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Within the theory of Quantum Chromodynamics (QCD), the rich structure of hadrons can be quantitatively characterized, among
others, using a basis of universal nonperturbative functions: parton distribution functions (PDFs), generalized parton distributions
(GPDs), transverse momentum dependent parton distributions (TMDs), and distribution amplitudes (DAs). For more than half a
century, there has been a joint experimental and theoretical e�ort to obtain these partonic functions. However, the complexity of
the strong interactions has placed severe limitations, and �rst-principle information on these distributions was extracted mostly
from their moments computed in Lattice QCD. Recently, breakthrough ideas changed the landscape and several approaches were
proposed to access the distributions themselves on the lattice. In this paper, we review in considerable detail approaches directly
related to partonic distributions.We highlight a recent idea proposed byX. Ji on extracting quasidistributions that spawned renewed
interest in the whole �eld and sparked the largest amount of numerical studies within Lattice QCD. We discuss theoretical and
practical developments, including challenges that had to be overcome, with some yet to be handled. We also review numerical
results, including a discussion based on evolving understanding of the underlying concepts and the theoretical and practical
progress. Particular attention is given to important aspects that validated the quasidistribution approach, such as renormalization,
matching to light-cone distributions, and lattice techniques. In addition to a thorough discussion of quasidistributions, we consider
other approaches: hadronic tensor, auxiliary quark methods, pseudodistributions, OPE without OPE, and good lattice cross-
sections. In the last part of the paper, we provide a summary and prospects of the �eld, with emphasis on the necessary conditions
to obtain results with controlled uncertainties.

1. Introduction

Among the frontiers of nuclear and particle physics is the
investigation of the structure of hadrons, the architecture
elements of the visible matter. Hadrons consist of quarks
and gluons (together called partons), which are governed
by one of the four fundamental forces of nature, the strong
force. 	e latter is described by the theory of Quantum
Chromodynamics (QCD). Understanding QCD can have
great impact on many aspects of science, from the subnu-
clear interactions to astrophysics, and, thus, a quantitative
description is imperative. However, this is a very challenging
task, as QCD is a highly nonlinear theory. 	is led to the
development of phenomenological tools such as models,

which have provided important input on the hadron struc-
ture. However, studies from �rst principles are desirable.
An ideal ab initio formulation is Lattice QCD, a space-
time discretization of the theory that allows the study of
the properties of fundamental particles numerically, starting
from the original QCD Lagrangian.

Despite the extensive experimental program that was
developed and evolved since the �rst exploration of the
structure of the proton [1, 2], a deep understanding of the
hadrons’ internal dynamics is yet to be achieved. Hadrons
have immensely rich composition due to the complexity of
the strong interactions that, for example, forces the partons
to exist only inside the hadrons (color con�nement), making
the extraction of information from experiments very di
cult.
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Understanding internal properties of the hadrons
requires the development of a set of appropriate quantities
that can be accessed both experimentally and theoretically.
	e QCD factorization provides such formalism and
can relate measurements from di�erent processes to
parton distributions. 	ese are nonperturbative quantities
describing the parton dynamics within a hadron and have
the advantage of being universal, that is, do not depend on
the process used for their extraction. 	e comprehensive
study of parton distributions can provide a wealth of
information on the hadrons, in terms of variables de�ned
in the longitudinal direction (with respect to the hadron
momentum) in momentum space, and two transverse
directions. 	e latter can be de�ned either in position or
in momentum space. 	ese variables are as follows: (1) the
longitudinal momentum fraction � carried by the parton,(2) the longitudinal momentum fraction � obtained via the
longitudinal momentum transferred to the hadron, and (3)
the momentum �� transverse to the hadron direction of
movement. Parton distributions can be classi�ed into three
categories based on their dependence on �, �, �� and the
momentum transferred to the hadron, �, as described below.

Parton distribution functions (PDFs) are one-dimensional
objects and represent the number density of partons with
longitudinal momentum fraction � while the hadron is
moving with a large momentum.

Generalized parton distributions (GPDs) [3–7] depend
on the longitudinal momentum fractions � and � and, in
addition, on themomentum transferred to the parent hadron,�.	ey provide a partial description of the three-dimensional
structure.

Transverse momentum dependent parton distribution
functions (TMDs) [8–12] describe the parton distribution
in terms of the longitudinal momentum fraction � and
the transverse momentum ��. 	ey complement the three-
dimensional picture of a hadron from GPDs.

As is clear from the above classi�cation, PDFs, GPDs,
and TMDs provide complementary information on parton
distributions, and all of them are necessary to map out
the three-dimensional structure of hadrons in spatial and
momentum coordinates. Experimentally, these are accessed
from di�erent processes, with PDFs being measured in
inclusive or semi-inclusive processes such as deep-inelastic
scattering (DIS) and semi-inclusive DIS (SIDIS); see e.g., [13],
for a review of DIS. GPDs are accessed in exclusive scat-
tering processes such as Deeply Virtual Compton Scattering
(DVCS) [14], and TMDs in hard processes in SIDIS [10, 11].
Most of the knowledge on the hadron structure is obtained
fromDIS and SIDIS data onPDFs,while theGPDs andTMDs
are less known. More recently, data emerge from DVCS
and Deeply Virtual Meson Production (DVMP) [15]. 	is
includes measurements from HERMES, COMPASS, RHIC,
Belle and Babar, E906/SeaQuest, and the 12 GeV upgrade at
JLab. A future Electron-Ion Collider (EIC), that was strongly
endorsed by the National Academy of Science, Engineering
and Medicine [16], will be able to provide accurate data
related to parton distributions and will advance dramatically
our understanding on the hadron tomography. Together with
the experimental e�orts, theoretical advances are imperative

in order to obtain a complete picture of hadrons. First, to
interpret experimental data, global QCD analyses [17–26]
are necessary that utilize the QCD factorization formalism
and combine experimental data and theoretical calculations
in perturbative QCD. Note that these are beyond the scope
of this review and we refer the interested Reader to the
above references and a recent community white paper [27].
Second, theoretical studies are needed to complement the
experimental program and, in certain cases, provide valuable
input. 	is is achieved using models of QCD and more
importantly calculations from �rst principles. Model calcu-
lations have evolved and constitute an important aspect of
our understanding of parton structure. An example of such
a model is the diquark spectator model [28] that has been
used for studies of parton distributions (for more details,
see Section 4). 	e main focus of the models discussed
in Section 4 is the one-dimensional hadron structure (�-
dependence of PDFs), but more recently the interest has
been extended to the development of techniques that are also
applicable to GPDs and TMDs (some aspects are discussed in
this review). Let us note that there have been studies related
to TMDs from the lattice, and there is intense interest towards
that direction (see, e.g., [29–31], and references therein).

Despite the tremendous progress in both the global analy-
ses and the models of QCD, parton distributions are not fully
known, due to several limitations: global analysis techniques
are not uniquely de�ned [22]; certain kinematic regions are
di
cult to access, for instance, the very small �-region [32–
34]; and models cannot capture the full QCD dynamics.
Hence, an ab initio calculation within Lattice QCD is crucial,
and synergy with global �ts and model calculations can lead
to progress in the extraction of distribution functions.

Lattice QCD provides an ideal formulation to study
hadron structure and originates from the full QCD
Lagrangian by de�ning the continuous equations on a
discrete Euclidean four-dimensional lattice. 	is leads to
equations with billions of degrees of freedom, and numerical
simulations on supercomputers are carried out to obtain
physical results. A nonperturbative tool, such as Lattice
QCD, is particularly valuable at the hadronic energy scales,
where perturbative methods are less reliable, or even fail
altogether. Promising calculations from Lattice QCD have
been reported for many years with the calculations of the
low-lying hadron spectrum being such an example. More
recently, Lattice QCD has provided pioneering results related
to hadron structure, addressing, for instance, open questions,
such as the spin decomposition [35] and the glue spin [36] of
the proton. Another example of the advances of numerical
simulations within Lattice QCD is the calculation of certain
hadronic contributions to the muon � − 2, for example,
the connected and leading disconnected hadronic light-by-
light contributions (see recent reviews of [37, 38]). Direct
calculations of distribution functions on a Euclidean lattice
have not been feasible due to the time dependence of these
quantities. A way around this limitation is the calculation on
the lattice of moments of distribution functions (historically
for PDFs and GPDs) and the physical PDFs can, in principle,
be obtained from operator product expansion (OPE).
Realistically, only the lowest moments of PDFs and GPDs
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can be computed (see, e.g., [39–44]) due to large gauge noise
in high moments, and also unavoidable power-divergent
mixing with lower-dimensional operators. Combination
of the two prevents a reliable and accurate calculation of
moments beyond the second or third, and the reconstruction
of the PDFs becomes unrealistic.

Recent pioneering work of X. Ji [45] has changed the
landscape of lattice calculations with a proposal to compute
equal-time correlators of momentum boosted hadrons, the
so-called quasidistributions. For large enough momenta,
these can be related to the physical (light-cone) distributions
via a matching procedure using Large Momentum E�ective
	eory (LaMET) (see Sections 3.1 and 8). 	is possibility
has opened new avenues for direct calculation of distribution
functions from Lattice QCD and �rst investigations have
revealed promising results [46, 47] (see Section 3.2). Despite
the encouraging calculations, many theoretical and technical
challenges needed to be clari�ed. One concern was whether
the Euclidean quasi-PDFs and Minkowski light-cone PDFs
have the same collinear divergence, which underlies the
matching programme. In addition, quasi-PDFs are computed
from matrix elements of nonlocal operators that include a
Wilson line. 	is results in a novel type of power divergences
and the question whether these operators are multiplicatively
renormalizable remained unanswered for some time. While
the theoretical community was addressing such issues, the
lattice groups had to overcome technical di
culties related
to the calculation of matrix elements of nonlocal operators,
including how to obtain reliable results for a fast moving
nucleon, and how to develop a nonperturbative renormaliza-
tion prescription (see Section 7). For theoretical and techni-
cal challenges, see Sections 5-6. Our current understanding
on various aspects of quasi-PDFs has improved signi�cantly,
and lattice calculations of quasi-PDFs have extended to quan-
tities that are not easily or reliably measured in experiments
(see Sections 9-10), such as the transversity PDF [48, 49].
	is new era of LQCD can provide high-precision input to
experiments and test phenomenological models.

	e �rst studies on Ji’s proposal have appeared for
the quark quasi-PDFs of the proton (see Sections 3.2 and
9). Recently, the methodology has been extended to other
hadrons, in particular mesonic PDFs and distribution ampli-
tudes (DAs). Progress towards this direction is presented
in Section 10. Other recent reviews on the �-dependence
of PDFs from Lattice QCD calculations can be found in
[27, 50, 51]. 	e quasi-PDFs approach is certainly promising
and can be generalized to study gluon quasi-PDFs, quasi-
GPDs, and quasi-TMDs. In such investigations, technical
di
culties of di�erent nature arise and must be explored.
First studies are presented here. Apart from the quasidistribu-
tion approach, we also review other approaches for obtaining
the �-dependence of partonic functions, both the theoretical
ideas underlying them (see Section 2) and their numerical
explorations (Section 11).

	e central focus of the review is the studies of the �-
dependence of PDFs. We present work that appears in the
literature until November 10, 2018 (published, or on the
arXiv).	e discussion is extended to conference proceedings
for recent work that has not been published elsewhere. 	e

presentation is based on chronological order, unless there
is a need to include follow-up work by the same group
on the topic under discussion. Our main priority is to
report on the progress of the �eld, but also to comment
on important aspects of the described material based on
theoretical developments that appeared in later publications,
or follow-up work. To keep this review at a reasonable length,
we present selected aspects of each publication discussed in
the main text and we encourage the interested Reader to
consult the referred work. Permission for reproduction of the
�gures has been granted by the Authors and the scienti�c
journals (in case of published work).

	e rest of the paper is organized as follows. In Section 2,
we introduce methods that have been proposed to access
the �-dependence of PDFs from the lattice, which include
a method based on the hadronic tensor, auxiliary quark
�eld approaches, quasi- and pseudodistributions, a method
based on OPE, and the good lattice cross-sections approach.
A major part of this review is dedicated to quasi-PDFs,
which are presented in more detail in Section 3, together
with preliminary studies within Lattice QCD.	e numerical
calculations of the early studies have motivated an intense
theoretical activity to develop models of quasidistributions,
which are presented in Section 4. In Section 5, we focus
on theoretical aspects of the approach of quasi-PDFs, that
is, whether a Euclidean de�nition can reproduce the light-
cone PDFs, as well as the renormalizability of operators
entering the calculations of quark and gluon quasi-PDFs.	e
lattice techniques for quasi-PDFs and di
culties that one
must overcome are summarized in Section 6. Recent develop-
ments on the extraction of renormalization functions related
to logarithmic and/or power divergences are explained in
Section 7, while Section 8 is dedicated to the matching
procedure within LaMET. Lattice results on the quark quasi-
PDFs for the nucleon are presented in Section 9. 	e quasi-
PDFs approach has been extended to gluon distributions,
as well as studies of mesons, as demonstrated in Section 10.
In Section 11, we brie�y describe results from the alternative
approaches presented in Section 2. We close the review with
Section 12 that gives a summary and future prospects. We
discuss the �-dependence of PDFs and DAs, as well as
possibilities to study other quantities, such as GPDs and
TMDs. A glossary of abbreviations is given in the Appendix.

2. �-Dependence of PDFs

In this section, we brie�y outline di�erent approaches for
obtaining the �-dependence of partonic distribution func-
tions, in particular collinear PDFs.We �rst recall the problem
by directly employing the de�nitions of such functions on
the lattice, using the example of unpolarized PDFs. 	e
unpolarized PDF, denoted here by �(�), is de�ned on the light
cone:

� (�)
= ∫+∞

−∞

	�−4
 �−���+�− ⟨
| � (�−) �+�(�−, 0) � (0) |
⟩ , (1)
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where |
⟩ is the hadron state with momentum 
�, in the
standard relativistic normalization1, the light-cone vectors are

taken as V± = (V0 ± V
3)/√2, and �(�−, 0) = �−�	 ∫�−0 ��−
+(�−)

is the Wilson line connecting the light-cone points 0 and�−, while the factorization scale is kept implicit. Such light-
cone correlations are not accessible on a Euclidean spacetime,
because the light-cone directions shrink to one point at the
origin. As discussed in the Introduction, this fact prevented
lattice extraction of PDFs for many years, apart from their
low moments, reachable via local matrix elements and the
operator product expansion (OPE). However, since the num-
ber of moments that can be reliably calculated is strongly
limited, alternative approaches were sought for to yield the
full Bjorken-� dependence.

	e common feature of all the approaches is that they rely
to some extent on the factorization framework. For a lattice
observable �(�, ��) that is to be used to extract PDFs, one
can generically write the following:2

� (�, ��) = ∫1

−1

	�� �(��, ��, ��) � (�, ��) , (2)

where�(�/�, ��, ��) is a perturbatively computable function

and �(�, �2�) is the desired PDF. In the above expression
we distinguish between the factorization scale, ��, and the
renormalization scale, ��.	ese scales are usually taken to be
the same and, hence, from now on we will adopt this choice
and take �� = �� ≡ �. Lattice approaches use di�erent
observables � that fall into two classes:

(1) Observables that are generalizations of light-cone
functions such that they can be accessed on the lattice;
such generalized functions have direct�-dependence,
but � does not have the same partonic interpretation
as the Bjorken-�.

(2) Observables in terms of which hadronic tensor can
be written; the hadronic tensor is then decomposed
into structure functions like �1 and �1, which are
factorizable into PDFs.

Below, we provide the general idea for several proposals that
were introduced in recent years.

2.1. Hadronic Tensor. All the information about a DIS cross-
section is contained in the hadronic tensor [52–56], de�ned
by

��] (�, �, �, ��)
= 14
 ∫	4����� ⟨�, ��""""" [$� (�) , $] (0)] """"�, �⟩ ,

(3)

where |�, �⟩ is the hadron state labeled by its momentum �
and polarization �, � is virtual photon momentum, and $�(�)
is electromagnetic current at point�.	e hadronic tensor can
be related to DIS structure functions and hence, in principle,
PDFs can be extracted from it. ��] is the imaginary part of

the forward Compton amplitude and can be written as the
current-current correlation function

��] (�, �) = ⟨�, ��""""" ∫ 	4�4
 ����$� (�) $] (0) """"�, �⟩��� , (4)

where the subscript ��� denotes averaging over polariza-
tions. 	e approach has been introduced as a possible way
of investigating hadronic structure on the lattice by K.-F.
Liu and S.-J. Dong already in 1993. 	ey also proposed a
decomposition of the contributions to the hadronic tensor
according to di�erent topologies of the quark paths, into
valence and connected or disconnected sea ones. In this way,
they addressed the origin of Gottfried sum rule violation.

A crucial aspect for the implementation in Lattice QCD is
the fact that the hadronic tensor ��], de�ned in Minkowski
spacetime, can be obtained from the Euclidean path-integral
formalism [54–58], by considering ratios of suitable four-
point and two-point functions. In the limit of the points
being su
ciently away from both the source and the sink,
where the hadron is created or annihilated, the matrix
element receives contributions from only the ground state
of the hadron. Reconstructing the Minkowski tensor from
its Euclidean counterpart is formally de�ned by an inverse
Laplace transform of the latter and can, in practice, be carried
out using, e.g., the maximum entropy method or the Backus-
Gilbert method. Nevertheless, this aspect is highly nontrivial
and improvements thereof are looked for. As pointed out
in [59], a signi�cant role may be played by power-law
�nite volume e�ects related to the matrix elements being
de�ned in Euclidean spacetime. A similar phenomenon was

recently observed also in the context of ' − ' mixing [60].
Another di
culty of the hadronic tensor approach on the
lattice is the necessity to calculate four-point correlation
functions, which is computationally more intensive than for
three-point functions, the standard tools of hadron structure
investigations on the lattice. However, the theoretical appeal
of the hadronic tensor approach recently sparked renewed
interest in it [61–63]. We describe some exploratory results
in Section 11.1.

2.2. Auxiliary Scalar Quark. In 1998, a new method was
proposed to calculate light-cone wave functions (LCWFs)
on the lattice [64]. 	is �nds its motivation from the fact
that LCWFs enter the description of many processes, such
as electroweak decays and meson production. LCWF is the
leading term of the full hadronic wave function in theΛ2

QCD/�2 expansion, where � is the hadron momentum. For
concreteness, we write the de�ning expression for the most
studied LCWF, the one of the pion, Φ�(-), where - is the
momentum fraction:

⟨0| 	 (0)� (0, �) ���5- (�) """""
 (��)⟩�2=0
= −5��6� ∫1

0
	-�−�����Φ� (-) , (5)

with |
(�)⟩ being boosted pion state, |0⟩ being vacuum state,
and 6� being pion decay constant.�(0, �) is the Wilson line
that ensures gauge invariance of the matrix element.
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Figure 1: Schematic representation of the three-point function that
needs to be computed to extract the pion light-cone wave function
[64–66]. Source: arXiv version of [66], reprinted with permission by
the Authors.

	e essence of the idea is to “observe” and study on
the lattice the partonic constituents of hadrons instead of
the hadrons themselves [65, 66]. As shown in [64], the
pion LCWF can be extracted by considering a vacuum-
to-pion expectation value of the axial vector current with
quark �elds separated in spacetime. Gauge invariance is
ensured by a scalar quark propagator with color quantum
numbers of a quark, and at a large momentum transfer.
	e relation between the Fourier transform of this matrix
element, computed on the lattice, and the pion LCWF, Φ�,
is given by the following formula:

�� (7→��, 7→� ; �, ��)
≡ ∫	3��	3���−��→�� ⋅�→��−��→� ⋅�→�����(��−�) ⟨
 (��)"""" - (7→��, �)
⋅ < (7→��, �; 0) ���5	 (0) |0⟩
∝ ��

�6�∑
��

�−(��+(1−��)��)�2@� (-�) Φ� (-�) ,
(6)

where 7→� is momentum transfer, <(7→��, �; 0) is scalar colored
propagator, and {-�} is discrete set of partonic momentum
fractions (allowed by the discretized momenta in a �nite
volume). 	e spacetime points are explained in Figure 1,
which shows the three-point function that needs to be
computed. 	e interval �� − � needs to be large to have an
on-shell pion. To extract the LCWF, several conditions need
to be satis�ed: injected pion momentum needs to be large
(to have a “frozen” pion and see its partonic constituents),
the scalar quark needs to carry large energy, the time �
(time of momentum transfer and “transformation” of a quark
to a scalar quark) has to be small (to prevent quantum
decoherence and hadronization), and the lattice volume has
to be large enough (to minimize e�ects of discretizing parton
momenta). We refer to the original papers for an extensive
discussion of these conditions. An exploratory study of the
approach was presented in [65, 66] and later in [67], both
in the quenched approximation. Naturally, the conditions

outlined above are very di
cult to satisfy simultaneously on
the lattice, due to restrictions from the �nite lattice spacing
and the �nite volume. However, the knowledge of the full
hadronic wave function from �rst principles would be very
much desired and further exploration of this approach may
be interesting. In particular, integrals of hadronic wave func-
tions over transverse momenta yield distribution amplitudes
and PDFs.

2.3. Auxiliary Heavy Quark. In 2005, another method was
proposed [58] to access hadron structure on the lattice,
including PDFs. 	e idea relies on simulating on the lattice
the Compton scattering tensor, using currents that couple
physical light quarks of a hadron with a purely valence
�ctitious heavy quark. In the continuum limit, one can extract
matrix elements of local operators in the OPE in the same
renormalization scheme in which the Wilson coe
cients are
calculated. In this way, one gets the moments of PDFs. 	e
crucial di�erence with respect to standard lattice calculations
of moments is that the approach removes power divergent
mixings with lower-dimensional operators, unavoidable in
the lattice formulation for fourth and higher moments due
to the breaking of the rotational invariance into the discrete
hypercubic subgroup A(4). 	is is derived and discussed
in detail in [58]. 	us, in principle, any PDF moment can
be extracted and the whole PDF can be reconstructed.
Moreover, the heavy �ctitious quark suppresses long-range
correlations between the currents and also removes many
higher-twist contaminations (twist=dimension−spin). 	e
results are independent of the mass of the heavy quark, BΨ,
as long as it satis�es a lattice window restriction; that is, it
should bemuch larger thanΛQCD, butmuch smaller than the

ultraviolet cuto� C−1. In practice, this means a requirement of
rather small lattice spacings.

	e considered heavy-light current is de�ned as follows:

$�Ψ,� (�) = Ψ (�) Γ�� (�) + � (�) Γ�Ψ (�) , (7)

with �(�) denoting the light quark �eld and Ψ(�) the
�ctitious heavy quark �eld. 	e Dirac structure Γ� can be
general and is typically chosen according to the desired �nal
observable. 	e Euclidean Compton scattering tensor is then
constructed:

G�]
Ψ,� (�, �) ≡ ∑

�
⟨�, <"""" ��]Ψ,� (�) """"�, <⟩

= ∑
�
∫	4�e��⋅� ⟨�, <"""" G [$�Ψ,� (�) $]Ψ,� (0)] """"�, <⟩ ,

(8)

where |�, <⟩ are hadron states with momentum � and spin< and the spins are summed over. 	e momentum transfer� between the hadron and the scattered lepton in a DIS
process should be smaller or at most of the order of the
heavy quark mass. Furthermore, the momenta should satisfy

the constraint (�� + ��)2 < (BΨ + ΛQCD)2, where the
momenta with subscript I are the Minkowski counterparts
of the Euclidean ones. If this condition is satis�ed, analytic
continuation of the hadronic tensor to Euclidean spacetime
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is straightforward and can be achieved by relating �4 to 5�0.
Expanding this tensor, in the continuum, using OPE, one can
relate it to moments of PDFs. On the lattice, one needs to
compute four-point functions to access the Compton tensor
for PDFs. Analogous procedure may be applied to compute
distribution amplitudes, for which the hadronic interpolating
operator needs to be applied only once to the vacuum state
and hence a computation of only three-point functions is
required.

Numerical exploration, in the quenched approximation,
is in progress [68], aimed at extracting the moments of the
pion DA. Since the matching to OPE has to be performed
in the continuum, at least three values of the lattice spacing
need to be employed for a reliable extrapolation. Preliminary
results are presented in Section 11.2 demonstrating the feasi-
bility of this method.

2.4. Auxiliary Light Quark. Another possibility for extraction
of light-cone distribution functions appeared in 2007 by
V. Braun and D. Müller [69] and is based on the lattice
calculation of exclusive amplitudes in coordinate space. It is
similar to the �ctitious heavy quark approach, but the heavy
quark is replaced by an auxiliary light quark. One considers a
current-current correlator:

G�] = ⟨0| G {K� (L) K] (−L)} """"
 (�)⟩ , (9)

with K�(L) being the electromagnetic current, but other
choices of currents are also possible. For a discussion on
extracting partonic distributions at light-like separations
from such Euclidean correlators, we refer to Section II of [70].
On the lattice, G�] can be computed as an appropriate ratio
of a three-point and a two-point function. If the separation
between currents is small, the correlator can be computed
perturbatively (using OPE) and in such a case Equation (9)
yields:

G�] = −559 6�P�] ! L �!

8
2L4 ∫1

0
	-��(2�−1)�⋅"R� (-, �) , (10)

at leading order and leading twist. Equation (10) is
proportional to the Fourier transform, Φ�(� ⋅ L) =∫10 	-��(2�−1)�⋅�R�(-, �), of the pion DA, R�(-, �), where - is

the quark momentum fraction. 	e perturbative expression
for the correlator was also derived in [69] toNNLO, including
twist-4 corrections. 	e LO and leading twist expression for
the case of scalar-pseudoscalar densities in Equation (9) was
given in [71]. It has been emphasized that the pion boost plays
a di�erent role than in some other approaches, as it does
not suppress higher-twist contributions, but rather enters
the Io�e time � ⋅ L. 	us, going to large boosts is important
to have the full information on the coordinate space pion
DA, Φ�(� ⋅ L), which can allow disentanglement between
phenomenological models considered in the literature, that
disagree in the regime of large Io�e times. Advantages of the
approach include the possibility of having arbitrary direction
of L with respect to the boost direction, which may make it
possible to minimize discretization e�ects. Moreover, one
avoids complications related to the renormalization in the

presence of a Wilson line (see Section 7); that is, one only
needs renormalization of standard local operators which is
at most logarithmically divergent. Finally, di�erent possible
Dirac structures may give the possibility of better control
of higher-twist contamination. Obviously, the approach can
also be generalized to extract PDFs, which, however, would
necessitate the computation of four-point functions (see also
Section 2.8).

	e �rst numerical investigation of this approach is under
way by the Regensburg group [70, 71] and is aimed at
computing the pion DA, using multiple channels. 	e results
fully prove the feasibility of this method and establish its
status as a promising way of studying hadron structure; see
also Section 11.3. Nevertheless, the requirement of calculation
of four-point functions for extracting PDFsmay prove to be a
serious restriction and an exploratory study for, for example,
nucleon PDFs, is not yet available.

2.5. Quasidistributions. In 2013, X. Ji proposed a new
approach to extracting the �-dependence of structure func-
tions [45]. Although historically it was not the �rst idea, it
can be presently judged that it has been a breakthrough in the
community’s thinking about �-dependence from numerical
simulations on a Euclidean lattice. In particular, it clearly
renewed the interest also in approaches proposed earlier and
described above. Ji’s approach, obviously, bears similarities
with the earliermethods and is also based on the factorization
framework, in which a lattice computable function is factor-
ized into a hard coe
cient and a nonperturbative object like
a PDF or a DA. 	e main di�erence is another type of object
that is used to connect a quark and an antiquark separated by
some distance and that ensures gauge invariance. In earlier
proposals, di�erent types of auxiliary quark propagators were
used for this: scalar, heavy, or light quark propagators. In Ji’s
technique, this role is played by a Wilson line, that is, the
same object that is used in de�nitions of PDFs and other
distribution functions.	us, in general, the quasidistribution
approach is the closest transcription of a light-cone de�nition
to Euclidean spacetime, e�ectively boiling down to replacing
light-cone correlations by equal-time correlators along the
direction of the Wilson line.

We illustrate the idea using the example of PDFs, while
analogous formulations can be used to de�ne DAs, GPDs,
etc. It is instructive to see the direct correspondence between
the light-cone de�nition (Equation (1)) and the de�nition of
quasi-PDFs. As pointed out above, since light-cone correla-
tions cannot be accessed on a Euclidean lattice, Ji proposed to
evaluate on the lattice the following distribution, now termed
the quasidistribution:

�̃ (�, 
3) = ∫∞

−∞

	L4
�−�"#3 ⟨
| � (L) �0�(L)� (0) |
⟩ , (11)

where 
 = (
0, 0, 0, 
3), �3 = �
3 is the quark momentum in

the 3-direction, and �(L) = �−�	 ∫�0 �"�
3("�) is the Wilson line
in the boost direction3.	e light-cone de�nition corresponds
to the above expression at in�nite momentum boost, in line
with Feynman’s original parton model [72, 73]. Since the
momentum of the nucleon on the lattice is obviously �nite,
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the partonic interpretation is formally lost and some quarks
can carry more momenta than the whole nucleon (� > 1) or
move in the opposite direction to it (� < 0).

	e quasidistribution di�ers from the light-cone one

by higher-twist corrections suppressed with Λ2
QCD/
2

3 andI2
$/
2

3 , where I$ is the nucleon mass; see Section 3.1 for
more details. A vital observation of Ji was that the di�erence
between the two types of distributions arises only in the UV
region; that is, their structure in the IR is the same.	ismeans
that the UV di�erence can be computed in perturbation
theory and subtracted from the result, which comes under
the name of matching to a light-cone distribution or Large
MomentumE�ective	eory (LaMET) [74].	epossibility of
correcting the higher-twist e�ects by LaMET is an important
di�erence with respect to previously mentioned approaches.
However, explicit computation of such e�ects is also possible
in them, as demonstrated already in the original paper for the
auxiliary light quark approach [69].

	e quasidistribution approach received a lot of interest
in the community and sparked most of the numerical work
among all the direct �-dependence methods. In further
sections, we discuss in more detail its various aspects and the
plethora of numerical results obtained so far.

2.6. Pseudodistributions. 	e approach of quasidistributions
was thoroughly analyzed by A. Radyushkin [75–77] in the
framework of virtuality distribution functions introduced
by the same Author [78, 79] and straight-link primor-
dial TMDs. In the process, he discovered another, but
strongly related, type of distribution that is accessible on
the lattice and can be related to light-cone distributions via
factorization. It can be extracted from precisely the same

matrix element that appears in Equation (1), M(], −�2) ≡⟨
|�(�−)�+�(�−, 0)�(0)|
⟩, viewed as a function of two

Lorentz invariants, the “Io�e time” [52], ] ≡ −� ⋅ � and −�2.
	us, M(], −�2) has been termed the Io�e time distribution
(ITD). As in Ji’s approach the vector � can be chosen to be
purely spatial, � = (0, 0, 0, L) on a Euclidean lattice.	en, one
de�nes a pseudodistribution:

P (�, L2) = 12
 ∫∞

−∞
	]�−��]M (], L2) . (12)

	us, the variation with respect to a quasi-PDF is the Fourier
transform that is taken over the Io�e time (at �xed L2),
as opposed to being over the Wilson line length L (at
�xed momentum 
3). A consequence of this di�erence is
that pseudo-PDFs have considerably distinct properties from
quasi-PDFs. In particular, the distribution has the canonical
support, � ∈ [−1, 1].

We brie�y mention here the issue of power divergences
induced by the Wilson line, to be discussed more extensively
in Sections 5.2.1 and 7. In the pseudodistribution approach,
a convenient way of eliminating these (multiplicative) diver-

gences is to take the ratio M(], L2) = M(], L2)/M(0, L2)
[77, 80]. 	e reduced ITD, M(], L2), can then be pertur-
batively matched to a light-cone Io�e time PDF [81–86], as
demonstrated in Section 8.	e (inverse) length of theWilson

line plays the role of the renormalization scale and can be

related to, e.g., the MS scale.
Numerical investigation of the pseudodistribution

approach has proceeded in parallel with the theoretical
developments and promising results are being reported
[81, 87–90] (see also Section 11.4).

2.7. OPE without OPE. Yet another recent proposal to com-
pute hadronic structure functions was suggested in [91]. It is
closely related to known ideas introduced around 20 years
ago, dubbed “OPE without OPE” by G. Martinelli [92] and
applied in, e.g., �avor physics [93]. 	e name originates
from the fact that one directly computes the chronologically
ordered product of two currents rather than matrix elements
of local operators. In addition, one works in the regime
of small spacetime separations between currents (to use
perturbation theory to determine the expected form of the
OPE), but large enough to avoid large discretization e�ects.
	e idea is also an ingredient of the proposal to compute
LCWFs with the aid of a �ctitious scalar quark [64].

	e starting point is the forward Compton amplitude
of the nucleon, de�ned similarly as in Equation (3). It can
be decomposed in terms of DIS structure functions �1 and�2. With particular choice of kinematics, one can obtain
the following relations between the 33-component of the
Compton amplitude and �1:

G33 (�, �) = ∞∑
%=2,4,...

4X% ∫1

0
	��%−1�1 (�, �2)

= 4X∫1

0
	� X�1 − (X�)2�1 (�, �2) ,

(13)

where X = 2� ⋅ �/�2. Being able to access G33(�, �) for large
enough number of values of X, one can extract the moments

of �1(�, �2) or even the whole function.
Another important ingredient of the method proposed

in [91] is the e
cient computation of G33, that is, one that
avoids the computation of four-point functions. It relies on
the Feynman-Hellmann relation [94]. One extends the QCD
Lagrangian with a perturbation

L (�) 7→ L (�) + �J3 (�) ,
J3 (�) = Y& cos (7→� ⋅ 7→�) �'�' (�) �3�' (�) , (14)

where �' is the electric charge of the 6-th �avor and � is a
parameter with dimension of mass. Evaluating the derivative
of the nucleon energy with respect to �, which requires
dedicated simulations at a few � values, leads to estimates ofG33:

G33 (�, �) = −2@� (�, �) Z2Z�2@� (�, �)"""""""""�=0 . (15)

	e Authors also showed �rst results obtained in this frame-
work and point to directions of possible improvements and
to prospects of computing the entire structure function based
on this method (see Section 11.5).
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2.8. Good Lattice Cross Sections4. A novel approach to
extracting PDFs or other partonic correlation functions from
ab initio lattice calculations was proposed by Y.-Q. Ma and J.-
W. Qiu [85, 86, 95]. 	ey advocate for a global �t of “lattice
cross-sections” (LCSs), i.e., appropriate lattice observables
de�ned below, to which many of the ones described above
belong. 	e logic is that standard phenomenological extrac-
tions of PDFs rely on an analogous �t to hadronic cross-
sections (HCSs) obtained in experiments and a global �t
approach can average out some of the systematics and yield
ultimately good precision.

Good LCSs, i.e., ones that can be included in such a global
�t, are the ones that have the following properties:

(1) 	ey are calculable in Euclidean Lattice QCD

(2) Have a well-de�ned continuum limit

(3) Have the same and factorizable logarithmic collinear
divergences as PDFs.

All of these properties are crucial and nontrivial.	e �rst one
excludes the direct use of observables de�ned on the light
cone. In practice, the second one requires the observables to
be renormalizable. Finally, the third property implies that the
analogy with global �ts to HCSs is even more appropriate;
both strategies need to rely on the factorization framework:
LCSs and HCSs are then written as a convolution of a
perturbatively computable hard coe
cient with a PDF.

Ma and Qiu constructed also a class of good LCSs in
coordinate space that have the potential of being used in the
proposed global �ts, demonstrating that the three de�ning
properties of LCSs are satis�ed [86]. 	e considered class is
very closely related to the one proposed by Braun andMüller
(see Section 2.4), but the latter Authors concentrated on the
pionDA, while the analysis ofMa andQiu deals with the case
of hadronic PDFs. In general, the relevantmatrix element can
be written as

\% (X, �2, 
2, �) = ⟨
| G {O% (�, �)} |
⟩ , (16)

where ` stands for di�erent possible operators that can be
shown to be factorizable into the desired PDF.
 is the hadron
momentum, and � is the largest separation of �elds from

which the `-th operator is constructed (�2 ̸= 0),X ≡ 
⋅�. One
suggested choice for O% are the current-current correlators:

O*1*2 (�) ≡ ��	1+�	2−2$�1 (�) $�2 (0) , (17)

where 	*� stands for the dimension of the renormalized cur-

rent $�� = Y*�$�, with Y*� being the renormalization function
of the current $�. Di�erent possible options for the currents
were outlined and, then, factorization was demonstrated for
this whole class of LCSs. Renormalizability of these objects is
straightforward, as they are constructed from local currents.
Also, the feasibility of a lattice calculation is easy to establish if� has no time component. 	us, this class of matrix elements
belongs to the set of good LCSs. It was also shown in [86]
that three of the observables discussed above, quasi-PDFs,
pseudo-PDFs, and the Compton amplitude G33, are also
examples of good LCSs.

An explicit numerical investigation of the current-current
correlators is in progress by the theory group of Je�erson
National Laboratory (JLab) and �rst promising results for
pion PDFs, using around 10 di�erent currents, have been
presented. For more details see Section 11.6.

3. Quasi-PDFs: More Details and Early
Numerical Studies

We discuss now, in more detail, the quasidistribution
approach which is the main topic of this review. 	e focus of
this section is on the theoretical principles of thismethod and
we closely follow the original discussion in Ji’s �rst papers.
Since these were soon followed by numerical calculation
within Lattice QCD exploring the feasibility of the approach,
we also summarize the progress on this side. We also identify
the missing ingredients in these early studies and aspects that
need signi�cant improvement.

3.1. �eoretical Principles of Quasi-PDFs. Ji’s idea of quasi-
PDFs [45] relies on the intuition that if light-cone PDFs
can be equivalently formulated in the in�nite momentum
frame (IMF), then the physics of a hadron boosted to a large
but �nite momentum has to have much in common with
the physics of the IMF. Moreover, the di�erence between a
large momentum frame and the IMF should vanish when
the hadron momentum approaches in�nity. 	ese intuitions
were formalized by Ji in his original paper and we reproduce
here his arguments.

Consider a local twist-2 operator

b�1⋅⋅⋅�
 = ��(�1 5c�2 ⋅ ⋅ ⋅ 5c�
)� − traces, (18)

where parentheses in superscript indicate symmetrization of
indices and the subtracted trace terms include operators of
dimension (` + 2) with at most ` − 2 Lorentz indices. 	e
matrix element of such an operator in the nucleon state reads

⟨
| b�1⋅⋅⋅�
 (�2) |
⟩ = 2C% (�2)Π�1⋅⋅⋅�
 , (19)

where Π�1 ⋅⋅⋅�
 is a symmetric rank-` tensor [96] and the

coe
cients C% are moments of PDFs, i.e., ∫	��%−1�(�, �2) =C%(�2) with even `. Taking all indices �1 = ⋅ ⋅ ⋅ = �% =+, one recovers the light-cone, time-dependent correlation
that de�nes the PDF. We now consider a di�erent choice of
indices, without any temporal component, �1 = ⋅ ⋅ ⋅ = �% = 3:

b3⋅⋅⋅3 = ��35c3 ⋅ ⋅ ⋅ 5c3� − traces, (20)

with the trace terms containing operators with again at most` − 2 Lorentz indices. Because of Lorentz invariance, matrix
elements of the trace terms in the nucleon state are at most(
3)%−2 multiplied by Λ2

QCD. On the other hand [96],

Π3⋅⋅⋅3 = %/2∑
-
e (K, `) ((
3)2)%/2−- (I2

$)- , (21)
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Figure 2: Schematic illustration of the relation between a �nite
momentum frame, with the Wilson line in a spatial direction and
the light-cone frame of a hadron at rest. Due to Lorentz contraction,
going to the light-cone frame increases the length by a boost factor�, � 7→ ∞ in the IMF. Source: [74], reprinted with permission by
the Author and Springer Nature.

where e(K, `) is a combinatorial coe
cient and I$ is the
nucleon mass. As a consequence, we �nd that

⟨
| ��35c3 ⋅ ⋅ ⋅ 5c3� |
⟩
= 2C% (�2) (
3)% (1 + O(Λ2

QCD(
3)2 ,
I2

$(
3)2)) . (22)

	e form of this expression implies that using an operator
with the Wilson line in a spatial direction, in a nucleon
state with �nite momentum, leads to the light-cone PDF
up to power-suppressed corrections in the inverse squared
momentum.	e corrections are of two kinds: generic higher-
twist corrections and ones resulting from the nonzero mass
of the nucleon. As we will discuss below, the latter can
be calculated analytically and subtracted out. However, the
former can only be overcome by simulating at a large enough
nucleon boost and by using a matching procedure.

In the original paper that introduced the quasidistri-
bution approach [45], Ji pointed out an intuitive way to
understand the above result: “(. . .) consider the Lorentz
transformation of a line segment connecting (0, 0, 0, L)with the
origin of the coordinates. As the boost velocity approaches the
speed of light, the space-like line segment is tilted to the light-
cone direction. Of course, it cannot literally be on the light-cone
because the invariant length cannot change for any amount of
boost. However, this slight o
-light-cone-ness only introduces
power corrections which vanish asymptotically.”	is intuition
is schematically represented in Figure 2.

We turn now to discussing how to match results obtained
on the lattice, with a hadron momentum that is �nite and
relatively small, to the IMF. 	e subtlety of this results
from the fact that regularizing the UV divergences does not
commute with taking the in�nite momentum limit. When
de�ning PDFs, the latter has to be taken �rst, i.e., before
removing the UV cuto�, whereas on the lattice one is bound
to take all scales, including the momentum boost of the
nucleon, much smaller than the cuto�, whose role is played

by the inverse lattice spacing. To overcome this di
culty, one
needs to formulate an e�ective �eld theory, termed Large
Momentum E�ective 	eory (LaMET) [74], which takes the
form of matching conditions that take the quasidistribution
to the IMF, or light-cone, distribution. LaMET is an e�ective

theory of QCD in the presence of a largemomentum scale
3,
in a similar sense as Heavy Quark E�ective 	eory (HQET)
[97] is an e�ective theory of QCD in the presence of a heavy
quark, that can have a mass larger than the lattice UV cuto�.

	e parallels of LaMET with HQET are more than
super�cial. We again follow Ji’s discussion [74]. In HQET,
a generic observable b depends on the heavy mass B6 and
a cuto� Λ. 	e matching with an observable k de�ned in
the e�ective theory, in which the heavy quark has in�nite
mass, can be written in the following way, due to asymptotic
freedom:

b(B6Λ ) = Y(B6Λ , Λ� ) k (�) + O( 1B6
) , (23)

where k is renormalized at a scale � in the e�ective theory.
Additionally, renormalization of the full theory translates
the cuto� scale Λ to a renormalization scale �. 	e crucial
aspect is that b and k have the same infrared physics. 	us,
the matching coe
cient, Y, is perturbatively computable
as an expansion in the strong coupling constant. Apart
from the perturbative matching, there are power-suppressed
corrections, which can also be calculated.

Using the same ideas, one can write the relation between
an observable in the lattice theory, �, dependent on the

analogue of a heavy mass, i.e., a large momentum 
3 (and on
the cuto� scale), and an observable in a theory in the IMF, �,
thus corresponding to Feynman’s parton model or to a light-
cone correlation. 	is is again valid because of asymptotic
freedom.	e matching reads as follows:

�(
3

Λ ) = �(
3

Λ , Λ�) � (�) + O( 1
(
3)2) . (24)

We have, therefore, established the close analogy between
HQET and the IMF parton model and the latter plays the
role of an e�ective theory for a nucleon moving with a
large momentum, just as HQET is an e�ective theory for
QCD with a heavy mass. 	e infrared properties are, again,
the same in both theories and the matching coe
cient, �,
can be computed in perturbation theory. 	ere are power-

suppressed corrections in inverse powers of (
3)2, vs. inverse
powers ofB6 in HQET.

To summarize, the need for LaMET when transcribing
the �nite boost results to light-cone parton distributions is
the consequence of the importance of the order of limits.
Parton physics corresponds to taking 
3 7→ ∞ in the
observable � �rst, before renormalization. On the lattice, in
turn, UV regularization is necessarily taken �rst, before the
in�nitemomentum limit, since no scale in the problem can be
larger than the UV cuto�. However, interchanging the order
of limits does not in�uence infrared physics and, hence, only
matching in the ultraviolet has to be carried out and can
be done perturbatively. 	e underlying factorization can be
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proven order by order in perturbation theory. It is important
to emphasize that any partonic observable can be accessed
within this framework, with the same universal steps:

(1) Construction of a Euclidean version of the light-
cone de�nition. 	e Euclidean observable needs to
approach its light-cone counterpart in the limit of
in�nite momentum

(2) Computation of the appropriate matrix elements on
the lattice and renormalizing them

(3) Calculation of the matching coe
cient in perturba-
tion theory and use of LaMET, Equation (24), to
extract the light-cone distribution.

	ere is complete analogy also with accessing parton physics
from scattering experiments, using factorization theorems
and, thus, separating the nonperturbative (low-energy) and
perturbative (high-energy) scales. To have similar access
to partonic observables from lattice computations, LaMET
plays the role of a tool for scale separation. Moreover, just
as parton distributions can be extracted from a variety of
di�erent scattering processes, they can also be approached
with distinct lattice operators.

We continue the discussion of LaMET by considering
now the matching process in more detail. In the �rst paper
devoted to the matching in the framework of LaMET, the
nonsinglet PDF case was discussed [98]. We remind here the
de�nition of the quasi-PDF:

�̃ (�, 
3) = ∫∞

−∞

	L4
�−�"#3 ⟨
| � (L) �3�(L)� (0) |
⟩ , (25)

taking the original choice of the Dirac structure, i.e., �3, for
the unpolarized case (see discussion about mixing for cer-
tain Dirac structures in Section 7). 	e matching condition
should take the form

�̃ (�, �2, 
3)
= ∫1

−1

	�""""�""""� (�� , �
3) � (�, �2) + O(Λ2
QCD
2
3

, I2
$
2
3

) , (26)

where the quasi-PDF, �̃(�, �2, 
3), is renormalized at a scale�. 	e calculation of the matching is performed in a simple
transverse momentum cuto� scheme, regulating the UV
divergence, and, later in Section 8, we will consider further
developments, including matching from di�erent schemes to

the MS scheme. 	e motivation behind using the transverse
momentum cuto� scheme is to take trace of the linear diver-
gence related to the presence of theWilson line, which would
not be possible when using dimensional regularization.

	e tree level of both the quasi- and the light-cone
distributions is the same, i.e., a Dirac delta p(1 − �). At one-
loop level, two kinds of contributions appear: the self-energy
diagram (le� one in Figure 3) and the vertex diagram (right
one in Figure 3). 	e quasidistribution receives, hence, the
following one-loop correction:

�̃ (�, Λ, 
3) = (1 + Ỹ(1)
� (Λ, 
3)) p (1 − �)

+ �̃(1) (�, Λ, 
3) + O (r2� ) , (27)

k

p

p

k

p

k

p

Figure 3:One-loopdiagrams entering the calculation of quasidistri-
butions: self-energy corrections (le�) and vertex corrections (right).
Source: [98], reprinted with permission by the Authors and the
American Physical Society.

where Ỹ(1)
� are one-loop self-energy corrections (wave func-

tion corrections) and �̃(1) are the one-loop vertex corrections.
Expressions for an explicit form of Ỹ(1)

� and �̃(1) are given
in [98]. 	eir crucial aspect is that they are nonzero not
only in the canonical range � ∈ [0, 1], but also outside of
it, for any positive and negative �. 	is corresponds to the
loss of the standard partonic interpretationmentioned above.
An important aspect is the particle number conservation,∫+∞−∞ 	� �̃(�, �2, 
3) = 1. Di�erent kinds of singularities
appear:

(i) Linear (UV) divergences due to the Wilson line,

taking in this scheme the form Λ/(1 − �)2
3
(ii) Collinear (IR) divergences, only in � ∈ (0, 1),

expected to be the same as in the light-cone distribu-
tion

(iii) So� (IR) divergences (singularities at � = 1), cancel-
ing between the vertex and the self-energy corrections
(“plus prescription”)

(iv) Logarithmic (UV) divergences in self-energy correc-
tions, regulated with another cuto�5.

We turn now to the light-cone distribution. It can be
calculated in the same transverse momentum cuto� scheme
by taking the limit 
3 7→ ∞ à la Weinberg [99]. We
do not write here the �nal formulae, which can be found
again in [98]. 	e result is the same as obtained from the
light-cone de�nition. Crucially, the collinear divergence is the
same as in the quasi-PDF, as anticipated based on physical
arguments that the construction of quasidistributions should
not modify the IR properties. Obviously, the diagrams in this
case are nonzero only for � ∈ [0, 1]; i.e, � has a partonic
interpretation.

Having computed the one-loop diagrams, one is ready
to calculate the matching coe
cient � in Equation (26). Its
perturbative expansion can be written as

�(�, �
3) = p (1 − �) + r�2
���(1) (�, �
3)+ O (r2� ) ,
(28)
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with the following one-loop function:

�(1) (�, �
3) =
{{{{{{{{{{{{{{{{{{{

1 + �21 − � ln
�� − 1 + 1 + 1(1 − �)2 Λ
3 � > 1

1 + �21 − � ln

2
3�2 (4� (1 − �)) − 2�1 − � + 1 + 1(1 − �)2 Λ
3 0 < � < 1

−1 + �21 − � ln
�� − 1 − 1 + 1(1 − �)2 Λ
3 � < 0

+ p (1 − �) ∫ 	�
{{{{{{{{{{{{{{{{{{{{{

−1 + �21 − � ln
�� − 1 − 1 − 1

(1 − �)2
Λ
3 � > 1

−1 + �21 − � ln

2
3�2 (4� (1 − �)) + 2� (2� − 1)1 − � + 1 − 1

(1 − �)2
Λ
3 0 < � < 1

1 + �21 − � ln
�� − 1 + 1 − 1

(1 − �)2
Λ
3 � < 0.

(29)

Note that the matching process e�ectively trades the depen-
dence on the large momentum for renormalization scale
dependence (the term with the logarithm of 
3/�), another
characteristic feature of e�ective �eld theories.	e antiquark
distribution and the �-factor satisfy �(�) = −�(−�); hence
including antiquarks is straightforward. Similar matching
formulae were also derived for the case of helicity and
transversity distributions [98].

	e early papers of [45, 74, 98] provided the systematic
framework for de�ning quasidistributions and matching
them with their light-cone counterparts. Since then, there
have been several improvements of many aspects of this
programme, including renormalization, matching, target
mass corrections, and other theoretical aspects, as well as
developments for distributions other than the nonsinglet
quark PDF of the nucleon discussed here. Before we turn
to them, we report the early numerical e�orts in Lattice
QCD that illustrate the state-of-the-art calculations of that
time.

3.2. Early Numerical Investigations. Ji’s proposal for a novel
approach of extracting partonic quantities on the lattice,
in particular PDFs, sparked an enormous wave of interest,
including numerical implementation and model investiga-
tions (see Section 4).

	e �rst lattice results were presented in 2014 in [46]
by H.-W. Lin et al. and later in [47, 100] by the ETM

Collaboration6. Lin et al. used a mixed action setup of clover
valence quarks on a HISQ sea, lattice volume 243 × 64, C ≈0.12 fm, and pion mass (I�) around 310 MeV, while ETMC
used a unitary setup with maximally twisted mass quarks,

lattice volume 323 × 64, C ≈ 0.082 fm, and I� ≈ 370
MeV. Both papers implemented the bare matrix elements of
the isovector unpolarized PDF (- − 	 �avor structure, Dirac
structure �3).	e statistics for Lin et al. is 1383measurements,

while ETMC used a larger statistics of 5430 measurements.
	e employed nucleon boosts were in both cases the three
lowest multiples of 2
/z, i.e., 0.43, 0.86, and 1.29 GeV (Lin
et al.) and 0.47, 0.94, and 1.42 GeV (ETMC), with noticeable
increase of noise for the larger boosts, resulting in larger
statistical errors. In view of the missing renormalization
programme, both collaborations used HYP smearing [101]
to bring the renormalization functions closer to their tree-
level values (ETMC also applied the renormalization factorY& to correctly renormalize the local matrix element, i.e.,
one without the Wilson line). ETMC presented a study of
the bare matrix elements dependence on the number of HYP
smearing iterations, �nding large sensitivity to this number
especially for the imaginary part (the matrix elements are
real only in the local case). Furthermore, ETMC tested the
contamination by excited states by using two source-sink
separations (��) of 8C ≈ 0.66 fm and 10C ≈ 0.82 fm, �nding
compatible results, butwithin large uncertainties.	e source-
sink separation in the study of Lin et al. was not reported.
We note that separations below 1 fm are more susceptible
to excited states contamination. However, the goal of these
preliminary studies is to explore the approach of quasi-
PDFs, postponing the investigation of excited states for later
calculations. Having the bare matrix elements, the Fourier
transform was taken to obtain the corresponding quasi-
PDFs. 	e quasi-PDFs were matched to light-cone PDFs
using the formulae of [98] and nucleon mass corrections
were also applied. 	e obtained �nal PDFs are shown in
Figure 4 for each study. One observes a similar picture from
both setups and certain degree of qualitative agreement with
phenomenological PDFs [102–104], shown for illustration
purposes. Lin et al. also computed the helicity PDF (Dirac

structure �3�5 in the matrix elements) and quoted the value
of the sea quark asymmetry, but without showing the quasi-
or �nal distributions.
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	e two earliest numerical investigations of Ji’s approach
showed the feasibility of lattice extraction of PDFs. However,
they also identi�ed the challenges and di
culties. On one
side, these were theoretical, like the necessity of development
of themissing renormalization programme and thematching

from the adopted renormalization scheme to the desired MS
scheme. On the other side, it became also clear that the
computation is technically challenging, in particular because
of the decreasing signal-to-noise ratio when increasing the
nucleon boost. 	e computational cost also increases with
the source-sink separation, for which a large value (typically
above 1 fm) is needed to suppress excited states. In addi-
tion, full control over typical lattice systematics, e.g., cuto�
e�ects, �nite volume e�ects, or the pion mass dependence,
was also missing. At this stage, some di
culties were still
unidenti�ed, for example, the mixing between certain Dirac
structures due to the chiral symmetry breaking in the used
lattice discretizations, �rst identi�ed by Constantinou and
Panagopoulos [105, 106].

Further progress was reported in the next two papers
by the same groups (with new members), early in 2016 by
Chen et al. [107] and later in the same year by Alexandrou
et al. (ETMC) [108]. Both groups used the same setups as
in [46, 100] but implemented a number of improvements
and considered all three types of collinear PDFs: unpolarized,
helicity, and transversity. Chen et al. [107] considered two
source-sink separations, �� = 8C ≈ 0.96 fm and �� = 10C ≈1.2 fm, and performed measurements on 449 gauge �eld
con�guration ensembles with 3 source positions on each con-
�guration, using the same set of nucleonmomenta as in [46],
0.43, 0.86, and 1.29 GeV. 	ey also derived and implemented
nucleon mass corrections (NMCs, also called target mass
corrections, TMCs7) for all three cases of PDFs. 	e NMCs
will be discussed below in Section 6. In the work of ETMC
[108], a large-statistics study was performed with 30000
measurements for each of the three momenta, 0.47, 0.94, and
1.42GeV, at an increased source-sink separation of 12C ≈ 0.98
fm. In the course of this work, the method of momentum

smearing was introduced [109] (see Section 6 for details) to
overcome the di
culty of reaching larger nucleon boosts.
	e technique was implemented by ETMC and results were
presented for additional momenta, 1.89 and 2.36 GeV with
small statistics of 150 and 300 measurements, respectively.
Moreover, a test of compatibility between standard Gaussian
smearing, applied in the earlier work of both groups, and the
momentum smearingwas performed at
3 ≈ 1.42GeV for the
unpolarized case. 	is revealed a spectacular property that
similar statistical error as for Gaussian smearing with 30000
measurements can be obtained with only 150 measurements
employing momentum smearing.

As an illustration, we show the �nal helicity PDFs in
Figure 5. Direct visual comparison between the two results
is not possible, since the plot by Chen et al. shows the
PDF multiplied by �. Nevertheless, the qualitative picture
is similar, revealing that no striking di�erences occur due
to di�erent lattice setups. 	e much smaller uncertainty in
the plot by ETMC results predominantly from over 20 times
larger statistics. Analogous plots for the unpolarized and
transversity cases can be seen in [107, 108].

	is concludes our discussion of the early explorations of
the quasi-PDF approach. References [46, 100, 107, 108] proved
its feasibility on the lattice and initiated identi�cation of the
challenges, already mentioned above. Further progress was
conditioned on theoretical and practical improvements that
will be described in later sections.

4. Quasidistributions: Model Investigations

Apart from theoretical analyses and numerical investiga-
tions in Lattice QCD, insights about the quasidistribution
approach were obtained also from considerations in the
framework of phenomenological or large-~7 models. In this
section, we take a closer look at quasi-PDFs, quasi-GPDs,
and quasi-DAs in such models and review the conclusions
obtained in setups where direct access to analytical forms of
quasi- and light-cone distributions is possible.
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4.1. Diquark Spectator Model. 	e aim of the early (2014)
work of L. Gamberg et al. [110] and I. Vitev et al. [111] was
to provide guidance about nucleon momenta 
3 needed for
a reliable approach to the light-cone PDFs, for all collinear
twist-2 distributions, i.e., unpolarized, helicity, and transver-
sity PDFs. 	e Authors considered the diquark spectator
model (DSM) [28], a phenomenological model that captures
many of the essential features of the parton picture. 	e
central idea of the DSM is to insert a completeness relation
with intermediate states in the operator de�nition of PDFs (or
some quark-quark correlation functions) and then truncate
them to a single state with a de�nite mass. Such state is
called the diquark spectator. 	is procedure boils down to
making a particular ansatz for the spectral decomposition
of the considered observable. 	e diquark spectator, in the
simplest picture, can have spin-0 (scalar diquark) or spin-
1 (axial-vector diquark). Finally, the nucleon is viewed as
a system consisting of a constituent quark of some massB and a scalar or axial-vector diquark. 	e basic object in
this approximation is the nucleon-quark-diquark interaction
vertex, which contains a suitably chosen form factor, taken in
the so-called dipolar form in [110].

With such setup, one can derive themodel expressions for
all kinds of collinear quasi-PDFs, combining the expressions
for scalar and axial-vector diquarks. 	e obtained relations
can be used to study the approach to the light-cone PDFs, also
calculated in the DSM. Gamberg et al. [110] got 3 couplings,
�xed by normalization and 9 parameters of the model that
were �xed by �tting to experimental data, with good quality
of �ts. 	en, they considered the quasi-PDFs for di�erent
boosts from 1 to 4 GeV. It was found that the shape of quasi-
PDFs approaches the PDF for 
3 ≳ 2 GeV. 	e agreement
is especially good in the small to intermediate-� regime,
while large-�needs signi�cantly larger boost for a satisfactory
agreement. 	e Authors also studied the So�er inequality
[112], stating that the transversity distribution should not be
larger than the average of unpolarized and helicity ones. It
holds for the standard PDFs. For quasi-PDFs, it was found

that the inequality is always satis�ed for the 	 quark, while it
is violated for the - quark in the entire range of � for small
momenta of around 0.5 GeV.

Furthermodel study of quasi-PDFs was presented in [113]
in 2016. Bacchetta et al. con�rmed the conclusions of [110]
and, motivated by the conclusion that the large-� region of
quasi-PDFs converges much more slowly to the appropriate
light-cone PDF, they proposed a procedure to aid the large-� extraction of PDFs from the quasidistribution approach.
	is is a relevant aspect for computations of quasi-PDFs in
Lattice QCD. 	e main idea is to combine the result of a
quasi-PDF and that of the corresponding moments of PDFs.
One divides the whole �-region into two intervals, with a
“matching” point �0. For � ≤ �0, one assumes that the
computed quasi-PDF is already a good approximation to the
standard PDF. In turn, for � ≥ �0, a parametrization is used,
with parameters �xed by conditions of smoothness at �0 (for
the value of the quasi-PDF and for its derivative) and by the
available moments of PDFs. 	e procedure to reconstruct
unpolarized and helicity PDFs was tested numerically in the
DSM for twomatching points, �0 = 0.2, 0.3, and two nucleon
momenta,
3 = 1.47, 2.94GeV. In all cases, there is signi�cant
improvement of agreement with respect to the standard PDF,
especially at �0 = 0.2. Excellent agreement was observed for
the 	 quark even for the lower nucleonmomentum, while the- quark seems to require a larger value of 
3, which is due to
the worse agreement of the quasi-PDF and the standard PDF
at the matching point. Overall, the procedure was proven to
be successful in the DSM and the Authors are hopeful that it
can be e�ectively applied also for actual Lattice QCD data.

	e DSM (with scalar diquarks) was also employed
as a framework for studying quasi-GPDs [114] in 2018. S.
Bhattacharya, C. Cocuzza, and A. Metz calculated twist-2
unpolarized quasi-GPDs (the so-called A and @ functions;
for some de�nitions of GPDs variables and functions, see
Section 8.2), using twoDirac structures, �0 and �3, motivated
by the discovery of mixing for one of them [105, 106]. 	ey
veri�ed that, in the forward limit, their expressions reduce
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to the ones for the respective quasi-PDFs and, in the in�nite
momentum limit, their quasi-GPDs approach the appropriate
GPDs. 	ey found that all results for quasidistributions are
continuous and argued that this feature should hold also at
higher twist in the DSM. 	e Authors also checked the reli-
ability of the cut-diagram approach, widely used in spectator
models, and concluded it does not reproduce certain terms
appearing from handling the calculation exactly. 	us, this
approach is a simpli�cation that should be avoided when
dealing with quasidistributions. Having the �nal analytical
expressions for quasi-GPDs and quasi-PDFs, they studied
numerically the approach to in�nite nucleon boost. 	ey
found that 
3 of order 2 GeV and larger yields quasifunctions
within O(10%) of their light-cone counterparts in a wide
range of �. 	e problematic region, as for quasi-PDFs, is
the large � regime, and the discrepancies increase for larger
skewness �. Interestingly, the derivation of matching for
GPDs [115], described shortly in Section 8.2, indicates that no
matching is required for the @ function (at leading order).
However, in this model study, no signi�cant di�erences in
the convergence of the A and @ functions were seen. In the
ERBL region, −� < � < �, the agreement with standard
GPDs is good, provided that � is not too small. 	e results
for both Dirac structures were found to be very similar at
large enough momentum (
3 ≳ 2 GeV). To verify and
strenghten the conclusions, the Authors also checked the
sensitivity to parameter variations (constituent mass and
spectator mass) and found no signi�cant di�erences. As
numerical exploration of quasi-GPDs on the lattice is still
missing, the DSM results can provide very useful guidance
to such attempts.

4.2. Virtuality Distribution Functions. A model investigation
of quasi-PDFs was performed also by A. Radyushkin in 2016-
17 [75, 76]. He used his formalism of virtuality distribution
functions (VDFs) [78, 79]. In the VDF formalism, a generic
diagram for a parton-hadron scattering corresponds to a

double Fourier transform of the VDF, Φ(�, \;I2), where \
is related to the parton virtuality (giving the name to the
VDF) andI is the hadron mass. 	e variables conjugates in
the double Fourier transform are � ←→ � ⋅ L (� is hadron

momentum and L is separation of �elds) and \ ←→ L2.
	e VDF representation holds for any � and L, but the case
relevant for PDFs is the light-cone projection, L2 = 0. 	en,
one can de�ne primordial (straight-link) TMDs and derive
relations between VDFs, TMDs, and quasi-PDFs.Working in
a renormalizable theory, one can represent the VDF as a sum
of a so� part, i.e., generating a nonperturbative evolution of
PDFs, and a hard tail, vanishing with the inverse of \.

Numerical interest in these papers was in the investi-
gation of the nonperturbative evolution generated by the
so� part of the VDF or, equivalently, the so� part of
the primordial TMD. Radyushkin considers two models
thereof, with a Gaussian-type dependence on the transverse
momentum (“Gaussian model”) and a simple non-Gaussian
model (“B = 0 model”). 	ese models are two extreme
cases of a family of models, one with a too fast and one
with a too slow fall-o� in the impact parameter. In the

numerical part of [75], the formalism was applied to a simple

model PDF, 6(�) = (1 − �)3�(�). Both TMD models give
similar evolution patterns, implying that one observes some
universal features related to the properties of quasi-PDFs. It
was also observed that the approach to the limiting PDF is not
uniform for di�erent � and it can even be nonmonotonic for
small nucleon momenta. 	ese conclusions can provide very
useful guidance to Lattice QCD calculations, meaning, e.g.,
that simple extrapolations in the inverse squared momentum
might not be justi�able.

In the work of [76], Radyushkin considered target mass
corrections (TMCs) in quasi-PDFs using the same frame-
work. In both TMD models, it was found that TMCs
become negligible already signi�cantly before the quasi-PDF
approaches the standard PDF. 	e Author suggested that,
given the realistic precision of lattice simulations, TMCs can
be neglected for nucleon boosts larger than around twice the
nucleon mass.

4.3. Chiral QuarkModels andModeling the Relation to TMDs.
Furthermodel studies of the quasidistribution approachwere
performed in 2017 byW. Broniowski and E. Ruiz-Arriola [116,
117].

In the �rst paper [116], the pion quasi-DA and quasi-
PDFs were computed in the framework of chiral quark
models, namely, the Nambu-Jona-Lasinio (NJL) [118, 119]
and the spectral quark model (SQM) [120–122]. 	e NJL
model is a well-known toy model of QCD, which is a low-
energy approximation to it and encompasses a mechanism
of spontaneous chiral symmetry breaking from the presence
of strong four-quark interactions. 	e SQM model, in turn,
is a spectral regularization of the chiral quark model based
on the introduction of the Lehmann representation of the
quark propagator.	eAuthors derived analytical expressions
for the quasi-DA and the quasi-PDF, together with their
underlying unintegrated versions dependent on the trans-
verse momentum, as well as the ITDs. 	ey also veri�ed
the relations between di�erent kinds of distributions found
by Radyushkin [75–77]. 	is allowed them also to study
the approach of the quasi-DA and quasi-PDF towards their
light-cone counterparts and they found clear convergence
for pion momenta in the range of a few GeV. Moreover, a
comparison to lattice data [123]wasmade. For theNJLmodel,
very good agreement was found with the lattice results at
both considered pion momenta, 
3 = 0.9, 1.3 GeV. In the
case of the SQM model, similar agreement was observed at
3 = 1.3GeV and at the smaller momentum there were some

di�erences between the model and the lattice data, but the
agreementwas still satisfactory.	is implies that bothmodels
are able to capture the essential physical features.

In the second paper [117], Broniowski and Ruiz-Arriola
explored further the relations between nucleon quasi-PDFs,
PDFs and TMDs, following the work of Radyushkin [75, 76].
	ey derived certain sum rules, e.g., relating the moments
of quasi-PDFs, PDFs, and the width of TMDs. Furthermore,
Broniowski and Ruiz-Arriolamodeled the factorization sepa-
rating the longitudinal and transverse parton dynamics.	ey
applied this model to study the expected change of shape of
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ITDs and reduced ITDs, for both quarks and gluons. 	ey
also considered the breakdown of the longitudinal-transverse
factorization induced by the evolution equations, in the
context of consequences for present-day lattice simulations,
�nding that the e�ects should be rather mild in quasi-PDFs,
but could be visible in ITDs. Finally, they also performed
comparisons to actual lattice data of the ETM Collaboration
[108] for isovector unpolarized PDFs of the nucleon. 	e
model quasi-PDFs, resulting from the assumed factorization,
do not agree well with the ETMC data at 4 values of the
nucleon boost between 0.94 and 2.36 GeV (see Section 3.2
for more details about these results). 	e discrepancy was
attributed to the large pion mass, shi�ing the distributions
to the right of the phenomenological ones, and to other
lattice systematics (see also discussion about the role of the
pion mass in Section 9.2.1 and [124]). More successful was
the test of the aforementioned sum rule, predicting linearly
increasing deviation of the second central moment of the

quasi-PDF from that of the PDF with increasing 1/
2
3 , with

the slope giving the TMD width. Using the ETMC data,
they indeed observed the linear behavior and, moreover,
extrapolating to in�nite momentum, they found the second
central moment to be compatible with a phenomenological
analysis. In the last part of the paper, the Authors o�ered
considerations for the pion case, presenting predictions for
the valence-quark quasi-PDFs and ITDs.

4.4. Quasidistributions for Mesons in NRQCD and Two-
Dimensional QCD. Meson DAs were �rst considered in
the quasidistribution formalism in 2015 by Y. Jia and X.
Xiong [125]. 	ey calculated the one-loop corrections to
quasi-DAs and light-cone DAs employing the framework of
nonrelativistic QCD (NRQCD). 	is resulted in analytical
formulae for quasi- and light-cone DAs for three <-wave
charmonia: the pseudoscalar �7 and both the longitudinally
and the transversely polarized vector $/�. 	ey checked
analytically the convergence of quasi-DAs to standard DAs
and performed also a numerical investigation of the rate
of convergence. A function was introduced, called degree
of resemblance, that quanti�es the di�erence between the
quasi- and the standard DAs. In general, momentum of
around 3 times the meson mass is needed to bring the
quasidistribution to within 5% of the light-cone one. 	e
Authors also considered �rst inverse moments of quasi- and
light-cone DAs, concluding that their rate of convergence is
somewhat smaller and the di�erence at
3 equal to three times
the hadron mass may still be of order 20%, with 5% reached
at 
3 six times larger than the meson mass.

Following the NRQCD investigation, Y. Jia and X. Xiong
continued their work related to model quasidistributions
of mesons. In 2018, together with S. Liang and R. Yu
[126], they presented results on meson quasi-PDFs and
quasi-DAs in two-dimensional QCD in its large-~7 limit,
o�en referred to as the ’t Hoo� model [127]. 	e Authors
used the Hamiltonian operator approach and Bars-Green
equations in equal-time quantization [128], instead of the
more standard diagrammatic approach in light-cone quan-
tization. 	ey performed a comprehensive study comparing

the quasidistributions and their light-cone counterparts,
studying the approach of the former to the latter at increasing
meson momentum. Among the most interesting conclusions
is the observation that the approach to the standard distribu-
tions is slower for lighter mesons than for heavier quarkonia
of [125]. 	is observation was illustrated with numerical
studies of the derived analytical equations for the di�erent
distributions. It was found that, for the pion, even momen-
tum 8 times larger than the pion mass leads to signi�cant
discrepancies between the shapes of quasidistributions and
light-cone ones. For �� (ee)meson, in turn,momentumof �ve
(two) times the meson mass already leads to the two types of
distributions almost coinciding. An analogous phenomenon
is also beginning to emerge in lattice studies and provides a
warning that, e.g., pion PDFsmight be more di
cult to study
than nucleon PDFs, i.e., require relatively larger momentum
boosts.

Additionally, Jia et al. studied both types of distributions
in perturbation theory, thus being able to consider the
matching between quasi- and light-cone PDFs/DAs.	e very
important aspect of this part is that they were able to verify
one of the crucial features underlying LaMET, that quasi- and
light-cone distributions share the same infrared properties at
leading order in 1/
3. 	is is interesting, because the two-
dimensional model has a more severe IR divergence than
standard QCD.

As such, this work in two-dimensional QCD provides a
benchmark for lattice studies of quasidistributions in four-
dimensional QCD. It is expected that many of the obtained
conclusions regarding the ’t Hoo� model hold also in stan-
dard QCD. Moreover, the setup can also be used to study
other proposals for obtaining the �-dependence of light-cone
distributions, in particular pseudo-PDFs and LCSs.

5. Theoretical Challenges of Quasi-PDFs

In this section, we summarize themain theoretical challenges
related to quasi-PDFs, that have been identi�ed early on.
Addressing and understanding these challenges was very
critical in order to establish sound foundations for the
quasidistribution method. We concentrate on two of them,
the role of the Euclidean signature (whether an equal-time
correlator in Euclidean spacetime can be related to light-
cone parton physics in Minkowski) and renormalizability.
	e latter is not trivial due to the power-law divergence
inherited from the Wilson line included in the nonlocal
operator. It is clear that problems related to either challenge
could lead to abandoning the whole programme for quasi-
PDFs. 	erefore, it was absolutely crucial to prove that both
of these aspects do not hide insurmountable di
culties.

5.1. Euclidean vs. Minkowski Spacetime Signature. One of the
crucial assumptions of the quasidistribution approach is that
these distributions computed on the lattice with Euclidean
spacetime signature are the same as their Minkowski coun-
terparts. In particular, they should share the collinear diver-
gences, such that the UV di�erences can be matched using
LaMET. In [129], C. Monahan and K. Orginos considered
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the Mellin moments of bare PDFs and bare quasi-PDFs in
the context of smeared quasidistributions that di�er from the
standard ones only in the UV region, by construction (see
Section 7 for more details about the smeared quasi-PDFs).
	ey found that the Wick rotation from the bare Euclidean
quasi-PDF to the light-cone PDF is simple.

However, in [130], a perturbative investigation was per-
formed by C. Carlson and M. Freid, who discovered that
there are qualitative di�erences between loop corrections
in Euclidean and Minkowski spacetimes. In particular, it
seemed that the IR divergence of the light-cone PDF is absent
in the Euclidean quasi-PDF, which would be a problem at the
basic root of LaMET. 	e complication emerged in certain
diagrams, because the integration contours along real and
imaginary axes of the complex loop temporal momentum
plane could not be linked by smooth deformation, with
physical observables being related to the integration along

real �0 and the lattice objects being extracted from integra-

tion along the imaginary �0 axis. 	e Authors gave also a
physical intuition justifying this �nding. 	e IR divergence
inMinkowski spacetime comes from collinear con�gurations
of nearly on-shell quarks and gluons, with quark mass
preventing exactly parallel con�guration. Such a parallel
situation is not possible in Euclidean spacetime and, hence,
the Authors argued that no divergence can appear, invoking,
thus, also mismatch of IR regions that could not be corrected
for, perturbatively.

	e serious doubts about the importance of spacetime
signature were addressed in [131] by R. Briceño, M. Hansen,
and C. Monahan. 	ey formulated a general argument that
for a certain class of matrix elements computed on the lattice,
observables from the Euclidean-time dependence and from
the LSZ reduction formula in Minkowski spacetime coin-
cide. 	e class of (single-particle) matrix elements requires
currents local in time, but not necessarily in space, and
it includes the matrix elements needed to obtain quasi-
PDFs. More precisely, the correlation functions depend on
the spacetime signature, but matrix elements do not. 	e
central issue was illustrated with a computation in a toy
model, without the added, irrelevant from the point of view
of the argument, complications of QCD. 	e focus was on
a Feynman diagram directly analogous to the problematic
one in [130]. 	e Authors, using the LSZ reduction formula,
calculated its contribution to the quasi-PDF. 	ey indeed
found that the result depends on the contour of integration

along the �0 axis but pointed out that the contour along the
imaginary axis does not coincide with what is done on the
lattice. Instead, the connection can be made by computing
the diagram contribution to a Euclidean correlator in amixed
time-momentum representation. At large Euclidean times,
the result is dominated by a term which is exactly the same
one as in the Minkowski calculation. A�er establishing the
perturbative connection in the toy model for some speci�c
kind of diagram, the proof was extended to all orders in
perturbation theory.	e Authors concluded their paper with
a general statement about the proper prescription that yields
the same result from Euclidean and Minkowski diagrams:
the chosen contour must be an analytic deformation of the
standard, Minkowski-signature de�nition of the diagram.

	us, the apparent contradiction pointed out in [130]
was fully resolved. As its Authors identi�ed, the problem

lied in the de�nition of the integration contour in the �0
plane. However, the contour along the imaginary �0 axis
does not correspond to the perturbative contribution to
Euclidean matrix elements, as shown in [131]. Even though
the arguments of [130] turned out to be misplaced, they
certainly discussed an interesting problem and they induced
very valuable insights and a general proof in [131]. To our
knowledge, the arguments were accepted by the Authors
of [130] and no further arguments were given that would
question the connection between Euclidean and Minkowski
signatures in the context of quasidistributions.

5.2. Renormalizability of Quasi-PDFs. One of the indispens-
able components of the quasi-PDFs approach is the ability
to match equal-time correlation functions (calculable on
the lattice) to the light-cone PDFs using LaMET. For this
approach to be successful, it is crucial that the quasi-PDFs
can be factorized to normal PDFs to all orders in QCD
perturbation theory, and this requires that quasi-PDFs can be
multiplicatively renormalized [85]. However, the renormal-
ization programme of quasi-PDFs is not straightforward due
to the UV power divergences and, for quite some time, was
not well understood (see Section 7 for recent progress).

One of the main concerns is whether the nonlocal
operators are renormalizable. For example, the nonlocality
of the operators does not guarantee that all divergences
can be removed, due to the additional singularity structures
compared to local operators and also the divergences with
coe
cients that are nonpolynomial. Due to the di�erent
UV behavior of quasi-PDFs and light-cone PDFs, the usual
renormalization procedure is not ensured. Based on the work
of [98], this originates from the di�erent de�nition of the
momentum fraction; that is � = �+/�+ (where �+ (�+) is plus
momentum for the quark in the loop (initial quark)) for light-
cone PDFs and � = ` ⋅ �/` ⋅ � (`: space-like vector) in quasi-
PDFs. In addition, the momentum fraction for the light-cone
PDFs is restricted to [0, 1], while for the quasi-PDFs can
extend to [−∞, +∞]. As a consequence of the above, the
vertex correction (see diagrams in the second rowof Figure 6)
has di�erent behavior. In fact, the UV divergences appear
in the self-energy, while the vertex correction is UV �nite.
As pointed out in [132], the renormalizability of nonlocal
operators has been proven up to two loops in perturbation
theory by the analogy to the static heavy-light currents.

	us, it is of utmost importance for the renormalizability
to be con�rmed to all orders in perturbation theory.	is issue
has been addressed independently by two groups [133–135],
concluding that the Euclidean spacelike correlation functions
leading to the quasi-PDFs are indeed renormalizable. 	ese
are based on two di�erent approaches: the auxiliary heavy
quarkmethod [133, 135–137] and the diagrammatic expansion
method [134, 138], employed for both quark and gluon quasi-
PDFs. Below we highlight their main �ndings.

5.2.1. Renormalizability of Quark Quasi-PDFs. X. Ji and J.-
H. Zhang in one of their early works [133] have studied
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Figure 6: One-loop diagrams entering the quasiquark PDFs in Feynman gauge. Self-energy diagrams are shown in the �rst row and vertex
correction diagrams in the second row. Source: [133], reprinted with permission by the Authors and the American Physical Society.

(a) (b) (c)

Figure 7: Topologies that may lead to UV divergent contributions to the quark quasi-PDFs. Source: [134], reprinted with permission by the
Authors and the American Physical Society.

renormalization of the unpolarized nonsinglet distribution.
	ey performed an analytic calculation in the Feynman gauge
to one-loop level using dimensional regularization (DR)
to extract the full contributions of the diagrams entering
the calculation, as shown in Figure 6. 	is includes the
self-energy diagrams (top row) and the vertex correction
diagrams (bottom row). We point out that the self-energy
diagrams require integration over all components of the loop
momentum, while the vertex correction diagrams have the
component of the loopmomentum that is parallel to theWil-
son line unintegrated.	is has implications on the discussion
about renormalizability.	is work exhibits how in this gauge
all UV divergences in the vertex correction do not alter the
renormalization of the quasi-PDFs, as they are removed by
counterterms for subdiagrams from the interaction. Based
on this, the renormalization of the quark quasidistribution
reduces to the renormalization of two quark �elds in the axial
gauge. 	is study was also extended to two loop corrections,
assuming one-to-one correspondence between the two-loop
diagrams, as well as equivalence between the UV divergences
of the two-loop self-energy in the quasiquark PDFs and of the
two-loop corrections of the heavy-light quark current. 	us,
multiplicative renormalizability was proven to hold up to two
loops in perturbation theory.	e arguments presented in this

work can be generalized to include helicity and transversity
PDFs.

	e renormalizability of quasi-PDFs to all orders in
perturbation theory has been proven for the �rst time by
T. Ishikawa et al. in [134]. 	ey performed the complete
one-loop calculation of the quasi-PDFs in coordinate space
and in the Feynman gauge, which is convenient because
the renormalization of the QCD Lagrangian is known in
this gauge. 	e one-loop calculation shows explicitly the
renormalizability (to that order) of the quasi-PDFs.

More interestingly, the Authors have studied all sources
of UV divergences for the nonlocal operators that enter the
quasi-PDFs calculation using a primitive basis of diagrams
(see Figures 3-6 in [134]). 	ese diagrams were used to
construct all possible higher-order Feynman diagrams that
are presented schematically in Figure 7, and the Authors
explained in great detail the proof of both power-law and
logarithmic divergences being renormalized multiplicatively
to all orders.	is can be summarized in the calculation of the
diagrams shown in Figure 7.

Diagrams of the topology shown in Figure 7(a) can be
reordered in terms of one-particle-irreducible (1PI) diagrams
and, therefore, one can derive all corresponding linear UV
power divergences explicitly into an exponential. 	e latter
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may be removed by a mass renormalization of a test particle
moving along the gauge link [139]. In addition, these dia-
grams have logarithmic UV divergences that can be removed
by a “wave function” renormalization of the test particle
[140]. 	e second type of diagrams (Figure 7(b)) has only
logarithmic UV divergences, which can be absorbed by the
coupling constant renormalization of QCD [140]. 	e last
type of UV divergent diagrams is shown in Figure 7(c) that
di�ers from types (a) and (b), because the loop momentum
goes through an external quark, leading to divergences from
higher-order loop corrections to the quark-gauge-link vertex.
It was concluded that the UV divergent term of diagrams (c)
is proportional to the tree level of the operator, and, therefore,
a constant counterterm is su
cient to remove it. All the above
constitute a concrete proof that all remaining perturbative
UV divergences of the quark quasi-PDFs can be removed by
introducingmultiplicative renormalization factors. Exact cal-
culations to one-loop level show that quasi-PDFs of di�erent
types do notmix under renormalization, which completes the
proof of the renormalizability in coordinate space [134].

	e study of the renormalizability of quark quasi-PDFs
has been complemented with the work of Ji et al. in [135],
in which the auxiliary heavy quark �eld formalism was
employed.	e approach shows renormalizability to all orders
in perturbation theory andwas con�rmed in both the dimen-
sional and the lattice regularizations, the latter for the �rst
time. As in other studies, the focus was on the unpolarized
PDFs and it was shown explicitly that the procedure mimics
the renormalization of two heavy-light quark currents; the
latter is valid to all orders in perturbation theory. We note
that the conclusions hold for all types of PDFs and can be
con�rmed following the same procedure as the unpolarized
one.

	e introduction of a heavy quark auxiliary �eld, �,
modi�es the QCD Lagrangian by including an additional
term. 	is allows us to replace the nonlocal straight Wilson
line operator by a composite operator, which is the product
of two auxiliary heavy quark �elds

b (�, �) = � (�) Γ� (�)� (�) � (�) . (30)

	us, the question of the renormalizability of the nonlocal
operator can be addressed based on the renormalization
of the above operator in the extended QCD theory. 	is
has been demonstrated in DR and we urge the interested
Reader to see the proof in [135]. Here we discuss the case
of the lattice regulator which is particularly interesting for
the numerical simulations in Lattice QCD. Unlike the case
of DR, in lattice regularization (LR) the self-energy of the
auxiliary quark introduces a divergence beyond leading order
in perturbation theory. 	is may be absorbed as an e�ective
mass counterterm, that is [141]

pL8 = −pCB��. (31)

Using the above, and for spacelike correlators, the linear
divergence of Equation (31) can be factorized in the renor-
malized operator

b� = Y−1
- Y−1

- �98|"2−"1|� (L2) Γz (L2, L1) � (L1) , (32)

where the remaining divergence is at most logarithmic and
can be canceled to all orders in perturbation theory.

5.2.2. Renormalizability of Gluon Quasi-PDFs. For complete-
ness, we also address the renormalizability of the gluon quasi-
PDFs, which are more complicated to study compared to
nonsinglet quark PDFs due to the presence of mixing. 	eir
renormalizability was implied using arguments based on the
quark quasi-PDFs [134, 135], but more recently there are
direct studies for the renormalization of gluon quasi-PDFs
[136–138].

	e �rst investigation appeared in 2017 by W. Wang
and S. Zhao [136], using the auxiliary �eld approach to
study the renormalization of gluon nonlocal operators, and,
in particular, the power divergences. 	e mixing under
renormalization was also addressed. 	is follows their work
on the matching between the quasi- and the normal gluon
PDFs [142], as described in Section 8.2. 	e light-cone gluon
PDFs are nonlocal matrix elements of the form

6	/: (�, �) = ∫ 	�−2
�
+ �−��−��+ ⟨
| �+
� (�−`+)

⋅ � (�−`+, 0; z%+) ��+ (0) |
⟩ ,
(33)

where � is the �eld strength tensor. Based on this, gluon
quasidistribution can be de�ned by nonlocal spacelikematrix
element

6̃	/: (�, �) = ∫ 	L2
�
3 ��"��3 ⟨
| �3
� (L`3)

⋅ � (L`3, 0; z%3) ��3 (0) |
⟩ , � = 0, 1, 2, (34)

in which the sum over � is in all directions except the direc-
tion of the Wilson line. 	is de�nition is slightly modi�ed
from the de�nition used in [45, 86, 142], where the sum
is over the transverse directions. Despite this modi�cation,
Equation (34) is still a proper de�nition of a gluon quasi-PDF,
as demonstrated in [136] based on the energy-momentum
tensor decomposition. 	is is also con�rmed numerically, as
the one-loop matching to the light-cone PDFs coincides for
the two de�nitions.

Reference [136] presented the complete one-loop calcu-
lation for the gluon operator of Equation (34), introducing a
UV cuto� Λ on the transverse momentum. 	e calculation
was performed in Feynman gauge and in the adjoint repre-
sentation. 	e relevant one-loop diagrams can be separated
into two categories: (1) diagrams in which the vertex from
the operator does not include gluons from the Wilson line
(shown in Figure 8) and diagrams that have at least one
gluon from the Wilson line in the vertex of the operator, as
shown in Figure 9. 	is calculation identi�ed all divergences
including the linear divergence, and, unlike the case of the
quark quasi-PDFs, theWilson line self-energy (right diagram
of Figure 9) is not the only source of linear divergence in
the gluon distributions. As a consequence, it is not possible
to absorb all linear divergences in the renormalization of
the Wilson line, but a more complicated renormalization is
needed. However, as argued in [137], this is due to the choice
of a nongauge invariant regulator.
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Figure 8: One-loop corrections to a gluon quasidistribution, without the Wilson line. 	e symbol “×” denotes the nonlocal vertex from the
operator. Source: [136], reprinted with permission by the Authors (article published under an open access license).

Figure 9:One-loop corrections to a gluon quasidistribution, which involve theWilson line (double line).	e symbol “×” denotes the nonlocal
vertex from the operator. Source: [136], reprinted with permission by the Authors (article published under an open access license).

One approach to study the renormalization of the
quasigluon PDFs is to introduce an auxiliary heavy quark
�eld, as adopted in the renormalization of the quark distri-
butions.	is auxiliary �eld is in the adjoint representation of<�(3) and does not have spin degrees of freedom.	erefore,
this approach allows one to study local operators instead of
the nonlocal operator of Equation (34).Mixing between these
new operators and the gauge invariant gluon �eld strength
tensor is permitted. In addition, it was shown at the level
of one-loop corrections that the power divergence can be
absorbed in the matrix elements of the local operators, which
is expected to hold to all orders in perturbation theory.
	is work by W. Wang and S. Zhao has contributed to
understanding the renormalization of the gluon quasi-PDFs,
but there were a number of issues to be addressed. 	is
included, but was not limited to, (a) the study of gauge �elds
in the fundamental representation and the corresponding
mixing and (b) the study of the renormalization in the
lattice regularization, preferably nonperturbatively.	e latter
is highly nontrivial and technically more complicated than in
the case of quarks.

	e renormalizability of both the unpolarized and the
helicity gluon PDFs has been studied by J.-H. Zhang et al.
in [137], including possible mixing that is permitted by the
symmetries of the theory. 	e auxiliary �eld formalism was

employed in a similar fashion as the studies presented above
[133, 135–137]. Explicit results were given for the unpolarized
quasigluon PDFs in the dimensional and gauge-invariant
cuto� regularizations.

In the auxiliary �eld formalism, the operator presented in
Equation (34) (� summed over the transverse directions) can
be replaced by a new operator; that is,

O (L2, L1) = $3�1 (L2) $31,� (L1) , (35)

where $3�1 (L2) = �3�
; (L2)Q;(L2), $31,�(L1) = Q6(L1)�3

6,�(L1). Q
denotes the auxiliary adjoint “heavy quark” �eld. For a proof,
see [137]. Based on symmetry properties, such a composite
operator can mix with lower-dimensional operators that are
gauge-invariant, BRST variations or vanish by the equations
of motion. 	e identi�ed mixing pattern helps to construct
the proper operators for the gluon quasi-PDFs that are
multiplicatively renormalizable. In particular, three (four)
operators are identi�ed for the unpolarized (helicity) gluon
PDFs, that do not su�er from mixing. Here we provide the
operators for the unpolarized case:

O
1 (L2, L1) ≡ $0�1 (L2) $0�1 (L1) , (36)
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O
2 (L2, L1) ≡ $3�1 $3�1 , (37)

O
3 (L2, L1) ≡ $0�1 (L2) $3�1 , (38)

O
4 (L2, L1) ≡ $3�1 (L2) $31,�, (39)

where the index 0 represents the temporal direction and 3
the direction of the Wilson line. In addition, 5 runs over all
Lorentz components, while� over the transverse components
only (� ̸= 3). In a similar way, it was found that three
operators related to the gluon helicity distributions can be
renormalized multiplicatively. For details, see Section III C
of [137]. 	is work provides crucial guidance for numerical
simulations in LatticeQCDand the development of a nonper-
turbative renormalization prescription. Based on the mixing
pattern, the Authors provided a renormalization prescription
suitable for lattice simulations, and a factorization for gluon
and quark quasi-PDFs.

Z.-Y. Li, Y.-Q. Ma, and J.-W. Qiu have studied renormal-
izability of gluon quasi-PDFs in [138], a work that appeared
simultaneously with [137]. 	eir work is based on diagram-
matic expansion approach, as studied for the quark quasi-
PDFs [134, 138]. By studying the UV divergence of gluon
operators, it was demonstrated that appropriate combinations
can be constructed, so that their renormalization is multi-
plicative to all orders in perturbation theory. Such operators
are related to gluon quasi-PDFs. 	e demonstration is based
on a quasigluon operator O	 that has a general form

O
�] !
	 (�) = ��] (�)Φ(;) (�, 0) � ! (0) , (40)

where Φ(;)(�, 0) is the Wilson line with gauge links in the
adjoint representation.

	e procedure followed in this work is based on a one-
loop calculation of the Green’s functions

⟨� (�)""""O�] !
	 (�) """"� (�)⟩ , (41)

which is performed inDR. It was demonstrated that the linear
UV divergences of the gluon-gauge-link vertex are canceled
explicitly. 	is was extended to all loops in perturbation
theory by investigating all possible UV divergent topologies
of higher-order diagrams, showing that the corresponding
linear UV divergences are canceled to all orders in pertur-
bation theory. It was also discussed in detail that the UV
divergences of all 36 pure quasigluon operators (including the
antisymmetry of gluon �eld strength) can be multiplicatively
renormalized. 	is work, thus, constitutes a powerful proof
of the renormalizability of gluon quasi-PDFs.

6. Lattice Techniques and
Challenges for Quasi-PDFs

Apart from theoretical challenges of the quasidistribution
approach, discussed in the previous section, also the lattice
implementation and e
ciency of computations are a major
issue for the feasibility of the whole programme. In this
section, we discuss these aspects in some detail, showing that

tremendous progress has been achieved also on this side. In
addition, we discuss challenges for the lattice that need to be
overcome for a fully reliable extraction of PDFs.

6.1. Lattice Computation ofMatrix Elements. To access quasi-
PDFs of the quarks in the nucleon, one needs to compute the
following matrix elements:

ℎΓ (
, L) = ⟨
| � (0, L) Γ� (L) � (0, 0) |
⟩ , (42)

where theDirac structure Γ determines the type of quasi-PDF
(see below), |
⟩ is the boosted nucleon state withmomentum
 = (
0, 0, 0, 
3), and�(L) is a Wilson line of length L along
the spatial direction of the boost. To obtain the above matrix
elements, one constructs a ratio of three-point and two-point
functions:

ℎΓ (
, L)0≪?≪�
K (7→
) �3pt (7→
; �, �)

�2pt (7→
; �) , (43)

where K(7→
) is a kinematic factor that depends on the
Dirac structure, and the correlation functions are computed
according to

�2pt (7→
; �) = Γ@A∑
�→�
�−��→�⋅�→� ⟨0|~@ (7→�, �)~A (7→0 , 0)

⋅ |0⟩ ,
(44)

�3pt (7→
; �, �) = Γ�@A ∑
�→� ,�→B

�−��→�⋅�→� ⟨0|~@ (7→�, �)
⋅ O (7→�, �; L)~A (7→0 , 0) |0⟩ ,

(45)

with the proton interpolating operator, ~@(�) =P;67-;@(�)((	6)�(�)C�5-7(�)), � the current insertion
time, parity plus projector for the two-point function,Γ@A = (1 + �0)/2, and parity projector for the three-point

functions, Γ�@A, dependent on the Dirac structure of the
current.

	e Wick contractions for the three-point function lead,
in general, to a quark-connected and a quark-disconnected
diagram. Since the evaluation of the latter is far more
demanding than that of the former, the numerical e�orts were
so far restricted to connected diagrams only. One uses the
fact that disconnected diagrams cancel when considering the
�avor nonsinglet combination - − 	 in the formulation of
Lattice QCD with degenerate light quarks. 	e connected
diagram that contributes to the three-point function is shown
in Figure 10.

Special attention has to be paid to the Dirac structure of
the insertion operator, becausemixing appears among certain
structures, as discovered in [106]. In particular, the originally
suggested Γ = �3 for the unpolarized PDF mixes with the
scalar operator; see Section 7 for details. Such mixing can be
taken into account by explicitly computing a 2 × 2 mixing
matrix of renormalization functions and matrix elements for
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Figure 10: Diagram representing the three-point correlation func-
tion that needs to be evaluated to calculate quasi-PDFs. Source:
arXiv version of [124], reprinted with permission by the Authors
(article published under the terms of the Creative Commons
Attribution 4.0 International license).

both Dirac structures. However, in practice, this leads to
much worse signal and �nally to a much less precise estimate
of the PDFs. For this reason, the strongly preferred choice isΓ = �0 for the unpolarized quasi-PDF. Similar mixing occurs
for the polarized cases for certain Dirac structures, with the
choice of Γ = �5�3 and Γ = \13 or Γ = \23 for helicity
and transversity, respectively, guaranteeing that no mixing is
present [106].

We now turn to describing the lattice computation in
more detail. For the two-point function, Wick contractions
lead to standard point-to-all propagators that can be obtained
from inversions of the Dirac operator matrix on a point
source. 	e computation of the three-point function is
more complicated. Apart from the point-to-all propagator,
it requires the knowledge of the all-to-all propagator. Two
main techniques exist to evaluate this object: the sequential
method [143] and the stochastic method [144]. In the former,
one constructs a so-called sequential source from a suitable
point-to-all propagator. Inverting the Dirac matrix on this
source, the sequential propagator is obtained that enters
in the three-point function. 	e other method employs

stochasticY4 noise sources on a single time slice, leading to a
stochastic estimate of the all-to-all propagator upon inversion
of the Dirac matrix. In principle, the second method is
more �exible, as it allows for obtaining results for all Dirac
structures and all momenta with the same inversions, the
most costly part of the computation. 	e price to pay is the
introduction of stochastic noise, but the overhead introduced
by the necessity to suppress this noise is still more than
compensated by the gain from �exibility, in principle. Using
the sequential method or, more precisely, its �xed sink
variant, implies that the momentum at the sink has to be
�xed and separate inversions are needed for each nucleon
boost, as well as for each Dirac structure due to di�erent
projectors.

In the early studies, both approaches were tested by
ETMC [47], with the conclusion that they yield compatible
results and the additional noise from the stochastic method
can be suppressed by using 3-5 stochastic noise vectors. Given
the �exibility of the stochastic method, ETMC decided to
pursue studies with this approach in [100, 108]. In [108],
the technique was changed to one involving the sequential
propagator for reasons explained in the next subsection.
	e method for computing the all-to-all propagator was not

revealed by the Authors of the other exploratory numerical
study of quasi-PDFs in [46, 107].

Having computed the three-point and two-point func-
tions, the relevant matrix elements can be obtained. 	e
crucial issue that has to be paid special attention to is the
contamination of the desired ground statematrix elements by
excited states. 	ree major techniques are available: single-
state (plateau), multistate, and summation �ts. We brie�y
describe all of them below.

(i) Plateau method. 	e most straightforward way of
obtaining the matrix element from the three-point
and two-point functions is to identify a region where
their ratio is independent of the insertion time � and
�tting to a constant, which is the matrix element of
the ground state. As can be seen from the spectral
decomposition of the three-point function, excited
states manifest themselves as curvature in the ratio
of Equation (88) and also in the shi� of its central
value. Under realistic statistical uncertainties, it is,
therefore, not always clear whether an actual plateau
has been reached and, thus, it is not advisable to
use this method as the sole method of extracting the
ground state properties.

(ii) Summation method.	is approach [145, 146] consists
in summing the ratios of three-point and two-point
functions over the insertion time �. By decomposing
the correlators into sums of exponential terms, one
obtains a geometric series, leading �nally to

R (7→
; ��) ≡ ��−;∑
?=;

�3pt (7→
; ��, �)
�2pt (7→
; ��)

= � + ℎΓ (
, L) �� + O (�−(�1−�0)��) ,
(46)

where the source and sink timeslices are excluded
avoiding contact terms and � is a constant. 	e
ground state matrix element, ℎΓ(
, L), is then
extracted from a linear two-parameter �t to data
at su
ciently large source-sink separations ��.
	e method has the advantage that excited states
are suppressed by a faster-decaying exponential
with respect to the plateau �ts, but the statistical
uncertainties are, typically, much larger.

(iii) Multistate �ts. A natural generalization of the plateau
method is to include higher-order exponential terms
in the decomposition of the two-point and three-
point functions, typically the �rst excited state (two-
state �ts) or the lowest two excited states (three-
state �ts). In general, the two-point correlator can be
written as

�2pt (7→
; �) = """"�0
""""2 �−�0� + """"�1

""""2 �−�1� + ⋅ ⋅ ⋅ , (47)
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with amplitudes � � and energies of subsequent states@�. 	e three-point function reads

�3pt (7→
; ��, �) = """"�0
""""2 ⟨0|O |0⟩ �−�0��

+ �∗
0�1 ⟨1|O |0⟩ �−�1?�−�0(��−?)

+ �0�∗
1 ⟨0|O |1⟩ �−�0?�−�1(��−?)

+ """"�1
""""2 ⟨1|O |1⟩ �−�1�� + ⋅ ⋅ ⋅ ,

(48)

with matrix elements of the suitable operator O in
addition to parameters in the two-point correlator.
Note that, in practice, it is di
cult to consistently
go beyond one or two excited states, as the number
of �tting parameters is increasing faster than linearly
with increased number of excited states taken into
account, due to the presence of the mixed matrix
elements, ⟨5|O|K⟩, for a growing number of pairs (5, K).

In principle, the multistate method (realistically two-
state method) allows for a better control of excited states
contamination. However, in realistic lattice situations, the
interpolating operators used to create the nucleon from the
vacuum excite numerous states with the same quantumnum-
bers.	is contamination increases with pionmass decreasing
towards the physical point; see, e.g., [39], for an illustration.
Moreover, the number of excited states increases with larger
nucleon boosts. All the above imply that it is unlikely to
achieve a regime of source-sink separations where precisely
two states play a role.	us, also relying solely on two-state �ts
should not be used as the only method. Instead, ground state
dominance should be established by aiming at compatibility
between all three methods of extracting the ground state
matrix elements. Such compatibility ensures that the probed
regime of �� values has enough suppression of excited states
and excludes that many excited states mimic a single excited
state. Numerically, it is hard to disentangle several excited
states and the manifestation of many of them appearing
would be clear incompatibility of two-state �ts with plateau
�ts. Note also that, with exponentially decaying signal-to-
noise ratio at larger source-sink separations, the danger of the
two-state approach is that the �ts may easily be dominated
by data at the lower �� values, heavily contaminated by
excited states. 	us, we are led to conclude that the most
reliable estimates of ground state matrix elements ensue
from compatible results obtained using all of the three above
methods (with the summation method being, in most cases,
inconclusive due to large statistical uncertainty). It is still
important to bear in mind that excited states are never fully
eliminated, but only exponentially suppressed. 	is means
that the ground state dominance is always established only
to some level of precision. Aiming at increased statistical
precision, the previously reliable source-sink separation(s)
may prove to be insu
cient. Obviously, when targeting larger
momenta and/or smaller pion masses, conclusions for the
role of excited states at a smaller boost or a larger pion mass
do not apply; hence, a careful analysis is always needed at least
in the setup most prone to excited states.

Having extracted the relevant matrix elements, one is
�nally ready to calculate the quasi-PDF. We rewrite here
the de�nition of quasi-PDFs with a discretized form of the
Fourier transform:

�̃ (�, 
3) = 2
34

"max∑

"=−"max

�−�"�3�ℎΓ (
, L) , (49)

where the factor of 
3 ensures correct normalization for
di�erent momenta and Lmax is to be chosen such that the
matrix elements have decayed to zero both in the real and in
the imaginary part (see also Section 6.3).

6.2. Optimization of the Lattice Computation. In the previous
subsection, we have established the framework for the com-
putation of quasi-PDF matrix elements on the lattice. Now,
we describe some more techniques that are usually used to
perform the calculation as e�ectively as possible.

	e �rst technique, commonly employed in lattice
hadron structure computations, serves the purpose of opti-
mizing the overlap of the interpolating operator that creates
and annihilates the nucleon with the ground state. 	is can
be achieved by employing Gaussian smearing [147, 148] of
fermionic �elds, which re�ects the fact that hadrons are not
point-like, but are extended objects. Moreover, the smearing
is further optimized by combining it with a technique for
reducing short-range (UV) �uctuations of the gauge �elds;
gauge links used in the quark �elds smearing are subjected to
APE smearing [149]. 	e procedure involves optimizing four
parameters, the parameters regulating the “strength” of the
Gaussian and APE smearing, rD and rAPE, respectively, and
the number of Gaussian and APE smearing iterations. 	e
typical criterion of optimization is that the root mean square
(rms) radius of the proton should be around 0.5 fm.

Smearing techniques are used also to decrease UV �uctu-
ations in gauge links entering the Wilson line in the operator
insertion. In principle, any kind of smearing can be used
for this purpose, with practical choices employed so far of
HYP smearing [101] and stout smearing [150]. 	e smearing
of the Wilson line has the additional e�ect of reducing the
UV power divergence related to the Wilson line, i.e., shi�ing
the values of renormalization factors towards their tree-level
values, and thus suppressing the power-like divergence.	us,
a relatively large number of smearing iterations was used in
the early works, which was necessary due to the absence of
the renormalization. In principle, the renormalized matrix
elements should not depend on the amount of smearing
applied to the operator and it is an important consistency
check to con�rm this. We note that, before the advent of the
full nonperturbative renormalization programme for quasi-
PDFs [151], the role played by the Wilson line links smearing
was somewhat di�erent. Without explicit renormalization,
the results were contaminated by the power divergence and
the smearing had the task of subtracting a possibly large part
of this divergence in the hope of obtaining preliminary results
at not too small lattice spacings. A�er this premise lost its
signi�cance, this kind of smearing is applied only to reduce
gauge noise to a certain extent. Alternatively, smearing of
gauge links can also be applied to the whole gauge �eld, i.e.,
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enter both theWilson line and also theDirac operatormatrix.
Note, however, that in this way it is not possible to check
explicitly that the renormalized results are independent of the
smearing level, at least without costly additional Diracmatrix
inversions for di�erent numbers of smearing iterations.

All the above techniques are rather standard and have
been employed in the quasi-PDFs computations already
in the very �rst exploratory studies. However, the recent
progress thatwe review in Section 9would not have been pos-
sible without the technique of so-calledmomentum smearing
[109, 152]. It is a relatively simple extension of the quark �elds
smearing described above. 	e crucial observation is that a
Gaussian-smeared nucleon state has maximal overlap with a
nucleon at rest; i.e., it is centered around zero momentum in
momentum space. It is, hence, enough to move this center
to the desired momentum to obtain an improved signal for
a boosted nucleon. 	e modi�cation is the addition of a
phase factor exp(5�7→
 ⋅ 7→�) in the position space de�nition

of the smearing, where
7→
 is the desired nucleon momentum

and � a tunable parameter8. Explicitly, the modi�ed Gaussian
momentum smearing function reads

Smom

= 11 + 6rD (� (�) + rD∑
-
�- (�) ����→�⋅�→- � (� + K̂)) , (50)

where �- are gauge links in the K-direction. For optimal

results, the parameter � should be tuned separately for
every momentum and every ensemble. In the context of
quasi-PDFs, momentum smearing has �rst been applied
in the ETMC study reported in Section 3.2 [108, 153]. By
now, it has become a standard technique for enhancing the
signal. We note, however, that momentum smearing does
not fully solve the exponentially hard problem of decaying
signal at large boosts, but rather it moves it towards larger
momenta.	erefore, accessing highly boostednucleon on the
lattice, necessary for reliable matching to light-cone PDFs via
LaMET, remains a challenge.

To �nalize this subsection, we mention one more useful
technique that is applied nowadays to decrease statistical
uncertainties at �xed computing time. 	e most expensive
part of the calculation of the correlation functions is the
computation of the quark propagators, i.e., the inversion
of the Dirac operator matrix on speci�ed sources. 	is is
typically done using specialized iterative algorithms, o�en
tailored to the used fermion discretization. 	e iterative
algorithm is run until the residual, quantifying the distance
of the current solution with respect to the true solution, falls
below some tolerance level, �.	e standard way is to set � to a
very small number, of order 10−12−10−8. However, obviously
that may need iterating the solver for a long time. To save
some considerable fraction of computing time, truncated
solver methods have been invented, where the precision is
relaxed to � ≈ 10−3 − 10−2. Naturally, relaxed precision
of the solver leads, in general, to a bias introduced in the
solution. Hence, the second ingredient of these methods
is bias correction. Below, we shortly describe one of such

methods, the Covariant Approximation Averaging (CAA)
[154]. One performs a certain number of low-precision
(LP) inversions, ~LP, accompanied by a smaller number
of standard, high-precision (HP) inversions, ~HP. 	e �nal
correlation functions are de�ned as follows:

� = 1~LP

$LP∑
%=1

�%,LP + 1~HP

$HP∑
%=1

(�%,HP − �%,LP) , (51)

where �%,LP and �%,HP denote correlation functions obtained
from LP and HP inversions, respectively. To correct the bias
properly, ~HP HP and LP inversions have to be done for the
same source positions. 	e choice of the numbers of LP and
HP inversions has to be tuned in such a way to maintain
a large correlation coe
cient (typically 0.99-0.999) between
LP and HP correlators, which guarantees that the bias is
properly subtracted.

6.3. Lattice Challenges. In this section, we discuss the chal-
lenges for lattice computations of quasi-PDFs. On the one
side, this includes “standard” lattice challenges, like control
over di�erent kinds of systematic e�ects, some of them
enhanced by the speci�cs of the involved observables. On
the other side, the calculation of quasi-PDFs o�ered new
challenges that had to or have to be overcome for the
�nal reliable extraction of light-cone distributions. Below, we
discuss these issues in considerable detail, starting with the
“standard” ones and going towards more speci�c ones.

(1) Discretization e
ects.

Lattice simulations are, necessarily, performed at
�nite lattice spacings. Nevertheless, the goal is to
extract properties or observables of continuumQCD.
At �nite lattice spacing, these are contaminated by
discretization (cuto�) e�ects, which need to be sub-
tracted in a suitable continuum limit extrapolation.
Obviously, prior to taking the continuum limit, the
observables need to be renormalized and we discuss
this issue in Section 7. Assuming divergences have
been removed in a chosen renormalization scheme,
the continuum limit can be taken by simulating
at three or more lattice spacings and �tting the
data to an appropriate ansatz, typically linear in

the leading discretization e�ects, of order C or C2.
In most Lattice QCD applications, O(C)-improved
fermionic discretizations or observables are used.
In many cases this, however, requires calculation
of observable-speci�c improvement coe
cients (e.g.,
for Wilson-clover fermions). It remains to be shown
how to obtain O(C) improvement of quasi-PDFs at
least for some of the fermionic discretizations. Up
to date, quasi-PDFs studies have been performed for
a single lattice spacing in a given setup and, hence,
discretization e�ects have not been reliably estimated.
Going to smaller lattice spacings remains a challenge
for the future. It is not a problem in principle, but
obviously it requires huge computational resources,
especially at the physical pion mass. However, there
are indirect premises that discretization e�ects are not
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large. Firstly, they have been relatively small in gen-
eral lattice hadron structure calculations. Secondly,
indirect evidence for the smallness of cuto� e�ects
is provided by checks of the dispersion relation, i.e.,
the relation between energy of a boosted nucleon
and its momentum (see Section 9). In the absence of
large discretization e�ects, the continuum relativistic
dispersion relation holds. Note, however, that cuto�
e�ects can be enhanced if the nucleon boost becomes
larger than the lattice UV cuto�; i.e., if C
3 > 1.
In principle, no energy scale on the lattice should

exceed C−1. Precisely for this reason, lattice calcula-
tions involving the heavy � quark need its special
treatment; with typical lattice spacings, the bottom

quark mass exceeds C−1 and a reliable computation
must involve an e�ective theory treatment, such as the
one provided by HQET or by NRQCD.

(2) Finite volume e
ects.

Apart from �nite lattice spacing, also the volume
of a numerical simulation is necessarily �nite. 	us,
another lattice systematic uncertainty may stem from
�nite volume e�ects (FVE). FVE become important
if the hadron size becomes signi�cant in comparison
with the box size. 	e hadron size is to a large
extent dictated by the inverse mass of the lightest
particle in the theory. Hence, leading-order FVE are
related to the pionmass of the simulation and smaller
pion masses require larger lattice sizes in physical
units to suppress FVE. Usually, FVE are exponentially
suppressed as exp(−I�z), where z is the spatial
extent of the lattice. 	e typical rule adopted in
lattice simulations is that this suppression is enough
if I�z ≥ 4. At nonphysical pion masses of order
300-400 MeV, this corresponds to a box size of 2-2.5
fm, which is easy to reach with typically used lattice
spacings, 0.05-0.1 fm.When simulating at the physical
pion mass, the minimal box size that yields I�z ≥4 is 6 fm and, thus, �ner lattice spacings require
huge lattices. Nevertheless, lattice hadron structure
calculations have usually evinced rather small FVE
already withI�z ≈ 3 − 3.5. Still, an explicit check of
FVE is highly advisable when aiming at a fully reliable
computation.

Above, the main source of FVE that we consid-
ered was related to the size of hadrons. However,
it was pointed out in [155] that, for quasi-PDFs,
a relevant source of FVE may be the size of the
Wilson line in the operator inserted in the matrix
elements de�ning quasidistributions. 	e Authors
studied perturbatively a toy scalar model with a light
degree of freedom (mimicking the pion in QCD)
and a heavy one (corresponding to the nucleon).
	e studied matrix element involved a product of
two currents displaced by a vector of length � and
they found two kinds of FVE: one decaying with
exp(−I�z) and the other one with exp(−I(z − �)),
where I is the mass of the heavy state. Moreover,
both exponentials have prefactors scaling as z8/|z −

�|% (with some exponents B and `), that can further
enhance FVE for larger displacements �. In the case
of pion matrix elements, the FVE may be particularly
enhanced by exp(−I�(z − �)). Even though the
studied case concerned a product of two currents,
not quark �elds connected by a Wilson line, some
enhancement of FVE may also occur for the latter
case. In view of this, investigation of FVE in matrix
elements for quasi-PDFs, especially ones with larger
lengths of the Wilson line, is well motivated.

It is also important to mention that �nite lattice
extent in the direction of the boost, z/C, imposes a
limit on the minimal Bjorken-� that can be reached.
	e parton momentum is �
3, which determines its
correlation length to be of order 1/�
3. 	is value
should be smaller than the physical size of the boost
direction, 1/�
3 < z. At the same time, the boost
should be smaller than the lattice UV cuto�; i.e., 
3 <1/C. Replacing “<” symbols in the above inequalities
with “=” signs, one arrives at theminimal � accessible
on the lattice: z = 1/�min
3 = C/�min; i.e., �min =1/(z/C). Note that it is the number of sites in the boost
direction that determines �min, not its physical size.

(3) Pion mass dependence.

	e computational cost of Lattice QCD calculations
depends on the pion mass. Hence, exploratory stud-
ies are usually performed with heavier-than-physical
pions, as was also the case for quasi-PDFs (see
Section 3.2). Obviously, this introduces a systematic
e�ect. If no physical pion mass calculations are
available, one can extrapolate to the physical point,
if the �tting ansatz for this extrapolation is known
(e.g., from chiral perturbation theory). However,
the cleanest procedure is to simulate directly with
pions of physical mass. Recently, quasi-PDFs com-
putations with physical pions have become available;
see Section 9 for their review including a direct
comparison between ensembles with di�erent pion
mass [124].

(4) Number of �avors, isospin breaking.

QCD encompasses six �avors of quarks. However,
due to the orders of magnitude di�erence between
their masses, only the lightest two, three, or four
�avors are included in lattice simulations. Moreover,
the up and down quarks are o�en taken to be
degenerate; i.e, one assumes exact isospin symmetry.
One then speaks of a ~' = 2, ~' = 2 + 1, or~' = 2 + 1 + 1 setup, respectively. Di�erences
among these setups are observable dependent, but
usually smaller than other systematic uncertainties
and the statistical errors. For examples of the small
dependence on the number of dynamical quarks
in various observables, see, e.g., the FLAG review
[156]. Hence, for most applications, all these setups
can be considered to be equivalently suitable. Only
when aiming at O(1%) total uncertainty, well beyond
the current precision of the �eld of lattice PDFs, it



Advances in High Energy Physics 25

may be necessary to include dynamical strange and
charm quarks. Similar or smaller e�ects are expected
from isospin breaking by the di�erent up and down
quarkmasses (QCD e�ect) and their di�erent electric
charges (QED e�ect).	e order ofmagnitude of these
e�ects can be deduced from the di�erence of proton
and neutron masses, less than two per mille. Note
that the setup with degenerate light quarks is very
useful in lattice hadron structure calculations also for
practical reasons; in such a setup, the disconnected
contributions cancel in the - − 	 �avor combination
and, moreover, isovector PDFs do not mix under
matching and renormalization. 	us, it is clear that
all the e�ects discussed in this point are currently
subleading but may become important in the future,
when aiming at very precise extractions of PDFs.

(5) Source-sink separation and excited states contamina-
tion.

As already discussed in Section 6.1, a signi�cant
systematic e�ect may emerge in lattice matrix ele-
ments due to excited states contamination. From the
correlation functions decomposition, one can see that
excited states are suppressed with the source-sink
separation, ��. Hence, a careful analysis of a few sepa-
rations is needed to establish ground state dominance;
see Section 6.1 for more details. 	e issue of reaching
large �� values is nontrivial from the computational
point of view, as the signal-to-noise ratio decays
exponentially with increasing ��. For this reason, a
compromise is needed to keep the computational cost
under control. Yet, the compromise must not a�ect
the reliability of the results.

(6) Momentum boost and higher-twist e
ects.

Contact with the IMF via LaMET is established at
large nucleon momenta. Hence, it is desirable to
use large nucleon boosts on the lattice. However,
this is highly nontrivial for several reasons. First,
the signal-to-noise ratio decays exponentially with
increasing hadronmomentum, necessitating increase
of statistics to keep similar statistical precision at
larger boosts. Second, excited states contamination
increases considerably at larger momenta, calling for
an increase of the source-sink separation to maintain
suppression of excited states at the same level. As
argued in the previous point, the increase of �� further
decays the signal, enlarging the required statistics.
	ird, large hadron momenta may induce enhanced
discretization e�ects, in particular when the boost
becomes similar to or larger than the latticeUVcuto�,
i.e., the inverse lattice spacing. 	us, momenta larger
than the UV cuto�s of the currently employed lattice
spacings, of order 2-2.5 GeV, should only be aimed at
with ensembles at �ner lattice spacings.

We now consider e�ects that may appear if the
nucleon momentum is too small. Looking at the
formulation of LaMET, it is clear that higher-twist

e�ects (HTE), suppressed as O((
3)−2), may become

sizable and hinder the extraction of leading-twist
PDFs. In principle, one can compute the HTE explic-
itly and subtract them. 	is would be an interesting
direction of further studies, especially that HTE are
of interest in their own right. Alternatively, one may
compute the leading functional dependence of HTE
and extrapolate them away. An example of such
computation was presented in [157], based on the
study of renormalons in coe
cient functions within
the bubble-chain approximation.	e result for quasi-
PDFs is an O((Λ2

QCD/
2
3 )/(�2(1 − �))) correction.

Note, however, that the matrix elements underlying
the quasi-PDFs in this analysis are normalized to
unity at zero momentum, as done in the pseudo-
PDF approach (see Section 2.6).	is suppresses HTE
at small-� at the price of enhancement for large-�.
Clearly, the renormalization programme employed
for quasi-PDFs, e.g., based on a variant of RI/MOM
(see Section 7), can lead to di�erent functional form
of HTE. Moreover, the Authors of [157] put another
warning that a perturbative analysis might not see
all sources of HTE and their results should rather be
considered as aminimalmodel thatmaymiss nonper-
turbative features. Note also that knowing the func-
tional form of leading-order HTE (with unknown
prefactors) does not clarify what the range of hadron
momenta is where these terms are indeed leading.
At too small momenta, it may still be that higher-
order HTE are sizable and even change the overall
sign of the correction, rendering the extrapolation
unreliable.

Another type of HTE is nucleon mass corrections
(NMCs). 	ese, in turn, can be exactly corrected by
using the formulae derived by Chen et al. [107]. 	e
calculation presented in this reference allowed us to
obtain closed expressions for the mass corrections
relevant for all types of quasi-PDFs. An important
feature of these NMCs is that the particle number is
conserved. We note that NMCs are already small at
momenta not much larger than the nucleon mass, as
also argued by Radyushkin [76] from a model calcu-
lation. It is important to remark that the NMCs for
quasi-PDFs (also commonly referred to as TMCs) are
di�erent from TMCs in phenomenological analyses
for standard PDFs (see, e.g., [158] for a review). NMCs
in quasi-PDFs result from the nonzero ratio of the
nucleon mass to its momentum (while this ratio is
zero in the IMF), whereas TMCs in phenomenolog-
ical analyses refer to corrections needed because of a
nonzeromass of the target in a scattering experiment.

At the level of matrix elements, the momentum
dependence is manifested, inter alia, by the physical
distance at which they decay to zero. 	is distance,
entering in the limits of summation for the discretized
Fourier transform in Equation (49), becomes smaller
for larger values of 
3. If it is too large, periodicity
of the Fourier transform will induce nonphysical
oscillations in the quasi-PDFs, especially at large �.
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We note that these oscillations do not appear because
of the truncation at �nite Lmax, but rather because
of a too large value of Lmax at low momenta. 	is
e�ect can be naturally suppressed by simulating at
larger nucleon boosts and indeed, as we show in
Section 9, oscillations are dampened at larger 
3. 	e
uncertainty induced by this behavior can also result
from uncertainties related to the renormalization of
bare matrix elements. 	e large values of Y-factors
amplify both the real and the imaginary part and,
for complex Y-factors, also mix them with each

other. 	e MS Y-factors should be purely real, but
this feature holds only if conversion between the
intermediate lattice renormalization scheme and the
MS scheme is done to all orders in perturbation
theory. Together with lattice artifacts appearing in the
estimate of the intermediate scheme renormalization
functions, this e�ectively induces a slower decay of
matrix elements with the Wilson line length and
shi�s the value of L where matrix elements become
zero to larger distances. Hence, the combination
of too small boost and uncertainties in Y-factors
manifests itself in the oscillations. Note also that the
problemmay bemore fundamental. It is not presently
clear how reliable is a distribution reconstruction
procedure from a set of necessarily limited data. 	is
issue is being investigated in the context of pseu-
dodistributions [159]. 	e reconstruction techniques,
mentioned in the context of the hadronic tensor in
Section 2.1, may be crucial for control of this aspect.
It was also speculated [51] that the Fourier transform
may be a fundamental limitation of the quasi- and
pseudodistribution approaches and the fundamental
object may be the renormalized matrix element, or
ITD.

A method to remove the nonphysical oscillations
was proposed in [160] and was termed the derivative
method. One rewrites the Fourier transform using
integration by parts:

�̃ (�, 
3) = ℎΓ (
, L) ��"�3�2
5�
"""""""""
"max

−"max

− ∫"max

−"max

	L2
 ��"�3�5� ZℎΓ (
, L)ZL ,
(52)

where the derivative of the matrix elements with
respect to the Wilson line length gives the name to
the method.	e integration by parts is exact and this
de�nition of the Fourier transform is equivalent to
the standard one if the matrix elements have decayed
to zero at L = Lmax and up to discretization e�ects
induced by the need to lattice size the continuous
derivative. Otherwise, one neglects the surface term
in Equation (52), which e�ectively absorbs oscilla-
tions. However, it is debatable whether the procedure
is safe and the neglected surface term does not hide
also physical contributions at a given nucleon boost.

Also, the presence of an explicit 1/� factor in the
surface term leads to an uncontrolled approximation
for small values of �. Other proposed methods to
remove the oscillations are a low-pass �lter [160],
including a Gaussian weight in the Fourier transform
[161]. However, they have not been used with real lat-
tice data. Ideally, the nucleon momentum needs to be
large enough to remove oscillations in a natural way,
instead of attempting to suppress them arti�cially.

(7) Other e
ects in the PDFs extraction procedure.

For the sake of completeness, wemention other e�ects
that can undermine the precision of lattice extraction
of PDFs, although they are not challenges for the
lattice per se.

In the previous point, we have already mentioned
uncertainties related to renormalization. In
RI/MOM-type schemes, they manifest themselves
in the dependence of Y-factors on RI scales from
which they were extracted, even a�er evolution to
a common scale. 	is can be traced back to the
breaking of continuum rotational invariance (b(4))
to a hypercubic subgroup A(4). A way to overcome
this problem is to subtract lattice artifacts computed
in lattice perturbation theory, which can be done to
all orders in the lattice spacing at the one-loop level;
see [162] for more details about this method and an
application to local Y-factors.
Another renormalization-related issue is the per-
turbative conversion from the intermediate lattice
scheme to theMS scheme and evolution to a reference
MS scale. Although not mandatory, the aim of the
whole programme is to provide PDFs in the scheme
of choice for phenomenological applications, i.e.,

the MS scheme. 	e conversion and evolution are
currently performed using one-loop formulae and,
hence, subject to perturbative truncation e�ects. A
two-loop calculation of these steps will shed light on
the magnitude of truncation e�ects.

Similarly, truncation e�ects emerge also in thematch-
ing of quasi-PDFs to light-cone PDFs, currently done
to one-loop level; see Section 8 for a more thorough
discussion on matching.

(8) Finite and power-divergent mixings. A general feature
of quantum �eld theory is that operator mixing
under renormalization is bound to appear among
operators that share the same symmetry properties.
On the lattice, some continuum symmetries, that
otherwise prevent mixing, are broken. For operators
of the same dimension, themixing is �nite. Important
example of such mixing was mentioned above; for
some fermionic discretizations, operator with the �3
Dirac structure (for unpolarized PDF) has the same
symmetries as the analogous scalar operator [106]
and hence mixes with it, while the �0 structure has
di�erent symmetry properties and avoids the mixing.
	is mixing is a lattice e�ect stemming from chiral
symmetry breaking by the lattice discretization and
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does not appear for lattice fermion formulations that
preserve this symmetry, e.g., overlap fermions. We
discuss this �nite mixing in more detail in the next
section.

If the dimension of the operator with the same
symmetries is lower, then the mixing will be power
divergent in the lattice spacing; i.e., it will contribute

a term ∝ 1/CΔ�, where Δ	 is the di�erence in
the dimension. 	e possibility that such mixings
occur for quasi-PDFs, as well as pseudo-PDFs and
LCSs, was considered by G.C. Rossi and M. Testa
in [163, 164]. 	ey considered a toy model, devoid
of QCD complications irrelevant in the context of
their argument, and showed that moments of quasi-
PDFs evince power-divergent mixings with lower-
dimensional operators coming from the trace terms.
	ey argued that, for a proper lattice extraction, such
mixings would have to be computed and subtracted.

However, it was counterargued in three papers [84,
90, 165] that the problem actually does not exist. In
[165], it was pointed out that indeed all moments,
except for the zeroth, do not converge. However, the
light-cone PDFs are extracted from the nonlocal qua-
sidistributions that avoid the power divergence prob-
lem; i.e, moments of quasi-PDFs are never intended
to be computed. 	ey trace it back to the much sim-
pler ultraviolet physics in the nonlocal formulation,
where, apart from the Wilson-line-induced power
divergence, shown to be renormalizable (see Sections
5 and 7), there are only logarithmic divergences. All
of these divergences can be properly renormalized on
the lattice, e.g., in a RI/MOM-type scheme.

It was also argued by Rossi and Testa that diver-
gent moments of quasi-PDFs, ⟨�̃%⟩, necessarily imply
divergent moments of extracted light-cone PDFs,⟨�%⟩, since the latter are proportional to the former.
However, this argument ignores the presence of
moments of the matching function, ⟨�%⟩:

⟨�%⟩ = ⟨�%⟩ ⟨�̃%⟩ . (53)

It is exactly the matching function that makes the
moments of standard PDFs �nite a�er the subtraction
of the UV di�erences between the two types of
distributions. In other words, the divergence in the
moments ⟨�̃%⟩ is exactly canceled by the divergence of
moments ⟨�%⟩, yielding �nite moments ⟨�%⟩ of light-
cone PDFs.

Further explanations were provided in [84].
Radyushkin pointed out that Rossi and Testa
rely on a Taylor expansion in L. 	is expansion may
be justi�ed in the very so� case when all derivatives

with respect to L2 exist at L = 0. However, in the
general case, the use of the Taylor expansion for

the hard logarithm log L2 “amounts to just asking

for trouble.” Crucially, it is the log L2 part that
contributes slowly decreasing terms into the large-�

part of quasi-PDFs and these terms lead to the
divergence of the quasidistribution moments. 	ese
terms are not eliminated by just taking the in�nite
momentum limit, but they disappear upon the
matching procedure. As a result, one can calculate
the moments of light-cone PDFs from the quasi-PDF
data.

Finally, J. Karpie, K. Orginos, and S. Zafeiropoulos
demonstrated [90] explicitly that the problem does
not appear for pseudo-PDFs, refuting claim thereof
by Rossi and Testa. 	e reduced ITDs were OPE
expanded in lattice-regularized twist-2 operators,
which indeed have power divergences on the lattice,
due to the breaking of the rotational symmetry.
However, the Wilson coe
cients in the OPE have
exactly the same power divergences and cancel the
power divergences of the matrix elements, order by
order in the expansion, and the �nal series is �nite
to all orders. 	e Authors also provided an explicit
numerical demonstration for the �rst two moments,
obtaining compatibility within errors with an earlier
lattice calculation in the same quenched setup; see
Section 11.4 for more details.

With all these developments, it has been convincingly
established that the problem advocated by Rossi and
Testa does not hinder the lattice extraction of light-
cone PDFs.	us, power-divergentmixings onlyman-
ifest themselves in certain quantities, like moments
of quasi-PDFs, which are nonphysical. In turn, �nite
mixings can be avoided by a proper Dirac structure
of matrix elements.

We �nalize this section with a schematic �owchart
(Figure 11), prepared by C. Monahan, representing the vari-
ous steps on the way from bare matrix elements to �nal light-
cone PDFs. Some of the discussed above challenges for the
lattice computations are indicated. We refer also to [51] for
another discussion of systematic e�ects.

7. Renormalization of Nonlocal Operators

	e renormalization of nonlocal operators that include a
Wilson line is a main component of the lattice calculation
related to quasi-PDFs. Lattice results from the numerical
simulations can only be related to physical quantities upon
appropriate renormalization and only then comparison with
experimental and phenomenological estimates becomes a
real possibility. As discussed in Section 5.2, the renormal-
izability of the straight Wilson line bilinear operators has
been investigated early on by Ji and Zhang [133] to one
loop in perturbation theory, concluding that such operators
are multiplicatively renormalizable. 	e argument was also
extended to two-loop level. Ishikawa et al. showed in [132]
the feasibility of the subtraction of the power divergence
present in the operators under study to achieve a well-de�ned
matching between the quasi-PDFs with the light-cone PDFs.
	ese studies were later expanded to prove renormalizability
of the operators to all orders in perturbation theory [134, 135],
including the lattice regularization.
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Figure 11: Schematic representation of di�erent steps needed to extract light-cone PDFs from quasi-PDFs and of the challenges encountered
at these steps. Source: [51] (arXiv), reprinted with permission by the Author.

Since the proposal of Ji in 2013, several aspects of quasi-
PDFs have been investigated, such as the feasibility of a
calculation from Lattice QCD. 	is includes algorithmic
developments [109, 152, 154] that lead to simulations at the
physical point, and the matching between the quasi- and
light-cone PDFs [48, 83, 124, 142, 166]. 	us, the lattice
calculations have progressed with a missing ingredient: its
renormalization. It is not until 2017 that a proper renormal-
ization prescription has been proposed, despite the theoret-
ical developments on the renormalizability of the nonlocal
operators of interest. 	is has proven to be a challenging and
delicate process due to the presence of the Wilson line that
brings in additional power divergences, the nonlocality and
the complex nature of thematrix elements. As a consequence,
the �rst studies of quasi-PDFs on the lattice were either
neglecting renormalization [46] or multiplying naively the
matrix elements with the renormalization function of the
corresponding local operators [100, 107, 108], a procedure
understood as normalization.

7.1. Power Divergence. Among the �rst attempts to under-
stand the renormalization of nonlocal operators was to
address the power divergence inherited from the Wilson
line in the static potential approach, as described in this
subsection. Eliminating the power divergence results in a
well-de�nedmatching between the quasi-PDFs and the light-
cone PDFs.

	e renormalization of nonlocal operators in gauge
theories has been investigated long time ago [167–170], and
later in the 1980’s and 1990’s [140, 141, 171–176]. In these
seminal works, it was identi�ed that Wilson loops along a
smooth contourCwith length zC, computed in dimensional
regularization (DR), are �nite functions of the renormalized
coupling constant, while other regularization schemes may
lead to additional renormalization functions, that is

Y"�98GC . (54)

In the above expression, the subscript L indicates the distance
between the end points of the Wilson line, whereas pB is
mass renormalization of a test particle that moves along C.
Also, the logarithmic divergences can be factorizedwithinY",
and the power divergence is included in pB. In particular, in

the lattice regularization (LR), the latter divergence manifests
itself in terms of a power divergence with respect to the UV
cuto�, the inverse of the lattice spacing 1/C,

�98|"|/;, (55)

where pB is dimensionless. 	is is analogous to the heavy
quark approach, where similar characteristics are observed.
For instance, a straight Wilson line may represent a static
heavy quark propagator, and pB a corresponding mass shi�.
Inspired by this analogy, Chen et al. [177] and Ishikawa et al.
[132] proposed a modi�cation such that spacelike correlators
do not su�er from any power divergence. In their work, the
matrix element appearing in Equation (25) can be replaced
by

�−98|"|/; ⟨
| � (0, L) Γ� (L) � (0, 0) |
⟩ , (56)

that has only logarithmic divergence in the lattice regulator.
Note that, in the above expression, a general Dirac structureΓ appears, as this methodology is applicable for all types
of PDFs. A necessary component of this improved matrix
elements is the calculation of the mass counterterm pB. First
attempts to obtain pB appear in the literature [132, 177] and
are based on adopting a static potential �� [178].

Following the notation of [132], we de�ne the static
potential for separation �, via an � × GWilson loop:

��×� ∝ �−&(�)� (57)

where G is large. 	eWilson loop is renormalized as

��×� = �98(2�+2�)+4]�ren
�×�, (58)

where ] is due to the corners of the chosen rectangle.
Using Equations (57)-(58), one can relate the desired mass
counterterm to the static potential,

�ren (�) = � (�) + 2pB. (59)

An additional condition is necessary to determine pB, which
can be �xed using

�ren (�0) = �0 7→
pB = 12 (�0 − � (�0)) , (60)
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Figure 12: One-loop diagrams for the calculation of Green’s function of nonlocal operators. 	e double line represents the gauge link in the
operator. Source: [180] (arXiv), reprinted with permission by the Authors.

where the choice of �0 depends on the scheme of choice. 	e
appearance of an arbitrary scale is not a surprise and is in
accordance with the work of R. Sommer [179], suggesting a
further �nite dimensionful scale that appears in the exponen-
tial of Equation (55), based on arguments fromHeavy Quark
E�ective 	eory.

A proper determination of pB requires a nonperturbative
evaluation on the same ensemble used for the calculation
of the quasi-PDF. 	is is essential in order to eliminate a
source of systematic uncertainty related to the truncation of
a perturbative evaluation, which is limited to typically one
to two loops. Furthermore, such a quantity can be used for
a purely nonperturbative matrix element. Nevertheless, this
quantity has been computed to one-loop level in perturbation
theory [132, 177] in an e�ort to qualitatively understand the
structure of the power divergence. Within these works, it
was demonstrated that such a mass counterterm removes the
power divergence to all orders in perturbation theory.

7.2. Lattice Perturbation �eory. 	e promising results from
the �rst exploratory studies of the quasi-PDFs [46, 47]
have led to an interest in developing a renormalization
prescription appropriate for Lattice QCD. Several features of
the quasi-PDFs have been studied in continuum perturba-
tion theory (see, e.g., Section 5.2), but more recently there
appeared also calculations in lattice perturbation theory.
Such development is highly desirable, as the ultimate goal is
to relate quasi-PDFs extracted from numerical simulations
in Euclidean spacetime to standard PDFs in continuum
Minkowski space. In this subsection, we highlight three
calculations that provided important insights into quasi-
PDFs.

7.2.1. IR Divergence in Lattice and Continuum. X. Xiong
et al. have computed in [180] the unpolarized quasi-PDF
in lattice perturbation theory using clover fermions and
Wilson gluons. 	e calculation was performed in Feynman
gauge and included a nonzero quark mass. 	is allowed
the study of the matching between lattice and continuum,
and, as discussed in that work, the massless and continuum
limits do not commute, leading to di�erent IR behaviors.
	e calculation contained the one-loop Feynman diagrams
shown in Figure 12, where the quark (
) and internal gluon
(�) momenta are shown explicitly.

Here, we do not provide any technical details and focus
only on the qualitative conclusions, but we encourage the
interested Reader to consult [180] for further details.	e one-
loop results show that a correct recovery of the IR divergence

of the continuum quasi-PDFs can only be achieved for C
2
3 ≈B and B ≪ 
3; the complete continuum quasi-PDF is

obtained from C
2
3 ≪ B ≪ 
3. However, it is stressed

that this is necessary only for perturbative calculations, as
the nonperturbative ones do not contain collinear divergence.
	is is encouraging and serves as a proof of the matrix
elements in Euclidean space being the same as the ones in
Minkowski space. Same conclusions have been obtained from
[131, 165].

7.2.2. Renormalization of Nonlocal Operators in Lattice Per-
turbation �eory. M. Constantinou and H. Panagopoulos
have calculated in [106] the renormalization functions for
the nonlocal operators in perturbation theory in lattice
regularization (LR). 	e calculation was performed to one-
loop level, in which the diagrams shown in Figure 12 were
evaluated for clover fermions and a variety of Symanzik-
improved gluon actions, including Iwasaki and tree-level
Symanzik. Note that the schematic representation of the
diagrams shown in Figure 12 appears to be the same for
dimensional and lattice regularizations, but a calculation
in LR is by far more complicated numerically. 	is is a
consequence of the QCD Lagrangian discretization, coupled
with the additional divergences that depend on the lattice
regulator. 	e renormalization functions were computed for

massless fermions in the MS scheme for general values of the
action parameters and general gauge. 	e latter has served as
a cross-check for gauge-independent quantities. In addition
to the calculation in LR, Green’s function of the nonlocal
operators has been obtained in dimensional regularization
(DR), which, in combination with the corresponding lattice
results, gives a direct de�nition of the renormalization func-

tions in the MS scheme.
	e operator under study includes a straight Wilson line

in the direction � and has the general form

OΓ ≡ � (�) ΓP��	 ∫�0 
�(�+H�̂)�H� (� + L�̂) , (61)

In the above operator, only L ̸= 0 is to be considered, due
to the appearance of contact terms beyond tree level, making
the limit L 7→ 0 nonanalytic. Green’s functions of the above
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operators are evaluated for all independent combinations of
the Dirac matrices, Γ; that is,

⟨� OΓ �⟩
with Γ = 1̂, �5, �], �5�], �5\] , \] , � ̸= �. (62)

Note that the above includes twist-2 operators as well as
higher twist. We will later see that it is important to distin-
guish between the cases in which the spin index is in the same
direction as the Wilson line (] = �), or perpendicular to it
(] ̸= �).

One of the main �ndings of this work is the di�erence

between the bare lattice Green’s functions and the MS-
renormalized ones (from DR). 	is contributes to the renor-
malization of the operator in LR and was found to receive
two contributions, one proportional to the tree level of the
operator (����" Γ), and one that has a di�erent Dirac structure
(����" {Γ, ��}); that is,

⟨�OΓ �⟩J�,MS − ⟨�OΓ �⟩G� = �2�'16
2
⋅ ����" [Γ (r1 + r2� + r3 |L|C + log (C2�2) (4 − �))
+ {Γ, ��} (r4 + r5eSW)] ,

(63)

where r� are numerical coe
cients that depend on the action
parameters. Note that the term proportional to |L|/C is the
one-loop counterpart of the power divergence discussed
in the previous subsection, and its numerical coe
cient
has been computed in [106]. Perturbation theory is not
reliable in providing numerical values for mixing and power
coe
cients; nevertheless it provides crucial qualitative input
for the quantities under study.

	e conclusion from Equation (63) is that the operator
with structure Γ will renormalize multiplicatively only if the
anticommutator between Γ and �� vanishes. 	is is true
for the axial and tensor operators that are used for the
helicity (�5��) and transversity (\� ) PDFs, which have one
index in the direction of the Wilson line. On the contrary,
the vector current �� turns out to mix with the scalar, a
higher-twist operator. 	is �nding impacted signi�cantly
all numerical simulations of the unpolarized PDFs, as they
were using this particular operator [46, 100, 107, 108, 181],
unaware of the aforementioned mixing. With this work, the
Authors proposed to use a vector operator with the spin index
perpendicular to the Wilson line and the ideal candidate is
the temporal direction (�0) for reasons beyond the mixing.
First, the matching procedure between the quasi-PDFs and

normal-PDFs also holds for �0, as it belongs to the same
universality class of �� [182]. In addition, the temporal vector
operator o�ers a faster convergence to the light-cone PDFs, as

discussed in [75]. Note, however, that �3 and �0 do not share
the same matching formula, with the latter being calculated
much later. Detailed discussion on thematching to light-cone
PDFs is provided in Section 8.

	e work of [106] has led to a number of useful infor-
mation not only on the renormalization pattern of nonlocal

operators, but also on the conversion from a renormalization

scheme of choice (S) to the MS scheme. 	is is extracted
from the ratio of renormalization functions in the two
schemes computed in DR,

C
S,MS
O = YMS

OYS
O

, (64)

and multiplies nonperturbative estimates of YS
O in order to

obtainYMS
O . Due to themixing found in the lattice calculation,

a convenient scheme which is applicable nonperturbatively
is an RI-type [183]. A well-de�ned prescription within RI-
type schemes exists for both themultiplicative and themixing
coe
cients, as described in Section 7.3. 	e RI� is a natural
choice for nonperturbative evaluations of renormalization
functions, because it does not require to separate �nite
contributions with tensor structures which are distinct from
those at tree level (typically denoted by Σ(2) that appears in
the local vector and axial operators in the limit of zero quark

mass). 	e conversion factorCRI� ,MS
O

has been computed and
was used in the renormalization program of the ETMC [151].
	e conversion factor shares certain features with the matrix
elements; that is, it is complex and symmetric/antisymmetric
in the real/imaginary part. A representative example is shown
in Figure 13 for the vector, axial, and tensor operators that
have a Dirac index in the same direction as the Wilson line.

7.2.3. Nonlocal Operators forMassive Fermions inDimensional
Regularization. G. Spanoudes and H. Panagopoulos [184]
have extended the work of [106] presented in the previous
paragraph, by examining the e�ect of nonzero quark masses
on the renormalization functions and conversion factors
between the RI� and MS schemes, as obtained in DR at one-
loop level. 	is work was motivated by the fact that lattice
simulations are not performed exactly at zero renormalized
mass. Of course, one expected that the correction will be very
small for the light quarks, but not necessarily for the heavier
quarks, which are typically used in dynamical simulations
(~' = 2 + 1 and ~' = 2 + 1 + 1). In principle, one
should adopt a zeromass renormalization scheme for all
quarks that requires dedicated production of ensembles with
all degenerate �avors (e.g., ~' = 3 and ~' = 4), as
typically done for local operators, but this entails additional
complications.

Including massive quarks requires a proper modi�cation
of the RI-type renormalization conditions, as developed in
[184]. Also, in addition to the fermion �eld renormalization
function, the quark mass renormalization is required as well
(see Equations (4)-(6)).More interestingly, the RI� conditions
for the nonlocal operators must be generalized to account
for the more complicated structure of Green’s functions.
In particular, it is found that the mixing revealed in [106]
extends beyond the anticommutator {Γ, ��} (�: direction of
theWilson line), which still holds for operators with the same
�avor in the external quark �elds. However, operators with
a di�erent �avor give rise to additional mixing, a�ecting,

among other operators, �0 (mixes with \0�), �5�� (mixes with�5), and \� (mixes with � ). Depending on the size of the
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mixing and the simulation setup, a nonnegligible e�ect may
occur in numerical simulations, as all these operators are
used in the quasi-PDFs calculations. 	is is more likely to
impact the results extracted using strange and charm in the
sea. 	is includes the �rst studies (e.g., [46, 47]), but also the

more recent work of LP3, in which the Authors use a single~' = 2 + 1 + 1 ensemble for the renormalization functions
and an extrapolation to the chiral limit is not possible for theY-factors. Unlike the case of the local operators, where quark
mass dependence is negligible, the nonlocal operators exhibit
quite visible mass dependence for Wilson lines of length
larger than 0.8 fm [185]. However, the mixing is expected to

be at most �nite and thus not present in the MS scheme.
As a consequence of the additional mixing, the conver-

sion factors are 2 × 2 matrices usually determined in DR,
as they are regularization-independent quantities. In [184],

the RI� and MS renormalization functions were obtained by
using appropriate conditions on the bare Green’s functions.

	is is a complicated process and the results can be found
in Section III of [184]. Here, we present in Figure 14 the
conversion factor for the mixing coe
cient between the
pseudoscalar and the axial (�5��) operators. As can be seen,
themixing is small, but nonnegligible, especially if the �avors
involved have mass di�erence above 100 MeV. 	e action
parameters are given in [184] and the notation is � = 1.
7.3. Nonperturbative Renormalization. 	e progress in the
renormalization of the nonlocal operators from lattice pertur-
bation theory has encouraged investigations of nonperturba-
tive calculations. 	is was supported by theoretical develop-
ments proving the renormalizability of the operators under
study to all orders in perturbation theory (see Section 5.2).
	e full development of a proper nonperturbative prescrip-
tion has been a natural evolution of the knowledge gained
from the perturbative calculations, and in particular the
pattern identi�ed in [106]. 	e Authors of this work have
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proposed an RI-type scheme that was employed by ETMC
[151] giving, for the �rst time, properly renormalized quasi-

PDFs. 	e approach was also adopted by LP3 [181] with a
slight variation due to a di�erent projection entering the
renormalization prescription.	e latter wasmotivated by the
fact that the matrix elements of the vector and axial operators
have additional tensor structure di�erent than the tree level.
We close the discussion on the nonperturbative renormaliza-
tion with a presentation of an alternative prescription based
on the auxiliary �eld formalism [186].

7.3.1. ��� Scheme. C. Alexandrou et al. [151] have employed a
renormalization scheme that is of similar nature as the RI�

scheme [183] that is widely used for local operators. Using
the renormalization pattern of [106], the Authors developed a
nonperturbative method for computing the renormalization
functions of nonlocal operators that include a straightWilson
line. In this scheme, one imposes the condition that Green’s
functions of the operator must coincide with the corre-
sponding tree-level values at each value of L. 	is approach
is also applicable in the presence of mixing, via ~ × ~
matrices (~: number of operators that mix with each other).
	e proposed program has the advantage that it eliminates
both power and logarithmic divergences at once, without the
need to introduce another approach to calculate the power
divergence. 	is is due to the fact that the vertex functions of
the operator that enter the RI-type prescription have the same
divergences as the matrix elements. 	e prescription can be
summarized as follows for a pair of nonlocal operators, O1
and O2, assuming they mix under renormalization:

(O�
1 (L)

O
�
2 (L)) = Ŷ (L) ⋅ (O1 (L)

O2 (L)) ,
Ŷ (L) = (Y11 (L) Y12 (L)Y21 (L) Y22 (L)) .

(65)

According to the above mixing, the renormalized matrix

element ofO1, ℎ�1 (
3, L), is related to the barematrix elements
of the two operators via

⟨
|O1 (L) |
⟩� = Y11 (L) ⟨
|O1 (L) |
⟩
+ Y12 (L) ⟨
|O2 (L) |
⟩ , (66)

where Y11 and Y12 are computed in the RI� scheme and then

are converted to theMS scheme, at an energy scale � = 2GeV.
	e renormalization factors can be computed following

Y−1
� Ŷ (L) V̂ (�, L)"""""�=� = 1̂, (67)

where the elements of the vertex functionmatrix V̂ are given
by the trace

(V̂ (L))�- = 112Tr [V� (�, L) (Vtree
- (�, L))−1] ,

5, K = 1, 2. (68)

In the above equation,Vtree
� is the tree-level expression of the

operatorO�.	us, allmatrix elements of Ŷ can be extracted by
a set of linear equations, which can bewritten in the following
matrix form:

Y−1
� (Y11 (L) Y12 (L)Y21 (L) Y22 (L)) ⋅ ((V̂ (L))11 (V̂ (L))21(V̂ (L))12 (V̂ (L))22)

= (1 0
0 1) .

(69)

	e complication of the mixing is not relevant for recent
calculations of quasi-PDFs, as the vector operator �� has

become obsolete and was replaced by �0. In the absence of
mixing, the above equations simplify signi�cantly and reduce
to

YO = Y�(1/12)Tr [V (�) (VBorn (�))−1]"""""�=� , (70)

whereYO is related to the inverse of the vertex function of the
operator. Let us repeat that the prescription is applied on each
value of L independently.

In Figure 15, we show a representative example of the
renormalization function of the axial nonlocal operator
(YΔℎ), using an ~' = 2 + 1 + 1 ensemble of twisted mass

fermions with a clover term (eSW = 1.57) and lattice size 323×64. In the le� panel of the plot, we overlay the results for the

RI� (open symbols) and the MS (�lled symbols) schemes, for
the real and imaginary part of the Y-factor. 	e momentum
source technique [162, 187] was employed that o�ers high
statistical accuracy with a small number of measurements.
	e RI� scale was set to C� = (2
/32)(7 + 1/4, 3, 3, 3). As
can be seen from the plot, the imaginary part of YMS

Δℎ is

smaller thanYRI�

Δℎ . It is worthmentioning that the perturbative

renormalization function in the MS, as extracted in DR, is a
real function to all orders in perturbation theory. 	erefore,
it is expected that the imaginary part of the nonperturbative
estimates should be highly suppressed.

In the aforementioned work, the Authors used several
values of the RI� renormalization scales, and each one
was converted to the MS and evolved to 2GeV. Residual
dependence on the initial RI� scale was eliminated by an

extrapolation to (C�0)2 7→ 0, and the results can be seen
in the right panel of Figure 15. An investigation of systematic
uncertainties was presented in [151] and upper bounds for
uncertainties were estimated.

7.3.2. RI/MOM Scheme. A modi�cation of the RI-type pre-
scription that was �rst proposed by Constantinou and
Panagopoulos [105] was presented by J.-W. Chen et al. in [181].
	e main motivation for the modi�cation was the intent to
employ a matching procedure that relates the quasi-PDFs in

RI/MOM scheme to the light-cone PDFs in MS, which was
developed by Stewart and Zhao [166]. However, both RI� and
RI/MOM prescriptions can be used to obtain an appropriate
RI-type formula without complication.
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Based on the RI/MOM prescription, the vertex function
of the operator under study was projected by ✁� (instead of the
tree level) in order to account for the extra tensor structureΣ(2) included in the vertex function. We note in passing that
the di�erence between RI� and RI/MOM is �nite and should
be removed by appropriate modi�cation in the conversion

factor to the MS scheme. Besides the di�erent choice in the
projector appearing in the RI/MOM prescription, the rest of
the setup is equivalent to that of [151]. A minor exception is
the fact that the de�nition of the renormalization functions
of [181] is inverse to the one used in [151], which, however,
has no implications in the extracted physics. For example, the
RI/MOM prescription for the operator �� that has mixing is
given by

Tr [✁�Λ (�, L, ��)]�
Tr [✁�Λ (�, L, ��)tree]

""""""""""""�2=�2�,��=��
= 1, (71)

Tr [Λ (�, L,I)]�
Tr [Λ (�, L,I)

tree
]
""""""""""�2=�2�,��=�� = 1, (72)

Tr [[ ✁�Λ (�, L,I)]��2=�2�,��=�� = 0, (73)

Tr [Λ (�, L, ��)]��2=�2�,��=�� = 0. (74)

	e renormalization matrix can be extracted via

Y (L, �", C, ��) = Ỹ−1 (L, �", C, ��) , Ỹ (L, �", C, ��)
≡ (Y11 Y12Y21 Y22

) (L, �", C, ��)
= 112�−���" (Tr [Γ̃Λ (�, L, �")] Tr [Γ̃Λ (�, L,I)]

Tr [Λ (�, L, �")] Tr [Λ (�, L,I)] )
�2=�2�,��=��

.
(75)
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Figure 16: 	e renormalization function and mixing between
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In the calculation of the renormalization factors, the
Authors used an ~' = 2 + 1 + 1 clover on HISQ ensemble

with a volume 243 ×64 [188].	emomentum source method
was used that leads to high statistical accuracy, and a single

RI/MOM renormalization scale (�0) was employed for each

nucleon momentum, which corresponds to �20 = 5.74GeV2.
In Figure 16, we show the multiplicative renormalization

factor of �� (red squares) and the mixing coe
cient (blue
circles). As expected, it is found that the size of the mixing
coe
cient is about an order of magnitude smaller than the
renormalization factor in the large-L region. However, the
mixing coe
cient should multiply the matrix element of the
scalar operator that has very large numerical values, leading
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to a nonnegligible contribution. 	e mixing is ignored in the
rest of the analysis of [181].

Another investigation of [181] aimed at understanding the
mixing discussed in [106] using symmetry properties. 	is
was based on the invariance under parity P�, time reversal
T�, and charge conjugationC, where parity and time reversal
are generalized into any Euclidean direction. 	e operator
used was

bΓ± (L)
= 12 [� (L) Γ�" (L, 0) � (0) ± � (0) Γ�" (0, L) � (L)] , (76)

which has the advantage that it is either Hermitian or anti-
Hermitian. Taking as an example the vector current in
the direction of the Wilson line, ��, one can see how the
mixing arises: the “+” (“−”) combination of Equation (76) is
anti-Hermitian (Hermitian). In this case, the transformation
properties allow mixing with the unity (scalar) operator.
Unlike the case of ��, the other directions of the vector
operators do not su�er from mix even for formulations that
break chiral symmetry. 	is conclusion is fully compatible
with the �ndings of [106].

	e study of the symmetries was extended to includeO(C)
nonlocal operators including a covariant derivative (O(C�))
or a power of mass (O(CB)) [189]. It was found that operators
with and without a covariant derivative may mix even if axial
or chiral symmetry is preserved in the formulation under

study. In addition, O(C0) operators may also mix with O(CB)
operators regardless of chiral symmetry breaking. Further
details on this analysis can be found in Tables 3 and 4 of [189].

In closing, let us add that a proper determination of the
renormalization functions computed nonperturbatively in an
RI-type scheme (e.g., the works presented in Sections 7.3.1
and 7.3.2) requires a few improvements. For once, dedicated
calculations are needed on ensembles with all degenerate
�avor quarks. 	ese ensembles should correspond to the
same value of the coupling constants as the ensembles
used for the calculation of the hadron matrix elements. For
instance, matrix elements obtained on ~' = 2 + 1 or ~' =2 + 1 + 1 ensembles should be renormalized using ~' = 3
and ~' = 4, respectively. Renormalization functions should
then be computed onmultiple ensembles with di�erent quark
masses, so the chiral limit can be taken. Several values of
the RI scale (�0) should be employed for each ensemble in

order to take the (C�0)2 7→ 0 limit upon conversion to

the MS and at a common scale. 	is will eliminate residual
dependence on the initial RI scale and give more reliable
estimates for the renormalization functions. We note that the
extrapolation (C�0)2 7→ 0 has been performed in the work
of [151] (see le� panel of Figure 15). Potential improvements
could also be a two-loop conversion factor from an RI-type

to MS scheme, and also a subtraction technique of �niteC e�ects using one-loop perturbation theory. 	is method
was successfully employed for local operators of di�erent
lattice formulations [162, 190]. It is anticipated that both
aforementioned improvements will be available in the near
future.

7.4. Auxiliary Field Formalism. An alternative proposal for
the renormalization of nonlocal operators is based on an
auxiliary �eld method, a formulation also adopted to prove
the renormalizability of the operators under study [135]. 	e
use of this approach is not new but originates from other
studies in the continuum [172, 173], adopting an auxiliary
scalar �eld results to a pair of operators in an extended
theory instead of the usual nonlocal operators. In this case,
a renormalization prescription reduces to a three-parameter
equation instead of a single equation for each L value,
which characterizes the RI-type renormalization. J. Green
et al. presented in [186] this nonperturbative approach and
employed the twisted mass formulation on two ensembles
that have pion mass of around 370 MeV and di�erent lattice
spacings (C = 0.082, 0.064 fm), in order to determine
the three parameters of the auxiliary �eld renormalization
scheme.

	e auxiliary scalar color triplet �eld ( (�)) is de�ned
on the line � + �`, where � is the length of the Wilson
line in physical units. 	e main component of the approach
is the replacement of correlation functions with ones from
the extended theory including the   �eld, which involve the

local color singlet bilinear R ≡  �. 	e introduction of the
auxiliary �eld requires modi�cation of the action (for details,
see [186]), which yields a bare propagator in a �xed gauge
background:

⟨  (� + �`)   (�)⟩H = � (�) �−8��(� + �`, �) ,
B = C−1 log (1 + CB0) . (77)

In the above expression � is a straight Wilson line between
points � and � + �`, and the exponent with the mass is anb(C−1) counterterm. One obtains for the operator including
the Wilson line, whose renormalization we are seeking,

OΓ (�, �, `) = ⟨R (� + �`) ΓR (�)⟩H ,
for � > 0, B = 0. (78)

Besides the counterterm B0, the renormalization functions
of the bilinear R (YL) and the operator OΓ (YOΓ

) must be
calculated. Due to mixing allowed by the breaking of chiral
symmetry, a proper renormalization is in this case

R� = YL (R + �mix✁̀R) ,
R� = YL (R + �mixR✁̀) . (79)

A di�erent basis of operators may be employed to achieve
diagonal renormalization in a mixing matrix; that is,

O
�
Γ (�, �, `) = Y2

L�−8|�|OΓ� (�, �, `) ,
Γ� = Γ + �mix sgn (�) {✁̀, Γ} + �2mix✁̀Γ✁̀. (80)

As can be seen from the equations above, the renormalization
ofOΓ requires knowledge of the linearly divergentB, the log-
divergent YL, and the �nite �mix. Note that �mix is of similar
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Figure 17: Le�: Equation (81) for two lattice spacings with solid (open) symbols corresponding to the �ner (coarser) lattice spacing. 	e
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(article published under the terms of the Creative Commons Attribution 4.0 International license).

nature as the mixing identi�ed in [106]. In addition, this
approach is not applicable for � = 0, in which case OΓ is a
local operator and its renormalization can be extracted from
standard RI-type techniques.

In the work of [186], the Authors renormalized nucleon
matrix elements obtained from two ensembles of~' = 2+1+1 twisted mass fermions. For extracting the renormalization
functions, they used ensembles of four degenerate quarks
(~' = 4) as expected for mass independent renormalization
schemes. However, the chiral limit is yet to be taken for this
approach. In summary, the three parameters and the auxiliary
�eld renormalization, <H, are determined by the RI-xMOM
conditions

− 		� log Tr <H (�)
""""""""�=�0 + B = 0, (81)

[YH3 Tr <H (�0)]2 = YH3 Tr <H (2�0) , (82)

16
Y±
L

√YHY�
RTr [<−1H (�0) ¤± (�0, �0) <−1� (�0)] = 1, (83)

where <� is the usual fermion �eld renormalization obtained
from a standard RI-type prescription. As in the case of the
nonperturbative schemes described in the previous para-
graphs, a prescription is needed to bring the renormalized

quasi-PDFs into the MS scheme and a conversion factor is
necessary.	is has been computed in DR to one-loop level in
perturbation theory and the formula is given in [186].

Here, we present selected results from [186] and Figure 17
showing the quantity in Equation (81) (le� panel) for the two
ensembles discussed above with C = 0.082 fm (� = 1.95) andC = 0.064 fm (� = 2.10). As can be seen, smearing of the
gauge links reduces the statistical noise but more importantly
reduces the di�erence between the two ensembles. 	is is an
evidence of reduction of the linear divergence. In case of no
mixing (axial operator �5��), �mix is not relevant and onlyB0

andYL need to be determined.YL is shown in the right panel

of Figure 17 upon conversion to theMS scheme and evolution
to the scale 2 GeV. 	e one-loop conversion factor removes
the bulk of the dependence on the scheme parameter |�|�,
and the two-loop evolution removes most of the dependence
on the scale |�|.
7.5. Other Developments. In this subsection, we review some
other developments related to the renormalization of PDF-
related operators, in particular the Wilson-line-induced
power divergence.

In 2016, the idea of removing such divergence by smear-
ing was proposed by C. Monahan and K. Orginos [129]. It
takes advantage of the properties of the gradient �ow (GF),
introduced by M. Lüscher a few years ago [191, 192] and
applied to many problems in Lattice QCD [193]. As shown
by Lüscher and P.Weisz in [194], it de�nes a 4+1-dimensional
�eld theory, wherein the extra dimension is the �ow time.	e
crucial property of GF, proven to all orders in perturbation
theory, is that the correlation functions de�ned at nonzero
�ow time are �nite a�er usual renormalization of the 4-
dimensional theory. As such, GF de�nes a renormalization
schemewith the �ow time, �, being the renormalization scale.
	us, using GF, one can de�ne smeared quasidistributions,
which are �nite, in particular devoid of the power divergence
from the presence of the Wilson line. Note that GF only
regulates the UV behavior, leaving the IR structure intact,
which is a prerequisite for factorization. 	e quasi-PDF
results in the GF scheme can be converted perturbatively
to other renormalization schemes or directly matched to

light-cone PDFs, e.g., in the MS scheme. 	e Authors of
[129] demonstrated a simple relation between the moments
of the smeared quasi-PDF and the renormalized moments
of the light-cone PDF. For this relation to be valid and
to allow matching to light-cone PDFs, the scales in the

problem have to satisfy I$ ≪ 
3 ≪ �−1/2. Apart from
usual higher-twist corrections, O(Λ2

QCD/
2
3 ), there are also
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corrections of O(Λ2
QCD�). 	e explicit one-loop perturbative

analysis of smeared quasi-PDFs was performed, in 2017, by C.
Monahan [195]. It was shown that indeed the IR divergences
of smeared quasi- and light-cone PDFs are the same. 	e
perturbative computation led in the end to establishing the
matching equation that could be used to extract light-cone
PDFs from a lattice computation. An interesting aspect also
shown by Monahan is that the smeared matrix element
satis�es a relation akin to a usual renormalization group
equation. 	is could, in principle, allow a nonperturbative
step-scaling procedure to be de�ned, which would connect
lattice-extracted matrix elements to high scales at which
matching could be performed with much reduced truncation
e�ects.

Smeared operators are the fundament of anothermethod,
introduced in 2012 by Z. Davoudi and M. Savage [196]. It
aims at calculations of arbitrarily many moments of PDFs
or other structure functions, that could, in principle, allow
us to reconstruct the full distributions. 	e main idea is to
avoid the power-divergent mixings with lower-dimensional
operators in higher moments by removing their source, the
breaking of rotational invariance by the lattice. 	e paper
considers a mechanism for the restoration of this symmetry
in the continuum limit of lattice �eld theories, in particular
the �R4 theory and QCD. In general, the interpolating
operators that are used to excite a hadron do not have de�nite
angular momentum; i.e., it is not possible to assign a well-
de�ned angular momentum to a lattice state and the latter
is a linear combination of in�nitely many di�erent angular
momentum states. 	e essence of the approach of [196] is
to construct appropriate operators on the hypercubic lattice
with maximum overlap with states with de�nite angular
momentum in the continuum. Such operators are con-
structed on multiple lattice sites using smearing that renders
the contributions of both lower- and higher-dimensional
operators subleading and totally suppressed in the continuum

limit.	eAuthors performed detailed calculations in the �R4
theory demonstrating the mechanism. For the QCD case,
things are complicated by the gauge symmetry. However,
Davoudi and Savage showed that the idea can also be applied
for this case, relevant for moments of partonic functions.
Apart from smearing of the operators, the essential ingredient
is tadpole improvement. Recently, this approach has been
revisited and exploratory numerical results were recently
presented [197].

We �nalize by shortly discussing one more method of
dealing with the power divergence related to the Wilson
line in quasidistributions. In 2016, H.-n. Li proposed [198]
to modify the de�nition of such distributions by using
“nondipolar” gauge links, i.e., two pieces of links oriented in
orthogonal directions. He showedwith an explicit calculation
of one-loop corrections that the linear divergence of the
standard quasiapproach (with dipolar links) is absent in such
a case and the IR region is untouched. In general, the hadron
boost direction needs to di�er from the direction of the
Wilson line links to avoid the linear divergence. However, due
to developments in the renormalization of the power diver-
gence (and other divergences present in quasidistributions),
in particular the full nonperturbative renormalization, this

interesting idea of Li has not been implemented in numerical
calculations. Clearly, the implementation itself is possible, but
much less practical than with straight links for the standard
de�nition. It is also worth mentioning that [198] discussed
also a potential problem with two-loop factorization of
standard quasi-PDFs (but absent in the nondipolar ones).
	e power divergence in such setup induces an additional
collinear divergence at the two-loop order, rendering the
matching kernel IR divergent and breaking the factorization.
However, the problem does not appear if the power diver-
gence is properly renormalized [165].

8. Matching of Quasi-PDFs to
Light-Cone PDFs

In this section, we focus on the matching from quasi-PDFs
to light-cone PDFs. Since the inception of LaMET, there has
been a lot of e�ort devoted to understanding many aspects
of this procedure. In particular, the �rst matching paper
[98], discussed in Section 3, considered the nonsinglet quark
quasi- and light-conePDFs in a simple transversemomentum
cuto� scheme. Later work concentrated on matching from

di�erent renormalization schemes to the MS scheme, on the
issue of particle number conservation and on observables
di�erent than nonsinglet quark PDFs, in particular gluon
PDFs, singlet quark PDFs, GPDs, TMDs, andmesonDAs.We
review all of the below andwe also include a discussion on the
matching of pseudo-PDFs/ITDs.

For convenience, we repeat here the general factorization
formula for the matching:

�̃ (�, �
3) = ∫1

−1

	�""""�""""�(��, �""""�"""" 
3)� (�, �2)
+ O(Λ2

QCD
2
3

, I2
$
2
3

) ,
(84)

where � is the common factorization and renormalization
scale, and the second argument of the matching kernel �
emphasizes that the relevant momentum is that of a parton.

Let us �rst brie�y revisit the early attempt to remove
the Wilson-line-related power divergence, discussed in
Section 7, from the point of view of thematching process.We

will then move to the presentation of the matching of MS-
renormalized and RI-renormalized quasi-PDFs. T. Ishikawa
et al. discussed in [132] that the counterterm that subtracts
this divergence to all orders in the coupling can be provided
by an independent lattice observable that shares the same
power divergence as the nonlocal operator de�ning the quasi-
PDF. It was noted that a natural and simple choice for such an
observable is the static �� potential. 	e Authors calculated
the matching (to PDFs in the UV cuto� scheme) in one-loop
lattice perturbation theory for the case of naive fermions.
	e idea was also followed in [177], where J.-W. Chen, X.
Ji, and J.-H. Zhang de�ned improved quasi-PDFs with the
power divergence, calculated from, e.g., the static potential,
subtracted. 	e modi�cation amounts to multiplication of
bare matrix elements by an exponential factor, exp(−pB|L|).
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	ematching formulae of [98] are thenmodi�ed by ignoring
the terms containing the cuto� Λ.
8.1. Matching of Nonsinglet Quark Quasi-PDFs to the I<
Scheme PDFs. One of the possibilities of renormalizing the

quasi-PDF is to obtain it in the MS scheme. Obviously, this
scheme cannot be directly applied on the lattice and, hence,
nonperturbative renormalization of lattice matrix elements
proceeds via an intermediate scheme, like a variant of RI
(see Section 7). Having renormalization functions in such an
intermediate scheme, one then converts them perturbatively

to the MS scheme and evolves to some reference scale, like

2 GeV. 	e last step is the Fourier transform that yields the

quasi-PDF in the MS scheme.

	e �rst paper that considered the matching from MS
quasi-PDF was [142] by W. Wang, S. Zhao, and R. Zhu. 	e
Authors presented complete matching for quarks and gluons,
that we discuss more below in Section 8.2. For the case of
nonsinglet quark PDFs (with Γ = �3 or Γ = �5�3 Dirac
structure), it was found that the change with respect to [98] is
simple; the terms with the transverse momentum cuto�Λ do
not appear and there is a modi�ed polynomial dependence
in the physical region of quasi-PDFs. Explicitly, the matching
kernel reads

�MS
Ref .[142] (�, �""""�"""" 
3) = p (1 − �) + r���2


{{{{{{{{{{{{{{{{{{{

(1 + �21 − � ln
�� − 1 + 1)

+(1)
� > 1

(1 + �21 − � ln
�2
2

3�2 (4� (1 − �)) + �2 − 5� + 21 − � )
+(1)

0 < � < 1
(−1 + �21 − � ln

−�1 − � − 1)
+(1)

� < 0,
(85)

where we now use the notation with plus functions at � = �0
over some domain of integrationc, de�ned as

∫
J
	� [6 (�)]+(�0) � (�)
= ∫

J
	�6 (�) [� (�) − � (�0)] . (86)

However, onemore issue remained unresolved for theMS
to MS matching. Namely, the self-energy corrections have a

UV divergence in the limit � 7→ ±∞ (cf. Equation (85)).
	us, the form of the matching kernel in [142] still needs

a cuto� for the �-integration. 	e issue was addressed by
T. Izubuchi et al. in [83]. 	e aforementioned divergence
can be canceled by adding a term 3/2� (for � > 1) or3/2(1 − �) (for � < 0) to the self-energy corrections. In

the MS scheme, another term arises from this modi�cation,
outside of the integral sign, and �nally the matching kernel
reads

�MS
Ref .[83] (�, �""""�"""" 
3) = p (1 − �) + r���2


{{{{{{{{{{{{{{{{{{{

(1 + �21 − � ln
�� − 1 + 1 + 32�)+(1)

− 32� � > 1
(1 + �21 − � ln

�2
2
3�2 (4� (1 − �)) − � (1 + �)1 − � + 2¥ (1 − �))

+(1)
0 < � < 1

(−1 + �21 − � ln
−�1 − � − 1 + 32 (1 − �))+(1)

− 32 (1 − �) � < 0,
+ r���2
 p (1 − �) (32 ln

�24�2
2
3
+ 52) ,

(87)

where ¥ = 0 for Γ = �0 and ¥ = 1 for Γ = �3 or Γ = �5�3.
Note that the polynomial term in the physical interval agrees
with the one of [142] when ¥ = 1. Equation (87) is the pure

MS expression for the matching kernel. However, it violates

particle number conservation; i.e., ∫+∞−∞ 	� �̃(�, �/
3) ̸=

∫+1−1 	� �(�, �2) a�er thematching process.Moreover, the vio-

lation grows for increasing
3. To satisfy particle number con-
servation, the Authors proposed a modi�ed scheme, the so-

called “ratio scheme.” It is a modi�cation of the MS scheme,
in which the problem is avoided by using pure plus functions:
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�r (�, �""""�"""" 
3) = p (1 − �) + r���2


{{{{{{{{{{{{{{{{{{{{{{{

(1 + �21 − � ln
�� − 1 + 1 − 32 (1 − �))+(1)

� > 1
(1 + �21 − � [ln �2
2

3�2 (4� (1 − �)) − 1] + 1 + 2¥ (1 − �) + 32 (1 − �))+(1)
0 < � < 1

(−1 + �21 − � ln
−�1 − � − 1 + 32 (1 − �))+(1)

� < 0.
(88)

In this scheme, all regions in the �-integration of the plus
functions contain the same 3/2(1−�) term and no additional
term appears. Formally, this is a di�erent renormalization
scheme and, hence, the quasi-PDF used in the matching
procedure needs to be renormalized in this scheme. 	is
requires a relatively simple modi�cation of the perturbative
conversion from the intermediate renormalization scheme to
MS:

�0 (�2L2) = 1 + r���2
 [32 ln(�2L2�2M�4 ) + 52] . (89)

	is factor simply multiplies the conversion factor or the Y-
factors.

Alternative procedure was used in [124] by ETMC.
Similarly to the ratio scheme, the matching kernel contains
only pure plus functions:

�MMS
Ref .[124] (�, �""""�"""" 
3) = p (1 − �) + r�2
��

{{{{{{{{{{{{{{{{{{{{{{{

[1 + �21 − � ln
�� − 1 + 1 + 32�]+(1) � > 1

[1 + �21 − � ln
�2
2

3�2 (4� (1 − �)) − � (1 + �)1 − � + 2¥ (1 − �)]
+(1)

0 < � < 1
[−1 + �21 − � ln

�� − 1 − 1 + 32 (1 − �)]+(1) � < 0.
(90)

It amounts to the kernel of Equation (87) but without the
terms outside the plus functions and without the additional
3-dependent term outside of the integral and, thus, satis�es
the particle number conservation requirement by construc-
tion. Similarly to the ratio scheme, it is a modi�cation of

the MS scheme (that we denote by MMS in the superscript),
thus requiring modi�cation of conversion. In the procedure
used by ETMC [124], this conversion modi�cation was not

taken into account, on grounds that the modi�cation of MS
is done only in the unphysical region and it disappears in
the in�nite momentum limit. A�er the publication of [124],
ETMC has calculated the required conversion modi�cation
that was presented in the results of [51]. More details can be
found in [185]. As anticipated, the e�ect is numerically very
small and the ensuing light-cone PDFs are compatible with
the ones obtained from the simpli�ed procedure. 	is is in
contrast with the ratio scheme, wherein the modi�cation of
the physical region in thematching kernel, combinedwith the�0 factor of Equation (89), brings about large modi�cation of

the quasi-PDF and the �nal MS light-cone PDF [185].
	e matching kernel for transversity PDFs (Γ = \31, \32)

for theMS 7→ MSmatching has been calculated by ETMC in
[48], following the samemethod to preserve particle number.
	us, it also needs the conversion modi�cation that will be
shown in [185]. Explicitly, it reads

p�MMS (�, �""""�"""" 
3) = p (1 − �) + r�2


⋅ ��

{{{{{{{{{{{{{{{{{

[ 2�1 − � ln �� − 1 + 2�]+(1) � > 1
[ 2�1 − � ln �2
2

3�2 (4� (1 − �)) − 2�1 − �]+(1) 0 < � < 1
[− 2�1 − � ln �� − 1 + 21 − �]+(1) � < 0.

(91)

	e formula for the transversity case is not the same as the
unpolarized and helicity distributions due to the di�erent
splitting function, di�erent polynomial dependence in the
physical region, and di�erent term added in the nonphysical
regions to renormalize the UV divergence in the self-energy
corrections.

An alternative way of bringing the results from the

intermediate RI renormalization scheme to theMS scheme is
to match directly the RI-renormalized quasi-PDFs onto the

MS light-cone PDFs. 	is way was advocated by I. Stewart
and Y. Zhao [166], including the derivation of the relevant
formulae. Such one-step procedure can be used as the sole
means of obtaining light-cone PDFs or compared to the

two-step procedure (�rst conversion to MS and evolution
to a reference scale and matching as the second step), with
di�erences in the �nal PDFs taken as a measure of systematic
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uncertainty. Both procedures have been derived to one-loop
order in perturbation theory, but clearly they can di�er in
the magnitude of neglected higher-order contributions. 	e

derivation of the RI7→ MS matching is somewhat more

complicated than that for the MS 7→ MS case. Stewart
and Zhao presented it (for the Γ = �3 or Γ = �5�3
Dirac structures) in the general covariant gauge, including
the practically relevant case of the Landau gauge, typically
implemented on the lattice. 	ey also showed a detailed
numerical study of the dependence on the choice of the gauge

and on the initial and �nal scales. While the MS 7→ MS
matching has only one scale involved, the RI7→ MS case

depends on three scales: the �nal MS scale and the two scales
of the RI scheme: the overall scale and the scale de�ned by
the momentum in the 3-direction. Explicit checks showed
that, when aiming at a result at some reference MS scale, the
dependence on the intermediate RI scales is rather small. It is

important to note that the RI7→ MS conserves the particle
number and also that the problem with the UV divergence in
self-energy corrections does not appear, since the RI scheme
introduces a counterterm to the quasi-PDF that cancels this
divergence. Results for the Γ = �0 case and for transversity
PDFs matching were presented in [49, 199] by Y.-S. Liu et

al. For �nal RI7→ MS matching formulae, we refer to the
original publications.

8.2. Matching of Other Quasidistributions and Pseudodis-
tributions. In this section, we review other developments
in the matching of quasidistributions to their light-cone
counterparts. We also shortly discuss the matching process
for the pseudo-PDFs/ITDs.

GPDs. Apart from PDFs, also other kinds of parton distribu-
tions can be accessed on the lattice via LaMET. Already in
2015, matching was worked out for GPDs, for (nonsinglet)
unpolarized and helicity in [115] and for transversity in [200].
In both papers, the transverse momentum cuto� was used,
as in the �rst paper for the matching of PDFs. 	e lattice
matrix elements are extracted in a similar way as for quasi-
PDFs, but there is momentum transfer in the boost direction
between the source and the sink, Δ3. 	e obtained quasi-
GPD can be decomposed into two functions, H(�, �, �, 
3)
and E(�, �, �, 
3), for the unpolarized case, and H̃, Ẽ, for

helicity (chiral-even), and four functions H�, H̃�, E�, Ẽ�,
for transversity (chiral-odd), where the additional variables

with respect to standard PDFs are � = Δ3/2
3 and � = Δ2.
For � = � = 0, the H(�, 0, 0), H̃(�, 0, 0), and H�(�, 0, 0)
quasifunctions become the standard quasi-PDFs and all the

E functions and H̃� have no quasi-PDF counterparts. A�er
matching, the �-integrals of unpolarized A and @ give the
Dirac and Pauli form factors �1(�) and �2(�), respectively.
	e �-integrals of helicity Ã and @̃ give the generalized
axial and pseudoscalar form factors ¤
(�) and ¤�(�). Finally,
the �rst moments of transversity GPDs give the generalized

tensor form factors ¤�(�), �̃�10(�), ©�10(�), and ©̃�10(�) =0, for A�, Ã�, @�, and @̃�, respectively. In the papers [115,
200], it was shown that the matching is nontrivial for the

functionsH, H̃, andH� and reduces to thematching for the
corresponding quasi-PDFs in the forward limit, as expected.
In turn, the matching kernel for all the E functions is a
trivial p-function at leading order in the coupling.	e fourth

transversity quasi-GPD, H̃�, is power suppressed by the
hadron momentum and omitted at leading power accuracy.
We refer to the original publications for the �nal matching
formulae. It is worth mentioning that, for quasi-PDFs, the
formulae decompose into three intervals in �, the physical
one and two nonphysical ones outside of the partonic support
for �, whereas for quasi-GPDs there are, in general, four
intervals with di�erent matching functions for the physical
ERBL (−� < � < �) andDGLAP (−1 < � < −� and � < � < 1)
regions.

Complete Matching for Quark and Gluon PDFs. In 2017, the
�rst calculation of thematching of gluon quasi-PDFs to light-
cone PDFs was done by W. Wang, S. Zhao, and R. Zhu [142].
	is paper was already discussed in the previous subsection

in the context of MS 7→ MS matching for nonsinglet quark
PDFs. However, the aim of the paper was more broad, to
consider the complete matching for quark and gluon quasi-
PDFs. 	e Authors used two ways to regulate UV diver-
gences: the UV cuto� scheme and DR, and also two ways for
IR divergences: �nite gluon mass and o�shellness. 	e gluon
quasi-PDF was de�ned as the Fourier transform of a boosted
nucleon matrix element of two gluon �eld strength tensors��] displaced by length L and connected with a Wilson line

in the adjoint representation, ⟨
|��3(L)�̃(L)��3(0)|
⟩, with a
sum over transverse directions, 5 = 1, 2. 	e Authors cal-
culated the one-loop expressions for gluon quasi-PDFs and
light-cone PDFs in the UV cuto� scheme and con�rmed they
have the same infrared structure, with IR divergences present
only in the physical � region, as expected. 	ey also noted
the presence of a linear divergence in the quasidistribution,
however, related in the gluon case not only to the presence of
theWilson line. Having performed the calculation in the UV
cuto� scheme, they pointed to a di
culty in the self-energy
diagram, coming from the breaking of gauge invariance
by this scheme. 	is motivated further computations in
DR, performed for both quark and gluon quasi- and light-
cone PDFs. 	ey considered all possible cases of quark-in-
quark, gluon-in-gluon, gluon-in-quark, and quark-in-gluon
distribution functions, required for the complete matching.
	e quark-in-quark matching, the only one relevant for the
nonsinglet quark distributions, has already been described
above; see Equation (85). Together with the derived equations
for the other cases, one is ready to write the �nal matching
formula:

6̃�|: (�, 
3) = ∫1

−1

	�""""�""""Y�- (��, �
3)6-|: (�, �) , (92)

where 6 (6̃) denotes the light-cone (quasi-) distribution.
	e indices 5, K = �, � and the four cases mentioned above
correspond to matching kernels Y��, Y		, Y	�, and Y�	,
respectively. 	e matching equation implies mixing under
matching between quark and gluon distributions, which can
only be avoided in nonsinglet quark distributions. Finally, the
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Authors derived 
3 evolution formulae for quasidistributions
that turned out to be theDGLAP evolution equations of light-
cone PDFs.

In a follow-up work [136], W. Wang and S. Zhao con-
sidered in more detail the issue of the power divergence
in quasigluon PDFs; see Section 5.2.2 for more details from
the point of view of renormalizability. As remarked above,
linear divergences exist also in one-loop diagrams without
a Wilson line, which means that the divergence cannot
be absorbed into the renormalization of the Wilson line.
	e adopted de�nition of the gluon quasi-PDF was slightly
modi�ed with respect to [142] by extending the sum in⟨
|��3(L)�̃(L)��3(0)|
⟩ from the transverse directions to
all directions except the direction of the boost; i.e., � =0, 1, 2. 	e calculation of one-loop corrections to quasigluon
distributions was performed in a UV cuto� scheme, with the
cuto� interpreted as the lattice cuto�. 	e Authors included
diagrams arising in lattice perturbation theory (counterterm
from the measure in the path integral and quark and ghost
tadpoles) that preserve the gauge invariance, broken in the
naive cuto� scheme. 	e main result of the paper, derived in
the auxiliary �eld formalism, is that the linear divergences
can be renormalized by considering the contribution from
operator mixing (only with certain gluonic operators, i.e.,
no mixing with quark quasi-PDFs occurs) and the mass
counterterm of the Wilson line. 	is allowed the Authors to
de�ne an improved quasigluon PDF with matrix elements
multiplied by exp(−pB|L|), where the mass counterterm can
be determined nonperturbatively, and with a subtraction of
the mixing calculated in perturbation theory. In addition to
the one-loop calculation, they discussed two-loop correc-
tions and conjectured that they hold to all orders. Finally,
they provided the formula for the one-loop matching of the
improved gluon quasi-PDF, which is IR �nite and free from
the linear UV divergence.

	e proof of renormalizability to all orders was indeed
provided a few months later by the same Authors, together
with J.-H. Zhang, X. Ji, and A. Schäfer [137] (see Section 5.2
for more details on this paper and another proof of renor-
malizability of gluon quasi-PDFs [138]). From the point of
view of matching, the important contribution of this paper
was to con�rm that the conclusions of [136] hold when
using gauge-invariant DR instead of the UV cuto� scheme.
Moreover, it was pointed out that one can construct gluonic
operators that are multiplicatively renormalizable; i.e., they
evince no mixing under renormalization. However, mixing
still occurs at the level of matching, as in Equation (92).
	e Authors wrote schematic matching equations for the
proposed nonperturbatively renormalized gluon quasi-PDFs
in the RI/MOM scheme, postponing the calculation of the

matching kernels RI7→ MS to a forthcoming publication.
	e latter computation, as well as the alternative possibility of

RI7→ MS conversion and MS 7→ MS matching, will open

the prospect of obtaining light-cone gluon PDFs in the MS
scheme from the lattice.

TMDs. Yet another important class of partonic distributions
that can, in principle, be accessed on a Euclidean lattice is
TMDs. 	e quasi-TMDs were considered already in 2014

by X. Ji and collaborators in [201]. 	ey performed a one-
loop perturbative calculation of quasi-TMDs in the Drell-
Yan process. 	e crucial subtlety that makes the TMD
case much more cumbersome than the PDF case is the
subtraction of the so� term. It needs to be constructed in
such a way to make it computable on the lattice. It is related
to the presence of a light-cone singularity in TMDs. 	e
unsubtracted matrix element for quasi-TMDs, �(�, ��), is
de�ned as the correlation between a quark and an antiquark
in a boosted nucleon, with the quark �elds spatially separated
by a distance L and connected by two gauge links: one
going from the quark �eld to in�nity (for Drell-Yan) and the
second one from in�nity to the antiquark (in the covariant
gauge; in the axial gauge an explicit link at in�nity is
additionally needed). 	e TMD depends on the longitudinal
momentum fraction, �, and the transverse momentum, ��,
where the latter is o�en exchanged for the impact parameter,��, via a two-dimensional Fourier transform. Having de�ned
the quasi-TMD, the Authors proposed a lattice-calculable
subtraction of the so� factor. 	e latter was conjectured to
also play an important role in the two-loop matching for
quasi-PDFs,where it could be handled similarly. Further, they
proceeded with the derivation of the one-loop formulae and
demonstrated the one-loop factorization. Finally, they also
considered the TMD evolution (Collins-Soper evolution) in
the scale   related to the hadronmomentum or the hard scale
of the scattering process.

Early in 2018, X. Ji et al. reinvestigated quasi-TMDs [202].
	ey considered gauge links of �nite lengths (staples), instead
of in�nite ones. Moreover, they rede�ned the subtraction
of the so� factor, since the one de�ned in [201] could have
practical implementation di
culties on the lattice. With this
modi�ed subtraction and �nite-link TMDs, the Authors
could show that the so-called pinch pole singularities are
regulated. 	e new subtraction leads to an additional term
in the one-loop computation of the quasi-TMD. Before
establishing thematching formula, resummation of large log-
arithms needed to be performed to avoid scheme dependence
in regulating light-cone singularities. 	is could be done
using the Collins-Soper evolution derived in [201]. Finally,
thematching equationwas given to the TMDs in the standard
TMD scheme.

Very recently, a third paper considering quasi-TMDs
appeared byM. Ebert, I.W. Stewart, and Y. Zhao [203]. TMDs
depend on two scales, the virtuality scale � and the scale  introduced above. Evolution in the former can usually
be done fully perturbatively, á la DGLAP. For the latter,
the (Collins-Soper) evolution involves the impact parame-
ter dependent anomalous dimension, ��H (�, ��) (� – parton

�avor index), and becomes nonperturbative for transverse
momenta of the order of ΛQCD, even for � ≫ ΛQCD. 	e
focus of this paper was on this aspect. 	e Authors proposed
a method of a �rst-principle nonperturbative determination
of ��H, using the quasi-TMD formalism. 	ey de�ned the
quasibeam function (unsubtracted quasi-TMD) with �nite-
length (z) gauge links that can be related to the corresponding
light-cone beam function. However, for the so� function
that provides the subtraction of the so� term, they argued
that a straightforward de�nition of a quasianalogue is not
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possible, since the Wilson lines of the so� function involve
both light-cone directions and would require opposite boosts
to be recovered fromWilson lines in the spatial directions. A
detailed study of this aspect was postponed to a forthcoming
publication. For this paper, theAuthors introduced a function
that describes the missing IR physics and ��-dependence,Δ�
�(��, C, z).	is function removes thez/C linear divergences

in the Wilson line self-energy and an explicit form that
cancels all divergences in zmay be used in the form proposed

in [202]. 	e crucial aspect for the extraction of ��H is that

the Δ�
� factor cancels in the ratios of quasi-TMDs de�ned at

di�erent nucleon boosts.	ematching between quasi-TMDs
and light-cone TMDs can be spoiled by the issue in the so�

function and theAuthors introduced a function��� expressing
the mismatch between quasi- and light-cone so� functions
and allowed it to be nonperturbative. 	ey expressed the
quasi-TMD in terms of the light-coneTMDfor the nonsinglet
case via the perturbative kernel (matching between quasi-

and light-cone beam functions), the unknown ��� and the

Collins-Soper anomalous dimension. Knowing the Δ�
� that

matches the IR physics of the light-cone so� function, the��� could also be calculated perturbatively. 	e interpretation

of the matching equation di�ers from the analogous one

in [202], wherein the analogue of ��� is assumed to be

fully perturbative, which is claimed to be incorrect due to
missing the nonperturbative physics when �� is of orderΛ−1

QCD. Taking the ratio of two matching equations, the 
3-
independent factor ��� drops out and one can extract the

anomalous dimension based on the perturbative matching
relation between the quasi- and the standard beam functions.
	emethod was illustrated by an explicit one-loop computa-
tion. It was also remarked that it is restricted to the nonsinglet
quark channel, because of mixings between singlet quarks
and gluons under matching (see the previous paragraph).

Meson DAs. Another type of observables that can be consid-
ered in the framework of LaMET is meson DAs. 	ey are
de�ned as vacuum-to-meson matrix elements of the same
operator as for PDFs, quark, and antiquark connected with
aWilson line, with Γ-structure of, e.g., �5�3, for pseudoscalar
mesons. 	ey are easier to calculate, since they require only
two-point functions, as the pion is not annihilated in the
matrix element. 	e matching can be extracted as a limit of
the matching formula for GPDs by crossing the initial quark
to the �nal state and it was extracted for the �rst time (for the
pseudoscalar case) in the paper [115] commented on above.
We refer to this paper for explicit matching formulae in the
transverse momentum cuto� scheme.

Further, (pseudoscalar) meson mass corrections were
calculated analytically in [123], yielding an in�nite series in
which the few �rst terms are enough to take into account for
practical application.

	e heavy quarkonium case was considered in [125] by
Y. Jia and X. Xiong, with the one-loop corrections to both
quasi- and light-cone DAs computed in the framework of
NRQCD factorization. 	e matching for meson DAs and
PDFs was also analyzed by Jia et al. within two-dimensional

QCD [126]. In both papers, the UV divergences were reg-
ulated with a transverse momentum cuto�, interpreted as
a renormalization scale. For more details about these two
papers, see Section 4.4.

	e matching for vector meson DAs was also considered
[204], by J. Xu, Q.-A. Zhang, and S. Zhao. 	ey derived
the formulae in the UV cuto� scheme and in DR (with
MS subtraction), both for longitudinally and transversely
polarized mesons.

Recently, the matching for meson DAs was also obtained
for the case of RI-renormalized quasi-DAs to bring them into

MS-renormalized light-cone DAs [205], by Y.-S. Liu et al.
	ey considered the cases of pseudoscalar, as well as longitu-
dinally and transversely polarized vector mesons. 	e quasi-
DA can be renormalized with the same renormalization
factors as the corresponding quasi-PDF, in a variant of the
RI/MOM scheme. 	e one-loop calculation of the matching
relation proceeded along the lines of analogous computations
for quasi-PDFs, �rst done in [166], andwe refer to the original
paper for the �nal formulae.

Pseudo-PDFs.	eone-loop corrections to pseudo-PDFswere
�rst considered in [87] by K. Orginos et al., in the leading
logarithmic approximation (LLA), appropriate to study the

ln L2 dependence. In the LLA, pseudo-PDFs are simply

related to the MS PDFs at the scale �: �2 = 4 exp(−2��)/L2,
where 1/L plays the role of the renormalization scale for
the pseudodistribution. 	e full one-loop corrections to
pseudo-PDFs were calculated by X. Ji, J.-H. Zhang, and Y.
Zhao [165] and also by A. Radyushkin [80]. Further insights
into the structure of these corrections were given in [81]
of Radyushkin, which also contains the explicit matching
between reduced ITDs and standard light-cone PDFs in the

MS scheme.	ematchingwas also simultaneously computed
by two other independent studies: J.-H. Zhang, J.-W. Chen,
C. Monahan [82], and T. Izubuchi et al. [83], and the
preprints were made available for all three papers almost
simultaneously. A�er initial discrepancies due to �nite terms,
all three results agree with one another.

	ematching of pseudo-PDFs is, to some extent, simpler
than that for quasi-PDFs, since there are no complications
related to the nonperturbative renormalization of the pseudo-
PDFwhen taking the ratio ofmatrix elements to construct the
reduced ITD. Crucially, taking the ratio does not alter the IR
properties and the factorization framework can be applied, as
in the case of matching quasidistributions. We write here the
�nal matching formula in the notation of [81]:

I (], �2) = M (], L2) + r�2
�� ∫1

0
	«M («], L2)

⋅ {© («) [ln(L2�2 �2M�4 ) + 1]
+ [4 ln (1 − «)1 − « − 2 (1 − «)]

+
} ,

(93)

whereI(], �2) is the light-cone ITD, at Io�e time ] = 
3L and
renormalized at the scale � in the MS scheme,M(], L2) is the
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pseudo-ITD at the scale 1/L2, and ©(«) = [(1+«2)/(1−«)]+
is the Altarelli-Parisi kernel. 	e �rst term under the integral
corresponds to the LLA result used in [87], i.e., the invoked
above multiplicative di�erence between the pseudo-ITD and

MS scales. 	e term containing ln(1 − «)/(1 − «) leads to a
large negative contribution and causes that the L-dependence
of vertex diagrams involving the gauge link is generated by an
e�ective scale smaller than L.	is can be seen by rewriting the
matching equation in such a way that the logarithmic term

has an argument (1 − «)L��M�+1/2/2; i.e., it involves (1 − «)L
instead of L. In this way, the evolution is governed by this

combined logarithm instead of simple ln(L2), which leads to� ∼ �/L3 rescaling with a coe
cient �, numerically found to
be relatively large, around 4 for the setup of [87] (cf. its LLA
value of approximately 1.12).

In [83], the relation between quasi-PDFs, pseudo-PDFs,
and ITDs was emphasized. 	is relation implies that their
matching involves a unique factorization formula that
involves small distances and large nucleon boosts. For these
reasons, Izubuchi et al. claim that LaMET and pseudo-/Io�e-
time distribution approaches are, in principle, equivalent.
However, it should be noted that the structure of one-loop
corrections is di�erent between them and, obviously, the
lattice systematics are not equivalent. Because of this, in the
absence of all-order (or nonperturbative) matching formulae
and under realistic lattice situations, it seems more proper to
view them as complementary approaches that aim at the same
physical observables.

9. Quark Quasi-PDFs of the Nucleon

	epreliminary studies presented in Section 3.2 have evolved
based on the progress on various aspects of PDFs, including
simulations with improved parameters, renormalization, and
choice for the matching procedure. It is the goal of this
section to present the advances in the numerical simulations,
including a critical discussion on the systematic uncertainties
outlined in Section 6. We �rst present results on ensembles
with the quark masses tuned to produce a pion mass larger
than its physical value, and we extend the discussion for
the simulations with physical values for the quark masses
(physical point). To avoid repetition, let us point out that all
the works presented here correspond to the isovector �avor
combination - − 	, which receives contributions only from
the connected diagram (up to cuto� e�ects).

9.1. Simulations at Unphysical Quark Masses. Once the non-
perturbative renormalization of the nonlocal operators with
straight Wilson line has been developed and presented to the
community [105] (see Section 7.3), the �rst implementation
for the quasi-PDFs appeared in the literature in 2017, by
ETMC [151] in the RI� scheme, and a modi�cation of the
proposal in the RI/MOM scheme by the LP3 collaboration
[181].

In the original proposal for the nonperturbative renor-
malization [151], Alexandrou et al. (ETMC) applied the
renormalization prescription on their previous work of [108]
for an ensemble with I� ≈ 370 MeV (see Section 3.2
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Figure 18: Comparison of lattice estimates of the ETMC’s helicity
PDF, properly renormalized (blue band) or renormalized using the
local axial current renormalization factor Y
 (magenta band). For
qualitative comparison, phenomenological PDFs (DSSV08 [206]
and JAM15 [208]) are also plotted. Source: [151], reprinted with
permission by the Authors (article available under CC BY).

for a discussion on the simulations). 	is employed large-
statistics results for nucleonmomentum 1.42GeVand source-
sink separation of about 0.98 fm, to demonstrate the e�ect
of the renormalization for the helicity PDFs, which has a
multiplicative renormalization, YΔℎ

9. 	e renormalization

function was extracted in the MS scheme at a scale of 2
GeV, and the remaining dependence on the RI scale (�0) was
reduced by an extrapolation:

YMS
Δℎ = YMS

0,Δℎ + YMS
1,Δℎ (C �0)2 , (94)

where YMS
0,Δℎ is the desired quantity. In the work of [151],

the �t was performed in the range (C �0)2 P [1.4, 2.0]. One
technical consequence of the renormalization is the behavior
of the renormalized matrix element in the large-L region:
while the real (imaginary) part of the bare matrix element
decays to zero for L/C > 10 (L/C > 13), the renormalization
function grows exponentially due to the power divergence.
	is leads to the unwanted e�ect of enhanced values for the
matrix elements that are almost compatible with zero within
uncertainties.	is e�ect is propagated to the quasi-PDF (with
the truncation of the integration limits of the Fourier trans-
form), as well as the �nal extraction of the PDFs. Let us also
add that, in the RI-type renormalization prescription, each
value of L/C is renormalized independently. More discussion
on this systematic e�ect can be found in Section 6.3.

A Fourier transform is applied on renormalized matrix
elements leading to �-dependent quasi-PDFs, followed by
the matching procedure and target mass correction to �nally
extract the light-cone PDFs. 	e obtained helicity PDF from
the aforementioned work is shown in Figure 18. To demon-
strate the e�ect of a proper renormalization, we compare
the PDF computed with either fully renormalized matrix
elements (blue band) or matrix elements renormalized with
the local axial vector current renormalization functionY
 for
all L values (magenta band) that was previously used in [108].
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As can be seen from the �gure, the blue band has a form
that is closer to the phenomenological PDFs, as compared
to the magenta band. 	ere is also a visual improvement for
the antiquark region (� < 0), which, however, should not
be considered conclusive, as this region is, to date, unreliably
extracted.

Despite the improvement from previous works on quasi-
PDFs, a number of further improvements were still necessary
at this point, as described in Section 6.3. Let us also add that
[151] employed the matching formula of Xiong et al. [98]
that was obtained in the transversemomentum cuto� scheme
and was later replaced by matching formulae calculated in
dimensional regularization (see Section 8).

In the work of J.-W. Chen et al. (LP3) presented in [181],
a nonperturbative renormalization was also applied, using
the RI/MOM scheme. 	ey focused on results for the unpo-

larized PDF, which however uses the “�3” vector operator.
	e mixing present in this operator was ignored under the
assumption that it is small. Indeed, the mixing coe
cient
is smaller than the multiplicative factor (see Figure 16), but

the scalar operator (that mixes with “�3”) is expected to be
sizable.	is can also be seen from the extraction of the scalar
charge using the same ensemble, which has the bare value��−�� = 0.96(5) [232]. 	e RI/MOM renormalization scale is
�xed to the nucleonmomentum,
3, which also appears in the
matching and, thus, cancels to leading order. Even so, residual
dependence on this scale can be nonnegligible (estimated to
up to 10% based on studies with ultralocal operators (L =0)) and an extrapolation would be desirable; otherwise this
systematic uncertainty cannot be assessed.

	e renormalization function of this work was used
on the results obtained in [107] (for an ensemble withI� ≈ 310 MeV) for the unpolarized PDF, together with
the matching obtained by I. Stewart and Y. Zhao [166]
(see also Section 8.1). 	e matching formula of the latter
work was the �rst one obtained for renormalized quasi-
PDFs in the RI scheme matched to the light-cone PDFs in

the MS scheme. A di�erent kind of comparison between

lattice and phenomenological data is presented in Figure 19.
	e renormalized matrix elements for the unpolarized case
are compared to phenomenological data [214] on which an
inverse Fourier transform andmatching have been applied to
bring them to coordinate space. 	is procedure was applied
on the central values and, thus, statistical and systematic
uncertainties are absent. It is found that the lattice data have
a narrower peak around L
3 = 0 (real part) and are not
compatible with the CJ15 data for large values of the Io�e
time, L
3. Note, however, that the lattice data carry very
large uncertainties for the large-L region that prevents proper
comparison. In addition, there are concerns on whether such
a comparison is meaningful due to higher-twist e�ects.

A recent e�ort to quantify systematic uncertainties was

presented by Y.-S. Liu et al. (LP3) in [199], using an ensemble
with pion mass value of about 310MeV [188]. Clover valence
fermions were employed on an ~' = 2 + 1 + 1 HISQ
ensemble [233]. 	e lattice spacing is C ≈ 0.06 fm, and
the volume has a spatial extent z ≈ 2.9 fm. In this work,
Liu et al. computed the unpolarized PDF with nucleon
momentum 1.7, 2.15, and 2.6GeV, and source-sink separations
that correspond to 0.60, 0.72, 0.84, 0.96, and 1.08 fm. 	e
main goal of this work was to study uncertainties related
to excited states, the nonperturbative renormalization, and
the matching to light-cone PDFs. For the Fourier transform
to momentum (�) space, the Authors used the derivative
method [160], which is based on an integration by parts,
instead of the standard Fourier transform. In this procedure,
the corresponding surface term is neglected (see Section 6.3
for details), which carries systematic uncertainties; the latter
is not addressed in this work.

Possibly the largest systematic e�ect comes from the
excited states contamination, which is sensitive to the pion
mass (worsens for simulations at the physical point) [39], an
issue that also appears in matrix elements of local operators.
In fact, the situation for the nonlocal operators entering
the quasi-PDFs calculation is more severe, as the number
of excited states increases with an increase of the nucleon
momentum. 	e e�ect of excited states can be understood
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using di�erent analysis methods, as presented in Section 6.1,
with the single- and two-state �ts being crucial for identifying
the ground state of the nucleon.	is is particularly important
for nonlocal operators that are limitedly studied and are less
understood than other hadron structure quantities. Ideally,
one should perform a combined analysis with source-sink
separations higher than 1 fm. 	e need for two di�erent
analysis techniques is to ensure that the dominant excited
states are eliminated by achieving convergence between
di�erent techniques. In addition, a single-state �t (applied
on each source-sink separation separately) gives important
information on the statistical uncertainties of the lattice
data. Such information is not to be underestimated, as
multistate �ts will be driven by the most accurate data.
Since statistical noise increases exponentiallywith the source-
sink separation, the most accurate data typically correspond
to small separations, which are severely a�ected by excited
states contamination. In the work of Liu et al., the analysis
is exclusively based on two-state �ts using either all �ve
separations, or four/three largest ones. 	e Authors did not
provide any details on the statistics used in this work, nor the
statistical accuracy of the data on each separation, leading to
an inadequacy in the quality of their analysis procedure.

	e work of [199] addressed systematic uncertainties
related to a convenient choice of an RI-type scheme, by
examining two possible projectors in the renormalization
prescription.	iswasmotivated by the fact that Green’s func-
tion, Λ M�(�, L), of the unpolarized operator has additional
tensor structures; that is,

Λ M� (�, L) = �̃� (�, L) �� + �̃" (�, L) ���"�"
+ �̃� (�, L) ��✁��2 ,

(95)

where �̃�’s are form factors. 	e minimal projection only

projects out �̃�, while an alternative choice for the projection
is ✁�/(4��) [166], which we call the ✁� projection, leading to the
conditions

Y8� (L, ��
" , C−1, ��) ≡ �̃� (�, L)"""""�2=−�2�

��=���

,
(96)

Y
✁�
(L, ��

" , C−1, ��)
≡ [�̃� (�, L) + �̃" (�, L) + �̃� (�, L)]"""""�2=−�2�

��=���

. (97)

An appropriate matching formula to the MS scheme had
been also derived for each RI scheme, and it was concluded
that the minimal projector leads to better controlled �nal
estimates, shown in Figure 20, compared with global analysis
PDFs [210–212]. 	e Authors reported reasonable agreement
with global analyses in small- and large-� regions, while the
slope of the lattice data at intermediate �-values is di�erent,
possibly due to uncertainties in the derivative method for the
Fourier transform. 	e pion mass of the ensemble used for
the data is 310 MeV, making the comparison only qualitative.
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9.2. Simulations at Physical Quark Masses. One of the high-
lights of the current year is the appearance of lattice results
on quasi-PDFs using simulations at the physical point 10

by ETMC [48, 124] and LP3 [49, 218, 219]. Unlike previ-
ous studies, these results include proper nonperturbative
renormalization and an appropriate matching procedure, for
the unpolarized, helicity, and transversity PDFs. We note
that, in these works, the use of the Dirac structure parallel
to the Wilson line, ��, has been abandoned due to the
mixing discussed in Section 7.2.2 and is replaced by the vector
operator with the Dirac structure in the temporal direction,�0. Here we outline the most important results from each
work.

9.2.1. Unpolarized andHelicity PDFs. 	ework by C. Alexan-
drou et al. (ETMC) presented in [124] is the �rst complete
calculation of ETMC with several of the systematic uncer-
tainties under control: simulations at the physical point, non-
perturbative renormalization, matching to light-cone PDFs

computed in dimensional regularization in the MS scheme.
	e ensemble corresponds to ~' = 2 twisted mass fermions
(at maximal twist) with a clover improvement [234]. 	e
ensemble has a lattice spacing of 0.093 fm, lattice spatial

extent of 4.5 fm (483 × 96), and a pion mass of 130 MeV.
	e nucleon matrix elements of the nonlocal vector and axial
operator were computed for three values of the momentum,
0.83, 1.11, and 1.38 GeV, and employ momentum smearing on
the nucleon interpolating �eld [109], that leads to a better
signal for the high momenta at a reasonable computational
cost (see also Section 6.2 for more details about optimization
of the lattice setup). In addition, stout smearing [150] was
applied to the links of the Wilson line entering the operator,
that reduces the power divergence, and it was checked that
di�erent numbers of steps for the stout smearing lead to com-
patible (almost equivalent) renormalized matrix elements.

A large number of con�gurations is necessary to keep
the statistical uncertainties under control, in particular, as
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the nucleon momentum increases. 	e work of [124] ana-
lyzed 9600, 38250 and 58950 independent correlators for
the momenta 0.83, 1.11, and 1.38 GeV, respectively, so that
statistical uncertainties are at the same level. A �rst study
of excited states contamination was presented using only
two values of the source-sink separation, 0.93 and 1.12 fm,
and demonstrating that within statistical uncertainties the
matrix elements are compatible. Nevertheless, a dedicated
study of excited states is missing from the presentation and
was recently completed [216], concluding that the separation
1.12 fm is su
cient for a nucleonmomentumof about 1.5 GeV.
We will discuss this investigation below.

	e renormalization was performed according to the
procedure outlined in Section 7.3.1 and the quasi-PDFs were
extracted by the standard Fourier transform. 	e matching
formula used in thework of ETMCwas amodi�ed expression
with respect to the one suggested in [83] (see discussion is
Section 8.1), that preserves the normalization of the distri-
bution functions. However, there is a small mismatch in the
renormalization procedure and the matching process, as the

conversion factor brings the quasi-PDFs to the MS scheme,
while the matching assumes that the quasi-PDFs are given

in the MMS scheme. Preliminary investigation showed a
small e�ect, but this mismatch adds to the overall systematic
uncertainties. A follow-up work by ETMC eliminated this

uncertainty by computing the quasi-PDFs in the properMMS
scheme [51, 185]. Nucleon mass corrections were applied
according to the formulae of [107].

In Figure 21, we show the �nal results for the unpo-
larized (le�) and helicity (right) distributions for the three
values of the nucleon boost. For qualitative comparison,
we also include the phenomenological determinations: CJ15
[214], ABMP16 [213], NNPDF3.1 [211], DSSV08 [206],
NNPDF1.1pol [207], and JAM17 [215]. 	e Authors reported
that the increase of the nucleon momentum shi�s the lattice
data towards the phenomenological results. For the unpolar-
ized PDF, the two largest momenta give compatible result,

while it is not the case for the helicity PDF. For the latter, there
is better agreement with phenomenology, compared to the
unpolarized case. As seen from the plots, the large-� region
su�ers from the so-called oscillations that are unphysical.
	is result from the fact that the bare matrix element does
not decay to zero fast enough for large L (due to �nite
momentum), while the renormalization grows exponentially.
It is worth mentioning that the oscillations become milder
as the momentum increases from 0.83 GeV to 1.38 GeV. It
is clear that there are several aspects of the current studies
to be improved and the removal of the oscillations is one of
them. For this to be achieved while systematic uncertainties
are under control, di�erent directions must be pursued, for
instance, new techniques that can contribute to a reduction
of the gauge noise in the correlators.

An interesting discussion presented in [124] is the com-
parison between results at the physical point and results from
an ensemble with pion mass of about 370 MeV [108] (labeled
as B55), as shown in Figure 22.	e nucleonmomentum is the
same for both ensembles (≈1.4 GeV) and a clear pion mass
dependence is observed. 	is is not surprising, as similar
pion mass dependence is found in the �rst moment, ⟨�⟩�−�,
computed with other techniques in Lattice QCD.

A follow-up study by ETMC was presented recently
[216] and focused on understanding systematic uncertainties
originating from excited states contamination. 	is study
used a high-statistics analysis for the physical point ensemble
used in [124]. Four (three) source-sink separations (��) were
used for the unpolarized (helicity and transversity) case,
corresponding to 0.75, 0.84, 0.93, and 1.12 fm (0.75, 0.93,
and 1.12 fm) in physical units. All three analysis techniques
described in Section 6.1, that is a single-state �t for each
separation ��, a two-state �t, and the summation method,
were used. For a reliable analysis, it is absolutely critical
to keep the statistical uncertainties at the same level for
all separations, and this is achieved with 4320, 8820, 9000,
and 72990 measurements for the unpolarized PDFs at the
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Figure 22: Comparison of ETMC’s unpolarized PDF using the
ensemble at the physical point [124] (blue) and the B55 ensemble
(pion mass 370 MeV) [108] (orange) at momentum ≈1.4 GeV.
Source: [124], reprinted with permission by the Authors (article
published under the terms of the Creative CommonsAttribution 4.0
International license).

four separations. For the helicity and transversity PDFs, the
number of measurements is 3240, 7920, and 72990 for the
separations �� = 8C, 10C, 12C, respectively.

A comparison of the three methods for the helicity
is presented in Figure 23, where one clearly observes the
discrepancy between separations 0.75 and 1.12 fm for both
the real and the imaginary parts. In addition, the real part
(le� plot) obtained for 0.93 fm is compatible with both 0.75
and 1.12 fm. 	e most striking e�ect of excited states for this
particular study can be seen in the imaginary part (right plot),
where separations 0.75 and 0.93 fm are compatible, but in
huge disagreement with �� = 1.12 fm, indicating that excited
states are severe and one should focus on separations above
1 fm. 	e two-state �t is compatible with the results from
the largest separation �� = 12C, but not with the two lower
separations in the imaginary part. 	e summation method
has large statistical uncertainties and is not providing any
useful information. Based on these �ndings, the Authors
concluded that a source-sink separation of 1.12 fm for nucleon
momentum up to ∼1.5 GeV is su
cient for isolating the
ground state dominance within statistical uncertainties. We
would like to stress the importance of having raw lattice data
with similar statistical precision to avoid bias in the various
analysis techniques.

We now continue the discussion with a presentation of
the work of LP3 for the unpolarized distribution of [218].
	e calculation was carried out using a mixed action setup
of clover fermions in the valence sector on a HISQ ~' =2 + 1 + 1 ensemble that has lattice spacing C = 0.09 fm,
with spatial lattice extent z ≈ 5.8 fm and a pion mass≈135 MeV [188]. A single step of hypercubic smearing (HYP)
was employed to improve discretization e�ects, but also to
possibly address a delicate issue: the mixed action setup of
clover on HISQ is nonunitary and su�ers from exceptional
con�gurations as the quark masses approach their physical
value for a �xed lattice spacing [235, 236]. As a consequence,
the results would be biased in the presence of exceptional
con�gurations. Based on the empirical evidence of [235, 236]

for local operators, it is expected that, for physical value of the
pion mass, the ensembles with lattice spacing above 0.09 fm
could be vulnerable to exceptional con�gurations. However,

this problem is not addressed in the work of LP3 for the
quasi-PDFs, and a more concrete investigation is imperative
to eliminate possible bias in the results.

In this work, the Gaussian momentum smearing [109]
was employed, and the nucleon was boosted with momenta
2.2, 2.6, and 3 GeV. As pointed out by the Authors, one
should be particularly cautious in the investigation of excited
states contamination, which are expected to worsen with
momentum boost, as the energy states come closer to each
other. 	us, four variations of two-state �ts were tested using
source-sink separation of 0.72, 0.81, 0.90, and 1.08 fm giving
compatible results. Despite the e�ort to employ di�erent
analysis techniques with the intention to eliminate excited
states contamination, we believe that it is unlikely for this
procedure to be conclusive, as the two-state �t alone does
not guarantee reliability and the di�erent variations used in
the work of [218] are correlated. In addition, the success of
the �ts relies on having all correlators with similar accuracy;
otherwise the �t is biased by the accurate data (typically at
small values of the separation).Note that [218] does not report
anymeasurements for the nucleonmatrix elements.We stress
that the statistical accuracy for the data should be veri�ed
from plots of the ratio on each separation that enters the
�t.

	e lattice data were properly renormalized using an RI-
type scheme [181], as described in Section 7.3.2, and the quasi-
PDFs were obtained using the “derivative” method. Finally,
a matching appropriate for the choice of renormalization

was applied [166, 181] to bring the �nal estimates in the MS
scheme. 	is is an alternative to the procedure of ETMC
in which a two-step process is used in order to bring the

renormalized quasi-PDFs in the MS and then match using
a proper matching formula. Both processes are equivalent to
a one-loop correction, which is currently the level at which
both the conversion and the matching formula are available.
It is yet to be identi�ed which process brings the �nal results
closer to a two-loop correction; this will be possible once the
two-loop expressions are extracted.

	e �nal result for the unpolarized PDF is shown in the
le� plot of Figure 24, together with global �t data from CT14
[210], with agreement between the two within uncertainties.
	e same setup was applied for the helicity PDF presented
in [219], where two values for the source-sink separations
were added, giving �� = 0.54, 0.72, 0.81, 0.90, 0.99, 1.08 fm.
	e number of measurements for each separation is 16000,
32000, 32000, 64000, 64000, and 128000, respectively; these
data are used exclusively for a two-state �t, but it would
certainly be critical to compare with plateau values and the
summation method. 	e renormalization program includes

various choices for the scales appearing in the RI and MS
schemes, andwe refer the Reader to [219] for details.	e �nal
estimates are given in theMS scheme at 3 GeV and are shown
in the right plot of Figure 24 (red curve with grey band for
reported systematics). 	e lattice data have similar behavior
as the phenomenological estimates [207, 215, 217].
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9.2.2. Transversity PDF. Extracting the transversity PDF is a
powerful demonstration of the advances in the quasi-PDFs
approach using LatticeQCD simulations. Preliminary studies
can be found in the literature already in 2016 [107, 108].
However, these lack two major components that prevent
comparison with global analysis �ts: proper renormalization
and matching procedures. Complete studies of the transver-
sity quasi-PDFs appeared this year by ETMC [48] and by

LP3 [49] using the same lattice setup as their work for the
unpolarized and helicity PDFs described above.

	e main motivation for �rst-principle calculations of
the transversity PDF is the fact that it is less known exper-
imentally [220, 237–241], because it is chirally odd, and
totally inclusive processes cannot be used. In particular,
one may extract information on the transversity PDF from�+�− annihilation into dihadrons with transverse momen-
tum [242–244] and semi-inclusive deep-inelastic scattering
(SIDIS) TMD data for single hadron production [245–247].
	is method requires disentanglement of the dependence on
the momentum fraction from the transverse momentum on

TMD form factors and TMD PDFs. Alternatively, dihadron
SIDIS cross-section data can be analyzed to obtain the
transversity distribution directly from the measured asym-
metry [248–250]. However, this analysis leads to large uncer-
tainties, as the available data are less precise, and the collinear
factorization at large � is problematic [251].

	e ETM Collaboration presented the �rst computation
of the �-dependence for the transversity PDF in [48] in Lat-
tice QCD which includes a nonperturbative renormalization
in lattice regularization (RI�), and amatching procedure sim-

ilar to the MMS scheme of [124]. 	e latter was recalculated
using the appropriate tensor nonlocal operator. We remind
the Reader of the parameters for the ~' = 2 ensemble at a
pion mass of 130 MeV [234], which has the lattice spacingC = 0.093 and the volume of 483 × 96. As in the case of
the unpolarized and helicity PDFs, the nucleon was boosted
with momenta 0.83, 1.11, and 1.38 GeV, while the source-sink
separationwas �xed to �� = 12C ∼ 1.12 fm for the �nal results.
	is value has been chosen a�er a thorough investigation of
excited states [216]. 	e statistics increases with the nucleon
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Figure 25: ETMC’s transversity PDF with momentum 1.38 GeV (blue) as a function of Bjorken-�, at renormalization scale of √2 GeV. 	e
phenomenological �ts have been obtained using SIDIS data (grey) [220] and SIDIS data constrained using �lattice

� (purple) [220]. Source: [48],
reprinted with permission by the Authors (article published under the terms of the Creative Commons Attribution 4.0 International license).

momentum, that is, 9600, 38250, and 72990 measurements
for momenta 0.83, 1.11, and 1.38 GeV, respectively.

	e �nal lattice data for the transversity isovector PDF,ℎ�−�,lattice1 , are shown in Figure 25 in the MS scheme and at

a scale of √2 GeV, so that they can be compared to phe-
nomenological �ts extracted at the same scale. In the le� plot,
we show the dependence on the nucleon momentum, which
is found to be small for most values of �, with the highest
momentum having milder oscillatory behavior. In the right
panel, we present the lattice data for the highest momentum
 = 10
/z and compare with phenomenological �ts on
SIDIS data without [220] or with [220] constraints from
lattice estimates of the tensor charge�� (“SIDIS+lattice”).	e
di�erence in the statistical accuracy between the global �t and
the lattice data is impressive, with the data of [48] being more
accurate than both the constrained and the unconstrained
SIDIS results. One way to check for systematic uncertainties
is to compare the tensor charge as extracted: (a) directly from
the local tensor operator, and (b) by integrating over �within
the interval [−1, 1] of PDFs. 	is consistency check reveals
that both results are well compatible within uncertainties and
both give a value of �� = 1.09(11) (the exact matching of the
two numbers is to some degree accidental). Even though the
agreement is nontrivial, as the steps leading to both values
are di�erent, it is, obviously, not su
cient for a complete
quantitative understanding of systematic e�ects.

	e latest work of LP3 on the quasi-PDFs was very
recently extended to the transversity distribution [49], using
the same ~' = 2 + 1 + 1 ensemble with clover valence
quarks on a HISQ sea [188], physical pion mass, the lattice

spacing C ≈ 0.09 fm, and the volume of 643 × 96. For
the lattice setup, we refer the Reader to Section 9.2.1 and
[218, 219]. Six source-sink separations were used with the
highest at 1.08 fm and the same statistics as in [219]. 	ese
were analyzed based on di�erent variations of a two-state �t,
and the extracted matrix elements are shown in Figure 26 for
the three momenta employed in this work, that is 2.2, 2.6,
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and 3 GeV. It is observed that the dependence on the nucleon
momentum is weak within the uncertainties, which also
holds for the matched PDFs. 	is can be seen in Figure 3 of
[49], with the exception of the very small-� region. However,
this is not conclusive, as lattice calculations have limitations
on the reliability for this region. 	e observed convergence
could be partly due to limitations in the matching formula,
which is available to one-loop level only. Given the latter,
a convergence can be possibly achieved at smaller nucleon
momentum, which has the advantage that excited states can
be better controlled. Evidence of nonnegligible excited states
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contamination for momenta as high as 3 GeV can be seen
in Figure 26, particularly in the real part where the matrix
element becomes negative for large values of L. 	e latter is
a clear evidence of excited states and it has been observed
in other works that increasing source-sink separation (thus
decreasing the contamination) brings the real part of large-L
bare matrix elements to values compatible with zero; see, e.g.,
the upper le� plot of Figure 1 in [216] and, to a lesser extent,
the le� panel of Figure 23.

Final estimates for the transversity PDF are given in
Figure 27, where the lattice results (blue curve) underestimate
the global �ts from LMPSS17 [220] for � < 0.4 and are
slightly higher in the region � > 0.4. Note that the results
of ETMC shown in Figure 25 overlap with the �t from
LMPSS17 (“SIDIS+lattice” in Figure 25) [220] for � > 0.5 and
overestimate it for � > 0.5, possibly due to the oscillatory
behavior. We believe that the di�erence in the behavior of the
data from ETMC and LP3 has its origin in the employment

of the derivative method by LP3 instead of the standard
Fourier transform, which, as argued in Section 6.3, may lead
to uncontrolled systematic uncertainties.

10. Other Results from
the Quasidistribution Approach

In the previous section, we have concentrated on numerical
results for the isovector quark PDFs in the nucleon. Now,
we review other results obtained with the quasidistribu-
tion method, for mesonic DAs and PDFs, as well as �rst
exploratory results for gluon PDFs.

10.1. Meson DAs. Arguably the simplest partonic functions
are distribution amplitudes (DAs) of mesons. 	e interest
in them is at least for two reasons. First, being very simple,
they can be used for investigating and comparing di�erent

techniques. Many exploratory studies were or are performed
focusing on the pion DA. Second, mesonic DAs are of con-
siderable physical interest as well. 	ey represent probability
amplitudes of �nding a �� con�guration in the �nal meson
state, with the quark carrying fraction � of the total momen-
tum and the antiquark fraction 1 − �. In phenomenology,
they serve as nonperturbative inputs in analyses of hard
exclusive processes with mesons, most notably the pion, in
the �nal state.	e shape of the pionDA is well known at large
momentum transfers, where it follows an asymptotic formR�(�) = 6�(1−�). However, for smallermomentum transfers,
di�erent models lead to di�erent functional forms and,
hence, a �rst-principle investigation on the lattice could shed
light on this issue and eliminate the theoretical uncertainty in
analyses requiring DA as an input.

	e �rst lattice computation of the pion quasi-DA was
presented early in 2017 by J.-H. Zhang et al. [123]. 	ey used
a setup of clover valence quarks on an ~' = 2 + 1 + 1 HISQ
sea with pion mass of 310 MeV, lattice spacing C ≈ 0.12
fm, and lattice volume 243 × 64 that yields I�z ≈ 4.5. 	e
measurements were done on 986 gauge �eld con�gurations
with 3 source positions, averaging over two directions of
boost. 	e employed pion momenta were 4
/z and 6
/z,
which corresponds to around 0.86 and 1.32 GeV, respectively.
	e matrix elements de�ning the quasi-DA can be accessed
with two-point correlation functions and, a�er taking the
Fourier transform, the distribution can be matched to its
light-cone counterpart. At this stage, onlymatching formulae
in the transverse momentum cuto� scheme were available
from [115]. 	e Authors calculated the pion mass correction
of O(I2

�/
2
3 ) along the lines of their earlier derivation of

NMCs for nucleon quasi-PDFs [107].	ey also parametrized

the higher-twist corrections by extrapolating linearly in 1/
2
3

to zero a�er employing thematching and themass correction.
	e results were presented, �rst, without any renormalization
of the Wilson-line-related power divergence and, next, with
the latter being subtracted by multiplication of the matrix
elements by exp(−pB|L|) (“improved” pion DA), with pB
extracted from the static potential. 	e latter computation
was performed only on one lattice spacing and, hence, the
obtained value, pB ≈ −260 MeV, was attributed a large
uncertainty of 200 MeV.

	e �nal result for the improved DA, a�er matching and
mass corrections, is shown in Figure 28. In the le� panel, the
curves correspond to Λ = �� = 2 GeV for the transverse
momentum cuto� and the central value of pBwithout uncer-
tainty (error bands correspond to statistical uncertainties).
One can see signi�cant dependence on the pion momentum
and the nonphysical nonzero values outside of � ∈ [0, 1].
In the right panel, the uncertainty in the determination
of pB is included and dominates the total error. Within
this large uncertainty, there is reasonable agreement with
variousmodels and parametrizations. However, the precision
is clearly not enough to disentangle between di�erent possi-
bilities suggested from phenomenology. Naturally, that was
not the aim of an exploratory study, where several systematic
uncertainties are yet to be addressed (see Section 6.3 for a
general discussion of such systematics).	emain result of the
paper is, thus, establishing the feasibility of the computation
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and the qualitative agreement with phenomenology can
certainly be considered as reassuring.

	e above study was extended by the LP3 Collaboration
[224] to include also the kaon and � mesons, with the view
of studying the <�(3) �avor symmetry breaking and testing
predictions of chiral perturbation theory (°PT). Further
extension with respect to [123] was to include momentum
smearing to improve the signal for the boosted meson
and access one more unit of lattice momentum, i.e., 8
/z,
corresponding to around 1.74 GeV. 	e used gauge �eld
con�gurations ensemble was the same as in [123]

Technically, the computation of the kaon DA amounts
to changing the mass of one valence quark to represent the
strange quark mass. For the �meson, things are more subtle,
because of the ensuing quark-disconnected diagrams and
mixing with the <�(3) singlet state. 	e Authors argued that
the mixing is small and can be safely neglected, while the
e�ect from using only connected diagrams (corresponding to
the unphysical �� meson) can be taken into account and the
�nal result for R� can be approximated as (R� + 2R��)/3. 	ey
again used the “improved” pion DA de�nition but employed
three additional ensembles, with C ≈ 0.06, 0.09, 0.12 fm, all
at the physical pion mass, to determine precisely the mass
counterterm pB, the dominating source of uncertainty in
their previous work. 	e computation yielded the value -
253(3) MeV. 	e �nal DAs show that the data at the two
largest momenta are compatible with each other in most
regions of �, while there are also regions where the behavior
is nonmonotonic in 
3. Hence, the Authors did not attempt
the extrapolation to 1/
2

3 = 0.	e data for R�� are rather close
to the ones for R�; hence the result for R� is also close to the
two.

A comparison of the pion and kaon DAs (at the largest
meson boost) with models and parametrizations is shown
in Figure 29. At the attained meson momenta, there are still
sizable contributions outside of the physical region. Since

the distributions are normalized to 1, the central regions
of the LaMET DAs are signi�cantly below all other results.
	e Authors concluded that larger momenta are needed,
together with higher-order matching. Moreover, most of
the standard lattice systematics is yet to be addressed (see
Section 6.3). 	e Authors also converted their results on R�
to the data for the pseudoscalar-scalar current correlator, to
compare to the auxiliary light quark approach of [71], and
found compatible behavior (see also Section 11.3). Finally,
�rst attempt at testing the <�(3) �avor symmetry breaking
wasmade, with indications of agreement with °PT.	e e�ect
manifests itself mostly as the di�erence between the DAs
of '− and '+, predicted to be O(B�) by °PT. For a more
complete study, simulations at additional light quark masses
are needed.

10.2. Meson PDFs. Apart from DAs of mesons, the interest
is, obviously, also in their PDFs, particularly for the pion.
Phenomenological extraction of the pion PDF uses predomi-
nantly experimental data from the Drell-Yan process in the
pion-nucleon scattering. 	is established that the large-�
behavior of the pion PDF is (1 − �)2 [228], corroborated
by certain models. However, other models indicate rather a(1 − �) decay. A �rst-principle computation could solve this
discrepancy.

	e �rst lattice extraction of the pion PDF based on
LaMET was shown in [226] by the LP3 Collaboration. 	ey
used again the same ensemble as for the pion DA (see
previous subsection) and applied boosts of 0.86, 1.32, and
1.74 GeV to the pion. 	e (isovector) quasi-PDF is de�ned
analogously to the nucleon case and the Dirac structure was
chosen to be Γ = �0 to avoid the mixing discovered in
[106].	eAuthors used four source-sink separations, ranging
from 6C to 9C (0.72 to 1.08 fm), to investigate excited states
contamination. 	ey demonstrated that di�erent two-state
�ts lead to consistent results in the real part of the matrix
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3 ≈ 1.74 GeV
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elements, at their intermediate pion momentum. 	e e�ects
in the imaginary part were, unfortunately, not shown. As
we argued in Section 6.1, the two-state method is, by itself,
not enough to check excited states e�ects. Much stronger
conclusions can be drawn from comparison of two-state �ts
with the plateaumethod. Else, the danger is that two-state �ts
are dominated by the lowest source-sink separations and/or
many excited states mimic one excited state. Moreover, it is
not clear what happens in this study at the largest pion boost,
where the excited states contamination is bound to be larger.

For renormalization, LP3 followed two procedures. 	ey
used a variant of RI/MOM but also decided to apply
the procedure of removing the power divergence by the
mass counterterm determined from the static potential for
comparison. 	e RI-renormalized quasi-PDF results were

matched directly to the MS scheme using the kernel of
[199] and mass corrections were applied [107]. To reduce
the oscillations in the large-� region, the Authors used
the derivative method. 	ey investigated the momentum
dependence of the �nal results and for RI results they also

varied the renormalization scale ��
3 . Comparison between

the RI and Wilson line renormalizations revealed large
di�erences, attributed by theAuthors to possibly large higher-
order corrections in the matching.

	e�nal results for theMS-renormalized pionPDF, taken
from lattice quasi-PDFs renormalized in the RI scheme and

matched toMS at � = 4GeV, are shown in Figure 30.	e LP3

result is contrasted with amodel calculation based onDyson-
Schwinger equations (DSE at a di�erent scale of � = 5.2
GeV) [227] and with the ASV �t to experimental Drell-Yan
data [228]. Within the reported uncertainty, coming from
statistical errors and comparing results for two values of the
RI intermediate scale, the Authors observed compatibility
with the ASV �t for small � ≲ 0.4, where the ASV �t
disagrees with the Dyson-Schwinger analysis. For large �,
the phenomenological �t agrees with DSE, but the LP3

extraction lies signi�cantly above the two. 	e reliability of
the computation (in particular the large-� region) is expected
to increase when using larger pion boosts and decreasing
the pion mass towards its physical value, as well as when
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Figure 30: Pion PDF obtained in [226] from the quasidistribution
approach with 
3 ≈ 1.74 GeV, � = 4 GeV (“LP3”), together with
model calculation fromDyson-Schwinger equations at � = 5.2GeV
(“DSE”) [227] and a �t toDrell-Yan data at� = 4GeV (“ASV” [228]).
Source: [226] (arXiv), reprinted with permission by the Authors.

taking higher-order matching into account. Obviously, other
systematics, such as cuto� e�ects and FVE, need to be
addressed too; see Section 6.3.

10.3. Gluon PDFs. Very recently, the �rst investigation of
quasi-gluon PDFs appeared [229], by Z.-Y. Fan et al. Needless
to say, gluon PDFs are relevant for many analyses, especially
in the small-� region, where they become the dominating
partons. Phenomenologically, they are determined from DIS
and jet-production cross-sections.	e employed lattice setup
consisted of valence overlap quarks on an ~' = 2 + 1
domain-wall sea with lattice spacing C ≈ 0.11 fm, lattice

volume 243 × 64, and pion mass of 330 MeV. 	e Authors
used two valence pion masses, one slightly larger than
the sea quark mass (340 MeV) and one corresponding to
light quarks having the strange quark mass (pion mass 678
MeV). 	e computations were performed on 203 gauge �eld
con�gurations with many smeared point sources, yielding
O(200000) total measurements for the two-point functions.
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	e bare matrix elements were extracted using the method
proposed in [252], based on the derivative of the summed
ratio of three-point and two-point functions, grounded on
the Feynman-Hellmann theorem.

Fan et al. employed the following de�nition of gluon
quasi-PDF:

�̃ (�, 
2
3 , �) = ∫ 	L
��−��"�3Ã�

0 (L, 
3, �) , (98)

with the bare matrix element Ã0(L, 
3) being the boosted
proton state expectation value of the Euclidean operator:

O0 = −
0 (O (�0�, ��0; L) − (1/4)O (��], �]�; L))(3/4) 
2
0 + (1/4) 
2

"
, (99)

where O(� �, ��?; L) = 2Tr[� �(L)�(L, 0)��?(0)�(0, L)] and
the gluon operator is subject to HYP smearing to improve
the signal.	is operator was shown not to be multiplicatively
renormalizable by the Authors of [137] (see also discussion
in Section 5.2.1 about the renormalizability of gluon quasi-
PDFs). However, in this exploratory study, the Authors did
not perform a rigorous renormalization procedure, but only
tried to eliminate the power divergence by taking the ratio

Ã�;
0 (L, 
3, �) = ÃMS

0 (0, 0, �)
Ã0 (L, 0) Ã0 (L, 
3) , (100)

with Ã�;
0 (0, 0, �) equal to ⟨�⟩MS

	 (�). 	is was justi�ed by an

empirical observation from unpolarized quark quasi-PDFs,
where an analogous ratio reproduces the RI-renormalized
matrix elements with O(10%) deviation.

In their numerical investigation, Fan et al. compared
the L-dependence of bare and ratio-renormalized matrix
elements for di�erent levels of HYP smearing, using nucleon
momenta of 0, 0.46 and 0.92 GeV (without momentum
smearing). At this level of precision, not much sensitivity to


3 could be seen. 	e bare matrix elements are signi�cantly
enhanced by the removal of the power divergence. Since the
lattice computation is very noisy in the gluon sector, the signal
extends only to L = 4C ≈ 0.44 fm.	eAuthors also compared
results from the operator O0 to three other operators that
can be used to de�ne gluon quasi-PDFs, �nding that the
other ones either su�er from large mixing with higher-
twist operators or provide a worse signal. 	ey also plotted
the results for the ratio-renormalized matrix elements O0
together with two phenomenological gluon PDFs inverse
Fourier transformed to coordinate space, observing compati-
bility within large uncertainties for their smaller valence pion
mass; see Figure 31. Finally, matrix elements were shown also
for gluon quasi-PDF in the pion.

	e Authors concluded that, at the present level of
precision, their study could not constrain gluon PDFs, which
would require taking the Fourier transform and performing
the matching to the light-cone PDF. Due to the fact that the
magnitude of the gluon PDF is signi�cant predominantly for
small �, the distribution in coordinate space is very broad,
necessitating reaching large values of L
3 (while in the current
study only L
3 ≈ 2 could be reached). 	us, signi�cant
improvements are needed to obtain a reliable gluon PDF
from the quasidistribution approach.	e challenge is further
extended by the mixing between the gluon quasi-PDF and
the singlet quark quasi-PDFs (see Section 8.2), which have
not been yet explored on the lattice and would require
calculations involving quark-disconnected diagrams.

11. Results from Other Approaches

	e last two sections were devoted to reviewing results
obtained for the �-dependence of nonsinglet quark PDFs,
gluon PDFs, and meson DAs/PDFs from the quasidistribu-
tionmethod. In the present one, we discuss some other results
obtained in the last few years from alternative approaches,
shortly described in Section 2. We review them in the order
of discussion in Section 2.
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11.1. Hadronic Tensor. Despite being proposed in the early
1990s, the hadronic tensor approach [54–56] (see also
Section 2.1) has not led to many numerical applications,
because it requires the computation of di
cult four-point
correlators and faces the inverse Laplace transform problem.
However, recently there is renewed interest in it, due to hugely
increased computational powers and new reconstruction
techniques to tackle the inverse problem. In [63], J. Liang, K.-
F. Liu, and Y.-B. Yang presented preliminary results obtained
using the classical Backus-Gilbert technique [253].	ey used

an ensemble of clover fermions on an anisotropic 123 ×128 lattice with pion mass 640 MeV and lattice spacing
of 0.1785 fm, performing measurements on 500 gauge �eld
con�gurations.

	e preliminary results are shown in Figure 32. 	e

Euclidean hadronic tensor �̃11(7→�, 7→� , �) (le� plot) vs. the

current separation � is shown for nucleon at rest (7→� = 0) with
momentum transfer 7→� = (3, 0, 0) and corresponds to con-
nected sea antiup and antidown partons. 	e reconstructed
Minkowski tensor �11(�2, ]), where ] is conjugate to � in
the inverse Laplace transform, is shown in the right plot. 	e
�rst peaks are elastic and correspond to the energy transfer
invoked by the momentum transfer. 	e less pronounced
second peaks are quasielastic and are related to nucleon
excitations. Unfortunately, with these kinematics, the DIS

region is inaccessible, as it would require both ] < |7→� | (|7→� | ≈1.7GeV in this case) and at the same time ]much larger than
the one corresponding to the quasielastic peaks (extending
to ] ≈ 1, which yields 5.5 GeV). 	is could be achieved
on lattices with much smaller lattice spacings. 	e Authors,
nevertheless, concluded that the observation of both elastic
and quasielastic peaks is encouraging.

	e investigations are continued and further results
were presented in the Lattice 2018 Symposium, using other
reconstruction methods and an ensemble with much �ner
lattice spacing, C� ≈ 0.035 fm (in the temporal direction),

lattice size 243 × 128, and lower pion mass of 380 MeV; see
upcoming proceedings [254] for more details.

11.2. Auxiliary Heavy Quark. 	e approach with auxiliary
heavy quark [58] (see also Section 2.3) was also recently
revived by its Authors, W. Detmold and C.-J. D. Lin, in
collaboration with I. Kanamori, S. Mondal, and Y. Zhao [68].
	eir study is aimed at extracting the pionDAand the current
investigations employed three quenched ensembles (Wilson
plaquette action discretization), with lattice spacings of 0.05
fm, 0.06 fm, and 0.075 fm and �xed physical spatial extent ofz ≈ 2.4 fm, G = 2z. 	e valence pion mass is 450 MeV, and
the auxiliary heavy quark mass 1.3 or 2 GeV.

	e calculation proceeds via evaluating the vacuum-to-
pion matrix elements of the product of two heavy-light
currents separated in spacetime. 	e spatial Fourier trans-
form of such matrix elements, for large enough temporal
separation of the three points in the correlator, gives a

quantity called��]
3 (7→�, 7→� , �), where7→� is the pionmomentum,7→� the momentum transfer, and � the separation of currents.��]

3 (7→�, 7→� , �) is then an input to a temporal Fourier trans-

form yielding the Euclidean hadronic tensor �[�]]

 (�, �) =∫?max

?min
	����4?�[�]]

3 (�, 7→� , 7→�), which, in the continuum limit,

gives access to moments of the structure function by varying�4. As an illustration, the integrand of this Fourier transform
is shown in Figure 33 (le�), for �] = 12, pion at rest,
and with minimal spatial momentum transfer of 2
/z in
the 3-direction. 	e heavy quark mass is 1.3 GeV and
two lattice spacings and two values of �4 are shown. 	e
signal is clear, but lattice cuto� e�ects are not negligible,
as also evidenced in the right plot of Figure 33, showing

the full quantity �[12]

 (�, �) for three lattice spacings and

three choices of �4. Since the extraction of moments requires
reliable extrapolation to the continuum limit, the Authors
prefer �rst to analyze smaller lattice spacings. To this end,
they already have quenched ensembles with lattice spacings
down to 0.025 fm. Furthermore, the momentum smearing
technique will be employed to enhance the signal for a
moving pion. Preliminary investigation of this case was also
shown in [68].
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11.3. Auxiliary Light Quark. Instead of an auxiliary heavy
quark, one can also use an auxiliary light quark [69] (see
also Section 2.4). 	e wave of renewed interest in light-cone
distribution functions on the lattice in recent years sparked
also revival of numerical studies of this approach, by the
Regensburg group [70, 71]. 	eir aim is to extract the pion
DA. In their exploratory study, they employed one gauge �eld
ensemble of~' = 2 clover fermions, with lattice spacing C ≈0.071 fm, lattice volume 323×64, and pionmass 295MeV.	e
auxiliary light quark has the samemass as the physical quarks.
Relatively large momenta were reached, up to around 2 GeV,
thanks to the momentum smearing technique introduced by
the same group. It is clear that going much beyond 2 GeV
is currently impossible on the lattice, if aiming at a reliable
analysis, in particular large enough temporal separations
between points in the three-point correlator.

As in the auxiliary heavy quark approach, the lattice part
consists in calculating the vacuum-to-pion matrix element

of two currents, separated spatially by 7→L . In [71], the pion
DA was extracted from the scalar-pseudoscalar channel. 	e
Authors paid particular attention to discretization e�ects
from the breaking of rotational invariance that leads to very

di�erent behavior of points with the same |7→L |, but di�erent
choices of its components. In particular, the “democratic”
points, like (1,1,1), tend to behave better than “nondemo-
cratic” ones, e.g. (1,0,0). 	is is a well-known e�ect in
coordinate space and it can be seen already in the free theory
(cf., e.g., [255]). To improve the behavior, one can discard
points that are too “nondemocratic” and also de�ne a tree-
level improvement coe
cient. Renormalization (involving
only local operators) was performed in the RI/MOM scheme,

with a three-loop conversion to the MS scheme. 	e data

at di�erent renormalization scales � = 1/|7→L | and di�erent
Io�e times were compared to continuum perturbation theory
predictions for three di�erent phenomenological models,
at leading twist and with twist-4 corrections. 	e Authors
concluded that there are indications of deviating from the
asymptotic form of the pion DA, 6�(1 − �), in the large

Io�e time region; however, for reliable conclusions one needs

to access this region at larger pion boosts, to keep |7→L |
in the perturbative region. Larger pion boosts should be
accompanied by computations at smaller lattice spacings, to
keep the momenta su
ciently away from the cuto�. At small
Io�e times, one would need signi�cantly larger statistics to
disentangle between the three models.

	e follow-up work of [70], by the same group and using
the same lattice ensemble, concentrated on exploring higher-
twist e�ects (HTE) and comparing results from six channels:
vector-vector (VV), axial-axial (AA), vector-axial (VA), axial-
vector (AV), scalar-pseudoscalar (SP), and pseudoscalar-
scalar (PS). Other channels, like scalar-vector, although
possible in principle, may su�er from enhancedHTE. For the
employed channels, the Authors calculated the leading HTE
in the framework of three phenomenological models. Results
from some channels can be combined to eliminate certain
e�ects; e.g., imaginary parts cancel in SP+PS. In the end, three
linear combinations were formed: VV+AA, VA+AV, and
SP+PS. On the lattice side, the Regensburg group also tested
another technique to calculate the all-to-all propagator, using
stochastic estimators instead of the sequential sourcemethod.
	is technique allowed them to take a volume average at
a smaller computational cost and hence it was considered
superior to the previously employed one. 	ey chose six
momentum vector choices at �ve di�erent boost magnitudes

and |7→L | > 3C to avoid enhanced lattice artifacts observed at
very small distances.

Example results for the Io�e-time dependence of the pion
DA are shown in Figure 34 (le�). 	ey correspond to two of
the linear combinations, VV+AA and SP+PS, and one spatial

distance of |7→L | ≈ 0.33 fm. 	e lattice data are compared
to tree-level and one-loop-corrected continuum perturbative
results, with andwithout leadingHTE.	eAuthors observed
that the sign and magnitude of the predicted splitting are
in good agreement with the data, but quantitative di�er-
ences emerge. Obviously, no quantitative agreement was
expected, since lattice data have their systematics and the
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phenomenological models may not be correct and/or are
subject to unknown higher-order corrections. To investigate
the �nal shape of DA, Bali et al. performed a global �t to all
channels and all data at di�erent separations and momenta,
using three di�erent parametrizations of the leading-twist
DA and di�erent �tting ranges. An example result (with
only statistical errors), for two parametrizations and one
selected �tting range, is shown in Figure 34 (right). Both
DAs describe the lattice data equally well, having similar
second Gegenbauer coe
cients C�2 , which is the only relevant
parameter for the description of available data. With data
extending to larger Io�e times, the next Gegenbauer coe
-
cient should become accessible and allow us to disentangle
between the two parametrizations. 	e Authors concluded
that these results are very promising and the dominating
uncertainty is the systematic one, which can be reliably
improved, in particular, by using smaller lattice spacings,
larger pion boosts, and higher-order perturbative corrections
and HTE.

11.4. Pseudodistributions. 	e �rst numerical investigation
of the pseudodistribution approach [75–77] (see also
Section 2.6) was performed by J. Karpie, K. Orginos, A.
Radyushkin, and S. Zafeiropoulos in 2017. 	e computation
proceeded using a quenched ensemble with lattice spacingC ≈ 0.093 fm, lattice volume 323 × 64, and clover fermions
in the valence sector, with pion mass around 600 MeV. 	e
employed momenta for the nucleon boost reached up to12
/z, i.e., approximately 2.5 GeV. 	e matrix elements
(lattice ITDs) were obtained using the methodology of [252].

From these, reduced matrix elements,M(], L23), were formed
and they require no further renormalization. A�er plotting

M(], L23) vs. the Io�e time, the Authors noticed a signi�cantL-dependence of the results and applied the one-loop LLA
evolution for all points with L ≤ 4C, i.e., 1/L ≥ 500 MeV.
When using r�/
 = 0.1 and evolving to L = 2C, this led to all
points collapsing close to a universal line, for both the real
part and the imaginary part. Clearly, it is di
cult to imagine

one-loop perturbative formula to work rigorously at scales
down to 500 MeV. Hence, the LLA evolution should rather
be treated as a model of evolution. 	e model was further
extended to check the behavior of data under LLA for even
lower scales 1/L. Around L = 6C, the evolution was observed
to stop. Hence, points for 6C < L ≤ 10Cwere treated as if they
corresponded to the scale 6C. 	e result of this procedure is
shown in the le� panel of Figure 35. 	e evolved data were

�tted to cosine Fourier transforms of ~(C, �)�;(1 − �)6-
type functions (~(C, �) – normalization, C = 0.36(6),� = 3.95(22)), which yielded the blue band in the plot. 	e
corresponding PDFs at two scales are shown in Figure 35
(right) and compared to three sets of phenomenological
PDFs. Obviously, no quantitative agreement was expected,
but the general shape of the ensuing PDF evinces features of
the experimental distributions and the evolution from the
original scale of 1/L = 1/2C ≈ 1 GeV to 2 GeV moves the
lattice-extracted PDFs closer to phenomenology.

As argued by Radyushkin in [80, 81] (see Section 8.2),
the LLA is only an approximation appropriate for studying

the ln L2 dependence. To obtain the full PDF, one should
perform the matching procedure based on factorization [81–
83, 85, 86], taking into account all one-loop corrections.
	e matching equation (93) has the outcome of e�ectively
changing the relation between the 1/L lattice scale and the

MS scale, as discussed in Section 8.2. Radyushkin [81] applied
the matching to the data of [87] and found that the matched

ITD, denoted by I�(], �2), is approximately equal to the

reduced ITD R(], (4/�)2) and thus the rescaling factor is
close to 4, as opposed to the LLA value of about 1.12. 	e
matched ITD is shown in the le� plot of Figure 36 and the
resulting PDF is in its right panel. Both plots also contain, for
comparison, data from phenomenological parametrizations,
inverse Fourier transformed for the ITD plot. As could be
expected, the matched ITDs lie close to a universal curve
and the curve corresponds to a �t to the same model as
in [87], with parameters C = 0.35 and � = 3. 	e �tted
curve lies signi�cantly below the phenomenological ITD.
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Correspondingly, the �nal PDF deviates from phenomenol-
ogy, especially for small and intermediate �. 	e Author
pointed out that alternative �tting ansatzes lead to a similar
curve as in the le� panel, but the �nal PDF may signi�cantly
di�er. 	e reason for this is that the ITD is unknown in the
whole region 0 ≤ ] < ∞ and, having a limited set of Io�e
times, one needs to add assumptions about the behavior of
the ITD outside the region or about the functional form of
the PDF. Radyushkin also compared the present result to the
one from LLA in [87]. 	e �nal PDF is changed to a large
extent and is further away from phenomenology. He pointed
out that this is because the LLA analysis assumes that the

�nal MS scale di�ers from 1/L by only the factor 1.12, while

the full one-loop formula implies that the true MS scale is
in fact around 4/L, i.e., about 4 GeV. 	us, the evolution to
the reference scale of phenomenological PDFs, 2 GeV, should

proceed downwards from 4 GeV to 2 GeV and not upwards
from 1 GeV to 2 GeV.

	e �nal result that we report from the pseudodistribu-
tion approach is the computation of the two lowest moments
of the isovector unpolarized PDF, erroneously claimed to
be impossible due to fatal �aws in the approach in [164].
We refer to Section 6.3 for more details about this argument
and its refutation. In [90], J. Karpie, K. Orginos, and S.
Zafeiropoulos used the same quenched ensemble as in [87]
and demonstrated that the two lowest moments agree with
an earlier explicit computations thereof by the QCDSF
collaboration [230]; see Figure 37.

Further progress was reported in the Lattice 2018 Sympo-
sium, including �rst calculationswith dynamical �avors [256]
and the issue of reconstruction of distributions from a limited
set of data 11.
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11.5. OPE without OPE. 	e approach dubbed “OPE with-
out OPE” was �rst investigated numerically in [91] (see
also Section 2.7) by the QCDSF collaboration. 	e Authors
took an exemplary parametrization of a nonsinglet PDF
and applied the proposed method. 	ey showed that the
parametrized PDF can be reconstructed from computed
moments with very promising agreement already using a
very limited set of data points; see Figure 38 (le�). Moreover,
they performed an exploratory study with real lattice data,
employing an ensemble of ~' = 3 clover fermions, with

lattice spacing C ≈ 0.074 fm and lattice volume 323 ×64. 	ey computed the Compton amplitude G33(�, �) for

10 spatial momenta
7→� and one momentum transfer 7→� .

	e result is shown in the right plot of Figure 38. For low
momenta, the precision was found to be already very good
and for larger ones the usage of the momentum smearing
technique is planned. Further exploration is in progress, at
three lattice spacings and a pionmass of 470MeV, and results
were reported in the Lattice 2018 Symposium; see upcoming
proceedings [257].

11.6. Good Lattice Cross-Sections. 	is approach, suggested
in [85, 86, 95] (see Section 2.8) and closely related to the
auxiliary light quark method, is being pursued by the theory
group at JLab, aiming at meson PDFs [231]. 	ey use clover
fermions with lattice spacing C ≈ 0.127 fm, pion mass of 430
MeV, and the largest momentum employed is about 1.5 GeV.
Preliminary results are illustrated in Figure 39 12. It shows the
vector-vector (�1−�1) current-current matrix element for the
pion PDF calculation vs. the Io�e time � ⋅ �, where � is the
pion boost and � the separation of currents. Di�erent colors
correspond to di�erent separations �2 (in lattice units). 	e
higher-twist e�ects are visible at large separations and the
Authors are calculating the NLO perturbative kernel that will
give a correction in �2. For more results, see [231].

12. Summary and Future Prospects

In this paper, we give an overview of several approaches to
obtain the Bjorken-� dependence of partonic distribution
functions from ab initio calculations in Lattice QCD. A
major part of this review is dedicated to a discussion on
the state-of-the-art of the �eld, demonstrated with modern
numerical simulations. We considered di�erent theoretical
ideas that were proposed over the last years to access parton
distribution functions (PDFs) and parton distribution ampli-
tudes (DAs), as well as more complex generalized parton
distributions (GPDs) and transverse momentum dependent
PDFs (TMDs). Even though their�-dependencewas believed
to be practically impossible to calculate on the lattice, break-
through ideas were conceived and sparked renewed interest
in these di
cult observables. Arguably, the single most
seminal idea was the one of X. Ji, who developed a general
framework for accessing light-cone quantities on a Euclidean
lattice, the quasidistribution approach. 	is framework itself
has been heavily studied and has led to very encouraging
results, but, moreover, it has prompted also the rediscovery
of previously proposed ideas, like the hadronic tensor, and
approaches with auxiliary heavy/light quarks. It has spawned
also new or related concepts, such as pseudodistributions,
OPE without OPE, and good lattice cross-sections.

As a summary, we would like to o�er the Reader a
�owchart (Figure 40) with an overview of how progress of
the di�erent approaches has been evolving. For all these new
methods, we distinguish four general stages in the evolution
of our understanding.

(i) Starting with the proposed theoretical idea (e.g.,
quasidistributions, good lattice cross-sections, pseu-
dodistributions, etc.), several challenges (theoretical
and technical) must be studied and overcome to
achieve a successful implementation of the method.
	eoretical analyses of the ideamay lead to additional
challenges on the lattice.

(ii) 	e second stage is exploratory studies aiming at
a demonstration of the feasibility of the method.
During this stage, further technical di
culties can
be revealed, as well as possible additional theoretical
challenges.

(iii) 	e next stage consists of more advanced studies
focusing on a more thorough investigation of the
method and �rst estimation of certain systematic
e�ects. Before precision calculations can be carried
out with full systematics taken into account, usually
further technical di
culties must be overcome. Dur-
ing this evolution of knowledge, additional theoretical
challenges may arise, as well as subleading systematic
uncertainties.

(iv) 	e �nal desired outcome is an accurate and reliable
Lattice QCD estimate of the observable of inter-
est. For this to be achieved, the various sources of
uncertainties must be quanti�ed and brought under
control.



58 Advances in High Energy Physics

0.0 0.2 0.4 0.6 0.8



0.5

0.4

0.3

0.2

0.1

0.0
0.0

0.2 0.4 0.6 0.8 1.0

x

6
x
＆
u
−
d

1
(x

)
0.10

0.08

0.06

0.04

0.02

0.00

−0.02

T
33

(p
,q

)

Figure 38: Le�: exemplary parametrized PDF (blue) and its reconstruction (red) using the method proposed in [91]. Right: Compton
amplitude obtained in an exploratory lattice computation. 	e solid line is a �t to a sixth order polynomial. Source: arXiv version of [91],
reprinted with permission by the Authors (article published under the terms of the Creative Commons Attribution 4.0 International license).

M
(p

·
,

2
)

1.0

0.8

0.6

0.4

0.2

0.0
0 1 2 3 4 5 6

p · 

2 = 1
2 = 4
2 = 9

2 = 16
2 = 25

Figure 39: 	e vector-vector (�1 − �1) current-current matrix
element in a boosted pion state vs. the Io�e time � ⋅ � (� is pion
momentum and � is separation of currents). Colors correspond
to di�erent separations �2 in lattice units. 	ese matrix elements
can be factorized into the pion PDF. Source: [231], reprinted with
permission by the Authors.

Based on Figure 40, we comment on the status of the
di�erent approaches presented in this paper. Most of the
methods are still at an exploratory stage, or toward the third
phase of advanced studies. Notable exceptions are, in our
view, the isovector quark quasi-PDFs, as the numerical explo-
ration began immediately a�er Ji’s proposal. As we argued,
the exploratory studies of 2014-2016 (see Section 3.2) showed
the feasibility of the method and identi�ed theoretical and
lattice challenges. Among the former, we discussed the role
of the spacetime signature and renormalizability (Section 5),
renormalization studies (Section 7), andmatching onto light-
cone PDFs (Sections 3.1 and 8). 	e lattice challenges were of
various origins and we described them in detail (Section 6).
	e most recent results of 2018 are, undoubtedly, in the
advanced stage, using ensembles at physical pion masses
and optimized lattice techniques, as well as reliable renor-
malization and matching procedures (Section 9). However,
reaching into the precision era is still extremely demanding

andwill require overcoming further challenges, most of them
classi�able as lattice ones. Careful investigation of systematic
uncertainties is imperative and this will necessitate additional
simulations employing ensembles with �ner lattice spacings,
larger volumes, accessing larger nucleon boosts, etc., as thor-
oughly reviewed in Section 6.3. 	is will require tremendous
amount of computing time but is, in principle, possible. 	e
di
cult part of this programme is to reliably access large
nucleon momenta and the main obstacle is the exponential
signal-to-noise problem when increasing the boost and, at
the same time, increasing the source-sink separation to avoid
excited states contamination. We have highlighted the latter,
since, in our view, this is an essential feature, if quasi-PDFs
are to give reliable results. 	e present results are highly
encouraging and steady increase of convergence towards
phenomenologically extracted PDFs is being observed, even
with partial agreement within uncertainties in some Bjorken-� regions. However, fully reliable results are still to be
obtained. Nevertheless, it is highly conceivable that these
lattice-extracted results may have extensive phenomenolog-
ical impact, in particular the transversity PDF, which is much
less constrained experimentally.

	e quasidistribution approach has also been applied to
other kinds of distributions (besides the isovector �avor com-
bination) and notable progress has recently been achieved.
We discussed the exploratory studies concerning quark
DAs/PDFs for mesons and gluonic PDFs (Section 10). 	ese
results are promising for prospective reliable calculations
that will also have an impact on phenomenological studies.
However, as Figure 40 indicates, there are already challenges
to go to the advanced stage, especially in the gluonic sector,
which is characterized by noisy signal and mixings under
matching with singlet quark PDFs, the latter requiring com-
putation of noisy quark-disconnected diagrams. Yet other
quasidistributions that are accessible, in principle, are quasi-
GPDs and quasi-TMDs (Section 8.2). 	ese are, obviously,
much more di
cult to compute, given the fact that they
involve additional variables such as momentum transfer
or transverse momentum. Both are receiving considerable



Advances in High Energy Physics 59

�eoretical idea

theoretical challenges lattice challenges

Exploratory studies

theoretical challenges lattice challenges

Advanced studies

theoretical challenges lattice challenges

Precision calculations

(N)qPDFs

()qDAs, ()qPDFs, (N,)qPDFs(g), (N)pPDFs

(N)htPDFs, (N)opePDFs, ()ahqDAs

()alqDAs, ()lcsDAs, ()lcsPDFs

(N)qGPDs(N)qTMDs

Figure 40: Flowchart of di�erent methods of accessing partonic distributions considered in this review. Fourmain stages of every calculation
are presented in blue boxes, connected with red/green boxes representing the theoretical and lattice challenges that need to be overcome to
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indicated with parentheses at the end (�)). 	e approach is indicated with small letters before the distribution name: q is quasidistributions,
p is pseudodistributions, ht is hadronic tensor, ope is OPE without OPE, ahq is auxiliary heavy quark, alq is auxiliary light quark, and lcs is
good lattice cross-sections. Example: (~)qPDFs: quark PDFs of the nucleon accessed with the quasidistribution method.

theoretical attention and continuous progress, but numerical
explorations are still absent and, in the case of quasi-TMDs,
important theoretical challenges are yet to be overcome.

Even though quasidistributions are currently the most
explored, other approaches are beginning to yield very
interesting results as well. Several exploratory studies have
been reported for quark PDFs and DAs of nucleons and
pions (Section 11). 	ese methods are in di�erent phases
of exploratory studies, but steadily pushing towards more
advanced investigations. 	eoretical and lattice challenges
are beginning to be clear. We note that many of them are
common to all approaches, such as cuto� e�ects, other
typical lattice systematics, or the need for precise signal
extraction for highly boosted hadrons. However, some of
them are more speci�c to certain approaches, such as the
renormalization of nonlocal operators for quasidistributions.
	e level of numerical di
culty may also vary. For exam-
ple, some approaches require the computation of three-
/two-point functions for PDFs/DAs (e.g., quasidistributions),
while other ones necessitate the use of four-/three-point
correlators (e.g., hadronic tensor, auxiliary quark methods).
It is also clear that all these approaches, even though aiming
at the same physical observables, may have very di�erent
systematics in practice. Hence, it can be expected that a global
�tting strategy, combining results from various methods,
can prove in the end to be the optimal one. 	us, all the
e�orts of the lattice community, with the aid of experts in

phenomenology, can contribute to obtaining reliable �rst-
principle determinations of partonic distributions.

Appendix

Abbreviations

1PI: 1-Particle irreducible
APE: Array processor experiment
CAA: Covariant Approximation Averaging°PT: Chiral perturbation theory
DA: Distribution amplitude
DIS: Deep-inelastic scattering
DR: Dimensional regularization
DSM: Diquark spectator model
DVCS: Deeply Virtual Compton Scattering
DVMP: Deeply Virtual Meson Production
EIC: Electron-Ion Collider

ETMC: Extended Twisted Mass Collaboration13

FVE: Finite volume e�ects
GPD: Generalized parton distribution
HCS: Hadronic cross-section
HISQ: Highly improved staggered quarks
HP: High precision
HQET: Heavy Quark E�ective 	eory
HYP: Hypercubic
HTE: Higher-twist e�ects
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IMF: In�nite momentum frame
IR: Infrared
ITD: Io�e-time distribution
JLab: Je�erson Laboratory
LaMET: Large Momentum E�ective 	eory
LCS: Lattice cross-section
LCWF: Light-cone wave function
LLA: Leading logarithmic approximation
LP: Low precision

LP3: Lattice Parton Physics Project
LR: Lattice regularization
NJL: Nambu-Jona-Lasinio
NLO: Next-to-leading order
NMC: Nucleon mass correction
NRQCD: Nonrelativistic Quantum

Chromodynamics
OPE: Operator product expansion
PDF: Parton distribution function
RI: Regularization independent
RI/MOM: Regularization-independent momentum

subtraction
rms: Root mean square
QCD: Quantum Chromodynamics
QED: Quantum Electrodynamics
SIDIS: Semi-inclusive deep-inelastic scattering
SQM: Spectral quark model
TMC: Target mass correction
TMD: Transverse momentum dependent parton

distribution function
UV: Ultraviolet
VDF: Virtuality distribution function.
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Endnotes

1. In the remainder of the paper, the standard relativistic
normalization is always assumed and the states are
labeled with the hadron momentum and other labels, if
necessary.

2. For simplicity, we neglect possible mixings under factor-
ization.

3. 	e Dirac structure was, in the original papers, also in

the same direction, i.e. �3 was used. However, it became

clear that �0 is a better choice that leads to the same PDF,
as described in Section 7.

4. 	e term “factorizablematrix elements” is also employed
[51] to better represent the properties of such matrix
elements.

5. For proper treatment thereof, see Section 8

6. E�ective from this year, the European TwistedMass Col-
laboration has o
cially changed its name to Extended
Twisted Mass Collaboration, as it comprises now mem-
bers also from non-European institutions. Along with
the name change, there is a new logo.

7. Note that the same abbreviation is used in phenomeno-
logical analyses for the corrections due to a non-zero
mass of the target in scattering experiments.

8. not to be confused with the symbol � used in other
sections which denotes the length of the Wilson line in
physical units.

9. We remind the Reader that prior to 2018 all available
lattice data in the literature corresponded to the “�3”
operator for the unpolarized PDFs, which has a �nite
mixing in lattice regularization due to chiral symmetry
breaking.

10. Preliminary results have been presented last year [160,
258]

11. A�er the submission of this manuscript, a complete
calculation was presented in Ref. [159].

12. 	e complete work appeared a�er the submission of this
manuscript, in Ref. [231].

13. E�ective from this year, the European TwistedMass Col-
laboration has o
cially changed its name to Extended
Twisted Mass Collaboration, as it comprises now mem-
bers also from non-European institutions. Along with
the name change, there is a new logo.
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[193] M. Lüscher, “Future applications of theYang-Mills gradient �ow
in lattice QCD,” in Proceedings of the 31st International Sympo-
sium on Lattice Field �eory (Lattice ’13), Mainz, Germany, July
2013.

[194] M. Lüscher and P. Weisz, “Perturbative analysis of the gradient
�ow in non-abelian gauge theories,” Journal of High Energy
Physics, vol. 2011, no. 02, Article ID 051, 2011.

[195] C. Monahan, “Smeared quasidistributions in perturbation
theory,” Physical Review D: Particles, Fields, Gravitation and
Cosmology, vol. 97, no. 5, Article ID 054507, 2018.

[196] Z. Davoudi and M. J. Savage, “Restoration of rotational sym-
metry in the continuum limit of lattice �eld theories,” Physical
Review D: Particles, Fields, Gravitation and Cosmology, vol. 86,
no. 5, Article ID 054505, 2012.

[197] Z. Davoudi, “	e path from nite to innite volume: Hadronic
observables from lattice QCD,” in Proceedings of the 36th

Interna-tional Symposium on Lattice Field �eory (Lattice ’18),
East Lansing, MI, USA, July 2018.

[198] H.-n. Li, “NondipolarWilson links for quasiparton distribution
functions,” Physical Review D: Particles, Fields, Gravitation and
Cosmology, vol. 94, no. 7, Article ID 074036, 2016.

[199] Y.-S. Liu, J.-W. Chen, L. Jin et al., “Unpolarized quark distribu-
tion from lattice QCD: A systematic analysis of renormalization
and matching,” 2018, https://arxiv.org/abs/1807.06566.

[200] X. Xiong and J. Zhang, “One-loop matching for transversity
generalized parton distribution,” Physical Review D: Particles,
Fields, Gravitation and Cosmology, vol. 92, no. 5, Article ID
054037, 2015.

[201] X. Ji, P. Sun, X. Xiong, and F. Yuan, “So� factor subtraction
and transverse momentum dependent parton distributions on
the lattice,” Physical Review D: Particles, Fields, Gravitation and
Cosmology, vol. 91, no. 7, Article ID 074009, 2015.

[202] X. Ji, L.-C. Jin, F. Yuan, J.-H. Zhang, and Y. Zhao, “Transverse
momentumdependent quasi-parton-distributions,” https://arxiv
.org/abs/1801.05930.

[203] M. A. Ebert, I. W. Stewart, and Y. Zhao, “Determining
the nonperturbative collins-soper kernel from lattice QCD,”
https://arxiv.org/abs/1811.00026.

[204] J. Xu, Q. Zhang, and S. Zhao, “Light-cone distribution ampli-
tudes of vector meson in a large momentum e�ective theory,”
Physical Review D: Particles, Fields, Gravitation and Cosmology,
vol. 97, no. 11, Article ID 114026, 2018.

[205] Y.-S. Liu, W. Wang, J. Xu, Q.-A. Zhang, S. Zhao, and Y. Zhao,
“Matching the quasi meson distribution amplitude in RI/MOM
scheme,” 2018, https://arxiv.org/abs/1810.10879.

[206] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang,
“Extraction of spin-dependent parton densities and their uncer-
tainties,” Physical Review D: Particles, Fields, Gravitation and
Cosmology, vol. 80, no. 3, Article ID 034030, 2009.

[207] E. R. Nocera, R. D. Balla, S. Forteb, G. Ridol�c, and J. Rojo, “A
�rst unbiased global determination of polarized PDFs and their
uncertainties,” Nuclear Physics B, vol. 887, pp. 276–308, 2014.

[208] N. Sato, W. Melnitchouk, S. Kuhn, J. Ethier, and A. Accardi,
“Iterative Monte Carlo analysis of spin-dependent parton dis-
tributions,” Physical Review D: Particles, Fields, Gravitation and
Cosmology, vol. 93, no. 7, Article ID 074005, 2016.

[209] P. Schweitzer, D. Urbano, M. V. Polyakov, C. Weiss, P. V.
Pobylitsa, and K. Goeke, “Transversity distributions in the
nucleon in the large N(c) limit,” Physical Review D: Particles,
Fields, Gravitation and Cosmology, vol. 64, no. 3, Article ID
034013, 2001.

[210] S. Dulat, T.-J. Hou, J. Gao et al., “New parton distribution
functions from a global analysis of quantum chromodynamics,”
Physical Review D: Particles, Fields, Gravitation and Cosmology,
vol. 93, no. 3, Article ID 033006, 2016.

[211] R. D. Ball, V. Bertone, S. Carrazza et al., “Parton distributions
from high-precision collider data,”�e European Physical Jour-
nal C, vol. 77, p. 663, 2017.

[212] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S.
	orne, “Parton distributions in the LHC era: MMHT 2014
PDFs,” �e European Physical Journal C, vol. 75, article 204,
2015.
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[230] M. Göckeler, R. Horsley, E.-M. Ilgenfritz et al., “Polarized and
unpolarized nucleon structure functions from lattice QCD,”

Physical Review D: Particles, Fields, Gravitation and Cosmology,
vol. 53, no. 5, pp. 2317–2325, 1996.

[231] R. S. Su�an, J. Karpie, C. Egerer, K. Orginos, J.-W. Qiu, and
D. G. Richards, “Pion valence quark distribution from matrix
element calculated in lattice QCD,” Physical Review D, vol. 99,
no. 7, Article ID 074507, 2019.

[232] R. Gupta, Y.-C. Jang, B. Yoon, H.-W. Lin, V. Cirigliano, and T.
Bhattacharya, “Isovector charges of the nucleon from 2+1+1 -
�avor lattice QCD,” Physical Review D: Particles, Fields, Gravi-
tation and Cosmology, vol. 98, no. 3, 2018.

[233] E. Follana, Q. Mason, C. Davies et al., “Highly improved
staggered quarks on the lattice with applications to charm
physics,” Physical Review D: Particles, Fields, Gravitation and
Cosmology, vol. 75, no. 5, Article ID 054502, 2007.

[234] A. Abdel-Rehim, C. Alexandrou, F. Burger et al., “First physics
results at the physical pion mass from Nf = 2 Wilson twisted
mass fermions at maximal twist,” Physical Review D: Particles,
Fields, Gravitation and Cosmology, vol. 95, no. 9, Article ID
094515, 2017.

[235] T. Bhattacharya, S. D. Cohen, R. Gupta, A. Joseph,H. Lin, and B.
Yoon, “Nucleon charges and electromagnetic form factors from
2+1+1-�avor lattice QCD,” Physical Review D: Particles, Fields,
Gravitation and Cosmology, vol. 89, no. 9, Article ID 094502,
2014.

[236] T. Bhattacharya, V. Cirigliano, S. D. Cohen et al., “Isovector
and isoscalar tensor charges of the nucleon from lattice QCD,”
Physical Review D: Particles, Fields, Gravitation and Cosmology,
vol. 92, no. 9, Article ID 094511, 2015.

[237] M. Anselmino, M. Boglione, and U. D’Alesio, “Transversity and
Collins functions from SIDIS and e+e− data,” Physical Review D:
Particles, Fields, Gravitation and Cosmology, vol. 75, Article ID
054032, 2007.

[238] M. Anselmino, M. Boglione, U. D’Alesio et al., “Collins func-
tions for pions from SIDIS and new e+e− data: a rst glance
at their transverse momentum dependence,” Physical Review
D: Particles, Fields, Gravitation and Cosmology, vol. 92, no. 11,
Article ID 114023, 2015.

[239] M. Radici, A. Courtoy, A. Bacchetta, and M. Guagnelli,
“Improved extraction of valence transversity distributions from
inclusive dihadron production,” Journal of High Energy Physics,
vol. 2015, no. 5, 2015.

[240] Z. Kang, A. Prokudin, P. Sun, and F. Yuan, “Extraction of quark
transversity distribution and Collins fragmentation functions
with QCD evolution,” Physical Review D: Particles, Fields,
Gravitation and Cosmology, vol. 93, no. 1, Article ID 014009,
2016.

[241] M. Radici and A. Bacchetta, “First extraction of transversity
from a global analysis of electron-proton and proton-proton
data,” Physical Review Letters, vol. 120, no. 19, Article ID 192001,
2018.

[242] R. Seidl et al., “Measurement of azimuthal asymmetries in
inclusive production of hadron pairs in e+e− annihilation at
Belle,” Physical Review Letters, vol. 96, no. 23, Article ID 232002,
2006.

[243] R. Seidl et al., “Measurement of Azimuthal Asymmetries in
Inclusive Production of Hadron Pairs in e+e- Annihilation
at s**(1/2) = 10.58-GeV,” Physical Review D: Particles, Fields,
Gravitation and Cosmology, vol. 78, Article ID 032011, 2008,
[Erratum: Physical Review D, vol. 86, Article ID 039905, 2012].

[244] I. Garzia, “Measurement of Collins asymmetries in inclusive
production of pion pairs in e+e− collisions at BABAR,” in

https://arxiv.org/abs/1811.01588
https://arxiv.org/abs/1803.04393
https://arxiv.org/abs/1803.04393
https://arxiv.org/abs/1804.01483


68 Advances in High Energy Physics

Proceedings of the 36th International Conference on High Energy
Physics (ICHEP ’12), Melbourne, Australia, July 2012.

[245] A. Airapetian et al., “E�ects of transversity in deep-inelastic
scattering by polarized protons,” Physics Letters B, vol. 693, no.
1, pp. 11–16, 2010.

[246] M. Alekseev et al., “Collins and Sivers asymmetries for pions
and kaons in muon-deuteron DIS,” Physics Letters B, vol. 673,
no. 2, pp. 127–135, 2009.

[247] C. Adolph et al., “Collins and Sivers asymmetries in muonpro-
duction of pions and kaons o� transversely polarised protons,”
Physics Letters B, vol. 744, pp. 250–259, 2015.

[248] J. C. Collins, S. F. Heppelmann, and G. A. Ladinsky, “Measuring
transversity densities in singly polarized hadron-hadron and
lepton-hadron collisions,” Nuclear Physics B, vol. 420, no. 3, pp.
565–582, 1994.

[249] R. L. Ja�e, X. Jin, and J. Tang, “Interference fragmentation func-
tions and the nucleon’s transversity,”Physical Review Letters, vol.
80, no. 6, pp. 1166–1169, 1998.

[250] A. Bacchetta, A. Courtoy, and M. Radici, “First glances at the
transversity parton distribution through dihadron fragmenta-
tion functions,” Physical Review Letters, vol. 107, no. 1, Article
ID 012001, 2011.

[251] E. Moat, W. Melnitchouk, T. C. Rogers, and N. Sato, “What are
the low-Q and large-x boundaries of collinear QCD factoriza-
tion theorems?” Physical Review D: Particles, Fields, Gravitation
and Cosmology, vol. 95, Article ID 096008, 2017.

[252] C. Bouchard, C. C. Chang, T. Kurth, K. Orginos, andA.Walker-
Loud, “On the Feynman-Hellmann theorem in quantum �eld
theory and the calculation of matrix elements,” Physical Review
D: Particles, Fields, Gravitation and Cosmology, vol. 96, no. 1,
Article ID 014504, 2017.

[253] G. Backus and F. Gilbert, “	e resolving power of gross earth
data,”�eGeophysical Journal of the Royal Astronomical Society,
vol. 16, no. 2, pp. 169–205, 1968.

[254] J. Liang, T. Draper, K.-F. Liu, and Y.-B. Yang, “Lattice QCD
calculation of the nucleon hadronic tensor,” in Proceedings of the
36th Annual International Symposium on Lattice Field �eory,
LATTICE 2018, vol. 101.

[255] K. Cichy, K. Jansen, and P. Korcyl, “Non-perturbative renormal-
ization in coordinate space for N f=2 maximally twisted mass
fermions with tree-level Symanzik improved gauge action,”
Nuclear Physics B, vol. 865, no. 2, pp. 268–290, 2012.

[256] J. Karpie et al., “Progress on parton pseudo distributions,” in
Proceedings of the 36th Annual International Symposium on
Lattice Field �eory, LATTICE 2018, vol. 100.

[257] K. Som�eth et al., “Nucleon Structure Functions from the
Feynman-Hellmann 	eorem,” in Proceedings of the 36th
Annual International Symposium on Lattice Field �eory, LAT-
TICE 2018, vol. 102.

[258] C. Alexandrou, S. Bacchio, K. Cichy et al., “Computation of par-
ton distributions from the quasi-PDF approach at the physical
point,” in Proceedings of the 35th International Symposium on
Lattice Field�eory (Lattice ’17) & EPJWeb Conference, vol. 175,
Granada, Spain, June 2017.



Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

High Energy Physics
Advances in

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Astronomy
Advances in

 Antennas and
Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 International Journal of

Geophysics

Advances in
Optical
Technologies

Hindawi

www.hindawi.com

Volume 2018

Applied Bionics  
and Biomechanics
Hindawi
www.hindawi.com Volume 2018

Advances in

OptoElectronics

Hindawi

www.hindawi.com

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Chemistry
Advances in

Hindawi
www.hindawi.com Volume 2018

Journal of

Chemistry

Hindawi
www.hindawi.com Volume 2018

Advances in

Physical Chemistry

International Journal of

Rotating
Machinery

Hindawi

www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ahep/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/acmp/
https://www.hindawi.com/journals/ijo/
https://www.hindawi.com/journals/aa/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijge/
https://www.hindawi.com/journals/aot/
https://www.hindawi.com/journals/abb/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/ac/
https://www.hindawi.com/journals/jchem/
https://www.hindawi.com/journals/apc/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/
https://www.hindawi.com/

