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We describe here a precise mathematical framework for the study 
of discrete event systems. The idea i s  to define a particular type of 
stochastic process, called a generalized semi-Markov process 
(GSMP), which captures the essential dynamical structure of  a dis- 
crete event system. The paper also attempts to give a flavor of the 
qualitative theory and numerical algorithms that can be obtained 
as a result of viewing discrete event systems as GSMPs. 

I. INTRODUCTION 

Afundamental obstacle to the study of discrete event sys- 
tems i s  the lack of a comprehensive framework for the 
description and analysis of such systems. In this paper, we 
attempt to give such a framework. 

The idea that we shall pursue here is to define a particular 
type of stochastic process, called a generalized semi-Mar- 
kov process (CSMP), which captures the essential dynam- 
ical structure of a discrete event system. We view the CSMP 
framework both as a precise "language" for describing dis- 
crete event systems, and as a mathematical setting within 
which to analyze discrete event processes. 

We start, in Section II, by giving an abstract description 
of a discrete event system. At this level of abstraction, some 
of the connections between continuous variable dynamic 
systems (CVDSs) and discrete event dynamic systems 
(DEDSs) become clear; this discussion is in the spirit of [9]. 
Section Ill specializes the above abstract framework by 
specifying a CSMP as a particular type of event-driven sto- 
chastic process. The CSMP structure is then immediately 
applied to develop a variance reduction technique that i s  
potentially applicable to a vast array of discrete event sim- 
ulations. 

In Section IV, the CSMP framework is specialized still fur- 
ther, thereby yielding the class of time-homogeneous 
CSMPs. These processes can be analyzed via Markov chain 
techniques. These Markov chain ideas are then exploited 
in order toobtain somequalitative results pertaining to the 
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"long-run" behavior of discrete event systems. Section V 
explores the relationship between continuous-time Mar- 
kov chains, semi-Markov processes, and GSMPs. 

Section VI returns to time-homogeneous GSMPs, this 
time exploring the qualitative theory from a regenerative 
process point of view. A new type of regenerative structure 
i s  described for discrete-event systems which are sched- 
uled by "exponentially bounded" distributions. This tech- 
nique can be applied to more general GSMPs with some 
additional work, but we present here only the current ver- 
sion. With the aid of regenerative process ideas, a strong 
law and a central limit theorm for discrete event systems 
are established. In our opinion, these results are typical of 
what we can expect to hold for "well-behaved" discrete 
event processes. 

Finally, in Section VII, we give a flavor of the computa- 
tional enhancements to discrete event simulations that are 
possible by making explicit use of the GSMP framework. 
Specifically, likelihood ratio ideas for importance sampling 
are briefly described. 

II. THE CVDSiDEDS ANALOGY 

Suppose that we wish to model the output process (s(t): 
t 2 0) corresponding to a (deterministic) CVDS. Frequently, 
the approach taken is to try to represent s ( t )  in the form s ( t )  
= h(x(t)), where x ( t )  i s  some suitably chosen characteriza- 
tion of the "internal state" of the system. Thus, given the 
output process (s(t): 0 I s 5 T ) ,  we can extend the output 
process to the interval (T,  T + h] by computing the internal 
state x over the interval and setting s ( t )  = h(x(t)) ,  T < t 5 
T +  h.  

The typical approach used to model a DEDS i s  similar in 
concept. We first recall that DEDSs are frequently used as 
models of systems having piecewise constant trajectories. 
For example, the trajectoryof a queueing system i s  constant 
between arrival and departure epochs of customers. As a 
consequence, if ( S ( t ) :  t 2 0 )  is the output process corre- 
sponding to a discrete event system, i t  typically takes the 
form 

m 

S( t )  = c S,/(A(n) 5 t < A(n + 1)) (2.1) 
n = O  
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where we require that 0 = A(0) < A(1) < . . . . (/(A) rep- 
resents an indicator function which i s  one or zero depend- 
ing on whether or notA occurs.) In  the representation (2.1), 
S, represents the output state at the nth transition epoch, 
and A(n) i s  the instant at which the nth transition occurs. 
Then, An+l = A(n + 1) - A(n)  i s  the time between the nth 
and (n + 1)th transitions of (S( t ) :  t 2 0). 

To characterize the dynamics of the output process 
(S(t):  t 2 O), we assume the existence of a stochastic 
sequence X = (X,,: n 2 0 )  which describes the time-evo- 
lution of the internal state of the system. (We permit X to 
be stochastic in order to allow the discrete event system to 
have random behavior.) We require that the (S,, A,)’s be 
related to  the internal state sequence X via a mapping of 
the form (S,, A,,) = (b,(X,,), bZ(Xn)). Given the output process 
(S(t):  0 5 t I A(n)), we can then extend the output process 
to the interval (A(n) ,  A(n + I ) ]  by first computing X,,,. We 
thencalculateA,+, = b,(X,,+,),A(n + 1) = A(n)  + A,+,,and 
set S(t )  = S(A(n)) for A(n) < t < A(n + 1). We complete the 
extension to (A(n), A(n + I ) ]  by calculating S n + ,  = 
b7(X,,+,) and setting S(A(n + 1)) = S,,,. This recursive 
approach to defining (S(t):  t 2 0) works, provided that the 
output process i s  nonexplosive (i.e., A(n) + 00 a.s. as n + 

-). 
The above discussion shows that both the CVDS and 

DEDS approaches to  modeling the output of a system are, 
in principle, solved, once we characterize the internal state 
of the system. For a CVDS, perhaps the most general char- 
acterization is to assume that the internal state process x 
= (x(t): t 2 0) satisfies a relation of the form 

x = f (x)  (2.2) 

for some mapping f. In other words, for each t L 0, this 
formulation requires specifying a mapping f(t, .) for which 

x(t)  = f(t, x(s): 0 I s < W) (2.3) 

must hold.TheanalogousconditionforaDEDS is torequire 
that there exist a sequence of independent r.v.‘s 7 = 
(7”: n 2 0), and a map f such that 

x = f (X,  7). (2.4) 

This i s  equivalent to requiring the existence of a family of 
(component) mappings f,+,(.) such that 

X n + l  = fn+7(Xk, v k :  0 I k < w). (2.5) 

The resemblance between (2.2)-(2.3) and (2.4)-(2.5) should 
be clear. 

Of course, the noncausal nature of (2.3) creates difficul- 
ties both mathematically and computationally. Further- 
more, formulation of a model for x directly in terms of the 
mappings ( f ( t ,  .): t 2 0) i s  often unnatural. As a conse- 
quence, it i s  more typical to  limit models of the internal state 
process x = (x( t ) :  t 2 0)  to  relations of the form 

for some prescribed family of mappings ( f ( t ,  .): t 2 O), and 
initial condition xo. (Note that we are now implicitly assum- 
ing that the internal statetakesvalues in i d.)The model (2.6) 
is causally defined in terms of the infinitesimal character- 
istics of the system. The “local specification” that i s  implicit 
in asserting that x satisfies a given differential equation i s  

generally easier to formulate from a modeling point of view 
than the “global specification” implicit in (2.3). Note that 
the representation (2.6) permits x to be described by dif- 
ferential equations with delay, as well as certain types of 
integro-differential equations. 

Of course, the analog to the causal representation (2.6) 
for a DEDS i s  to assume that the internal state sequence X 
satisfies 

In Section I l l ,  we describe afamily of discrete event systems 
in which X has the general form given by (2.7). 

A limitation of the causal models (2.6) and (2.7) i s  that the 
mathematical theory available to  study such unstructured 
systems i s  rather poorly developed. Fortunately, in many 
applications of CVDS, it is possible to  choose the internal 
state process x so that the dynamics are described by a dif-. 
ferential equation of the form 

x ‘ ( t )  = f ( t ,  x ( t ) )  

x(0) = xg. 
s.t. 

As we shall indicate shortly, the mathematical theory per- 
tinent to (2.8) i s  quite extensive. 

The DEDS analog of the representation (2.8) i s  to require 
that the internal state sequence X satisfy a recursion of the 
form 

Such representations can often be obtained for systems sat- 
isfying (2.7), provided that a judicious choice of state space 
is made. Specifically, it i s  often possible to  adjoin ”sup- 
plementary variables” x n  to a state descriptor X, satisfying 
(2.7), to obtain a new state sequence X; = (X,,, x,) satisfying 
(2.9). 

The mathematical power of the representation (2.9) i s  a 
consequence of the following easily proved result. 

Proposition I :  Suppose that X satisfies (2.9), and that the 
r.v.’s { x o ,  7”: R L I }  are independent. Then, X i s  a Markov 
chain (i.e., P{X,+, E . IX,,, . . * , X,} = P { X , + ,  E . IX,}). 

A substantial literature on the theory of Markov chains 
can beapplied totheanalysisof DEDSforwhich the internal 
state sequence satisfies the conditions of Proposition 1. 
Similarly, thevast mathematical theoryon differential equa- 
tions i s  directly relevant to CVDS satisfying the represen- 
tation (2.8). For example, existence theory for the differ- 
ential equation (2.8) basically yields conditions under which 
there exists an output process (compatible with (2.8)) which 
can be defined over the entire semi-infinite interval [0, a). 
The DEDS counterpart involves deriving conditions under 
which (S(t):  t 2 0) i s  nonexplosive. 

Much of the differential equations literature on systems 
satisfying (2.8) pertains to  systems obeying the stronger 
condition 

x’ ( t )  = f ( x ( t ) )  
s.t. (2.70) 

x ( 0 )  = xo. 

This literature typically focuses on the large-time behavior 
of the internal state process (x(t): t L 0). This, in turn, is 
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strongly related to the study of the set {x: f(x) = 0) of equi- 
librium points for (2.10). 

The DEDS counterpart to (2.10) requires a model for- 
mulation in which the internal state sequence X takes the 
form 

(2.11) 

The following result i s  easilydemonstrated, and so the proof 
is omitted. 

Proposition 2: Suppose that X satisfies (2.11). In addi- 
tion, assume that {v,: n 2 I}  is a collection of indepen- 
dent identically distributed (i.i.d.) r.v.'s, independent of 
x,. Then, X is a time-homogeneous Markov chain (i.e., 
there exists a transition function P(x, A )  such that 

As in the CVDS setting, much of the mathematical lit- 
erature on Markov chains of the form (2.11) concentrates 
on study of the long-run behavior of the system. The con- 
cept of equilibrium point is now replaced by that of an in- 
variant probability distribution. A probability distribution 
T i s  said to be invariant for the (time-homogeneous) Markov 
chain X if 

PIX,,, E . 1x0, . . . , X,) = P(X,, . ) I .  

ddy )  = SI ddx )  P(x, dy) (2.12) 

(E i s  the state space of X). In  the presence of irreducibility 
hypotheses on  X, the existence of an  invariant probability 
distribution T typically implies that for each (measurable) 
subset A of C 

as n --t 03, for every possible initial condition xg. The anal- 
ogous CVDS concept is that of (global) stability: there exists 
2 such that x(t) --t I as t + 00, for every possible initial con- 
dition xo. (See Coddington and Levinson [3] for further 
detai I s.) 

As the above discussion suggests, most of the mathe- 
matical theory pertaining to systems of the form (2.10) and 
(2.11) i s  qualitative in nature. A major computational dif- 
ference between CVDS and DEDS i s  that the numerical 
determination of equilibrium points i s  significantly simpler 
than that of calculating invariant probability distributions. 
Nevertheless, it is our view that the above analogy between 
CVDS and DEDS is useful in developing an understanding 
of the major theoretical issues arising from discrete event 
systems. 

Ill. GENERALIZED SEMI-MARKOV PROCESSES 

Consider a discrete event system in which the internal 
state sequence X has the causal representation (2.7). Then, 
if 5,  = u(Xo, . . . , X,) is the o-field corresponding to the his- 
tory of X up to time n, we find that 

P{X,+l E . IF,} = R . ;  x,, . . . , X,) (3.1) 

where the conditional probability appearing on the right- 
hand side of (3.1) i s  defined by 

The discrete event system evolves in  time by recursively 
generating X, + 1  from the conditional distribution (3.2). 
OnceX,+, isobtained, S n + ,  andA,+, can becalculated by 
using the transformations hl  and h,. 

Oi course, most discrete event systems of interest have 
more structure than that which we have described above. 
Specifically, discrete event systems are typically charac- 
terized by two different types of entities, namely states and 
events. In  a queueing network, the states generally cor- 
respond to queue-length vectors describing the number of 
customers at each station of the network. The set of events 
lists the different ways in which the queue-length vector 
can change as a customer completes service at one station 
and moves to the next. 

To mathematically describe the dynamics of this type of 
system, we IetSdenotethe (finiteorcountable) set of states, 
and E denote the (finite or countable) set of events. A state 
s E S  is termed aphysicalstate, in order to distinguish such 
states from the state space corresponding to the internal 
state sequence of the discrete event system. For each s E 

S, let E(s) be a nonempty finite subset of E denoting the set 
of events that can trigger transitions out of state s. 

Example 1: To model an open queueing network with d 
stations and one class of customers, we let S = Z +  x Z +  
x . . .  x Z +  (d times). The vector s = (s(l), . . . , s(d)) E S 
will then represent the queue-lengths (including the cus- 
tomer at the server) at each of the d stations. A state tran- 
sition occurs via either of the following possibilities: an 
external arrival event or a departure event. Thus, E(s) = { ( i ,  
1): 1 5 i 5 d }  U { ( i ,  2): 1 5 i I d, s ( i )  2 I} ,  where ( i ,  1) 
corresponds to an external arrival to station I ,  and ( j ,  2) 
denotes a departure from station j .  

For each event e E Us), we can associate a clock. The read- 
ing c, on clock e can be viewed as representing (in some 
rough sense)theamountoftimethat has passed sinceclock 
e was last activated. 

Example 1 (continued): Suppose that there exists a single 
server at each of the d stations; each server works at unit 
rate. For e = ( i ,  I) ,  c, corresponds to the amount of time that 
has elapsed since the last external arrival to station i .  For 
e = ( j ,  2), c, denotes the amount of time that has passed 
since service was initiated on the customer at the server at 
station j .  

Theclockreadingsforeventeincreaseataspeedrse.Thus, 
the rate at which c, increases may depend on the physical 
state occupied by the discrete event system. 

Example 1 (continued): If each of the single servers serves 
at unit rate, then r,, = 1 for all s E S, e E E(s) .  On the other 
hand, to  model a server for which the service rate i s  pro- 
portional to the number of customers in queue at the sta- 
tion, we would set rse = r, . s ( j )  for e = ( j ,  2). 

TI. 
We adopt the convention that if c, = -1, then e i s  currently 
not active. (For example, event ( j ,  2) i s  not active when s ( j )  
= 0.) Thus, C(s)  = { c  E ( TI)': c, = -1 iff e + E(s ) }  is the set 
of clock readings possible in s E S .  

We now give a rough description of the dynamics of the 
discreteevent system. Suppose that at timeA(n), the system 
has just entered state s E S, and that the clock reading at 
that instant i s  represented by c E C(s). Each clock e E E(s) 
will now compete to  trigger a transition out of state s. The 
system evolves by first probabilisticallygenerating, for each 
event e E E ( s ) ,  a "residual lifetime" r.v. which represents the 

We let TI = { -1) U [0, 03) and assume that c, E 
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amount of time remaining until event e triggers a transition 
out of states. This residual lifetime has a distribution which 
depends, of course, on the values of c, and r,,. (It may also 
depend on the history 5 ,  in a more complicated way.) Hav- 
ing generated residual lifetimes for al l  the events e E f ( s ) ,  
the trigger event e* i s  simply the next event to be scheduled 
by the DEDS. In other words, the trigger event i s  the event 
e having the minimum residual lifetime. This minimal resid- 
ual lifetime therefore yieldSA,+, (i.e., the time between the 
nth and (n  + 1)th transitions). 

A new physical state s’ is now chosen stochastically; its 
distribution typically depends on both the previous state 
s and the trigger event e*. The events e E O b ’ ;  s; e*) = E(s’) 
- ( f ( s )  - {e* } )  have their clock readings incremented 
appropriatelyto reflect the speed r,,and the passageof time 
A,, , .  (Clocks e E Ob’; s, e*) are “old” clocks that continue 
to run in state s‘.) Clearly, the events e E N(s’; s, e*) = E(s’) 
- O(s’; s, e*) are the “new“ clocks, which will satisfy c,., = 
0 at time A(n + 1). Thus, we have calculated the physical 
state and clock readings at time A(n + 1). The process can 
now be repeated recursively to obtain the physical state/ 
clock readings at A(n + 2), A(n + 3), . . . . 

We shall now describe the time evolution of the system 
more precisely. Let C = Uses {s} x [0, a) x C(s). The inter- 
nal state sequence X will be assumed to take values in E. 
Specifically, the internal state at transition n i s  given by X, 
= (S,,, A,,, C,) E E. Thus, the first two components of X, cor- 
respond to  the physical state and ”holding time” of the sys- 
tem at the nth transition.The third component C, i s  avector 
denoting the state of the clocks at time A b ) .  Note that the 
mappings h,, h2 of Section II are given by h,(s, t, c) = s, 
h,(s, t, c) = t. 

If x, E C, i 2 0, the vector 2,  = (xo, . . . , x,) i s  a possible 

realization of in = (Xo, . . . , X,,). We now need to describe 
the conditional probability (3.2) (i.e., P { X , + ,  E . l i ,  = ?,}) 
in more detail. To set the stage, we assume that for all s E 

S, there exists an event e E f ( s )  such that r,, > 0. Thus, in 
every state, there exists at least one clock with positive 
speed. We further let p(s’;  ?,, e) be the (conditional) prob- 
ability that S,+, equals s’, given that X, equals ?,, and the 
trigger event e;+1 at transition n + 1 i s  e. Also, we assume 
the existence of a family F ( - ;  ?,, e) of probability distri- 
bution functions such that F(0; ?,, e) = 0 (i.e., F ( . ;  2, e) cor- 
responds to a positive r.v.). The distribution F ( . ;  ?,, e) helps 
govern the ”residual life” of clock e, given that = ?,,.We 
require that for each ?,,, there exists at most one clock e 
such that F(t; ?,,, e) i s  not continuous as a function of t. This 
guarantees that the trigger event e;+l will be uniquely 
defined for each 2,. Set 

- 

F,(x; ?,, e) = [ ( a x ;  ?,, e), a 2 0 

(s, i s  the first component of x,). Note that G(dt; ?,, e) rep- 
resents the probability, conditional on ?,,, that A,, ,  E dt, 
and e:+, = e. We can now rigorously define the conditional 
probability structure of the internal state sequence X. For 

A = {s’} x [0, TI  x X e e E ( - m ,  ael, let 

P { X , + ,  E A ~ Z , ,  = ?,} 

= C p(s‘;  ?,, e*) . /(ae. 2 - I )  
e’ tE(zn i  e ’$€ (< ’ )  

(c, i s  the clock reading vector of x,,). The product of indi- 
cators over e’+ E(s’)(e’E N(s’; s,; e*)) represents the fact that 
clockse$E(s‘)(e’EN(s’;s,,e*)) haveclock readingsof - l ( O ) .  
The product of indicator functions over Ob’; s,, e*) corre- 
sponds to  the fact that the “old” clocks need to be properly 
incremented to their new values at A(n + 1). 

The conditional probability distribution (3.3) asserts that 

wemaygenerateX,+,from 2, in the followingway. Wefirst 
generate independent r.v.’s Y,,,(e E f (S , ) )  from the condi- 
tional distributions F ( . ;  in, e). Then, A, , ,  = min { Y e , $  
rsn,e: e E E(S,)} and the trigger event e;,, i s  the (unique) 
event e E f (S , )  which achieves the minimum for A,, , .  We 
then generate S,,, from p ( . ;  2, e;+,). Finally, we set 

C n + , , e  = -1, e $ E ( % + , ) ,  

Cn + 1.e = 0, e E N(S, + ,; S,, eX + , I r  

C , , , , ,  = Cn,e + A , + ,  . rS,,,e, e E O(S,+l; S,, en++,). 

We call a discrete event system with an internal state 
sequence X satisfying (3.3) a (time-inhomogeneous) gen- 
eralized semi-Markov process. The term ”time-inhomoge- 
neity” reflects the fact that the ”residual life” distributions 
and state transition probabilities p(s’; ?,, e) can depend 
explicitly on the entire history of X. For example, these 
probabilitydistributions may depend explicitlyon A(n)  (i.e., 
the time of the nth transition); see Section VI1 for further 
details. Furthermore, as we shall show in Section V, these 
processes do indeed extend the notion of the semi-Markov 
process, thereby justifying use of the term generalized semi- 
Markov process. For the remainder of this paper, we will 
refertodiscrete-event systems satisfying(3.3) simplyasgen- 
eralized semi-Markov processes. 

We conclude this section with an illustration of how we 
can exploit the causal structure of DEDS satisfying (2.7) to 
obtain improved statistical efficiency for associated simu- 
lations. Specifically, suppose that we wish to calculate, via 
simulation, an expectation of the form 

a = Ef(X,, . . . , X,) 

( f :  C x . . . x C (n + 1 times) + ). The standard approach 
would first replicate the r.v. f (Xo ,  . . . , X,) m independent 
times, and then form the sample mean of the m observa- 
tions. 

However, an alternative estimator, based on control var- 
iates, i s  often available. Suppose there exists a random d- 
vector ,y such that Ex = 0. Such a vector x is known, in the 
simulation literature, as a control. Then 

C(X) = fCX,, . . . , X,) - XtX 

i s  an unbiased estimator of a for all X E 

convention that all elements of 
‘. (We adopt the 

dare written as column 
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vectors.) Since X is at our disposal, we may choose h to min- 
imize var C(h) .  The optimal value of h i s  given by 

(3.4) 

To implement the method of control variates, we generate 
m independent copies of the pair (f(X,, . . . , X,), x). I f  A, 
i s  a sample-based estimate for X*, we obtain an (asymptotic) 
improvement over the original estimator by using a sample 
mean of the C(X,)'s rather than f(Xo, . . . , X,)'s. The basic 
idea underlying the use of control variates i s  that we are 
"filtering out" the noise in f(Xo, . . . , X,) due to x; this then 
reduces the variance of the resulting estimator. 

The key to the method of control variates i s  to obtain an 
easily calculated control x which is highly correlated with 
f(X,, . . . , X,). It turns out that the causal structure rep- 
resented by (2.7) can be used to easily obtain control 
variates. Suppose that the conditional distribution (2.7) has 
the property that for some real-valued function g, the con- 
ditional mean 

A *  = (Exx')-l . Exf(X,, . . . , X,). 

gGn) = E{g(x"+l)l2" = 2 , )  

may be easily calculated. For example, if the DEDS i s  a 

GSMP, the conditional means E{C,+, ,/X, = .'} often have 
simple analytical closed-forms. 

Let D, = g(x,) - g(2n-l) for n 2 I. If Eg2(X,) < 03 for n 
2 0, it may be easily verified that the r.v.'s D,, D 2 ,  . . . , D ,  
are martingale differences with respect to the sequence of 
u-fields (9,: m 2 0). Consequently, D,, . . . , D,, are orthog- 
onal mean-zero r.v.'s. Since the D,'s have mean zero, it fol- 
lows that x = (D1, . . . , D,)' i s  a control. The orthogonality 
of the D,'s implies that E X X '  is a diagonal matrix. Thus, (3.4) 
simplifies to 

- 

A: = ED,f(X,, ' . . , X,)/ED: (3.5) 

provided that Ef2(Xo, . . . , X,) < m, and ED: > 0. Hence, 
an advantage of the martingale controls described here i s  
that A, need estimate only 2n  parameters in (3.5), as 
opposed to (n2 + 3n)/2 in (3.4). 

The above discussion shows that the method of control 
variates is generally applicable to DEDS in which the inter- 
nal state sequence i s  causally generated. In  particular, mar- 
tingale control variate schemes can be applied to  GSMPs. 

IV. TIME-HOMOGENEOUS GSMPs 

In this section, we examine a class of GSMPs, which also 
satisfy (2.11). As shown in Proposition 2, this will guarantee 
that X i s  a time-homogeneous Markov chain. 

In many discrete event systems, the constituent condi- 
tional probability distributions F ( . ;  .',, e) and p ( . ;  ,?,, e) 
defining a GSMP simplify considerably. 

Example I (continued): Suppose that customers are 
routed through the queueing network via a substochastic 
Markovian switching matrix P. Then, the state transition 
probabilitiesp(.; .',,e) take the form p ( . ;  s,, e). This means 
that the probability distribution of S,,, depends only on 
the current physical state s, and the trigger event e. Let 
e', denote the i th unit vector. The specific form of the state 
transition probabilities i s  given by 

1, if s' = s + e', i 0, if s' # s + e', 
p(s ' ;  s, (i, 1)) = 

Suppose that we further assume that the external arrival 
stream to the i th station i s  a renewal process with contin- 
uous interarrival distribution F,. Also, suppose that each 
server employs a first-comeifirst-serve queueing discipline 
in which the service requirements for the consecutive CUS- 
tomers served at the i th station are i.i.d. with common con- 
tinuous distribution G,. 

I f  e = ( i ,  I), the clock reading cn,, i s  the amount of time 
(at the instant Ab) )  that has passed since the last customer 
arrivedexternallytostation i .  Fore = (j,2),theclock reading 
c , , ~  is interpreted as the amount of service requirement that 
has been processed on the customer that is in service at 
station j at time A(n). 

Assume that the service rate of the server at station i is  
r ,  . s ( i ) ,  so that the rate i s  proportional to the number of 
customers in queue at station i. Given the above assump- 
tions, the conditional distribution F(dt; ,?", e) 
= F(dt; c,,,, e) so that the conditional probability distri- 
bution function for clock e depends on the history of Xonly 
through c",?. For e = ( i ,  I ) ,  the exact form of the conditional 
distribution is given by 

F ( r ;  c,,,, e) = F, ( t  + c,,,)/F,(c,,,) 

whereas for e = ( j ,  2), 
- 

F ( t ;  c,,,, e) = C/(t + c,,,$~/(c,,,,). 

Building on the above example, suppose that we have a 
GSMP for which there exists a family of distributions (Fe: 
e E E ) ,  and a family of state transition probabilities 
( p ( . ;  s, e): s E S, e E E(s ) )  such that 

and 

If a GSMP satisfies the additional conditions (4.1H4.21, 
we refer to the discrete-event system as a time-homoge- 
neousGSMP. Noting that P{X,+, E . 12, = ?,} can be rep- 
resented in the form P(x , ,  .), we see that the internal state 
sequence of a time-homogeneous GSMP i s  a time-homo- 
geneous Markov chain. 

The Markov structure of a time-homogeneous GSMP can 
be fruitfully exploited to study the long-run behavior of the 
corresponding discrete event system. The following result 
shows that the long-run behavior of the output process (S(t):  
t 2 0) can be calculated from that of the internal state 
sequencex. (In order that Theorem 1 hold, the system need 
not even be a GSMP.) 

Theorem I :  Let f be a real-valued function. Suppose that 

a s  - 1 " - l  C f ( S J A , + ,  + pi  

n / = o  

1 " - l  a.s.  

- z: A / + ,  --* P2 n / = o  
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where pl, p 2 ,  p 3  are finite r.v.’s with ,u2 > 0 as. Then 

a s t + w .  
The proof of this result is similar to  that of Proposition 

2 of Glynn and lglehart [5] and so i s  omitted. 
To examine the long-run behavior of the Markov chain 

X, we study the question of existence of invariant proba- 
bility distributions for X. 

Theorem 2: Let X be the Markov chain corresponding to 
a time-homogeneous GSMP with the following properties: 

i) /SI  < 
ii) Fe i s  continuous with Fe(0) = 0, for all e E E 
iii) r,, > 0 for all s E S, e E E(s) 
iv) Fe(c) < 1 for all e E E ,  c < OD 
V) For all E > 0, e E E ,  there exists K such that f e ( K  + c)/ 

fe(c) < E uniformly in c. 
- 

Then, X has an invariant probability distribution a. 
For the proof, see the Appendix. Suppose that Fe( . )  has 

a density f e ( . ) .  Then the hazardrate function he(.) i s  defined 
via he(t) = fe(t)/Fe(f)(Fe(t) = 1 - Fe(t)). Condition v) is satisfied 
if the hazard rate function i s  bounded below by a positive 
constant (i.e., inf {h,(t): t 2 0)  > 0). It i s  also satisfied by 
any finite-mean distribution which is new, better than used, 
in expectation (see [7] for a discussion of such distribu- 
t i  o n s) . 

Hypotheses i)and v)ofTheorem2guarantee thattheMar- 
kov chain X spends a large fraction of time in compact sub- 
sets of E; this, in turn, guarantees the type of “positive 
recurrence” needed to  obtain the existence of invariant 
probabilitymeasures.The proof alsodemands that thetran- 
sition function of X be contlnuous in a certain sense; con- 
ditions ii)-iv) yield the required continuity. 

Let P,( .)(E,,( .)) denote the probability (expectation) on the 
path space of X under which Xo has distribution p. 

Theorem 3: Let X be the Markov chain corresponding to 
a time-homogeneous GSMP with the following properties: 

i) (SI  < 03 

ii) jro,m, tF,(dt) < 03, e E E 
iii) For all s, s’ES, e E E ( s )  with p(s’; s, e) > 0, there exists 

e’ E N(s’; s, e) such that r,.,,. > 0. 

Then, if X has an invariant probability distribution a, 

For the proof of Theorem 3, see the Appendix. The point 
of Theorem 3 i s  that it gives sufficient conditions for the 
finiteness of €,Al and E,(f(So)(Al.  Such moment conditions 
are necessary in order to apply the ergodic theorem. The 
following result is an immediate consequence of Birkhoff’s 
ergodic theorem and Theorem 1. (We need the continuity 
of the Fe(. ) ‘s  in order to  guarantee that P { A l  > OlX, = x }  
= 1 for a l l  x E E. This ensures that € , {A, (g}  > 0 a.s.). 

Proposition 3: Let X be the Markov chain corresponding 
to a time-homogeneous GSMP. Suppose that there exists 
an invariant probability distribution a for X such that €,Al 
< 03 and E,lf(So)(Al < W. We further assume that Fe( . )  i s  
continuous for all e E E. Then 

E,(f(so)(Ai < W. 

as t --t 00, where 9 i s  the invariant u-field corresponding to 
X. 

Theorems 1-3, together with Proposition 3, give condi- 
tions under which a discrete event system “settles down“ 
to a steady-state. It should be emphasized that the results 
merely assert existence of a steady-state and say nothing 
about uniqueness. In particular, underthe conditions given 
above, it i s  quite possible for the system to have multiple 
steady-state distributions. The particular steady-state dis- 
tribution governing the discrete event system then depends 
on the initial state X,. 

Related results on existence of invariant probability mea- 
sures for time-homogeneous GSMPs appear in Konig, 
Matthes, and Nawrotzki [ I l l ,  [12], and Whitt [14]. The latter 
paper also gives conditions underwhich the invariant prob- 
ability distribution K i s  continuous in the state-transition 
probabilities p(s’; s, e) and distributions (Fe: e E E ) .  

In Section VI, we return to this steady-state theme. The 
regenerative machinery used there establishes both exis- 
tence and uniqueness results (but under different condi- 
tions than those discussed here). 

V. CONTINUOUS-TIME MARKOV CHAINS AND SEMI-MARKOV 
PROCESSES 

Our objective here i s  to briefly indicate some of the con- 
nections between continuous-time Markov chains, semi- 
Markov processes, and GSMPs. 

Basically, any time-homogeneous GSMP in which all the 
event distributions Fe(.)are exponential is acontinuous time 
Markov chain. More precisely, consider a time-homoge- 
neous GSMP for which 

Fe(&) = X(e) exp (-X(e)t) dt 

(Ne) > 0) for all e E E. Then, the conditional probability dis- 
tributions defined by (4.2) take the form 

F(t ;  ?,, e) = exp (-X(e)t) (5.1) 

for t 2 0, e E E.  Note that the conditional distribution (5.1) 
is independent of the history ?,. As a consequence, it is 
clear that the conditional distribution G(dt; ?,, e) depends 
on 2, only through s,, i.e., G(dt; ?,, e) = G(dt ;  s,, e). (Recall 
that in Section IV, G(dt; ?,, e) simplified only to the form 
C(dt; x,, e).) The specific form of G(dt; s, e) for s E S, e E E(s), 
i s  given by the formula 

G(dt; s, e) = p(s, e) G(dt; s) 

G(dt ;  s) = q ( s )  exp ( -q ( s ) t )  dt 

- 

where 

Hence, it follows that 

s’, A,,+ E dt/?, = ?,} 

c P{S,+ ,  = s’Je:+l = e, A,, ,  E dt ,  2, = ?,,} 
eeE(s,) 

. = e, A , + ,  E dtl?, = ?,,I 

ds‘; s,, e) G(dt; s,, e) 
e tE(sn)  

p b ’ ;  s,) G(dt; s,) (5.2) 
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wherep(s'; s) = CeeE(r)p(~' ;  s, e)p(s, e). It easilyfollows from 
(5.2) that (S,: n 2 0) i s  a Markov chain on state space S, and 
that the An's are conditionally independent given (S,,: n 2 

0) ,  where 

P{A,+, E dtlS,: m 2 0) = G(dt; S,). 

A well-known characterization of continuous time Markov 
chains then implies that (S( t ) :  t 2 0) is the (minimal) Markov 
process corresponding to the generator Q = (Q(s,, s2): s,, 
s2 E S ) ,  where 

Qb,, s2) = p ( s l ;  ~ 1 )  g(s,), S T  f ~2 

Q ~ I ,  ~ 2 )  = -g(sl), s, = s2. 

We have therefore calculated the generator of the contin- 
uous-time Markov chain associated with a time-homoge- 
neous GSMP in which all clocks are exponential. 

Perhaps the most important characteristic of a contin- 
uous-time Markov chain i s  that its long-run behavior may 
be easily calculated. Specifically, if the internal state 
sequenceX has an invariant probabilitydistribution T ,  then 
the"induced"distributi0n %(s) = ~ ( { s )  x [0, m) x C(s))can 
be determined as the probability solution of the system of 
linear equations ?r'R = i?', where R(s ,  s') = p ( s ' ;  s). By con- 
trast, the full set (2.12) of equations for T typically involves 
solving an integral equation. 

We turn now to semi-Markov processes. Consider a time- 
homogeneous GSMP in which N(s'; s, e) = E(s') for all s', 
s E S, e E E(s). In this case, for n 2 1, C,,e = 0 for e E E(S,), 
so that 

F(dt; z,, e) = Fe(&) a.s. 

for n 2 1. As a result, G(dt; zn, e) = G(dt; S,, e) a.s. for n 

2 I,sothatG(dt;z,,e) =P{A,,,~dt,e,*+, =elz,}depends 
on the history of X only through S,. Then, for n 2 1 

p { ~ n + l  E dt,  S n + ,  = S ' I z n )  

= C C(dt ;  s,, e) p ~ ;  s,, e) 

= EJ(s', S,) F(dt; S,, s') 

eeE(S,) 

( 5 . 3 )  

where 

G(dt; s, e) = P{r;:Ye E d t }  P{r;A,Ye, > t }  
e'tE(s1 
e' # e 

(Ye has distribution F e ( . ) )  

p(s'; s) = 

F(dt; s, s ' )  = 

G(m; s, e) p(s ' ;  s, e) 

G(dt; s, e) p(s ' ;  s, e)/p(s'; s). 

e € € ( < )  

eEE(0 

It follows easily from (5 .3)  that (S,: n 2 0) i s  a Markov chain 
on state space S(having transition probabilitiesp(s'; s)), and 
that the An's are conditionally independent r.v.'s given (S,: 
n 2 O ) ,  where 

P{An+, E dtlS,: m 2 0) = F(dt; S,, Sn+& 

By definition, ( S ( t ) :  t 2 0) is therefore a semi-Markov pro- 
cess. As in the continuous-time Markov chain context, the 
probability +(SI = T ( { s }  x [0, a) x C(s)) can be calculated 
as the solution to a suitable system of linear equations (see 
[2]). Thus, the analytical theory for the steady-state of both 
continuous-time Markov chains and semi-Markov pro- 

cesses is considerably simpler than that encountered for 
GSMPs. 

We take the view that continuous-time Markov chains 
and semi-Markov processes play the same role within the 
DEDS area that linear systems play in the development of 
CVDS. This is becausethe full analytical theoryof both areas 
can only be brought to bear in the specialized settings men- 
tioned above. 

VI. REGENERATIVE GSMPS 

Weshall now showthat an important classof time-homo- 
geneous GSMPs can be treated as regenerative stochastic 
processes. Although the results to be described here are 
far from the most general possible, they are intended to 
give a flavor of what can be expected in general. 

We will consider GSMPs in which the distributions F e ( . )  
have certain special characteristics. Suppose that a distri- 
bution [satisfying F(0 )  = 0 has adensity fsuch that the asso- 
ciated hazard rate h(t) = f ( t ) / ( l  - F ( t ) )  i s  bounded above and 
below by finite positive constants (i.e., inf {h(t):  t 2 0) > 
0, sup {h(t): t 2 0)  < 03). The distribution F i s  then said to 
be exponentially bounded. (We use this term because, for 
every exponentially bounded distribution, there exist pos- 
itive constants h,, h2 such that exp (-Xlt) 5 1 - F ( t )  5 exp 
. ( -h2t ) . )  

The tail distribution function of a positive r.v. can be rep- 
resented in terms of its hazard rate 

1 - F ( t )  = exp (- 5: h(s)  ds) .  

Hence, if F i s  an exponentially bounded distribution with 
0 < a 5 h(t) 5 p < m, 

F(dt) = h(t)(l - F( t )  dt 

2 a exp ( - O f )  dt  

2 6 . p exp (-/3t) dt  (6.1) 

where 6 = a/p. We will now exploit the above inequality to 
develop a regenerative structure for GSMPs. 

The idea i s  that under (6.1), we can write 

F(dt) = 6 . /3 exp ( - f i t )  dt + (1 - 6 )  Q(dt) (6.2) 

where Q(dt) i s  a probabilitydistribution function. Thus, F(dt) 
is, with probability 6, exponential with parameter p. Hence, 
with positive probability, an exponentially bounded clock 
acts likea memoryless exponential clock. This, in turn, leads 
to regeneration. 

To be more specific, suppose that F e ( . )  is exponentially 
bounded for all e E E. Let a(e), P(e) be the lower and upper 
bounds on the associated hazard function he( . ) .  Then, for 
each s E S, we have the inequality 

P{S1 = s', e: = e, A, E dtlXo = (s, t ,  c)} 

2 E ( S )  p(s ' ;  s, e) $(s) exp ( q ( s ) t )  dt  (6.3) 

where 
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By writing the inequality (6.3) as an equality (in the same 
fashion as (6.2) was obtained from (6.111, we see that if So = 
s, then with probability t(s), (S,, A,) is independent of Xo. 
This may appear to suggest that the discrete-event system 
regenerates with probability E ( S )  every time a fixed stated 
s E S i s  hit. Unfortunately, this reasoning is invalid, since 
(S2, A,) may still depend on Co. Therefore, we need to  work 
harder to obtain regeneration. 

Assume that the GSMP satisfies: 

For every e E E ,  there exists s E S 

such that e E E(s) and rs,e > 0. (6.4) 

For every s, s‘ E S, there exists e, 

S1, el, . . . , S,,  6, such that (6.5) 
n 

~ ( s i ;  S ,  e)r5,, II p ( ~ , ;  ~ r - 1 ,  ~ , - i ) r s , - , , e , - ,  
, = 2  

Condition (6.5) may be viewed as an irreducibility hypoth- 
esis on the GSMP. 

Under assumptions (6.4) and (6.5), there exists, for every 
s, s‘ES, a sequence e, J,, P , ,  . . . , S,,  e,, such that the GSMP 
moves from s to s’ with positive probability through the 
intermediate states S , ,  . . . , S,,  using the successive trigger 
events e, el, . . . ,en. In fact, if we set So, = s, S n + ,  = s‘, and 
eo = e, we have the inequality 

P{S ,  = SI, e: = e , - , ,  A r e & , ,  1 5 i 5 n + l I X o  = (s, t, c)} 

n 

5 n E ( S , )  p(S,+,; S I ,  P I )  Cj(S,) exp (-Cj(SJt,+,) dt,.,. 
r = O  

(6.6) 

In fact, conditions (6.4) and (6.5) allow us to further choose 
the path so that each e E €(So) appears in the set { P o ,  . . . 
, 6,). We make this choice of path for the following reason. 
NotethatgivenS,, . . . ,Sn+l,e:, . . . ,e;+,,theclockvector 
C,+, i s  a function only of CO, A,, . . . , A , + , .  The right-hand 
side of (6.6) shows that with probability n:=, € ( S I )  P (Sn+ , ;  
SI, e,) ,  the r.v.’s A,,  . . . , A,, +, may be taken as independent 
exponential r.v.’s. Now, with our choice of path, we can 
guarantee that for each e E E(Sntl), e E N(S,; S I - , ,  e,-,) for 
some i(1 5 i 5 n + 1). Then, C,,, = 0, and it follows that 
C,,,,, is a function purely of the r.v.’s A , , , ,  . . . , A , + ,  
observed along the path. Since the A,‘s are independent 
r.v.’s with positive probability, it follows that C,+, i s  then 
independent of CO (with probability ny-0 t (S,)p(S,+l;  SI ,  PI)). 

For each s E S, let ?(s) = n:=, ~ ( 3 , )  PCS, + 1; S I ,  0,) and L(s) be 
the length of the path constructed above (i.e., the number 
of states visited). We have shown that if S ,  = s, then with 
probability ?(s): 

1) (S,,,+,, A,,,) ,  1 5 i 5 L(s) ,  are independent r.v.’s 
(S,,,+, is the i th state on the path constructed for state 
s, and A, +, i s  a corresponding exponential r.v.), inde- 
pendent of x,. 
Cm+L(s) is independent of X,. 2) 

1 )  and 2) imply that ( X m + L ( s ) + k :  k 2 0) is independent of X,, 
so that the sequence ( (Sm+L(s)+k,  A m + L ( 5 ) + k ) :  k 2 0) i s  then 
automatically independent of X,. Combining this with I), 
we conclude that with probability ?(S,,,), ( (S ,+k ,  A , + J :  k 2 
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1) is independent of X,. Fix a states ES. We have just shown 
that there exists a random subsequence TU) ,  T(2), . . . of 
hitting times of s for which the ”cycles” {((.SI, A/): T(n) < i 
5 T(n + 1)): n 2 I}  are i.i.d. The random subsequence of 
regeneration times isobtained from theoriginal hittingtime 
sequence by flipping a coin having probability of success 
E ( s ) .  If the coin flip is successful, then the next L(s) (S, A)- 
tuples are generated using the algorithm described above. 
This, in turn, gives rise to  the desired regenerative struc- 
ture. We have thus established the following result. 

Theorem 4: Consider a time-homogeneous GSMP satis- 
fying(6.4)and (6.5),forwhich F e ( - )  isexponentially bounded 
for all e E E. If there exists s E S such that S, = s infinitely 
often, (S( t ) :  t 2 0) is a regenerative process. 

An interesting feature of the above regenerative con- 
struction i s  that while the r.v.’s ((S,,,+k, A m + k ) :  k > 1) are 
independent of X,, it is not true that (X,+k: k 2 1) i s  inde- 
pendent of x,,,. Thus, while the output process (S( t ) :  t 2 0) 
is regenerative, the internal state sequence may not be 
regenerative. A similar situation arises when we consider 
the regenerative structure of a continuous-time Markov 
chain from a GSMP viewpoint. It i s  well known that the con- 
secutive times at which the chain hits a fixed state consti- 
tute regeneration times for the associated (S, A) sequence. 
On the other hand, the full vector C, of clock readings does 
not regenerateat such hittingtimes. In  particular, assuming 
all speeds are unity, the differences between clock readings 
are preserved from one transition of the full clock sequence 
to the next. This preservation of memory holds even at tran- 
sition times to a fixed (physical) state. Thus, the full clock 
vector does not typically regenerate, even when the GSMP 
is a continuous-time Markov chain. 

Suppose IS1 < m and fix ~ ‘ E S .  From (6.6), it follows that 

P{T(s ’ )  > L I X o  = (s,  t ,  c)} 2 t (6.7) 

forall(s,t,c)EC,wherec = min { t ( s ) : s ~ S } , L  = max{L(s): 
S E S } ,  T(s’) = min { n  2 1 :  S, = s ’ } .  A standard ”geometric 
trials” argument then proves thats’ isvisited infinitelyoften, 
yielding the following corollary. 

Corollary 7: Consider a time-homogeneous GSMP satis- 
fying (6.4)and (6.5),forwhich Fe( . )  isexponentially bounded 
for all e E E. If IS1 < 03, then (S( t ) :  t 2 0) i s  a regenerative 
process. 

A regenerative process is, in some sense, a stochastic pro- 
cess geiieralization of a sequence of i.i.d. r.v.’s. As a result, 
we should expect behavior similar to that typical of an i.i.d. 
sequence; this behavior includes strong laws and central 
limit theorems. 

Theorem 5: Consider a time-homogeneous GSMP satis- 
fying(6.4) and (6.5), forwhich Fe( . )  isexponentially bounded 
for all e E E. If (SI < 00, there exist finite (deterministic) con- 
stants r ( f ) ,  o ( f )  such that for every initial distribution p 

1 5‘ f(S(u)) du + r ( f )  P, a.s. 
t o  

/- e t  1, f(S(u)) du - r ( f )  1 =) u ( f )  N(0, 1) P, - weakly 

a s t - t  W .  

The proof of Theorem 5 may be found in the Appendix. 
An important feature of Theorem 5 i s  that the steady-state 
limit constants r (  f )  and U( f )  are independent of p .  (Compare 
this with Proposition 3.) Note also that if we view f(S(t)) as 
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the rate at which cost accrues at time t ,  then the total cost 
C(t )  of running the GSMP up  to time t has a distribution 
which may be approximated (in distribution) as 

C(t )  = N(r( f ) t ,  o ' ( f ) t ) .  

The central limit theorem of Theorem 5 also has important 
implications for steady-state simulations of discrete event 
systems, since virtually al l  steady-state confidence interval 
methodologies (see Chapter 3 of Bratley, Schrage, and Fox, 
[I]) are based on such a result. 

The main point of this section i s  that regenerative ideas 
can be applied to discrete event systems. The construction 
of the associated regeneration times is typically more com- 
plicated than that for simpler processes, such as contin- 
uous-time Markov chains. Whenever regenerative struc- 
ture is present, we can expect results similar to Theorem 
5. In addition to the regenerative structure identified here, 
Haas and Shedler [7], [8] have identified regeneration (of a 
different character) in a number of other GSMP contexts. 
Thus, we view the laws of large numbers and central limit 
theorems described here as being typical of a large class of 
discrete event systems. 

VII. LIKELIHOOD RATIOS F O R  GSMPS 

Let A c S, and suppose that we wish to calculate P{S(A) 
5 t},whereS(A) = inf { t  2 0: S(t)~A}.Typical ly, th is prob- 
ability needs to be numerically calculated; simulation i s  
generally the most popular numerical approach. 

In many situations, we expect that P { S ( A )  I t }  i s  small. 
For example, i f  A i s  the set of "failed states" of a discrete 
event reliabilitysystem, then P{S(A) 5 t }  will be small if the 
system is reliable. Unfortunately, naive simulation is highly 
inefficient for such problems; many replications will be 
necessary in order for the system to experience a reason- 
able number of failures. 

A powerful technique that can be used in such situations 
i s  importance sampling. The idea i s  to simulate the system 
so as to bias it toward failure; the estimator must then be 
altered so as to compensate for the "biased dynamics."The 
adjustment factor needed i s  called a likelihood ratio. 

ConsideraGSMPofthetypedescribed in Section III.The 
probability distributions that govern the dynamics of the 
system are the conditional distributions p ( . ;  x'n, e) and F ( . ;  
x',,, e). Let P ( . )  denote the probability distribution of the 
internal state sequence X under these conditional distri- 
butions, and let E ( . )  be the corresponding expectation 
operator. 

To perform importance sampling, we need to specify the 
alternative conditional distributions that will appropriately 
bias the dynamics of the system. For Fn, e, letp(.; x',,, e) and 
f ( . ;  F,, e) be conditional distributions having the property 
that there exist functions 9( . ;  x',,, e) and f(.; x',,, e) such that 

p ( . ;  x',, e) = 9(.; x',,, e) p ( . ;  x',, e) (7.1) 

F(dt; x',,, e) = f ( . ;  F,, e) F(dt; F,, e). (7.2) 

Let P ( . ) ,  €( . )  denote the probability distribution and 
expectation operator corresponding to the conditional dis- 
tributions p ( . ;  x',,, e) and F ( . ;  gn, e). The following result is 
a straightforward generalization of the likelihood ratio ideas 
in Glynn and lglehart [6]. 

Theorem 6: Consider a GSMP with conditional distri- 
butions p ( . ;  gn, e), p ( . ;  x'n, e), F(dt; F,, e), F(dt; ,?", e) sat- 

isfying (7.1)-(7.2). Let T be a stopping time relative to the 
internal state sequence X (i.e., /(T = n )  is a function of X,,), 
and let Y = f(X,, . . . , X,) be real-valued. Then 

+ 

E,,Y/(T < 00) = E,Y/(T < m ) L ,  

(the equality should be interpreted as: if one expectation 
exists, then both do, and they are equal), where 

J 

L ,  = 11 g(A,; er*) 96,; ,f-,, el*) 
r - 1  

and 

g(t; x',,, e) = f(r5,et; x',,, e) rI 
e ' t E ( c l  
e ' t e  

. F ( r 5 , e  t ;  x',, e')/F(r5,e t ;  X,, e'). 

Theorem 6 is the key to importance sampling for GSMPs. 
Rather than replicate copies of the r.v. Y/ (T  < 03) under P,, 
to estimate a = E,Y/(T < m), we can replicate copies of 
Y / ( T  < m)L, under P, to estimate a. By choosing P,, appro- 
priately, significant improvements in computational effi- 
ciency over conventional simulation can be achieved. 

Likelihood ratio ideas can also be applied to parameter 
optimization of discrete-event systems. Specifically, like- 
lihood ratio methods can be used to obtain an efficient 
means of estimating the gradient of the objective function 
via simulation (see Glynn [4]). This, in turn, can be used to 
develop a simulation-oriented gradient-based algorithm for 
optimizing discrete-event processes. 

The likelihood ratio methods described here are but two 
examples of how the GSMP structure of a discrete-event 
system can be used toobtain computational enhancements 
to numerical algorithms for discrete-event sytems. 

APPENDIX 

Proof o f  Theorem 2: We first show that X is weakly con- 
tinuous on the state space E, i.e., if x , ,  x E C and x, + x as 
n + 03, then P(x,, .)  2 P(x ,  . )  as n + 03, where * denotes 
weak convergence. (Recall that P ( x ,  .)  = P {X, + ,  t . (X, = 

x }  is the transition function of X.) 
Let (V(e, cJ: e E E )  be a collection of independent r.v.'s 

having marginal distributions specified by 

P{V(e, c,) > t }  = F,(t + cc)/Fe(ce). 

Then, under (4.1) and (4.2), the conditional probability dis- 
tribution c(.; Fn, e) = c(.; x, , ,  e), where 

G ( u ;  (s, t ,  c), e) = Ef(V(e', c e ) :  e' E E(s)) 

and 

f(v(e'): e' E E(s))  

= /( min v(e')/r,,e' 5 U ,  argmin v(e')/r5,e = e). 
E E t i s )  e t t l i )  

By conditions ii) and iii), it i s  evident that F,(t + c)/F,(c) i s  
continuous in cat  every t. Hence, (V(e, cb): e E E )  2 (V(e, cJ: 
e E E )  whenever (CA: e E E )  + (c?: e E E ) .  Since f i s  continuous 
at (V(e, ce): e E E )  (we use ii)-iv) here), it follows that 
C ( . ;  x ' ,  e) = G ( . ;  x ,  e) whenever x '  + x. Thus, the distri- 
butions of the trigger event e* and A are (weakly) contin- 
uous in x = (s, t ,  c). Consequently, the distribution of X, = 

(S,, A ,  C,) i s  (weakly) continuous in Xo = (s, t ,  c), thereby 
proving the required continuity of X. 
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Fix x E S.  The second step involves showing that {p,: n 
2 I }  i s  tight, where 

1 , - l  
I*"(.) = - c PIX ,  E . IX0 = x} .  

n I = o  

To establish tightness, we use the Lyapunov function 

condition v) guarantees that E {  g(Xl)IXo = x}  5 g(x) - E ( E  > 
0) uniformly inxoutsideacompact set, and this yields tight- 
ness. 

Prohorov's theorem then asserts theexistenceof a sub- 
sequence n' and a probability x on E such that p,,, * a. A 
standard argument (see, for example, [IO]) then uses the 
weak continuity of X to prove that x is, in fact, invariant for 
X. 

Proofof Theorem 3: We first note that since IS1 < 01, f is 
bounded, and it suffices to  prove only that €,A1 < W .  By 
the stationarity of X under x, this i s  equivalent to  showing 
that €,A, < 01. This will follow if we can prove that E{AzIXl 
= x }  is uniformly bounded in x. 

For s, s', e E E(s) ,  let 

M(s'; s, e) = min V(e', O)lr,,,,,, 

m(s'; s, e) = EM(s'; s, e). 

e' tN(s ' ;s,el  

Clearly, m(s'; s, e) 5 EeeE {ro,m, tf,(dt)/r, where r is the min- 
imum over the speeds rs.,e, of condition iii). To finish the 
proof, note that Cl,e = 0 for e E N(S1; So, e;), and hence 

E{A2(Xl = x }  I Em(S,; So, e:) I EeeE Jro,m., tfe(dt)lr. 
Proof o f  Theorem 5: We need to verify the hypotheses of 

the regenerative strong law of large numbers and central 
limit theorem (see Smith [13]). Fix s'ES, and let 7 be the first 
m 2 L(s ' )  such that the next L(s') states to be visited (after 
m) form the specified path fors'. (We will base our regen- 
erations on visits to s'.) 

Since 1.5 < 01, f i s  bounded so that it suffices to  verify 
that the moment 

E C A ,  X o = x  
i K 1  >'1 1 

is  bounded in x. We first note that there exists L such that 

sup P{7 > LIX, = x} < 1 
X 

(use (6.7)). Since the tail of 7 i s  then geometrically domi- 
nated, this implies that E{7P(Xo = x] i s  bounded in x, for all 
p > 0. Now 

E C A ,  X , = x  
iK.1 )9 1 
I E { 7 *  max AflX, = x }  

1 5 1 5 7  

5 €112{74)X0 = x } € " ~ {  max APIXo = x}  
1 5 , r r  

I I F ~ ' * { T ~ ~ X ~  = x }  E'"[ 2 APIXo = XI, 
r = l  

so we need only show the second factor above i s  bounded 
in x. But 
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APIXo = X] = 5 E{A;/(7 2 i) lXo = x }  
, = 1  
m 

I E1'2{AYlXo = x }  
r = 1  

. P { 7  2 ilXo = x } .  

Again, since the tail of 7 i s  geometrically dominated, it suf- 
fices to prove that E{A:lXo = x}  i s  bounded in x. But for x 
= (s, t, c), we can select e E E(s )  so that rs,e > 0. Then 

c e + r , e r ' R  

h,(u) du) df 
= I exp (-ice 
5 jm exp (-a(e)rs,et1'8) dt. 

Since IS1 < 01, it i s  evident that €{AtlX, = x }  i s  bounded 
in x, from which it follows that E{AYIXo = x }  i s  bounded in 
X. 
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