variables ix . 
The elasticity of substitution ijσ  between any two distinct variables ix  and 

jx  measures the percentage of response of the relative marginal products of the 
two factors to a percentage of change in the ratio of the two quantities. It is 
defined as (e.g., [29], p. 509): 

( )
( ) ( )( )
log

log
e i j

ij
e i j

x x

f x f x
σ

∂
=
∂ ∂ ∂ ∂ ∂

                 (18) 

along the curve ( )1 2, , , nf x x x λ=  where λ  is a constant; the logarithm 
being taken to the base e (i.e., the natural logarithm). For the CES production 
function, (17) takes the form given by (1) with 3n =  and 1 2 3, ,x x x  to be the 
variables , ,K L F  respectively. For the CES function, it can be shown ([5]) that 

( )1 1ijσ γ= −                          (19) 

when we take ,i j  to be any two of the variables , ,K L F . 

APPENDIX II: Proofs 

1) Proof of Proposition 2: 
(i) In the steady state, 0k = , and we get from (7) that G F F=  . Also, when 

0k = , we get from (10) that 0D = . 
For the partial converse, we note that if the growth rate is equal to the rate of 

the total factor of productivity, i.e. if G F F=  , then we get from (7) and (10) 
that 

1

    0k kD
k

γ

γ

α
α β

−

= =
+



                       (20) 

and (20) implies that 0k =  because both α  and k are nonzero by our 
assumptions; also ( )k γα β+  is nonzero since otherwise from (6) we would get 

0y =  and this would imply from (5) that 0Y = , a trivial case. 
(ii) It follows from (9) that the total factor of productivity is in a steady state 

(i.e., 0F = ) if and only if G D= . 
2) Proof of Proposition 3: 
From (10) on expanding by Taylor’s theorem and stopping after one term, we 

have as a linear approximation 
1

1   1k kD
k kk kγ γ

β β
α α

−
   = + ≈ −   
   

 

                (21) 

provided ( ) 1k γβ α < ; or, equivalently, provided (11) holds (here ≈  denotes 
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approximately). Now, the condition ( ) 1k γβ α <  can be expressed as: 

0 1 1
k γ

β
α

 < − < 
 

                     (22) 

Thus, from (21) and (22) we get 

D k k≤                             (23) 

provided (11) holds. This proves (i). 
(We remark that if instead of a linear approximation, we had taken a second 

degree approximation from (10), i.e. had stopped after the second term in the 
Taylor’s expansion (21), then it is easy to verify that we would obtain the same 
result (23) provided (11) holds; we omit the details.) 

Using (9) and (23) we get 

    F kG
F k

 
≥ − 
 




                        (24) 

provided (11) holds. This proves (ii). 
3) Proof of Corollary 1: 
(i) When γ →∞ , we have ( )1 1γβ α →  for a fixed value of α , and the 

inequality (11) reduces to 1k > . (ii) When 0γ → , we have that 1k γ →  and 
(11) gives α β> , i.e., 1 2α >  since 1α β+ = . 

4) Proof of Proposition 4: 
If 1 2,α α  are any two non-zero values, then it is easy to see that for a given 

non-zero value of γ , we have 2 1α α>  implies that 
1 1

1 2

1 2

1 1
γ γ

α α
α α

   − −
>   

   
                      (25) 

It follows from (25) that for any 2 1α α> , 
1 1

1 2

1 2

1 1k k
γ γ

α α
α α

   − −
> ⇒ >   
   

                  (26) 

So, once the inequality (11) holds for a certain set of values of α , k, and γ , 
the estimates (23)-(24) in the statement of Proposition 3 would continue to hold 
if we keep on increasing the value of α  while keeping γ  fixed. Further, if we 
increase the value of k, the estimates (23)-(24) would still hold. 

5) Proof of Proposition 5: 
From (1) we get after some simplifications 

( )( ) ( )1 1:KR Y K F K Y F k yγ γγ γα α− −= ∂ ∂ = =             (27) 

If the production is not entirely labor intensive, then α  and K are not 
identically zero (also 0F >  by the Assumption 1); so it follows from (27) that 

0KR > ; thus the production rate with respect to capital is increasing. Similarly, 

( )( )1 1:LR Y L F L Y F yγγ γ γβ β− −= ∂ ∂ = =              (28) 

By the Assumption 2, the production is not entirely capital-intensive, and so 
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0β ≠  and 0L ≠ . We thus have from (28) that : 0LR Y L= ∂ ∂ > ; thus the 
production rate with respect to labor is increasing (note that by the Assumption 
2, 0L ≠ ). 

Again, we get that 

: 0FR Y F Y F= ∂ ∂ = >                         (29) 

since otherwise 0Y = , a trivial case that we exclude (recall that 0F >  by the 
Assumption 1). Thus the production rate with respect to the total factor of 
productivity is also increasing. From (27) and (28) we now obtain 

( ) 1
K LR R k γα β −=                      (30) 

and this proves (13). 
6) Proof of Proposition 6: 
Assuming that the capital and labor are fully employed, in the short run the 

wage is given by LR Y L= ∂ ∂ . Also, we have 

  and  KR Y K Y F Y F= ∂ ∂ ∂ ∂ =                  (31) 

So, (15) can be written as 

L KLR KR Y+ =                      (32) 

and rewriting (32) by using (5), we get 

( ) ( )wage   K KY KR L y kR= − = −                 (33) 

and this implies that in the short run, the wage of a worker is equal to the 
balance remaining from the output per worker when we spend the rental price of 
capital times the capital per worker since y is the output per worker and KR  is 
the rental price and k is the capital stock per worker. This proves the result. 
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