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A guide to 13C metabolic flux analysis for
the cancer biologist
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Abstract
Cancer metabolism is significantly altered from normal cellular metabolism allowing cancer cells to adapt to changing

microenvironments and maintain high rates of proliferation. In the past decade, stable-isotope tracing and network

analysis have become powerful tools for uncovering metabolic pathways that are differentially activated in cancer

cells. In particular, 13C metabolic flux analysis (13C-MFA) has emerged as the primary technique for quantifying

intracellular fluxes in cancer cells. In this review, we provide a practical guide for investigators interested in getting

started with 13C-MFA. We describe best practices in 13C-MFA, highlight potential pitfalls and alternative approaches,

and conclude with new developments that can further enhance our understanding of cancer metabolism.

Introduction
In the past decade, measuring intracellular metabolism

has become an indispensable tool in biomedical

research1,2. Cancer metabolism is an especially active area

of research3–8. It has long been recognized that cancer

cells exhibit rewired metabolism compared to normal

cells. A century ago, Warburg9 described how cancer cells

take up large amounts of glucose and preferentially con-

vert it to lactate, even under aerobic conditions. This so-

called Warburg effect, or aerobic glycolysis, is a major

hallmark of cancer metabolism10–12. More recently, with

the aid of stable-isotope tracers and network analysis,

additional metabolic pathways were identified that are

activated in cancer cells, including reductive metabolism

of glutamine13, altered glycolysis14, serine and glycine

metabolism15–17, one-carbon metabolism18,19,

transketolase-like 1 (TKTL1) pathway20,21, and acetate

metabolism22–25. The activities of these pathways allow

cancer cells to extract cellular building blocks and energy

from substrates and use them for cell growth. With the

rapid progress in cancer research, an increasingly clearer

picture is generated how cancer cells rewire their

metabolism, adapt to and manipulate their micro-

environment26–28, and maintain a continuous supply of

anabolic precursors, reducing equivalents and energy to

fuel the reproduction of more cancer cells5,29.

The complexities of mammalian metabolism require a

systems-level analysis of the underlying networks and

metabolic phenotypes30,31. Currently, 13C metabolic flux

analysis (13C-MFA) is the preferred tool for quantitative

characterization of metabolic phenotypes in microbial32–34

and mammalian cells3,4,35–38. The emergence of 13C-MFA

as a primary research tool was made possible in large part

due to several major advances in theoretical approaches

for conducting 13C-MFA calculations39–41, and more

recently, by the availability of dedicated and user-friendly

software tools for 13C-MFA such as Metran and

INCA42,43. However, 13C-MFA it is still not widely used by

cancer biologists, outside of a few expert groups. This may

be in part because 13C-MFA is sometimes perceived as

unintuitive, obscure, demanding in terms of time and data,

and costly in terms of initial capital investment and iso-

topic tracers. Moreover, few guidelines exist to help

researchers get started with 13C-MFA44,45. The main

objective of this review is to address these concerns by

providing practical guidelines for cancer biologists inter-

ested in 13C-MFA. First, we describe the basics of
13C-MFA, discuss key assumptions that are inherent in
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13C-MFA but may not always be explicitly stated, highlight

best practices in 13C-MFA, and identify potential pitfalls as

well as alternative approaches. Throughout, we emphasize

key aspects that should be considered when planning

tracer experiments and performing 13C-MFA calculations

to ensure correct interpretation of data and results, and to

increase insights obtained from these studies.

Basics of 13C-MFA
Cellular metabolism serves four important functions in

proliferating cancer cells: (1) supply of anabolic building

blocks for cell growth; (2) generation of metabolic energy

in the form of ATP to drive thermodynamically unfa-

vorable reactions; (3) generation of redox equivalents in

the form of NADPH for anabolic processes such as fatty

acid biosynthesis and to combat oxidative stress; and (4)

maintaining redox homeostasis by oxidizing excess

NADH generated in central metabolic pathways.

The first step in obtaining a quantitative picture of

cellular metabolism is to measure the growth rate of the

cells and quantify nutrient uptake and secretion rates such

as glucose and glutamine uptake and lactate secretion46,47

(Fig. 1). These external rates provide important boundary

constraints on intracellular pathway activities. However,

due to redundancies in mammalian metabolic pathways,

external rates alone do not allow detailed conclusions to

be drawn about the relative contribution of specific

metabolic pathways to overall metabolism46,48. To

examine intracellular fluxes in detail, stable isotopes such

as 13C are utilized. When a labeled substrate, e.g.,

[1,2-13C]glucose, is metabolized by cells, enzymatic reac-

tions rearrange carbon atoms resulting in specific labeling

patterns in downstream metabolites that can be measured

with analytical techniques such as mass spectrometry

(MS), or nuclear magnetic resonance. For a well-selected

tracer, different metabolic pathways will produce dis-

tinctly different labeling patterns in the measured meta-

bolites from which fluxes can be inferred49,50. However, in

most cases, isotopic labeling data cannot be interpreted

intuitively due to the highly complex nature of atom

rearrangements in metabolic pathways51; instead, a formal

model-based analysis approach is required to extract flux

information from the labeling data. In the past 20 years,
13C-MFA has emerged as the primary approach used for

converting isotopic labeling data into corresponding

metabolic flux maps45.

The main objective of 13C-MFA is thus to generate a

quantitative map of cellular metabolism by assigning flux

values to the reactions in the network model and con-

fidence intervals for each estimated flux (Fig. 2). At a high

level, 13C-MFA is formulated as a least-squares parameter

estimation problem, where fluxes are unknown model

parameters that must be estimated by minimizing the

difference between the measured labeling data and

labeling patterns simulated by the model, subject to

stoichiometric constraints resulting from mass balances

for intracellular metabolites and metabolite labeling

states, the so-called isotopomers40,52. When 13C-MFA

first emerged in 1990s53, the main challenge was to

develop efficient algorithms for solving large sets of iso-

topomer mass balances54. Eventually, the computational

problems in 13C-MFA were resolved with the develop-

ment of the elementary metabolite unit (EMU) framework

that allows efficient simulation of isotopic labeling in any

arbitrary biochemical network model39. The EMU fra-

mework was subsequently incorporated into user-friendly

software tools for 13C-MFA, such as Metran and

INCA42,43, that are freely available to the scientific com-

munity. These powerful tools have opened up 13C-MFA

to a much wider scientific audience, including cancer

biologists, that may not have extensive background in

mathematics and statistics, which was required before

these software packages became available. In the next

sections, we describe in detail the three inputs that are

required for performing 13C-MFA calculations: (i)

Fig. 1 Glucose and glutamine are the two most highly consumed

carbon substrates in cancer cells. Both substrates can be converted

to lactate via glycolysis and glutaminolysis, respectively. High lactate

secretion, especially from glucose, is a major hallmark of cancer cells

known as the Warburg effect, or aerobic glycolysis
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external rates; (ii) isotopic labeling; and (iii) metabolic

model (Fig. 2).

Determination of external rates
To quantify intracellular metabolic fluxes, first, the

cross talk between the cells and their environment must

be quantified. Collectively referred to as external rates,

this includes measuring influxes of nutrients such as

glucose and glutamine, and secretion of metabolic by-

products such as lactate and glutamate. In addition, the

rate of cell growth must be determined. Assuming cells

are continuously dividing, the cell number will increase

exponentially according to:

Nx ¼ Nx;0 � expðμ � tÞ ð1Þ

Here Nx is the number of cells (typically expressed in

millions of cells), and µ (1/h) is the growth rate. The

growth rate is easily determined by plotting the natural

logarithm of Nx vs time and determining the slope of the

curve. If cells are counted only at two time points, then

the growth rate is determined as follows:

μ ¼
ln Nx;t2

� �

� ln Nx;t1

� �

Δt
ð2Þ

The doubling time (td) is inversely related to the growth

rate, according to:

td ¼ ln 2ð Þ=μ ð3Þ

External rates, i.e., nutrient uptake rates and waste

product secretion rates, can be determined in a

Fig. 2 13C metabolic flux analysis (13C-MFA) is a powerful approach for quantifying intracellular metabolic fluxes in cancer cells. The three

inputs required for 13C-MFA are external uptake and secretion rates, isotopic labeling measurements, and a comprehensive compartmentalized

model of cellular metabolism. User-friendly software tools for 13C-MFA, such as Metran and INCA, can be used to perform 13C-MFA calculations. These

tools produce as outputs fluxes for all reactions in the model, confidence intervals for the estimated fluxes, and statistical analysis of the goodness-of-

fit
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straightforward way by measuring changes in metabolite

concentrations during the labeling experiment. For

exponentially growing cells, external rates (ri, in units

nmol/106 cells/h) can be calculated as follows:

ri ¼ 1000 �
μ � V � ΔCi

ΔNx

ð4Þ

Here ΔCi (mmol/L) is the change in concentration of a

particular metabolite i between two sampling time points,

ΔNx is the change in cell number (expressed in millions of

cells) during the same time period, V (mL) is the culture

volume, and µ (1/h) is the growth rate. Based on this

expression, external rates have negative values for uptake

rates and positive values for secretion rates. For non-

proliferating cells, external rates are determined by a

slightly different expression:

ri ¼ 1000 �
V � ΔCi

Δt �Nx

ð5Þ

Because glutamine is an unstable molecule, i.e., it

spontaneously degrades to pyroglutamate and ammonium

under normal culture conditions, the calculated

Fig. 3 Parallel labeling experiments with different 13C-labeled substrates greatly enhance the resolution of metabolic fluxes in complex

models. The rate of labeling incorporation after the introduction of a 13C-tracer depends on the turnover rate of intracellular metabolites and

exchanges between intracellular and extracellular metabolites. In particular, external lactate can slow down labeling of intracellular pyruvate and TCA

cycle metabolites from 13C-glucose tracers. If isotopic steady state is reached then labeling data can be analyzed with 13C-MFA. However, if the

system has not reached isotopic steady state, then the labeling data must be analyzed using isotopic non-stationary 13C-MFA (13C-NMFA)
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glutamine uptake rate must be corrected for glutamine

degradation, i.e., the measured rate reflects both net

uptake of glutamine by the cells and glutamine degrada-

tion. Glutamine degradation can be expressed as a first-

order degradation process with a degradation constant of

around 0.003/h55. After correcting for glutamine degra-

dation55, the true net glutamine uptake rate is obtained.

For long tracer experiments (e.g., >24 h), it may also be

necessary to correct for evaporation effects. For this

purpose, control experiments without cells are performed.

By measuring the apparent increases in metabolite con-

centrations over time, the rate of evaporation can be

estimated. The dynamics of glutamine degradation are

also easily determined from these control experiments.

For 13C-MFA studies, external rates are often deter-

mined for glucose uptake, lactate secretion, and amino-

acid uptake and secretion. For proliferating cancer cells,

typical values are as follows: 100–400 nmol/106 cells/h for

glucose uptake; 200–700 nmol/106 cells/h for lactate

secretion; 30–100 nmol/106 cells/h for glutamine uptake;

and 2–10 nmol/106 cells/h for uptake or secretion of

other amino acids. Depending on the scope of the study, it

may also be important to measure the rates of other

metabolites such as ammonium, pyruvate, acetate, citrate,

and any other significant nutrients or by-products that

cancer cells exchange with their environment.

Measurement of isotopic labeling
When conducting 13C-tracer experiments, a labeled

substrate is introduced to the culture medium that is then

taken up by the cells and metabolized through various

metabolic pathways. It takes a certain amount of time

before intracellular metabolites reach a constant labeling

state, which is referred to as isotopic steady state46 (Fig. 3).

The time required to reach isotopic steady state depends

on the turnover rate of metabolites in a pathway and the

labeling dynamics of upstream metabolites that feed into

the pathway. The turnover rate of a metabolite pool is

roughly equivalent to the ratio of the metabolite pool size

and the flux through that metabolite pool. For pro-

liferating cells, isotopic steady state can be reached rela-

tively quickly, i.e., within a few hours after the

introduction of the isotopic tracer56. However, in some

cases, due to exchange of intracellular and external

metabolites, significantly slower labeling incorporation

rates can be observed. In particular, external lactate often

acts as a large buffer that slows down labeling of intra-

cellular pyruvate and downstream metabolic pathways,

e.g., tricarboxylic acid (TCA) cycle, when 13C-glucose

tracers are used55. Slow labeling may be observed even if

there is large net secretion of lactate, since external lactate

readily exchanges with intracellular lactate, which in turn

rapidly equilibrates with cytosolic pyruvate. The effective

pool size of intracellular pyruvate thus becomes the

combined pool of intracellular pyruvate, intracellular

lactate, and external lactate. This buffering effect can be

so extreme that certain metabolites may never reach

isotopic steady state55. One strategy to reduce the buf-

fering effect of lactate is to ensure that little or no lactate

is present in the medium at the beginning of 13C-glucose

tracer experiments.

An important inherent assumption of 13C-MFA calcu-

lations is that all metabolites are at isotopic steady state. It

is thus critical to validate this assumption for all tracer

experiments performed. To validate this, isotopic labeling

is measured for at least two time points, e.g., 18 and 24 h,

after the introduction of tracer. If isotopic labeling is

identical for the two time points, then isotopic steady state

is confirmed and the labeling data can be analyzed using

classical 13C-MFA. However, if isotopic labeling is chan-

ging with time, then the data must be analyzed using a

more advanced 13C-MFA approach called isotopic-non-

stationary 13C-MFA, or 13C-NMFA41. Most software

packages for 13C-MFA can only perform classical 13C-

MFA calculations, i.e., assuming isotopic steady state,

although a few software packages such as INCA can

perform both 13C-MFA and 13C-NMFA calculations43.

MS is currently the preferred analytical technique used

for measuring isotopic labeling of intracellular metabo-

lites. With the technological advances in gas chromato-

graphy/MS (GC/MS) and liquid chromatography/MS

(LC/MS) in the past two decades, it is now possible to

measure mass isotopomer distributions for a large num-

ber of intracellular metabolites from as few as one million

cells, including for intermediates of glycolysis pathway:

fructose 6-phosphate (F6P), dihydroxyacetone phosphate,

glycerol 3-phosphate, 3-phosphoglycerate (3PG), phos-

phoenolpyruvate, pyruvate, and lactate; intermediates of

the pentose phosphate pathway (PPP; LC/MS mainly):

xylulose 5-phosphate (X5P), ribose 5-phosphate (R5P),

and sedoheptulose 7-phosphate; intermediates of the

TCA cycle: citrate, α-ketoglutarate (AKG), succinate,

fumarate, and malate; and most amino acids, including

alanine, aspartate, glutamate, glutamine, proline, serine,

and glycine.

Parallel labeling experiments
The selection of an isotopic tracer (or multiple tracers)

is one of the most important considerations when

designing 13C-MFA studies, since this ultimately deter-

mines the quality (i.e., precision and accuracy) of flux

results that can be obtained50. It is now well-known that

there is no single best tracer for 13C-MFA studies. Gen-

erally, 13C-glucose tracers are best for determining fluxes

in upper metabolism (e.g., glycolysis and PPP), while 13C-

glutamine tracers typically produce better resolution of

fluxes in lower parts of metabolism (e.g., TCA cycle and

reductive carboxylation)57,58 (Fig. 3). A powerful approach
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to achieve high resolution of multiple metabolic pathways

is to perform parallel labeling experiments with different

tracers and then integrate all data into a single compre-

hensive flux model59,60. For example, parallel labeling

experiments with [1,2-13C]glucose and [U-13C]glutamine

have been demonstrated to be particularly informative

and complementary56,58,61. When conducting parallel

labeling experiments, it is important that the only differ-

ence between the experiments is which metabolite is

labeled, i.e., concentrations of all nutrients in the media

must be the same for parallel labeling experiments62.

With recent advances in 13C-MFA methodology it is now

fairly straightforward to analyze isotopic labeling data

from parallel labeling experiments45. The Metran soft-

ware was the first tool that allowed comprehensive ana-

lysis of parallel labeling experiments for high-resolution
13C-MFA. Recently, other 13C-MFA software packages

have also included this feature.

Metabolic model for 13C-MFA
All 13C-MFA calculations are based on a model of

biochemical reactions within a specified metabolic net-

work. Determining the scope of the model is an important

decision in 13C-MFA studies. Unfortunately, there is only

limited consensus in the literature on the optimal scope of

metabolic models for flux analysis in cancer cells. This is

in part due to the fact that the appropriate model

complexity will depend to some degree on the specific

choice of isotopic tracer (or tracers), how many parallel

labeling experiments are performed, and how many and

which labeling measurements are collected. In general,

more comprehensive data sets, i.e., based on multiple

parallel labeling experiments with different labeled sub-

strates36,56,60,63, will permit the use of more complex

models for 13C-MFA than smaller data sets obtained

using a single tracer experiment.

Typically, 13C-MFA models will include all major

metabolic pathways of central carbon metabolism such as

glycolysis, PPP, TCA cycle, as well as any relevant reac-

tions that connect these pathways (Fig. 4a). Compart-

mentalization of metabolites and metabolic reactions is an

important feature of mammalian cells that must be cap-

tured in the model. Metabolites and reactions are there-

fore assigned to specific metabolic compartments such as

cytosol or mitochondrion. Certain metabolites will be

present in multiple compartments, for example, pyruvate,

acetyl coenzyme A, citrate, malate, fumarate, oxaloacetate,

and AKG. These metabolites are treated as separate

entities in the model that can have different labeling states

in different compartments. Transport reactions in the

model allow specific metabolites to be transferred

between cellular compartments. Compartment-specific

isozymes, which can operate independently, must be

included as separate reactions in the model (e.g., cytosolic

Fig. 4 13C metabolic fluxes are estimated based on comprehensive compartmentalized models of cellular metabolism. a The diagram

shows important metabolic pathways in cancer metabolism, including glycolysis, pentose phosphate pathway, TCA cycle, reductive carboxylation of

glutamine, and transketolase-like 1 (TKTL1) pathway. One of the key functions of cellular metabolism is to supply anabolic building blocks needed for

cell growth, shown here as draining reactions from central metabolic pathways. b A typical macromolecular composition of cancer cells is shown.

The macromolecular composition and the growth rate of cells determine the rates at which anabolic precursors must be produced to sustain cell

growth. Typical values of anabolic precursor fluxes in proliferating cancer cells are shown
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and mitochondrial isocitrate dehydrogenases; and cyto-

solic and mitochondrial malic enzymes). Finally, 13C-MFA

models will include a lumped biomass formation reaction

that drains anabolic precursors from central metabolism

(and extracellular medium, e.g., essential amino acids) for

the biosynthesis cellular macromolecules55. The stoi-

chiometric coefficients for this lumped biomass reaction

are easily determined based on the macromolecular

composition of cells (Fig. 4b). Recently, a number of GC/

MS-based protocols have been developed that allow bio-

mass compositions of cells to be determined easily and

accurately64–66. Typical values for anabolic precursor

effluxes for proliferating cancer cells are shown in Fig. 4b.

13C-MFA and statistical analysis
Current software tools for 13C-MFA such as Metran and

INCA are designed so that users are not required to have

any extensive background in mathematics, statistics, or

writing computer code. All of the complex math asso-

ciated with performing 13C-MFA computations is hidden

from the user. These software tools accept as inputs: (1) a

user-defined metabolic network model consisting of bio-

chemical reactions and corresponding atom transitions;

and (2) a set of measurements consisting of isotopic

labeling data and external rates. As outputs, the software

returns the following: (1) metabolic fluxes for the entire

network; (2) confidence intervals for all estimated fluxes;

and (3) statistical analysis of the goodness-of-fit (Fig. 2).
13C-MFA should be viewed as an iterative process that

requires careful scrutiny of the analysis results. After the

software returns a result, it is up to the user to determine

how acceptable the result is, and this requires some level

of experience. Generally, it is rare that the first result

returned by the software will be the optimal solution.

There are several important reasons for this. First, as

mentioned in the introduction, in 13C-MFA a highly

nonlinear multi-dimensional parameter estimation pro-

blem is solved40. Problems of this kind have many sub-

optimal local solutions, and there is no guarantee that the

first solution returned by the software will be the global

optimal solution. To address this concern, 13C-MFA is

typically restarted many times with random initial values

for all fluxes and the goodness-of-fit of these iterations is

compared. The goodness-of-fit is expressed by the sum of

squared weighted residuals, or the SSR value40 (Fig. 2).

The lower the SSR value, the better the agreement

between the measured data and the model fit. Assuming

that the metabolic model is correct and data are without

gross measurement errors, the minimized SSR is a sto-

chastic variable with a χ
2-distribution. Based on this

property, it is possible to calculate a maximum statistically

acceptable value for SSR, which is roughly equal to the

number of fitted measurements (n) minus the number of

estimated independent parameters (p). More technically,

the acceptable range of SSR values is between χ
2
α/2(n− p)

and χ
2
1−α/2(n− p), where α is a certain chosen threshold

value, for example, 0.05 for the 95% confidence interval.

The strategy for performing 13C-MFA is thus to restart

flux estimation many times (typically at least 10 times, but

more is preferred) and compare the SSR values. The

solution with the lowest SSR value is then selected as the

optimal solution. Often, multiple iterations will produce

the same low SSR value, which increases the likelihood

that the solution is indeed the global optimal solution. In

practice, however, it is not uncommon that the lowest SSR

value obtained in this way is still greater than the max-

imum statistically allowed SSR. Some common reasons

for this are as follows:

1. Errors in the metabolic model. Mistakes in the user-

specified metabolic model such as incorrect reaction

stoichiometries or errors in atom transitions are

generally easy to identify and correct.

2. Incomplete metabolic model. Omitting important

reactions or pathways from the model will result in

poor fits. Thus, depending on the quality of fit, the

scope of the model may need to be adjusted. In some

cases, it may be necessary to include hypothetical

reactions in the model in order to achieve an

acceptable fit. In this way, 13C-MFA can be used as a

hypothesis generating tool that can eventually lead

to the discovery of novel metabolic pathways or

reactions67–72. As an example, the TKTL1 pathway

was recently discovered in Chinese hamster ovary

cells by this approach73.

3. Gross measurement errors. It is not uncommon that

certain labeling data will contain gross measurement

errors, for example, due to co-elution of metabolites

in GC/MS and LC/MS analyses. Careful inspection

of ion chromatograms can in most cases help to

identify co-elution problems. In such cases, labeling

data for the contaminated metabolite fragments

should be excluded from flux analysis.

4. Incorrect assumptions about measurement errors.

The SSR value is calculated by summing up the

weighted squared differences between the measured

and simulated values. The weighting factors are

inverses of measurement standard deviations

squared. The assumed measurement errors thus

greatly influence the calculated SSR value. Typical

measurement errors used in 13C-MFA studies are as

follows: 0.004 (or 0.4 mol%) for GC/MS data; 0.01

(or 1 mol%) for LC/MS data; and 5–10% relative

error for external rates. In cases when very high or

very low SSR values are obtained, it may be

necessary to reevaluate the assumptions regarding

measurement errors. Moreover, inspection of

weighted residuals can inform if correct

measurement errors have been assigned. Assuming
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measurement errors are random, the weighted

residuals should follow a normal distribution

N(µ= 0, σ2= 1), which can be easily tested40.

Isotopomer spectral analysis
Isotopomer spectral analysis (ISA) is a related and

widely used analysis approach for analyzing de novo fatty

acid biosynthesis74 (Fig. 5). ISA calculations can be per-

formed with most current software tools for 13C-MFA.

Initially developed in early 1990s (before the 13C-MFA

approach was fully formalized), the ISA approach is based

on a relatively simple two-parameter model for analyzing

mass isotopomer distributions of fatty acids from tracer

experiments with fully 13C-labeled substrates, e.g., [U-13C]

glucose. In the classical ISA formulation, two model

parameters are determined: the D-value and the g(t)-

value74. The D-value quantifies the fractional contribution

of the fully 13C-labeled metabolite to lipogenic AcCoA,

and the g(t)-value quantifies the fraction of fatty acids that

were newly synthesized during the labeling time t.

Typically, several parallel labeling experiments are per-

formed with different fully 13C-labeled substrates, e.g.,

[U-13C]glucose and [U-13C]glutamine, and isotopic

labeling is measured for multiple fatty acids is each

experiment, e.g., C16:0, C16:1, C18:0, and C18:1, using

GC/MS. In theory, for a given tracer the D-values should

be identical for all fatty acids, since all fatty acids are

derived from the same cytosolic AcCoA pool. In contrast,

the g(t)-values may be different for each fatty acid since

different fatty acids may be synthesized at different rates.

However, g(t)-values for a particular fatty acid determined

with different tracers, e.g., with [U-13C]glucose and

[U-13C]glutamine, should be the same since the synthesis

rate of a particular fatty acid should not depend on which

substrate is labeled. The ISA approach can be generalized

for analysis of odd-chain fatty acids, e.g., C15:0 and C17:0,

as was recently demonstrated62. Moreover, ISA can be

extended to include additional model parameters62

(Fig. 5). In the classical ISA model, it is assumed that fully

labeled substrates, e.g., [U-13C]glutamine, will produce

only fully labeled AcCoA (i.e., M+ 2-labeled). However,

this assumption may not always be valid. For example,

metabolism of [U-13C]glutamine in the TCA cycle can

result in some loss of 13C, which will produce a mixture of

M+ 1- and M+ 2-labeled AcCoA. Moreover, catabolism

of certain substrates such as [U-13C]leucine will always

produce a mixture of M+ 1- and M+ 2-labeled AcCoA

due to carbon exchange with unlabeled CO2
75. For

example, for the case of [U-13C]leucine, 33% of AcCoA

will be M+ 1-labeled and 67% of AcCoA will be M+ 2-

labeled62. By including an additional fM2 parameter in the

ISA model, losses of 13C atoms can be captured, which

produces more accurate estimates of D- and g(t)-values.

As indicated above, ISA analysis is typically performed

with different fully 13C-labeled substrates in parallel

experiments. These studies provide important insights

into the relative contributions of different nutrients for de

novo lipogenesis13,76. The estimated g(t)-values are also

Fig. 5 The isotopomer spectral analysis (ISA) approach is used to quantify de novo fatty acid biosynthesis based on tracer experiments

with fully 13C-labeled substrates. In the classical ISA formulation, two model parameters are determined, the D-value and the g(t)-value. The ISA

approach can be generalized and extended to include additional model parameters such as fM2
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informative, since they can be used to calculate absolute

de novo biosynthesis rates of fatty acids (nmol/106

cells/h):

Fatty acid biosynthesis rate ¼
FA

t
�

gðtÞ

1� g tð Þ
ð6Þ

Here FA is the macromolecular content of a particular

fatty acid in cancer cells (in units nmol/106 cells; a typical

value for palmitate is 40 nmol/106 cells), and Δt (h) is the

length of the tracer experiment. The fatty acid content of

cancer cells is easily determined with GC-flame ionization

detector, or using the protocols described by Long and

Antoniewicz65.

Quantifying fluxes in upper metabolism
In the next two sections, we describe briefly common

stable-isotope tracing strategies for determining fluxes in

upper and lower parts of central carbon metabolism,

respectively. When performing flux analysis in upper

metabolism, the drain of metabolic precursors toward

biomass synthesis such as glucose 6-phosphate (G6P) for

carbohydrates, R5P for nucleotides, and glycerol 3-

phosphate for lipids can be generally ignored, since the

glucose uptake rate (~100–400 nmol/106 cells/h) is typi-

cally two orders of magnitude greater than the drain of

anabolic precursors for cell growth (~2–3 nmol/106

cells/h; Fig. 4). However, when performing flux analysis in

lower metabolism, the drain of AcCoA for lipogenesis

(~28 nmol/106 cells/h) cannot be ignored since this flux is

comparable in magnitude to other fluxes in lower

metabolism.

At present, [1,2-13C]glucose is one of the most widely

used tracers to quantify fluxes of glycolysis and PPP

(Fig. 6a). With this tracer the two pathways produce

distinctly different labeling patterns in downstream

metabolites such as 3PG, which can be easily measured

with GC/MS and LC/MS. Metabolism of glucose via

glycolysis produces 3PG that is 50% M+ 2-labeled and

50% unlabeled (i.e., M+ 0), while metabolism of glucose

via oxidative PPP (oxPPP) produces a mixture of M+ 0-,

M+ 1-, and M+ 2-labeled 3PG. For a single pass through

oxPPP, the labeling of 3PG is 60% M+ 0, 20% M+ 1, and

20% M+ 2. The ratio of M+ 1/M+ 2 mass isotopomers

of 3PG thus roughly approximates the relative contribu-

tion of oxPPP to glucose metabolism. However, this

approximation should be used with caution. Specifically,

the reversible G6P isomerase reaction, which inter-

converts G6P and F6P, can reroute a significant fraction of

F6P that is produced via PPP back to G6P to be meta-

bolized via oxPPP a second time (and possibly a third

time), which results in additional losses of 13C (Fig. 6a).

Thus, depending on the equilibration of F6P and G6P, the

M+ 1 and M+ 2 mass isotopomers of 3PG can be sig-

nificantly <20% and the ratio M+ 1/M+ 2 may be

different from unity. Thus, to obtain a reliable estimate of

oxPPP flux, the 3PG labeling data should be analyzed

formally with 13C-MFA.

Recently, a third metabolic pathway was discovered in

cancer cells by which glucose can be metabolized, the

TKTL1 pathway, which converts X5P (an intermediate of

PPP) to glyceraldehyde 3-phosphate and a two-carbon

metabolite, likely acetate, which can be further metabo-

lized to cytosolic AcCoA20,21 (Fig. 6). Unfortunately,

[1,2-13C]glucose and several other commonly used glu-

cose tracers cannot provide a reliable estimate of the

TKTL1 flux. To address this limitation, alternative

glucose-tracing strategies have been developed to better

resolve the three glucose metabolism pathways, glycolysis,

PPP, and TKTL173. One of the best tracer strategies was

based on mixtures of 50% [4,5,6-13C]glucose and 50% of

either [1-13C]glucose, [2-13C]glucose, or [3-13C]glucose

(Fig. 6b). With these tracers, it is possible to determine

precise fluxes of all three metabolic pathways, as recently

demonstrated in Chinese hamster ovary cells73. Other

optimal glucose tracers have also been proposed for

analysis of specific metabolic pathways; for example,

[3,4-13C]glucose was determined to be a particularly good

tracer for quantifying the anaplerotic flux of glucose into

the TCA cycle57,77,78.

Quantifying fluxes in lower metabolism
For analysis of fluxes in lower part of central carbon

metabolism, i.e., downstream of pyruvate, fully labeled

[U-13C]glutamine is often used. Glutamine is a the second

most highly consumed carbon substrate by many cancer

cells (after glucose)79; as a result, [U-13C]glutamine pro-

duces high labeling in metabolites, especially in TCA cycle

intermediates, and rich labeling patterns for flux estima-

tion using 13C-MFA (Fig. 7). Another advantage of using
13C-glutamine as a tracer is that labeling dynamics of 13C-

glutamine are not affected by the buffering effect of

extracellular lactate. Since 13C-glutamine labels mainly

metabolites downstream of pyruvate, isotopic steady state

is reached for the labeled TCA cycle metabolites within a

few hours after [U-13C]glutamine addition, even when

external lactate concentration is high56.

In the past decade, [U-13C]glutamine tracing has played

an important role in elucidating the contribution of glu-

tamine to lipogenesis via reductive carboxylation path-

way13,42, i.e., via the conversion of glutamine to AKG, then

to citrate (i.e., in the reverse direction of TCA cycle,

catalyzed by isocitrate dehydrogenases), and finally to

AcCoA after cleavage by ATP citrate lyase. To highlight

additional flux information that can be obtained from

[U-13C]glutamine tracer experiments, Fig. 7 shows sche-

matically the flow isotopic labeling from [U-13C]gluta-

mine into relevant metabolic pathways. The insert in

Fig. 7 shows an example of labeling data set obtained from
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a [U-13C]glutamine tracer experiment. Metabolism of

[U-13C]glutamine via reductive carboxylation (purple

arrows in Fig. 6) results in the production of M+ 5-

labeled citrate42; after cleavage of citrate by ATP citrate

lyase, M+ 2-labeled AcCoA and M+ 3-labeled oxaloa-

cetate are produced (while labeling of oxaloacetate cannot

be measured directly, it can be inferred from the labeling

of aspartate). In contrast, metabolism of [U-13C]glutamine

via the glutaminolysis pathway along the normal oxidative

direction of the TCA cycle (red arrows in Fig. 6) results in

the production of M+ 4-labeled succinate, fumarate,

malate, and oxaloacetate. M+ 4 malate can also produce

M+ 3-labeled oxaloacetate, after conversion to pyruvate

via malic enzyme, followed by carboxylation of pyruvate

to oxaloacetate by pyruvate carboxylase (green arrows in

Fig. 6). Taken together, [U-13C]glutamine tracer experi-

ments produce rich labeling patterns in TCA cycle

metabolites that permit precise quantification of meta-

bolic fluxes in these pathways using 13C-MFA. In addition

to [U-13C]glutamine, [5-13C]glutamine and [1-13C]gluta-

mine have also been used for 13C-MFA13,36,77. However,

in general, these singly labeled glutamine tracers are not

as informative as [U-13C]glutamine for comprehensive

analysis of cellular metabolism.

Concluding remarks
The isotopic tracing strategies and 13C-MFA methods

reviewed here present powerful tools for elucidating

metabolic flux rewiring in cancer cells. Technically, other

stable isotopes such as 2H, 18O, and 15N can also be used

to study metabolic phenotypes, and for certain applica-

tions these alternative isotope tracers may be pre-

ferred80,81. From a modeling perspective, the application

of multiple isotopes will not cause any problems for MFA.

In fact, one of the motivations for developing the EMU

framework was to permit and encourage the application

of multiple isotopes for flux analysis39. Several pioneering

studies have already made use of this45,82. However, there

are several drawbacks and limitations that should be

considered when contemplating the use of alternative

stable isotopes. For example, 18O tracers are generally

much more expensive than 13C tracers and at present the

number commercially available 18O tracers is limited.

While 15N can be used to investigate metabolic pathways

where the metabolic intermediates contain N atoms, such

as amino-acid pathways, they cannot be used to study

central carbon metabolism. Finally, interpretation of 2H

labeling data is complicated by the presence of significant

deuterium kinetic isotope effects. In contrast to 13C tra-

cers, where it has been demonstrated that the kinetic

isotope effects are negligible83, the kinetic isotope effects

for 2H are substantial84. Thus, determining fluxes from 2H

labeling data is strongly influenced by specific assump-

tions made regarding the magnitude of kinetic isotope

effects for various enzymatic reactions. Still, 2H

tracers can be valuable in resolving specific aspects of

Fig. 6 Two alternative 13C-glucose-tracing strategies for analysis of metabolic fluxes in upper metabolism based on mass isotopomer

measurements of 3-phosphoglycerate (3PG). a The [1,2-13C]glucose tracer allows good resolution of relative glycolysis and pentose phosphate

pathway fluxes. b A mixture of 50% [2-13C]glucose and 50% [4,5,6-13C]glucose is an improved tracer approach that also allows precise quantification

of the transketolase-like 1 (TKTL1) pathway flux
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metabolism such as NADPH metabolism in different

cellular compartments, which cannot be elucidated with
13C tracers85,86.

Currently, one of the biggest challenges for 13C-MFA in

mammalian cells is to resolve compartment-specific

fluxes87. While certain compartment-specific metabolic

fluxes can be determined precisely with 13C-MFA, e.g.,

mitochondrial vs cytosolic malic enzyme fluxes, other

fluxes are much more difficult to resolve, e.g., mito-

chondrial vs cytosolic isocitrate dehydrogenase fluxes. In

theory, resolving compartment-specific fluxes would be

easier if compartment-specific labeling data could be

collected88. However, with current protocols for

quenching metabolism and extracting intracellular label-

ing, all intracellular metabolite pools are sampled. As a

result, the measured labeling data must be modeled as

mixtures from multiple cellular pools36,61,89. To resolve

compartmentalized metabolism, alternative approaches

such as organelle isolation may be valuable in the

future90–92.

When interpreting 13C-MFA results, it is also important

to keep in mind that the accuracy of 13C-MFA calcula-

tions depends strongly on the validity of several modeling

assumptions that collectively form the basis for the

underlying isotopomer models. These inherent assump-

tions include the following: (1) metabolic steady-state

assumption—it is assumed that metabolic fluxes are

constant during the labeling experiment; (2) isotopic

steady-state assumption—it is assumed that isotopic

labeling does not change in time; (3) no kinetic isotope

effect for 13C tracers—it is assumed that enzymes cannot

discriminate between unlabeled (12C) and labeled (13C)

atoms83,93; (4) no metabolite channeling—it is assumed

that substrate tunneling via multi-enzyme complexes can

be ignored; (5) homogeneous metabolite pools—it is

assumed that metabolites within a particular compart-

ment are perfectly mixed; (6) homogeneous cell popula-

tion—it is assumed that all cells in a culture have the same

metabolic phenotype; and (7) no turnover of macro-

molecules—it is assumed that cellular macromolecules

such as proteins, lipids, RNA, and DNA are not broken

down and produced at the same time. If one or more of

these assumptions are shown to be incorrect for a given

biological system, then the 13C-MFA methodology must

be adjusted to account for these effects. For example, the

isotopic 13C-NMFA was developed for analysis of systems

where labeling data are not constant in time41,94, and

dynamic MFA methodologies (DMFA and 13C-DMFA)

were developed for analysis of systems where fluxes are

not constant in time46,95–97. More recently, the co-culture
13C-MFA methodology was developed for analysis of non-

homogeneous cell cultures89. Turnover of macro-

molecules such as glycogen, lipids, and RNA has also been

observed in many biological systems98–100, and these

effects can be captured in 13C-MFA by adding appropriate

dilution fluxes99.

Lastly, we want to emphasize the importance of full

transparency in reporting 13C-MFA results by providing

full access to data, models, methods, results, and statistics.

As described in this review, 13C-MFA results are highly

dependent on assumptions and models used for data

analysis. As cancer research progresses and new insights

are obtained into the unique metabolic features of cancer

cells, we may discover additional reactions or pathways

that have not been considered before. Reanalyzing past

data using updated metabolic models could provide a

powerful approach for testing new hypotheses. A recent

review paper has proposed minimum data standards to

facilitate dissemination of methods, data, and results from
13C-MFA studies44.

Fig. 7 [U-13C]Glutamine tracer experiments produce rich labeling

patterns in TCA cycle metabolites that allow precise

quantification of metabolic fluxes in lower part of central

metabolism, i.e., downstream of pyruvate, using 13C-MFA. The

diagram shows schematically the flow of 13C-labeling from [U-13C]

glutamine into relevant metabolic pathways in cancer cells. The insert

shows an example of labeling data obtained from a [U-13C]glutamine

tracer experiment. Colors of arrows indicate different metabolic

pathways: reductive carboxylation of glutamine (purple);

glutaminolysis (red); conversion of malate to oxaloacetate via malic

enzyme and pyruvate carboxylase (green)
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