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Abstract: The integrated navigation system consisting of an inertial navigation system (INS) and
Global Navigation Satellite System (GNSS) provides continuous high-accuracy positioning whereas
the navigation accuracy during a GNSS outage inevitably degrades owing to INS error divergence.
To reduce such degradation, a gated recurrent unit (GRU) and adaptive Kalman filter (AKF)-based
hybrid algorithm is proposed. The GRU network, which has advantages of high accuracy and
efficiency, is constructed to predict the position variations during GNSS outage. Furthermore,
this paper takes the GRU-predicted error accumulation into consideration, and introduces AKF as a
supplementary methodology to improve the navigation performance. The proposed hybrid algorithm
is trained and tested by practical road datasets and compared with four algorithms, including the
standard KF, Multi-Layer Perceptron (MLP)-aided KF, Long Short Time Memory (LSTM) aided KF,
and GRU-aided KF. Periods of 180 and 120 s GNSS outage are employed to test the performance of
the proposed algorithm in different time scales. The comparison result between the standard KF and
neural network-aided KF indicates that the neural network is an effective methodology for bridging
GNSS outages. The performance comparison between three kinds of neural networks demonstrate
that both recurrent neural networks surpass the MLP in prediction position variation, and the GRU
transcends the LSTM in prediction accuracy and training efficiency. Furthermore, it is concluded that
the adaptive estimation theory is an effective complement to neural network-aided navigation, as the
GRU-aided AKF reduced the horizontal error of GRU-aided KF by 31.71% and 16.12% after 180 and
120 s of GNSS outage, respectively.

Keywords: INS/GNSS integrated navigation; GNSS outage; GRU neural network; AKF; innovation-based
adaptive estimation

1. Introduction

INS and GNSS are two of the most widely used navigation techniques in both civilian
and military fields. GNSS provides high accuracy position and velocity information with
a relatively stable noise level in open-sky outdoor environments [1,2]. Nevertheless, it
suffers from the shortcoming of signal vulnerability, which leads to accuracy degradation
in complex urban environment, including overpasses, boulevards, and urban canyons, etc.
On the other hand, INS is a self-contained navigation system that estimates the position,
velocity, and attitude with a high update frequency. Although, INS suffers from a drawback
in that its error accumulates over time [3]. Since INS and GNSS have complementary
characteristics, they are combined as an INS/GNSS integrated navigation system which
surpasses both stand-alone systems [4–7].

Although INS error could be estimated and compensated for by the KF-based INS/GNSS
integration algorithm [8], low-cost INS error accumulates rapidly [9] during GNSS outage.
Generally, there are, in general, two categories of techniques used to enhance low-cost INS
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/GNSS integrated navigation performance during GNSS outage. The first one is adopting
auxiliary sensors, such as a camera [10–13], Lidar [14,15], magnetic sensor [16], or odome-
ter [17,18], to collect various information to aid INS. The drawbacks of this kind of solution
include increases in hardware cost, equipment volume, and power consumption. Another
category of techniques is suppressing INS error accumulation by algorithm improvement
without extra sensors. For instance, non-holonomic constraint (NHC) [17,19], assuming
zero velocity at the land vehicle laterally and vertically, adopts pseudo velocity measure-
ment to suppress INS velocity error divergence, and zero velocity update (ZUPT) [20]
corrects INS error when the navigation system is stationary. Recently, the artificial intel-
ligent (AI) algorithm has been employed in the navigation field due to its advantages of
solving the non-linear problem, and AI-aided navigation systems have shown impressive
performance. However, the AI algorithm also has the disadvantages of a long training
time and the predicted value inevitably containing error. The former disadvantage could
be partly solved by simplifying the neural network structure while the latter one could
be suppressed using the adaptive algorithm. Thus, this paper constructed a simple and
effective GRU network to aid INS during GNSS outage, and adopts the AKF algorithm to
estimate pseudo position measurement noise, thus optimizing the integrated navigation
accuracy.

The novelties of this paper are summarized as follows: (1)A GRU-based pseudo GNSS
position variation prediction neural network is proposed in this work. The proposed
network is verified to have the advantages of a high prediction accuracy and high training
efficiency. (2) Meanwhile, different from existing related AI methodology, this work takes
the AI prediction error into consideration. An adaptive filtering strategy is adopted as the
supplement of the GRU network, and the Sage-Husa AKF is introduced to estimate the
state vector and pseudo GNSS position noise simultaneously. The rationale behind this
methodology is that assigning proper weight to the GRU-predicted information during the
INS and pseudo GNSS data fusion process improves the navigation performance.

The structure of the remaining part is organized as follow. The rationale of the GRU
and AKF hybrid algorithm is presented in Section 2. Then, the detailed GRU network
implement method is described in Section 3, followed by the test and result analysis in
Section 4. Finally, the discussion and conclusions are put forward in Sections 5 and 6,
respectively.

2. Rationale of the Proposed Algorithm
2.1. AI Module Input and Output Parameters

It is crucial to select proper input and output parameters for the AI module, since
these parameters directly determine the navigation accuracy and training efficiency. All
existing AI models applied in bridging GNSS outage can be divided into three categories.
The first kind is the OINS-δPGNSS, INS model [21–25], which predicts δPGNSS, INS standing
for the position error between GNSS measurement and INS estimation with the input
parameters OINS (including the position, velocity, attitude estimated by INS, and angular
velocity, specific force measured by the inertial measurement unit). Another category is
OINS-X model [26], which estimates the state vector X of the integrated navigation system
directly. The third type of model OINS-∆PGNSS [27–29], which calculates the GNSS position
variation ∆PGNSS, is adopted in this paper. The GNSS position variation error is expressed
in Equation (1), where ∆ P̂GNSS(t k

)
is the estimated position variance between epochs tk

and tk−1, and P̂GNSS(t k
)

and P̂GNSS(t k−1
)

represent the estimated position at tk and tk−1,
respectively. The estimated position P̂GNSS(t k

)
consists of the truth value PGNSS(tk) and

the error term δ PGNSS(tk). P̂GNSS(t k−1
)

similarly consists of the truth value PGNSS(tk−1)
and the error term δ PGNSS(tk−1). It can be deduced from the formula that differential
arithmetic between adjacent epochs could remove the GNSS measurement noise, which
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has time correlativity. In other words, the OINS-∆PGNSS model has lower prediction error
than the former two models:

∆P̂GNSS(tk) = P̂GNSS(t k)− P̂GNSS(tk−1) = (PGNSS(tk) + δ PGNSS(tk))
−(PGNSS(tk−1) + δ PGNSS(tk−1)) = ∆PGNSS(tk)− (δ PGNSS(tk)− δ PGNSS(tk−1))

(1)

The position variation ∆PGNSS(t k) can also be expressed as the difference in the INS
derived position between adjacent epochs as shown in Equation (2):

∆PGNSS =
x (

Cn
bfb

ib(t)− (2ωn
ie(t) +ω

n
en(t))×Vn(t) + Gn

)
dtdt (2)

where b, i, e, and n stand for the body frame (b-frame), inertial frame (i-frame), earth frame
(e-frame), and navigation frame (n-frame), respectively. Cn

b is the directional cosine matrix
from the n-frame to b-frame, fb

ib is the specific force acquired by the inertial measurement
unit (IMU),ωn

ie is the angular rate of the e-frame relative to the i-frame,ωn
en is the angular

rate of the n-frame relative to the e-frame, Vn is the INS-derived velocity, and Gn is the
gravity vector. Since ωn

ie, ωn
en, and Gn are related to the longitude and latitude, which vary

slowly in land vehicles, these three parameters can be neglected to improve the training
efficiency. The input parameters of the AI model are the IMU data, including fb

ib andωb
ib

and the INS-estimated velocity (Vn) and attitude (AINS).

2.2. Neural Network Model: GRU

Various neural network models are adopted in AI-aided integrated navigation. Assad
adopted the radial basis function neural network (RBF) to improve the attitude estimation
accuracy in GPS-denied environments [30]. Yao estimated the pseudo GPS position with
the MLP network when GPS signal was unavailable [28]. However, these methods employ
a static neural network, which only deals with current data but neglects the information
of historical data. Neglecting the historical data may result in a low prediction accuracy.
Thus, the recurrent neural network that is widely used in time series signals processing
is a better choice for integrated navigation. Fang suggested a method for bridging GNSS
outage that used a kind of recurrent neural network called the LSTM, and obtained a
satisfying effect [29]. The GRU, which is also a recurrent neural network, with the same
estimation accuracy and higher training efficiency compared with LSTM [31], is adopted
in this paper. As shown in Figure 1, the GRU unit consists of an update gate and a reset
gate. The output of the update gate (zt) controls the extent of the impact on the current
state forced by previous states; that is, the smaller zt is, the less previous information is
retained. The function of the reset gate(rt) is to determine the forgetfulness degree of the
hidden state information h̃t; that is, the smaller the value is, the more past state information
is discarded.

Figure 1. The structure of GRU.
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The GRU forward propagation formula is shown in Equation (3):

rt = σ(Wxrxt+Whrht−1 + br)
zt = σ(Wxzxt + Whzht−1 + bz)

h̃tht = zt � ht−1 + (1− zt)� h̃t = tanh(Wxhxt + Whh(rt � ht−1) + bh)

ht = zt � ht−1 + (1− zt)� h̃t

(3)

where, W represents the weight matrix between different structures; subscripts x, r, h, and z
denote the input, reset gate, hidden state, and update gate; and br, bz, and bh are the offset
vectors of the corresponding structure.

2.3. Proposed GRU-aided AKF Algorithm

The proposed INS/GNSS integrated navigation algorithm employs an AKF-based
loosely coupled integration strategy with a GRU module, which works in training mode
when GNSS signal is available and prediction mode during a GNSS outage.

According to the above analysis, the proposed scheme consisting of the training mode
and predicting mode is illustrated in Figure 2. As shown in Figure 2a, the GRU module
operates in training mode when GNSS signal is available. With the input parameters of fb

ib,
ωb

ib, Vn, and AINS, the GRU module outputs the predicted position variance ∆PGNSS, which
is compared with the high precision ∆Ptrue representing the position variation derived
from the real GNSS signal. The GRU module adjusts the internal weight continuously
until the loss function drops below the threshold. Meanwhile, the KF module works
as a traditional loosely coupled integrated navigation system, providing high accuracy
position, velocity, attitude, and IMU error information in real time. When GNSS signal is
unavailable, the GRU module operates in the predicting mode shown in Figure 2b. The
GRU module predicts the position variation ∆PGNSS, which is integrated as a pseudo GNSS
position measurement. Because ∆PGNSS inevitably includes error, the pseudo position
measurement also includes error, which increases during the ∆PGNSS integral process.
However, all existing literature [23–25] that adopted the OINS-∆PGNSS model did not take
this phenomenon into consideration.

Figure 2. Structure of GRU-aiding INS/GNSS integrated navigation. (a) Training mode; (b) predicting
mode.
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In this paper, the 15-dimentional state vector X is defined as X = [δr, δv, ϕ, bg, ba] T,
where δr and δv are the 3-dimensional INS position error and velocity error in the n-frame,
ϕ stands for the misalignment angles, and bg and ba are the gyroscope and accelerometer
bias in the x axis, y axis, and z axis. The three-dimensional measurement vector Z is defined
as the difference between the INS-estimated position and the GRU-estimated position. The
discrete-time Kalman state function and measurement function are defined as Equation (4):

Xk= Φk|k−1Xk−1+Γk−1ωk−1
Zk= HkXk+Vk

(4)

where Xk is the state vector at time k, Φk|k−1 is the one-step state transition matrix from
time k − 1 to k, Γk−1 is the system noise-input mapping matrix,ωk−1 is the system noise
vector presenting a zero mean Gauss distribution with variance Qk−1, Z is the measurement
vector, Hk represents the measurement matrix, and Vk is the measurement noise vector
subjected to a zero mean Gauss distribution with variance Rk−1. Theoretically, KF could
acquire an optimal estimation when noise statistical parameters, such as Qk−1 and Rk−1,
are precisely known [32]. However, the ∆PGNSS predicted by the GRU module inevitably
contains error, which is accumulated when ∆PGNSS is integral to PGNSS. All the existing
literatures utilizing the OINS-∆PGNSS model [27–29] did not take this phenomenon into
consideration.

Standard KF includes the time update and measurement update process. The time
update process is formulized as Equation (5):

X̂k|k−1 = Φk|k−1 X̂k−1
Pk|k−1 = Φk|k−1Pk−1ΦT

k|k−1 + Γk−1Qk−1ΓT
k−1

(5)

where X̂k|k−1 is the prediction of the state vector at time k, X̂k−1 is the optimal estimation
at time k − 1, Pk|k−1 is the prediction covariance matrix at time k, and Pk−1 is the optimal
covariance matrix estimation at k − 1.

The KF measurement update process is illustrated in Equation (6):

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k+Rk

)−1

X̂k = X̂k|k−1 + Kk(Z k −HkX̂k|k−1

)
Pk = (I−KkHk)Pk|k−1(I−KkHk)

T + KkRkRk
T

(6)

where Kk is the KF gain, and X̂k and Pk are the optimal estimated state and its covariance
matrix, respectively.

In order to furtherly improve the accuracy, the pseudo noise increase (namely the
time-varying R) of the OINS-∆PGNSS model should be taken into consideration. The Sage-
Husa filter, which was proposed with a standard KF framework with the capability of
estimating the system state and noise parameters simultaneously, is a solution for the
increasing pseudo measurement noise. Its essence is matching the theoretical covariance
of the innovation or residual sequence with its practical equivalent [33]. The former
methodology is also known as the IAE (innovation-based adaptive estimation) filter and
the latter one as the RAE (residual-based adaptive estimation) filter. The RAE can only
estimate noise covariance with residuals prior to the current epoch, and once the current
epoch measurement precision is inconsistent with the historical precision, it is hard for this
methodology to guarantee estimation reliability [34]. Therefore, the IAE filter is adopted in
this paper.

The innovation is defined as Equation (7) shows:

Z̃k|k−1 = Zk− Ẑk|k−1
= (HkXk+Vk)−Hk X̂k|k−1
= Hk X̃k|k−1+Vk

(7)
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The state prediction error X̃k|k−1 is unbiased as the initial value is unbiased, and
the mean of the measured noise Vk is assumed to be zero. It can be concluded that the
innovation is zero mean. Since X̃k|k−1 and Vk are unrelated, the variance of Z̃k|k−1 can be
expressed as Equation (8):

E
[
Z̃k/k−1 Z̃

T
k/k−1

]
= HkPk/k−1HT

k+Rk (8)

The measurement noise matrix Rk is presented as:

Rk= E
[
Z̃k/k−1Z̃

T
k/k−1

]
−HkPk/k−1HT

k (9)

In theory, E
[

Z̃k/k−1 Z̃
T
k/k−1

]
can be replaced by the innovation average value over

time, and the Rk equally weighted recursive estimation equation can be constructed as
Equation (10):

R̂k = 1
k

k
∑

i=1

(
Z̃i|i−1 Z̃

T
i|i−1−HiPi|i−1HT

i

)
= 1

k

[
(k− 1) R̂k−1 +

(
Z̃k|k−1 Z̃

T
k|k−1−HkPk|k−1HT

k

)]
=
(

1− 1
k

)
R̂k−1 +

1
k

(
Z̃k|k−1 Z̃

T
k|k−1−HkPk|k−1HT

k

) (10)

The Sage-Husa AKF is fully constructed while the R̂k is substituted into Equation (6),
and the filter can estimate the noise matrix in time and adjust the KF gain.

3. Implementation of the Proposed Algorithm
3.1. Training and Testing Dataset Description

In order to train and verify the performance of the proposed algorithm, a dataset was
acquired with equipment mounted on a land vehicle shown in Figure 3. The data collection
equipment consisted of micro-electromechanical systems (MEMSs) IMU whose crucial specifi-
cations are summarized in Table 1 and a single-frequency GNSS receiver chip. Meanwhile, a
set of reference data was gathered with NovAtel SPAN CPT.experimental platform.

Figure 3. Data acquisition experimental platform.
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Table 1. Hardware specifications.

Performance Parameter

Gyroscope bias stability 8◦/h
Gyroscope angle random walk 0.12◦/sqrt(h)

Accelerometer bias stability 0.2 mg
Accelerometer velocity random walk 0.09m/s/sqrt(h)

The dataset was collected in Wuhan City, Hubei Province, China, and the dataset
collection trajectory is shown in Figure 4. The total length of the dataset was 5200 s (GPS
time: 198,900–204,100). Among them, data from GPS time 198,900 to 201,900 s were utilized
as the GRU network training dataset, and data from GPS time 201,900 to 204,100 s were
used as the testing dataset.

Figure 4. Dataset collection trajectory.

3.2. Training Process

The GRU module was trained with 12 input parameters, including the 3-axis gyroscope
data, 3-axis accelerometer data, and 3-axis velocity and attitude data. Meanwhile, the GNSS
position variation ∆PGNSS was taken as the training label. To balance the training efficiency
and predicting accuracy, the GRU model comprised a GRU layer and a fully connected layer
activated by the sigmoid function. Furthermore, two significant hyperparameters were
utilized, namely the number of neurons and the step time. In order to accelerate the training
convergence rate and prevent overfitting, experiments were carried out for the adjustment
of both hyperparameters, and the prediction performance is shown in Table 2. Four kinds
of time step (1, 2, 4, 8) and hidden neurons of GRU (32, 64, 128, 256) were evaluated. As
is shown in Table 2, the training time of the network increases with the increase of both
hyperparameters, whereas the prediction accuracy is not positively correlated with them.
The position accuracy predicted by 128 neurons surpasses that predicted by 32, 64, and
256 neurons. An excessive neuron number could result in the overfitting phenomenon and
degradation of the generalization performance while an insufficient neuron number cannot
express the relationship between OINS and ∆PGNSS adequately. After setting the hidden
neurons as 128, it can be seen in Table 2 that the prediction accuracy with a time step of
4 surpasses the other two groups. Therefore, the neural number and time step were set as
128 and 4, respectively.
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Table 2. GRU performance with different hyperparameters.

Time Step Hidden
Neurons North RMSE/◦ East RMSE/◦ Training Time/s

(per Epoch)

1 32 4.05 × 10−8 6.16 × 10−8 0.269
2 32 3.96 × 10−8 5.20 × 10−8 0.324
4 32 3.99 × 10−8 7.18 × 10−8 0.486
8 32 4.36 × 10−8 5.26 × 10−8 0.861
1 64 4.12 × 10−8 4.52 × 10−8 0.610
2 64 4.86 × 10−8 4.18 × 10−8 0.741
4 64 7.83 × 10−8 1.06 × 10−7 0.991
8 64 4.35 × 10−8 5.08 × 10−8 1.679
1 128 3.66 × 10−8 3.56 × 10−8 1.017
2 128 3.16 × 10−8 3.61 × 10−8 1.554
4 128 3.05 × 10−8 3.04 × 10−8 1.900
8 128 4.96 × 10−8 5.44 × 10−8 2.781
1 256 3.04 × 10−8 3.71 × 10−8 2.63
2 256 3.54 × 10−8 4.48 × 10−8 3.171
4 256 4.41 × 10−8 4.75 × 10−8 3.903
8 256 3.63 × 10−8 6.28 × 10−8 6.645

4. Test and Result Analysis
4.1. GRU Prediction Accuracy

The GRU network prediction accuracy was verified with the 2200 s (GPS time:
201,900–204,100 s) test dataset. Meanwhile, an LSTM network and MLP network were
constructed as comparison groups. The LSTM network consisted of an LSTM layer with
128 neurons and a fully connected layer activated by the sigmoid function, and the time
step was set as 4. The MLP network consisted of 128 neurons but without the time step pa-
rameter. The truth value was acquired by SPAN-CPT, and the predicted position variation
root mean square error (RMSE) values of the different networks are summarized in Table 3.
The prediction RMSE values of the GRU, LSTM, and MLP network in the North direction
are 3.05 × 10−8, 3.24 × 10−8, and 6.49 × 10−7, and the RMSE values in the East direction
are 3.04 × 10−8, 4.96 × 10−8, and 6.81 × 10−7. It can be concluded that both recurrent
networks (LSTM and GRU) have a similar prediction accuracy and visibly surpass the
performance of the MLP network. On the other hand, the training time consumption per
epoch of GRU and LSTM is 1.90 and 2.19 s and this result verifies that the GRU network
surpasses LSTM in efficiency. The comparison results between LSTM and GRU are also
consistent with the conclusion of [27].

Table 3. The predicted position variation RMSE of the different networks.

North RMSE/rad East RMSE/rad

GRU 3.05 × 10−8 3.04 × 10−8

LSTM 3.24 × 10−8 4.96 × 10−8

MLP 6.49 × 10−7 6.81 × 10−7

The North and East position variations in the GRU prediction, LSTM prediction, and
MLP prediction and truth value are shown in Figure 5a,b, respectively. As Figure 5 indicates,
the predicted value of GRU and LSTM identifies the truth value while the MLP-predicted
value obviously differs from the truth value.

Figure 6 shows the GRU-, LSTM-, and MLP-predicted horizontal trajectory, which is
an integral value of the predicted position variation. More specifically, the below trajectory
reflects the change in the position of each epoch relative to the starting point (GPS time:
201,900 s, latitude: 30.44681283◦, longitude: 114.461966◦). As shown in Figure 6, the starting
points of the predicted curves are consistent with that of the reference curve, and then
the prediction position error accumulates gradually. The reason for this phenomenon is
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that the predicted position variation, namely ∆PGNSS, inevitably includes error, and the
prediction error, which is positively related to the measurement noise, can accumulate
while the ∆PGNSS is integrated into pseudo PGNSS, thus it is necessary to adopt AKF to
estimate the pseudo GNSS measurement noise matrix.

Figure 5. Position variation between GPS time 201,900 and 204,100 s. (a) North position variation;
(b) East position variation.
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Figure 6. Predicted and real horizontal trajectories.

4.2. Integrated Navigation Accuracy

In order to verify the performance of the GRU-aided AKF algorithm, a period of
180 s (GPS time:202,100–202,280 s) and a period of 120 s (GPS time: 202,300–202,420) were
selected from the test dataset to simulate a GNSS outage. The position information derived
from the proposed GRU network replaces the real GNSS information in the measurement
update process of AKF and KF. Meanwhile, the LSTM-aided KF, MLP-aided KF, and
not-aided KF were also adopted as control groups.

As is shown in Figure 7, the MLP, LSTM, and GRU network could suppress the
velocity error accumulation in both the North and East directions. The maximum velocity
errors in the North and East directions estimated by the above-mentioned algorithm are
summarized in Table 4. Compared with the not-aided KF, MLP-aided and LSTM-aided KF,
and GRU-aided KF methods, the proposed GRU-aided AKF reduced the maximum North
velocity error by 7.071%, 6.105%, 3.922%, and 5.431%, and the maximum east velocity error
by 36.686%, 34.896%, 26.87%, and 25.595%.

Table 4. Maximum velocity errors after 180 s GNSS outage.

North Velocity Error East Velocity Error

Not-aided KF 3.691 m/s 2.764 m/s
MLP-aided KF 3.653 m/s 2.688 m/s

LSTM-aided KF 3.570 m/s 2.393 m/s
GRU-aided KF 3.627 m/s 2.352 m/s

GRU-aided AKF 3.430 m/s 1.750 m/s

Figure 8 shows a comparison of the North, East, and horizontal errors of different
algorithms during the 180 s GNSS outage. It is illustrated in Figure 8 that the LSTM-aided
KF and GRU-aided KF have almost the same position error during the 180 s GNSS outage,
and the GRU network is a better choice due to its higher efficiency. Meanwhile, the GRU-
aided AKF’s prediction accuracy exceeds that of the GRU-aided KF after the 120 s GNSS
outage, and it can be concluded that the proposed GRU-aided AKF is better suited to a
long period of GNSS outage.

The maximum position errors and position error RMS during the 180 s GNSS outage
are summarized in Table 5. The quantitative analysis indicates that the proposed GRU-
aided AKF algorithm reduced the maximal horizontal error by 76.03%, 70.10%, 32.30%, and
31.76%, and the horizontal error RMS by 83.03%, 76.55%, 33.40%, and 31.99% compared
with the Not-aided, MLP-aided, LSTM-aided, and GRU-aided KF, respectively. Meanwhile,
by comparing the data of the MLP-aided, LSTM-aided, and GRU-aided KF, it can be
concluded that both recurrent neural networks, namely the LSTM and the GRU, have a
similar positioning accuracy and surpass the performance of MLP.
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Figure 7. Velocity errors of 180 s outages estimated by different algorithms. (a) North velocity error;
(b) East velocity error.

Table 5. Position errors after the 180 s GNSS outage.

Maximal
North Error

Maximal
East Error

Maximal
Horizontal Error

Horizontal Error
RMS

Not-aided KF 303.866 m 227.599 m 379.652 m 157.182 m
MLP-aided KF 281.452 m 116.134 m 304.471 m 113.758 m

LSTM-aided KF 120.761 m 59.109 m 134.452 m 40.062 m
GRU-aided KF 117.314 m 63.462 m 133.379 m 39.232 m

GRU-aided AKF 78.949 m 45.294 m 91.019 m 26.680 m
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Figure 8. Position errors of 180 s outages estimated by different algorithms. (a) Latitude position
error; (b) longitude position error; (c) horizontal position error.

Figure 9 shows a comparison of the North, East, and horizontal errors of the dif-
ferent algorithms during the 120 s GNSS outage. It is obvious that all of the AI-aided
algorithms surpass the no-aided one and all of the recurrent neural network-aided algo-
rithms surpassed the MLP-aided one regarding the positioning accuracy. Besides, it can be
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observed that the proposed GRU-aided AKF position error curve is lower than that of the
control groups.

Figure 9. Position errors of 120 s outages estimated by different algorithms. (a) Latitude position
error; (b) longitude position error; (c) horizontal position error.

The maximum position errors and position error RMS during the 120 s GNSS outage
are summarized in Table 6. The proposed GRU-aided AKF algorithm reduced the maximal
horizontal error by 82.65%, 50.36%, 12.68%, and 16.12% and the horizontal error RMS



Remote Sens. 2022, 14, 752 14 of 16

by 75.39%, 42.17%, 8.56%, and 12.22% of the not-aided, MLP-aided, LSTM-aided, and
GRU-aided KF, respectively. By comparing the not-aided KF and the proposed GRU-aided
AKF horizontal error RMS in Tables 5 and 6, it can observed that the proposed algorithm
reduced the horizon error RMS by 75.39% and 83.03% under the 120 and 180 s GNSS outage
respectively. This indicates that the proposed algorithm performs better during longer
periods of GNSS outage.

Table 6. Position errors after the 120 s GNSS outage.

Maximal
North error

Maximal
East Error

Maximal
Horizontal Error

Horizontal Eerror
RMS

Not-aided KF 109.639 m 105.480 m 152.141 m 64.258 m
MLP-aided KF 28.513 m 30.177 m 53.285 m 27.342 m

LSTM-aided KF 19.990 m 26.512 m 30.291 m 17.294 m
GRU-aided KF 21.227 m 26.467 m 31.532 m 18.015 m

GRU-aided AKF 21.331 m 20.544 m 26.450 m 15.813 m

5. Discussion

The main advantages of the GRU and AKF hybrid algorithm can be summarized as
follows: (1) A high efficiency recurrent neural cell with a simple structure, namely the
GRU, was chosen to estimate the pseudo position variation. Benefiting from proper neural
cell selection and hyperparameter setting, the proposed algorithm possesses superior
navigation accuracy and training efficiency. (2) This paper combined the modern artificial
intelligence methodology and conventional adaptation theory to improve the navigation
accuracy during GNSS outage. The experiment results under different time scales indicate
that the hybrid algorithm surpasses the stand-along adaptive and AI methods.

Meanwhile, further improvements of this work are summarized as follows: (1) The
algorithm is currently run on PC and cannot satisfy the real-time dynamic navigation
requirement. A potential solution is to integrate the AI chip and the embedded platform.
The integrated computational platform could support the proposed method, and has lower
power and less volume advantages compared with PC. (2) The training and testing dataset
could not cover all the application scenarios, and the GRU network should be trained with
more different types of data. As the amount of training data grows, the proposed algorithm
will acquire better applicability and adaptability.

6. Conclusions

Aiming to improve the positioning accuracy of INS/GNSS integrated navigation
during GNSS outage, this study proposed a GRU and AKF-based integrated navigation al-
gorithm. Owing to proper neural cell selection and hyperparameter setting, the constructed
GRU network has a higher prediction accuracy and higher training efficiency. Furthermore,
the proposed algorithm introduces adaptive KF to reduce the position error by estimating
the GRU prediction error dynamically. Compared with the standard KF-based integrated
navigation algorithm, the test results show that the hybrid algorithm reduces the root
mean square error by 83.03% and 75.39% and the maximum position error by 76.03% and
82.65% during the 180 and 120 s GNSS outage, respectively. The algorithm can improve
the navigation accuracy at different time scales, and has real-time navigation application
potential due to its high efficiency.
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