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A guide to the Choquard equation
Vitaly Moroz and Jean Van Schaftingen

In honour of Paul Rabinowitz
and with gratitude for his contributions

to the understanding of differential equations

Abstract. We survey old and recent results dealing with the existence
and properties of solutions to the Choquard type equations

−∆u + V (x)u =
(
|x|−(N−α) ∗ |u|p

)
|u|p−2u in RN ,

and some of its variants and extensions.
Mathematics Subject Classification (2010). 35Q55 (35R09, 35J91).
Keywords. Choquard equation; Pekar polaron; Schrödinger–Newton equa-
tion; focusing Hartree equation; attractive nonlocal interaction; Riesz
potential.

1. Introduction
The present review paper aims to present the state of the art around the
mathematical study of the Choquard equation

−∆u+ u =
(
Iα ∗ |u|p

)
|u|p−2u in RN ,

and of its variants. Here, Iα is the Riesz potential of order α ∈ (0, N) on the
Euclidean space RN of dimension N ≥ 1, defined for each point x ∈ RN \ {0}
by

Iα(x) = Aα
|x|N−α

, where Aα =
Γ(N−α2 )

Γ(α2 )πN/22α
.

The nonlinearity is described by an exponent p ∈ R.
We will begin by describing briefly some physical motivations of the

problem and mention some related problems (§2). We will consider variants of
the Choquard equation that include the introduction of an external potential
V , the replacement of the Riesz potential by a more general kernel and the
treatment of more general nonhomogeneous nonlinearities instead of |u|p. The
description will be split into to the autonomous (§3) and nonautonomous (§4)
cases, depending on whether the equation is invariant under translations or
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not. Appendix (§A) is devoted to the relevant standard and less standard
properties of the Riesz potentials.

Although we have strived to cover as extensively as possible the existing
literature on the topic, the choice of the topics that we are covering might not
appear to the reader as consistent as we have intended it and we have very
likely overlooked relevant works in the abundance of independent threads of
literature on the Choquard equation.

2. Context
2.1. Physical models
The Choquard equation

−∆u+ u =
(
I2 ∗ |u|2

)
u in R3, (2.1)

has appeared in the context of various physical models. It seems to originate
from H.Fröhlich and S. Pekar’s model of the polaron, where free electrons
in an ionic lattice interact with phonons associated to deformations of the
lattice or with the polarisation that it creates on the medium (interaction
of an electron with its own hole) [86, 87, 160]. The Choquard equation was
also introduced by Ph.Choquard in 1976 in the modelling of a one-component
plasma [127].

In general, the associated Schrödinger-type evolution equation
i∂tψ = ∆ψ +

(
W ∗ |ψ|2

)
ψ (2.2)

is a model large system of non-relativistic bosonic atoms and molecules under
an attractive interaction that is weaker and has a longer range than that
of the nonlinear Schrödinger equation (where the interaction potential W
is formally Dirac’s delta at the origin) [88]. The equation (2.2) arises as a
mean-field limit of a bosonic system with attractive two-body interactions;
this limit can be taken rigorously in many cases [88,125].

In showing that his polaron model arises as an asymptotic limit of the
Fröhlich polaron, S. Pekar had conjectured that the groundstate level of the
Pekar polaron problem should be characterised in terms of Brownian motion

lim
α→∞

lim
t→∞

1
t

log
(
E exp

(
α

∫ t

0

∫ t

0

e−|σ−s|

|x(σ)− x(s)| dσ ds
))

= sup
{

2
∫
R3

∫
R3

|u(x)|2|u(y)|2

|x− y|
dx dy −

∫
R3
|∇u|2 :

∫
R3
|u|2 = 1

}
(2.3)

where E is the expectation with respect to the three-dimensional Brownian
motion x(·) tied at both ends (paths such that x(0) = 0 = x(t)). This
conjecture was proved by M.D.Donsker and S.R. S.Varadhan [73,74]. Another
mathematical analysis of the asymptotics of the Fröhlich polaron was provided
by E.H. Lieb and L. E.Thomas [130].

Finally, the Choquard equation is also known as the Schrödinger–Newton
equation in models coupling the Schrödinger equation of quantum physics
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together with nonrelativistic Newtonian gravity [16, 71, 113,114,161,162] (see
also [146,175,177] for relativistic versions). The equation can also be derived
from the Einstein–Klein–Gordon and Einstein–Dirac system [99]. Such a
model has been proposed for boson stars [184] and for the collapse of galaxy
fluctuations of scalar field dark matter [103,104]. Further models have been
developed including a gravitomagnetic potential [141] and self-field coupling
[85].

2.2. Related equations
The Choquard equation is related to several other partial differential equations
with nonlocal interactions, which will be outside of the scope of the present
survey.

Standing wave solutions to focusing Hartree equation
i∂tψ = ∆ψ +

(
Iα ∗ |ψ|2

)
ψ (2.4)

are solutions to the Choquard equation. The local existence of solutions is
known (see for example [98]). The global existence is more delicate, due to
the focusing character of the nonlinearity. Some results are available when
the nonlinearity mildly delocalised (α > N − 2) [98, theorem 3.1]. The global
existence of solutions to

i∂tψ = ∆ψ +
(
Iα ∗ |ψ|p

)
|ψ|p−2ψ (2.5)

has been studied for 2 ≤ p < 2 + 4
N−2 and α = N − 2 [92]. Blow-up and

soliton dynamics have also been considered [28,65,92].
Back to the stationary setting, the interaction potential instead of being

attractive as in the Choquard equation can be taken to be repulsive. In
the presence of an external potential V ∈ C(RN ;R), the stationary Hartree
equation with a Coulombic potential

−∆u+ V u+
(
I2 ∗ |u|2

)
u = λu

has been studied by many authors (see for example [24, 102, 121, 135]). In-
stead of (or in addition to) imposing an external potential, a local nonlinear
interaction can be added. This leads to the Schrödinger–Poisson (Schrödinger–
Poisson–Slater) equation of the form

−∆u+ V u+
(
I2 ∗ |u|2

)
u = |u|q−2u,

which has been the object of multiple works (see for example [10,12,23,110,
178,179,224]) and survey papers [8, 46].

3. Autonomous Choquard equation
In this section we explore the solutions to the Choquard equation in the case
where the problem is invariant under translations of the Euclidean space RN .
An interesting family of the problems which extends (2.1) is given by the
autonomous homogeneous Choquard equations:

−∆u+ u =
(
Iα ∗ |u|p

)
|u|p−2u in RN , (3.1)
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where N ∈ N, α ∈ (0, N) and p > 1.

3.1. Groundstates
Solutions of problem (3.1) are, at least formally, critical points of the action
functional A defined for a function u : RN → R by

A(u) = 1
2

∫
RN

(
|∇u|2 + |u|2

)
− 1

2p

∫
RN

(
Iα ∗ |u|p

)
|u|p. (3.2)

3.1.1. Functional setting. The first term in the definition of the action func-
tional A by (3.2) suggests taking naturally as the domain the classical Sobolev
space H1(RN ) of functions in L2(RN ) whose weak derivative is also square-
integrable. This raises then the question whether the second term, which
involves the convolution, is well defined and sufficiently smooth.

If we assume that u ∈ L
2Np
N+α (RN ) and if we apply the Hardy–Littlewood–

Sobolev inequality (A.2) to the function f = |u|p ∈ L
2N
N+α (RN ), we obtain, in

view of Hölder’s inequality∫
RN

(
Iα ∗ |u|p

)
|u|p ≤

(∫
RN

∣∣Iα ∗ |u|p∣∣ 2N
N−α

) 1
2−

α
2N
(∫

RN
|u|

2Np
N+α

) 1
2 + α

2N

≤ CN,α,2N/(N+α)

(∫
RN
|u|

2Np
N+α

)1+ α
N

.

(3.3)

It remains then to determine when the condition u ∈ L
2Np
N+α (RN ) is satisfied.

By the classical Sobolev embedding theorem, there is a continuous embedding
H1(RN ) ↪→ L

2Np
N+α (RN ) if and only if 1

2 −
1
N ≤

N+α
2Np ≤

1
2 , or, equivalently,

N−2
N+α ≤

1
p ≤

N
N+α . Moreover, we have then∫

RN

(
Iα ∗ |u|p

)
|u|p ≤ C

(∫
RN
|∇u|2 + |u|2

)p
, (3.4)

for some constant C depending on N , α and p.
Basic differentiability properties of the functional A follow from these

estimate by classical nonlinear functional analysis arguments:

Proposition 3.1. If p ∈ (1,∞) satisfies
N − 2
N + α

≤ 1
p
≤ N

N + α
,

then the functional A is well defined and continuously Fréchet–differentiable
on the Sobolev space H1(RN ).
If moreover p ≥ 2, then the functional A is twice continuously Fréchet–diffe-
rentiable.

Proposition 3.1 follows from the corresponding differentiability properties
of the superposition map u ∈ H1(RN ) 7→ |u|p ∈ L

2N
N+α (RN ) and from the

smoothness of the quadratic form involving the Riesz potential, resulting from
the boundedness of the latter.

Restrictions on the exponents in nonlinearities related to Sobolev em-
bedding theorems are a very classical feature of semilinear elliptic problems.
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The appearance of a lower nonlinear restriction in the class of Choquard-type
problems is more remarkable: the lower critical exponent N+α

N is strictly
greater than 1; the condition for well-definiteness is thus more stringent that
imposing a superlinearity condition p > 1.

Another interesting point is that although the function is well defined
and the nonlinearity is superlinear, twice differentiability only occurs when
p ≥ 2. It will appear in the sequel that some properties of the solutions can
also change dramatically when the exponent p crosses the value 2.

3.1.2. Existence of solutions. We define a solution u ∈ H1(RN ) to be a
groundstate of the Choquard equation (3.1) whenever it is a solution that
minimises the action functional A among all nontrivial solutions. Groundstates
exists when the nonlinearity exponent p satisfies strictly the inequalities for
the well-definiteness of proposition 3.1 [79, theorem 3.1; 92, lemma 2.7; 127;
134, theorem III.1; 139; 143; 151].

Theorem 3.2. If
N − 2
N + α

<
1
p
<

N

N + α
,

then (3.1) has a groundstate solution u ∈ H1(RN ).

In general, the groundstate u can be constructed by showing that the
infimum on the Nehari manifold

inf
{
A(u) : u ∈ H1(RN ) \ {0} and 〈A′(u), u〉

}
is achieved. This is equivalent to prove that the mountain-pass minimax level
[11, 169,171]

inf
γ∈Γ

sup
[0,1]
A ◦ γ,

where the class of paths Γ is defined by

Γ =
{
γ ∈ C([0, 1];H1(RN )) : γ(0) = 0 and A(γ(1)) < 0

}
,

is a critical value. The minimisers of the Sobolev-like quotient∫
RN
|∇u|2 + |u|2(∫

RN

(
Iα ∗ |u|p

)
|u|p

) 1
p

(3.5)

are groundstates up to multiplication by a constant and the minimisers of the
Weinstein-like [208] quotient(∫

RN
|∇u|2

)N
2 −

N+α
2p
(∫

RN
|u|2
)N+α

2p −
N−2

2

(∫
RN

(
Iα ∗ |u|p

)
|u|p

) 1
p

,

are groundstates of (3.1) to multiplication and rescaling in space [92; 151,
proposition 2.1].
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Under the additional assumption that p < 1 + α+2
N , minimisers of

inf
{1

2

∫
RN
|∇u|2 − 1

2p

∫
RN

(
Iα ∗ |u|p

)
|u|p : u ∈ H1(RN ) and

∫
RN
|u|2 ≤ λ

}
are groundstates of (3.1) up to multiplication and rescaling in the Euclidean
space RN [151, proposition 2.1]; this latter formulation was the original
framework [79,88,127,134].

Since the equation (3.1) and the associated functional A are invariant
under translations, the variational formulation lacks compactness properties
that would make it straightforward.

A first way to handle this compactness issue is to rely on inequalities
for symmetrisation by rearrangement (see for example [35; 116; 129, chapter
3; 165]) to restrict without loss of generality the minimisation argument to
radial functions [79; 92, lemma 2.7; 127; 143].

A more delicate but more robust approach is to apply the concentration
compactness method of P.-L. Lions [88,134,151]. It is useful to note that a
counterpart of the Brezis–Lieb [33] lemma holds for Riesz potentials [2, §5.1;
21; 145; 151; 216, lemma 3.2]: if the sequence (un)n∈N converges weakly to u
in H1(RN ), then

lim
n→∞

∫
RN

(
Iα ∗ |un|p

)
|un|p −

∫
RN

(
Iα ∗ |u− un|p

)
|u− un|p

=
∫
RN

(
Iα ∗ |u|p

)
|u|p. (3.6)

3.2. Other solutions
Radial solutions of the Choquard equation (3.1) have also been constructed
when p = 2 and α = 2 by variational methods [193, §5] and by shooting
methods for systems of ordinary differential equations [55,200].

Besides the groundstate, variational methods can be used to show the
existence of many other solutions.

The existence of infinitely many solutions has been proved when p = 2
[30,132] (see also [133]). The construction relies on the Krasnosel′skĭı genus
[117] and on associated minimax theorems of Ambrosetti and Rabinowitz [11,
theorem 2.8] (see also [142, theorem 6.1; 168; 169; 171; 192, theorem 5.7; 211,
chapter 3]) applied to the subspace of radial functions. Moreover, these radial
solutions can have an arbitrary number of nodal domains [210, theorem 9.5].
More generally, there exist infinitely many solutions satisfying u◦g = τ(g)u for
every g in a group of linear isometries G ⊆ O(N) such that every x ∈ RN \{0}
has an infinite orbit, with a homomorphism τ : G→ {−1, 1} [56]. Under some
weaker condition on the orbits, there are one or several invariant solutions
[62]. Most of these results and their proof are valid in the whole intercritical
range N−2

N+α <
1
p <

N
N+α , although the proof are written for narrower ranges.

When N−2
N+α < 1

p < N
N+α there are also solutions that minimise the

action functional among solutions that are odd with respect to a hyperplane
[95]. When moreover p ≥ 2, there exists a solution that minimises the action
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functional A among all sign-changing solutions [94,95]. When α is either close
to 0 or close to N , then the minimal nodal solution is odd [180].

Problem 1. Is the minimal nodal solution odd for each α ∈ (0, N)?

The solutions are constructed by minimising the action on the Nehari
nodal set [44, 45, 48]. Remarkably, such solutions cannot appear in the au-
tonomous case for the local nonlinear Schrödinger equation. A proof of the
existence of minimal action radial nodal solutions has been proposed [218];
unfortunately that proof does not seem to address the question whether the
constructed solution changes sign.

3.3. Properties of solutions
Solutions of the Choquard equation (3.1) enjoy various qualitative properties:
weak solutions turn out to be classical solutions, groundstates are, up to trans-
lation and inversion of the sign, positive and radially symmetric functions, the
asymptotic rate of decay at infinity is described precisely, they are sometimes
known to be unique and nondegenerate, they satisfy the Pohožaev variational
identity.

3.3.1. Regularity of solutions. The solutions constructed variationally are
weak solutions to the Choquard equation (3.1): for every test function ϕ ∈
H1(RN ), ∫

RN
∇u · ∇ϕ+ uϕ =

∫
RN

(
Iα ∗ |u|p

)
|u|p−2uϕ.

The classical bootstrap method for subcritical semilinear elliptic problems
combined with estimates for Riesz potentials allows to prove that any weak
solution is a function of class C2 (twice continuously differentiable); if more-
over the solution u is positive or p is an even integer, then u is of class C∞
[57, lemma A.1; 122; 123; 127, theorem 8; 143, theorem 6.2; 151, proposi-
tion 4.1] (see also works on a related nonlinear integral equation [51]). A
nonlocal counterpart of the regularity result of Brezis and Kato for local
elliptic operators [32, theorem 2.3] (see also [201, theorem 3]) can be used to
cover the critical exponent p = N+α

N−2 [153, theorem 2].
The behaviour of positive subsolutions u ∈ C2(RN \ {0}) ∩ Lp(RN ) of

the equation
−∆u =

(
Iα ∗ up

)
uq in B1 \ {0}

has been studied. Depending on the values of the parameters, the singularity
at 0 can be removable, can behave like 1/|x|N−2 or have arbitrary growth [93]
(see also [53] for related results). In the supercritical case α = 2 and p = 2N

N−2 ,
a blow-up analysis of solutions of (3.1) has been performed in terms of the
behaviour of the Riesz-potential term Iα ∗ |u|p [72], however the existence of
solutions in this supercritical regime is not yet known.
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3.3.2. Positivity of groundstates. For every u ∈ H1(RN ), one has A(|u|) =
A(u). Therefore if u is a groundstate of the Choquard equation (3.1), then
the function |u| is also a solution. By the regularity properties of solutions
(§3.3.1) and by the strong maximum principle for second-order differential
operators, the function u is continuous and |u| > 0; therefore any groundstate
u cannot vanish anywhere in RN and has thus constant sign on the whole RN
[151, proposition 5.1]. If the equation (3.1) is considered with complex valued
functions u, then u does not vanish and has constant phase [60, lemma 2.10].

3.3.3. Symmetry of groundstates and positive solutions. In the constructions
of a groundstate relying on a symmetrisation6 argument, the groundstate is
by design radially symmetric and nonincreasing [79; 92, lemma 2.7; 127; 143].
If u∗ is the symmetric decreasing rearrangement of the function u ∈ H1(RN ),
in view of the cases of equality in the Riesz–Sobolev convolution inequality
(A.6), A(u) = A(u∗) if and only if u is the translation of radially symmetric
and nonincreasing function [38; 127, lemma 3], and therefore any groundstate
is symmetric [127]. The approach works in fact better for Choquard problems
than for local problems, where only the much less conclusive equality cases of
the Pólya–Szegő inequality [36] are available.

Polarisations, also called two-point rearrangements [15,35], have been
used to prove the symmetry of groundstates for some local problems [17, 204].
The approach turns out to be even simpler for Choquard problems [151] (see
also [153]).

When α = 2, the symmetry of groundstates has also been proved by
showing that one of the extensions by even reflection of the restrictions of
the groundstate to two halfspaces separated by a given hyperplane is also a
groundstate, implying symmetry by a suitable unique continuation principle
[136].

The symmetry of positive solutions has also been studied by the moving
plane method [97]. For the Choquard equation, the symmetry of positive
solutions has been proved when the parameters of the equation and some
intermediate exponents satisfy a set of inequalities [139]; a sufficient condition
given for the symmetry of positive solutions is that p ≥ 2 and

[2, 2N
N−2 ] ∩ (p, pNα ) ∩ ( (2p−2)N

α+2 , (2p−1)N
α+2 ) ∩ [ (2p−1)N

N+α ,∞) 6= ∅. (3.7)
The question whether these conditions are always satisfied in the case where
symmetrisation and polarisations argument work has yet to be clarified. The
moving plane method has been applied also to other problems with a nonlocal
nonlinearity [52,83].

3.3.4. Decay of groundstates. The behaviour of a groundstate u to the ho-
mogeneous Choquard equation (3.1) has been studied in detail [151]: when
either p > 2 or p = 2 and α > N − 1, then the decay is exponential and there
exists c ∈ (0,∞), depending on u, such that

u(x) =
(
c+ o(1)

) e−|x|
|x|N−1

2
as |x| → ∞; (3.8)
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when p = 2 and α ∈ [N − 1, N), then the decay is a mild perturbation of the
previous one: there exists c ∈ (0,∞) such that

u(x) =
(
c+o(1)

) e−|x|
|x|N−1

2
exp

∫ |x|
ν

(
1−
√

1− νN−α

sN−α

)
ds as |x| → ∞, (3.9)

where

νN−α =
Γ(N−α2 )

Γ(α2 )πN/22α

∫
RN
|u|2 =

Γ(N−α2 )
Γ(α2 )πN/22α

(α+ 4−N)A(u); (3.10)

when finally p ∈ (1 + α
N , 2) the decay is polynomial and

u(x) =
(
1+o(1)

) 1
|x|

N−α
2−p

( Γ(N−α2 )
Γ(α2 )πN/22α

∫
RN
|u|p

) 1
2−p as |x| → ∞. (3.11)

Quite remarkably, the groundstates are always localised enough (in the sense
of (A.9)) so that

(
Iα ∗ |u|p

)
(x) =

(
Iα(x)

∫
RN
|u|p

)(
1 + o(1)

)
, as |x| → ∞; (3.12)

these asymptotic bounds coincide with the asymptotic bounds for supersolu-
tions [150].

3.3.5. Uniqueness and nondegeneracy. When α = 2 and p = 2, there exists
at most one radial positive solution to the Choquard equations [124,127,139,
200,207].

In general, the set of groundstates is known to be compact up to trans-
lations [60, proposition 2.14; 153, corollary 4.2].

When N = 3, α = 2 and p = 2, this groundstate is nondegenerate up to
translations [124,209], that is, the kernel of the linearised operator A′′(u) is
generated by the directional derivatives of the solution u: if ϕ ∈ H1(RN )

−∆ϕ+ ϕ = (p− 1)
(
Iα ∗ |u|p

)
|u|p−2ϕ+ p

(
Iα ∗ (|u|p−2uϕ)

)
|u|p−2u, (3.13)

then there exists ξ ∈ RN such that ϕ = ξ · ∇u.
The uniqueness and nondegeneracy were extended to the slightly su-

perquadratic case N = 3, α = 2 and p > 2 close to 2 [212].

Problem 2. Study the uniqueness and nondegeneracy of the positive radial
groundstate to (3.1) in the entire existence range p ∈ (N+α

N , N+α
N−2 ).

Note that for p < 2 the action functional A is not twice Fréchet–
differentiable and the notion of nondegeneracy in that case requires an inter-
pretation which takes into account the decay estimate (3.11).
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3.3.6. Pohožaev identity. If N ∈ N, α ∈ (0, N) and p > 1, any solution
u ∈ W 1,2(RN ) ∩ L

2Np
N+α (RN ) of the Choquard equation (3.1) such that u ∈

W 2,2
loc (RN ) ∩W 1, 2N

N+αp(RN ) satisfies the Pohožaev identity [60, lemma 2.1;
92, (56); 144, (2.8); 151, proposition 3.1; 153, theorem 3]

N − 2
2

∫
RN
|∇u|2 + N

2

∫
RN
|u|2 = N + α

2p

∫
RN

(
Iα ∗ |u|p

)
|u|p. (3.14)

The proof goes as in the local case [164,166] by testing the equation against
suitable cut-offs of the function x ∈ RN 7→ x · ∇u(x) ∈ R.

The global integrability and local regularity assumptions are satisfied
by any weak solution in the space H1(RN ) as soon as N−2

N+α ≤
1
p ≤

N
N+α

[153, theorem 2].

3.3.7. Numerical computations. In the case N = 3, α = 2 and p = 2, the
energy levels have been computed numerically for groundstates [177] and for
radial boundstates [27,147]. The relationship of these numerical computations
with formal computations [118] was not clear; the numerical computations
have been supported by new bounds [198].

3.4. Further equations
3.4.1. Nonhomogeneous potentials. The existence of solutions has been stud-
ied for Choquard equations (3.1) with p = 2 when the Riesz potential is
replaced by a more general interaction potential W : RN → [0,∞):

−∆u+ u =
(
W ∗ |u|2

)
u in RN . (3.15)

In the case where N = 3 and W is a Yukawa potential defined for
each x ∈ RN \ {0} by W (x) = exp(−|x|)/(4π|x|), which is the fundamental
solution of the linear operator −∆ + 1 on R3 and which is a special case
of the Bessel potential, the existence of solutions was proved by ordinary
differential equations methods [115]. More generally if N ≤ 5 and W = Bλ is
the modified Bessel potential, that is the Green function of the Helmholtz
operator (−∆ + λI)−1 with λ > 0, there exists a groundstate and infinitely
many radial solutions [225]; the assumption N ≥ 5 is sharp in view of a
Pohožaev identity [225, (2.2)]. For 3 ≤ N ≤ 5 and λ→ 0, the groundstates
of (3.15) converge (up to a subsequence) to the groundstate of the Choquard
equation (3.1) with α = 2 and p = 2, while for 1 ≤ N ≤ 3 and λ → ∞ the
groundstates of (3.15) converge to the groundstates of the local equation
−∆u+ u = u3 in RN [225, theorem 1.3].

When W ∈ Lq1(RN ) + Lq2(RN ) and W ≥ 0 solutions were constructed
by various variational methods [132,133,143].

3.4.2. Low dimensional Choquard equation. The case where the interaction
potential W is the Newtonian potential in the one- or two-dimensional space
is particularly interesting. Indeed one has then for x ∈ R, W (x) = c− |x|/2
or for x ∈ R2, W (x) = (c− log|x|)/(2π): the potential W changes sign and
moreover its negative part is unbounded. In particular, the action functional
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is not anymore well defined on the Sobolev space H1(RN ). An idea could be
to take the quantity(∫

RN
|∇u|2 + |u|2

) 1
2 +

(∫
RN

(
W ∗ |u|2

)
|u|2
) 1

4 (3.16)

as a norm [132]. Such ideas have been implemented successfully for a class
of Schrödinger–Poisson–Slater equation [179] (see also [145]). When W− is
not bounded, it can be observed that the quantity (3.16) is not a norm: large
enough translations of a fixed compactly supported smooth function do not
satisfy the triangle inequality.

By considering the subspace on which
∫
RN W−|u|

2 < ∞, the existence
and uniqueness of groundstates and the existence of bound states has been
proved when W is a low-dimensional Newtonian potential [54, 194, 195]. In
order to handle the absence of invariance under translation of the norm
on this restricted natural space, the problem is reduced to the radial case
by symmetrisation arguments. Solutions can also be constructed for such
problems by ordinary differential equation methods [55].

High energy solutions have also been constructed variationally [61]. The
construction required to manage the combination of a translation invariant
functional with a non-translation-invariant norm.

3.4.3. Constant magnetic field. When A : RN → RN is a skew-symmetric
linear map, the magnetic Choquard equation prescribes for u : RN → C

(−i∇+A)2u+ u =
(
Iα ∗ |u|p

)
|u|p−2u. (3.17)

This problem is invariant under the noncommutative group of phase rotations
defined for α ∈ C and |α| = 1 by the action u 7→ αu and magnetic translations
defined for h ∈ RN by the action

u 7−→
(
x 7→ u(x− h)e−iA(h)·(x−h/2)).

In particular the action functional A corresponding to the magnetic Choquard
equation (3.17) is invariant under a noncompact group which is locally com-
pact.

The existence of a groundstate has been proved in the three-dimensional
case N = 3, α = 2 and p = 2 [100, theorem 2.3]. If N−2

N+α <
1
p <

N
N+α and if

dim kerA 6= 1, then there exists infinitely many solutions [56, theorem 1.1].
The assumption on the magnetic potential A is satisfied if either the dimension
N is even or if dim kerA ≥ 3.

The asymptotics of the groundstate level have been studied when N =
3, α = 2 and p = 2 when the magnetic field curlA becomes large [81,
theorem 1.2].

3.4.4. General nonlinearity. The Choquard equation has also been studied
when the homogeneous nonlinearities |u|p and |u|p−2u is replaced by a more
general nonlinearity. If one wants to keep the variational structure, the equa-
tions writes then as

−∆u+ u =
(
Iα ∗ F (u)

)
F ′(u) in RN . (3.18)
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When N ≥ 3, if for each s ∈ R,

|sF ′(s)| ≤ C
(
|s|

N+α
N + |s|

N+α
N−2

)
,

lims→0 F (s)/|s|N+α
N = 0, lim|s|→∞ F (s)/|s|

N+α
N−2 = 0, and if there exists s0 ∈

R \ {0} such that F (s0) 6= 0, then the general nonlinear Choquard equation
(3.18) has a solution [153]. A similar results holds in the planar case N = 2
with possible exponential growth of the nonlinearity [18]. Solutions of the
corresponding normalised problem, that is, when the total mass

∫
RN |u|

2 is
prescribed and a Lagrange multiplier is allowed have also been constructed
[126].

This result is a counterpart for the Choquard equation of the classical
result of H. Berestycki and P.-L. Lions [26] (see also [25]), the assumptions are
similarly almost necessary. The proof uses a variational trick related to the
Pohožaev identity [109,111] and does not seem to work directly for a more
general potential W in place of the Riesz potential Iα.

Existence of solutions has also been proved for exponential nonlinearities,
under an Ambrosetti–Rabinowitz superlinearity assumption [3].

3.4.5. Local autonomous perturbation. The Choquard equation (3.1) can be
perturbed by a local nonlinearity

−∆u+ u =
(
Iα ∗ |u|p

)
|u|p−2u+ |u|q−2u in RN .

The existence of solutions has been proved when N = 3, 0 < α < 1, p = 2
and 4 ≤ q < 6 [49]. When N = 2, the Riesz potential Iα is replaced by
the two-dimensional Newtonian potential W defined for x ∈ R2 \ {0} by
W (x) = − log(|x|)/(2π), then the problem has been studied for p = 2 and
q > 2 [61].

3.4.6. Nonvariational case. Self-dual variational principles have allowed to
treat the nonvariational problem

−∆u+ u =
(
W ∗ |u|p

)
|u|q−2u in RN , (3.19)

whenW ∈ L1(R)N , 1 ≤ p < N
N−2 , 1 < q < N

N−2 and pq < 2 [96, theorem 12.5].

3.4.7. Pseudorelativistic and fractional Choquard equation. The pseudorela-
tivistic Choquard equation√

−∆ +m2 u+ µu =
(
I2 ∗ |u|2

)
u in R3 (3.20)

appears as a model of pseudo-relativistic boson stars in the mean-field limit
[89,131]. This equation and other fractional modifications of the Choquard
equation have been studied in [59, 63,66, 124,158], see also further references
therein.
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4. Nonautonomous equation
In this section we explore Choquard equations which are not invariant under
translations of the Euclidean space RN , due to the presence of a variable
electric potential or of a magnetic potential in the linear part of the equation.
This can also happen through a non translation-invariant modifications of the
nonlinear term.

4.1. Electric potential
Physical models in which particles are under the influence of an external
electric field, lead to study Choquard equations in the form

−∆u+ V u =
(
Iα ∗ |u|p

)
|u|p−2u in RN , (4.1)

where V ∈ L1
loc(RN ) is a non-constant electric potential.

4.1.1. Perturbation of a constant potential. P.–L. Lions [134, §3] has studied
the existence of solutions to problem (4.1) with p = 2 when the external
potential V is a perturbation of a constant potential, that is, for each x ∈ RN ,
V can be written as

V (x) = 1 + V0(x),
where V0 decays at infinity and satisfies some mild regularity assumptions, for
example V0 ∈ L

N
2 (RN ) + Lt(RN ) with N

2 ≤ t < +∞ if N ≥ 3. To construct
solutions of the equation (4.1), Lions has considered a maximisation problem

IV := sup
{∫

RN

(
Iα ∗ |u|2

)
|u|2 : u ∈ H1(RN ),

∫
RN

(
|∇u|2 + V |u|2

)
= 1
}
.

Up to multiplication by a constant, maximisers of I are solutions of the
Choquard equation (4.1). The associated limit problem at infinity

I∞ := sup
{∫

RN

(
Iα ∗ |u|2

)
|u|2 : u ∈ H1(RN ),

∫
RN

(
|∇u|2 + |u|2

)
= 1
}
,

is merely a reformulation of the minimisation of the Sobolev quotient (3.5)
associated to the autonomous Choquard equation, which for p = 2 admits a
minimiser if and only if (N − 4)+ < α < N .

As an applications of his concentration-compactness method, P.-L. Lions
has proved [134, theorem III.3] that if V0 6≡ 0 and if there exists ν > 0 such
that ∫

RN

(
|∇u|2 + V |u|2

)
≥ ν‖u‖2H1(RN ) for each u ∈ H1(RN ).

then every maximising sequence for I is relatively compact in H1(RN ) if and
only if

IV < I∞.
Similar results, as well as results on the existence of L2-constrained minimisers,
have been obtained for the Choquard equations

−∆u+ V u =
(
W ∗ |u|2

)
u in RN , (4.2)
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with a general, possibly sign–changing, convolution kernels W [134, theorems
III.1 and III.3]. Unlike E. Lieb’s approach [127], which relies on the symmetri-
sation techniques, P.-L. Lions’s results do not require any symmetry properties
of the potentials V and W .

Although P.-L. Lions has stated his results [134] for p = 2 and (N −
4)+ < α < N only, they can be extended to the same noncritical range
p ∈

(
N+α
N , N+α

(N−2)+

)
as in theorem 3.2. The endpoints of this interval require

separate consideration.

4.1.2. Lower and upper critical exponents. We have seen above in propo-
sition 3.1 that in the case of a constant potential V (x) ≡ 1, the action
functional A is a well defined continuously Fréchet-differentiable functional
on the Sobolev space H1(RN ) if and only if p ∈

[
N+α
N , N+α

(N−2)+

]
. However, as

a consequence of the Pohožaev identity (3.14), the autonomous Choquard
equation (3.1) with critical exponents p = N+α

N−2 and p = N+α
N does not have

any nontrivial solution in the Sobolev space H1(RN ). In these two critical
cases, it would be meaningless to study the nonautonomous equation (4.1) as
a perturbation of the autonomous equation (3.1).

The Choquard equation with the lower critical exponent,
−∆u+ V u =

(
Iα ∗ |u|

α
N +1)|u| αN−1u in RN , (4.3)

has been studied by the authors [154]. The exponent α
N + 1 is critical with

respect to the Hardy–Littlewood–Sobolev inequality (A.2), which can be
reformulated variationally as

J∞ = inf
{∫

RN
|u|2 : u ∈ L2(RN ),

∫
RN

(
Iα ∗ |u|

α
N +1)|u| αN +1 = 1

}
> 0.

This infimum J∞ is achieved if and only if

u(x) = C

(
λ

λ2 + |x− a|2

)N/2
, (4.4)

where C > 0 is a fixed constant, a ∈ RN and λ ∈ (0,∞) are parameters
[128, theorem 3.1; 129, theorem 4.3]. The presence of this nonlinear lower
critical exponent is a feature of the Choquard equation that does not appear
in its local counterpart the nonlinear Schrödinger equation.

The existence of nontrivial solutions for (4.3), can be obtained by con-
sidering the minimisation problem

JV = inf
{∫

RN

(
|∇u|2+V |u|2

)
: u ∈ H1(RN ),

∫
RN

(
Iα∗|u|

α
N +1)|u| αN +1 = 1

}
.

If JV > 0 then up to multiplication by a constant, minimisers of JV are
solutions of the Choquard equation (4.3). Direct substitution of minimisers of
the form (4.4) with λ→∞ into JV shows that if V ≡ 1, then

JV = J∞,
so that J∞ could indeed be seen as a limit problem at infinity for JV . The
form of minimisers in (4.4) suggests that a loss of compactness in JV may
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occur by translations and dilations at infinity. By a Brezis–Lieb type lemma
for Riesz potentials (3.6) and a concentration-compactness argument, it has
been shown that if V ∈ L∞(RN ), V ≥ 0 1 and lim|x|→∞ V (x) = 1 then every
minimising sequence for JV is relatively compact in H1(RN ) if and only if
[154, theorem 3 and proposition 5]

JV < J∞. (4.5)

If moreover

lim inf
|x|→∞

(
1− V (x)

)
|x|2 > N2(N − 2)

4(N + 1) (4.6)

then 0 < JV < J∞ and hence the Choquard equation (4.1) has a nontrivial
positive solution. Some necessary conditions on the potential V for the strict
inequality to take place (4.5) have been discussed.

The Choquard equation with the upper critical exponent is

−∆u+ V u =
(
Iα ∗ |u|

N+α
N−2

)
|u|

α−N+4
N−2 u in RN . (4.7)

The exponent N+α
N−2 is critical with respect to the Hardy–Littlewood–Sobolev

inequality in the form

J∞ = inf
{∫

RN
|∇u|2 : u ∈ D1(RN ),

∫
RN

(
Iα ∗ |u|

N+α
N−2

)
|u|

N+α
N−2 = 1

}
> 0.

Minimisers for J∞ are known explicitly [128, theorem 3.1; 129, theorem 4.3]].
Direct substitution of minimisers for J∞ into JV shows that JV = J∞,
provided that the potential V is positive on an open subset of RN , so the
condition JV < J∞ is no longer meaningful, and (4.7) is a Brezis–Nirenberg
[34] type problem.

Although (4.7) has not yet been studied in the Euclidean space RN ,
existence results for (4.7) on bounded domains Ω ⊂ RN have been recently
obtained [90, 157], as well as some perturbations by a local nonlinear term
[91]. We bring to the attention of the reader that other versions of the
Choquard equation can be defined on a bounded domain. For example, the
Riesz potential Iα could be replaced by (−∆)−α/2, where ∆ is the Laplacian
on Ω with Dirichlet boundary conditions. The physical and mathematical
relevance of the various possible integral kernels on a domain deserves some
study in the future.

Problem 3. Under which conditions on the potential V does (4.7) have a
positive solution?

Starting points could be the methods used to treat critical problems on
the Euclidean space in RN by either variational concentration-compactness
methods [22] or perturbation methods [9].

1This assumption was not stated explicitly in [154]
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4.1.3. Confining potentials. The action functional AV for equation (4.1) is
defined for u : RN → R by

AV (u) = 1
2

∫
RN

(
|∇u|2 + V |u|2

)
− 1

2p

∫
RN

(
Iα ∗ |u|p

)
|u|p. (4.8)

If we assume that V is a nonnegative confining external potential, that is, if
lim
|x|→∞

V (x) = +∞,

then the natural domain for the functional AV is the weighted Sobolev space
H1
V (RN ), which is the completion of the class C∞c (RN ) with respect to the

norm ‖u‖V :=
( ∫

RN |∇u|
2 + V |u|2

)1/2.
In the case of a confining potential V , the space H1

V (RN ) is compactly
embedded into L2(RN ); this simplifies considerably the analysis of the Palais–
Smale sequences for AV . The existence of a positive radially symmetric
groundstate solution for (4.1) with a radial confining potential V has been
studied when p = 2 [88]. When α = 2, see also [43]. The specific case of
harmonic potential V (x) = |x|2 and p ∈

(
N+α
N , N+α

N−2
)
has been studied in [80].

(Explicit formulas for solutions with a quadratic external potential with a
quadratic nonlocal potential (corresponding formally to α = −2) have been
given [140].)

Strongly enough confining potentials even allow to enlarge the admis-
sibility range for the nonlinearity exponent p. Although the well–posedness
interval of proposition 3.1 is no longer valid for AV , the Stein–Weiss weighted
Hardy–Littlewood–Sobolev type inequality (A.4) has been used to prove for
example, that, if V is confining p ∈ (1, N+α

N ] and if

lim
|x|→∞

V (x)
|x|

N+α
p −N

= +∞, (4.9)

then the functional AV is well defined and continuously Fréchet–differentiable
on H1

V (RN ). This has allowed to prove existence of groundstates if either
N+α
N < p N+α

(N−2)+
and V is confining, or 1 < p < N+α

N and (4.9) holds [205].
This result is a counterpart of the classical result for the nonlinear Schrödinger
equation [170, theorem 1.7].

4.1.4. Periodic potentials. The local compactness of Palais–Smale sequences
can be also obtained relatively easy when the potential V is periodic. The
existence of a nontrivial weak solution for Choquard equations

−∆u+ V u =
(
W ∗ F (u)

)
F ′(u) in RN , (4.10)

with a positive periodic electric potential V and under a general assumptions
on the even convolution kernel W ≥ 0 and nonlinearity F has been proved by
a Mountain Pass type argument [1, theorem 2.1]. If, in addition, the function
F is even, then there exists infinitely many geometrically distinct solutions.

The situation is more involved when the periodic potential V is allowed
to change sign. In this case the operator −∆ + V may have some essential
spectrum below 0. As a consequence, the quadratic part of the action functional
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for (4.10) is strongly indefinite and the analysis of Palais–Smale sequences
becomes much more delicate. The existence of at least one nontrivial solution
for (4.1) with a sign changing periodic V in the case N = 3, α = 2, p = 2
has been proved under the assumption that 0 is in the gap of the spectrum
of the operator −∆ + V [37]. The result has been extended to solutions of
the problem (4.10) and multiplicity results have been established when the
nonlinearity F is an even function [1, theorem 2.2].

Choquard equations with mixed potentials V which are periodic with
respect to some dimensions and confining with respect to the others have
been considered [188].

In low dimensions, the existence of solutions to the planar logarithmic
Choquard equation

−∆u+ V u+
(
log |x| ∗ |u|2

)
u = c|u|p−2u in R2,

under a positive periodic potential V and with c ≥ 0 has been obtained [61].
In the one-dimensional case, periodic solutions have been constructed

for for the periodic problem in R [78].

4.1.5. Decaying potentials. If V ≡ 0 or if lim|x|→∞ V (x) = 0 then 0 belongs
to the essential spectrum for −∆ + V . The space HV (RN ) can be formally
defined as before, although some care is needed in lower dimensions: if V ≡ 0
and N ∈ {1, 2}, then the space H1

V (RN ) is not continuously embedded into
the space of distributions D′(RN ) (see for example [163, p.66]). A Hardy type
inequality [148, lemma 6.1] ensures that the space H1

V (RN ) is well defined and
continuously embedded into L2

loc(RN ) in dimensions N = 1, 2, provided that
V (x) > 0 on an open subset of RN . However, if V ≡ 0 or if V is compactly
supported, the action functional AV is typically not well defined nor Fréchet-
differentiable on HV (RN ). This difficulty is not only technical. Liouville type
theorems show that Choquard equations with fast decaying potentials indeed
do not have positive solutions or even positive super-solutions for certain
ranges of parameters.

4.1.6. Liouville theorems. Nonlinear Liouville theorems state the nonexistence
of positive solutions of elliptic equations or inequalities. A typical nonlinear
Liouville theorem in the local case says that the inequality

−∆u ≥ up in RN \Bρ

admits a positive classical solution if and only if p > N
N−2 . This result goes

back to J. Serrin in the 1970s (see [167, theorem 8.4] for a proof and references).
The value of the critical exponent N

N−2 does not depend on the value of ρ > 0.
The statement is robust: it still holds if we perturb −∆ by a sufficiently weak
potential V , for example a potential that satisfies the bound |V (x)| ≤ c|x|−2−δ,
for some δ > 0.

Liouville type theorems for the Choquard inequalities

−∆u+ V u ≥
(
Iα ∗ up

)
uq in RN \Bρ, (4.11)
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have been obtained [150]. We assume in (4.11) that p > 0 and q ∈ R, and we
observe that equation (4.12) has no variational structure, unless q = p − 1.
By Iα ∗ f in a domain Ω ⊂ RN we understand the convolution Iα ∗ (χΩf) in
RN , restricted to Ω. Note that the concept of a solution to (4.11) in a domain
is nonlocal. In particular, if u ≥ 0 is a solution of Choquard equation

−∆u+ V u =
(
Iα ∗ up

)
uq in RN , (4.12)

then u is only a super-solution of the same equation in a proper subdomain
Ω ( RN . From this point of view, consideration of inequalities (4.11) is quite
natural. Generally speaking, it is desirable to obtain nonexistence results for
as wide as possible class of solutions. Throughout this section by a solution of
(4.11) we understand a nonnegative function u ∈ Lp(RN \Bρ, |x|−(N−α) dx)∩
L1

loc(RN \Bρ, V (x) dx) which satisfies (4.11) in the distributional sense. Here
we must assume that u ∈ Lp(RN \Bρ, |x|−(N−α) dx) in order to have Iα ∗up <
+∞ almost everywhere in RN \B1, see (A.1).

The nonexistence arguments were based on a nonlocal positivity principle
[150, proposition 3.2], which claims that if u > 0 is a distributional solution of
(4.11) with arbitrary, possibly sign–changing potentials V ∈ L1

loc(RN ), then
uq−1 ∈ L1

loc(RN \ Bρ) and for all R > ρ and for all ϕ ∈ C∞c (B4R \ Bρ) the
following inequality holds∫

RN\Bρ

(
|∇ϕ|2 + V (x)ϕ2) ≥ Cα

RN−α

(∫
B4R\Bρ

up
)(∫

RN\Bρ
uq−1ϕ2

)
. (4.13)

This statement shall be seen as a nonlocal version of the Agmon–Allegretto–
Piepenbrink positivity principle [64, theorem 2.12]. Indeed, if u is a positive
solution of (4.11) then (4.13) claims that the quadratic form associated to the
Schrödinger operator −∆ +V in RN \Bρ is nonnegative definite and admits a
lower bound (in the right hand side of (4.13)), which encodes the information
about the order of the Riesz potential Iα and the decay of the function u.

To give a taste of the techniques of nonexistence proofs, consider the
case of the autonomous Choquard inequality

−∆u ≥
(
Iα ∗ up

)
uq in RN \Bρ. (4.14)

Assume that u ≥ 0 is a solution of (4.14). First of all, note that then u is a
superharmonic function, that is, −∆u ≥ 0 in RN \Bρ. If u 6≡ 0, by comparison
with the harmonic function |x|−(N−2) we obtain a lower bound

u(x) ≥ c|x|−(N−2), x ∈ RN \B2ρ. (4.15)
If p ≤ α

N−2 , (4.15) means that u 6∈ Lp(RN , |x|−(N−α) dx). We conclude that
u ≡ 0, or otherwise Iα ∗ up ≡ +∞. This establishes the first nonexistence
régime for (4.14).

When p > α
N−2 we will employ (4.13) with the family of test function

ϕR(|x|) = ϕ
( |x|
R

)
, where ϕ ∈ C∞c (B4 \{0}) and ϕ|[1,2] = 1. Then for all R� ρ

we deduce from (4.13) a so-called master inequality

CRN−2 ≥ R−(N−α)
(∫

B2R\Bρ
up
)(∫

B2R\BR
uq−1

)
. (4.16)
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Combined with the Cauchy–Schwarz inequality and with the lower bound
(4.15), for p+ q ≥ 1 and all R� ρ this leads to the estimate

CR2N−2−α ≥
(∫

B2R\Bρ
up
)(∫

B2R\BR
uq−1

)
≥
(∫

B2R\BR
u
p+q−1

2

)2
≥ cR2N−(N−2)(p+q−1).

Comparing the left and right hand sides we conclude that u ≡ 0 provided
that 1 ≤ p+ q < N+α

N−2 . Additional considerations allow to conclude that the
critical line p+ q = N+α

N−2 also belongs to the same nonexistence régime, see
[150, proposition 4.6].

The entire analysis of the (p, q)–plane for different sets of parameters is
too long to reproduce here. The final results are better represented by two
Liouville maps of Choquard inequality (4.14), rather than by conventional
theorem statements, see Figure 4.1.6.

1

α
N−2

α+N
N−2

α+N
N−2

N
N−α−2

α
N−2

u(x) & |x|−(N−2)

u(x) & |x|−N−2−α
1−q

p

q

α
N−2

α+N
N−2

α+N
N−2

α
N−2

u(x) & |x|−(N−2)

p

q

Figure 1. Liouville map: region of existence of supersolution
when α < N − 2 (left) and α ≥ N − 2 (right), and maximal
decay rates of supersolutions

We emphasise that all the nonexistence régimes on figure 4.1.6 are
obtained using only the master inequality (4.16) and elementary bounds on
positive superharmonic functions, although the use of (4.16) varies significantly
in different situations. The Liouville maps on figure 4.1.6 are sharp, which is
confirmed by constructing explicit radial solutions for Choquard inequality
(4.14), with the optimal decay rates indicated on figure 4.1.6. For q > α

N−2 the
decay is controlled by the linear operator −∆. For q < α

N−2 and α < N − 2
the decay is governed by the nonlinear terms and becomes sensitive to the
exponent q. The decay bound u ≥ c|x|−

N−2−α
1−q on figure 4.1.6 is optimal and

cannot be improved. Optimal decay in the threshold case q = α
N−2 is even

more unusual and for α < N − 2 includes a logarithmic correction of the
previous bound, see [150, proposition 4.11].

For the readers’ convenience we now summarise nonexistence results in
the form of a conventional theorem, but only in the variational case q = p− 1,
although it does not add any additional information to Liouville maps of
figure 4.1.6.
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Theorem 4.1. Let N ≥ 3, 0 < α < N , p > 0, and ρ > 0. Equation

−∆u ≥
(
Iα ∗ up

)
up−1 in RN \Bρ (4.17)

has a nonnegative nontrivial solution in RN \ B̄ρ if and only if:

p >
1
2

2N − 2 + α

N − 2 if 0 < α ≤ 2,

p >
2N

2N − α− 2 if 2 < α < N − 2,

p ≥ 2 if 2 < α = N − 2,

p > 1 + α

N − 2 if max{2, N − 2} < α < N.

So far we discussed only autonomous Choquard inequality (4.14), but
Liouville results on Figure 4.1.6 remain exactly the same for Choquard
equations (4.11) with fast decaying potentials

V (x) = c

|x|γ
, γ > 2,

see [150, theorem 8]. The same should remain true for any potential V (x) with
the property that the Green functions of the operator −∆ + V is equivalent
to |x− y|−(N−2).

For the Hardy type potentials

V (x) = µ

|x|2

with µ > − (N−2)2

4 the Liouville properties remain qualitatively the same as
on figure 4.1.6, but the values of critical exponents now depend explicitly on
µ, see [150, theorem 9].

In the case of slowly decaying potentials

V (x) = c

|x|γ
, with γ < 2,

which includes the constant potential V (x) = c, the results are different. The
primary reason for that is that the Green function of the operator −∆ + V
decays exponentially, which affects significantly all the previous arguments.
Here we only emphasise the fact that while for p ≥ 2 the admissible decay
of supersolutions to (4.14) with slowly decaying potentials is exponential, for
p < 2 the decay rate is polynomial as in §3.3.4 above. See [150, theorems 2-6]
for details.

4.1.7. Singular perturbations and semiclassical limit. From the physical pro-
spective it is particularly important to study Choquard equations

− ε2∆u+ V (x)u = ε−α(Iα ∗ up)up−1 in RN , (4.18)

where ε > 0 is a small parameter, typically related to the Planck constant.
Solutions of equation (4.18) as ε→ 0 are called semi-classical. Physically, it
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is expected that in the semi-classical limit ε → 0 there should be a corre-
spondence between solutions of the equation (4.18) and critical points of the
potential V , which governs the classical dynamics.

Mathematically, this can be justified by an observation that if uε is a
solution of (4.18) and a ∈ RN , then the function vε(y) = uε(a + εy) solves
the rescaled equation

−∆vε + V (a+ εy)vε = (Iα ∗ vpε )vqε in RN . (4.19)

If a ∈ RN is a critical point of the potential V and V (a) > 0 then the
expectation is that vε should converge to a solution v0 of the autonomous
limit equation

−∆v0 + V (a)v0 = (Iα ∗ vp0)vp−1
0 in RN . (4.20)

If v0 is a positive groundstate of (4.20), constructed in theorem 3.2, then
solution uε(x) ≈ v0

(
x−a
ε

)
of the original equation should concentrate to a, in

the sense that uε(x) → 0 as ε → 0 for x 6= a and lim infε→0 uε(a) > 0. For
the local nonlinear Schrödinger equation mathematical results of this type go
back to Floer and Weinstein [82] and by now well-understood. An additional
scaling parameter ε−α, which appears in Choquard equation (4.18) is required
to ensure scaling invariance of the nonlocal problem.

First results on the existence of semiclassical solutions to Choquard
equations of type (4.18) have appeared in the case N = 3, α = 2 and p = 2,
under the assumption that V ∈ C2(R3) and infx∈R3 V (x) > 0 [209]. Using
a Lyapunov–Schmidt reduction method, the authors have proved that given
non-degenerate critical points a1, . . . , am of the potential V , there exist a
family vε of multibump positive solutions which concentrate to that points.
Related results with a periodic external potential V have also appeared
[138,159]. The existence of semiclassical solutions has been proved in the case
lim inf |x|→∞ V (x)|x|γ > 0 with γ ∈ [0, 1) [185].

The basis for the Lyapunov–Schmidt type perturbation argument is the
nondegeneracy of the groundstate of the limit equation (4.20), which at present
is not known beyond the slightly superquadratic case N = 3, α = 2 and
p > 2 close to 2 [212], as already discussed in §3.3.5. An alternative approach
to construct semiclassical solutions which does not rely on nondegeneracy
are variational penalisation method. A penalisation of the Lp norm [41] was
used to construct semiclassical multibump solutions to Choquard equations
concentrating around minima V , possibly in the presence of a magnetic field
[60].

The existence of a global groundstate has been proved in the semiclassical
limit when p ≥ 2, V (x) = o(|x|γ) for some γ > 0 and V stays away from
0 suitably [215]. This results has been extended to similar problems in the
presence of a magnetic field [196, 216] and to corresponding p–Laplacian
problems [196,216].
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Except of [185], all of these results were obtained under the assumption
lim inf |x|→∞ V (x) > 0. A penalisation method which allows to handle poten-
tials without any restrictions on the decay (or growth) at infinity in the spirit
of M. del Pino and P. Felmer [68] (see also [29,148]) was introduced in [152].

To clarify the issues related to the decay of the potential V , we consider
the case when V ≥ 0 and the support of V is a compact subset of RN with
N ≥ 3. This is of course the worst possible scenario from the point of view of
the decay of V . The rescaled semiclassical solutions vε of (4.19) then must
satisfy for some ρ > 0 the inequality at infinity,

−∆vε ≥
(
Iα ∗ vpε

)
vp−1
ε in RN \Bρ/ε. (4.21)

At the same time we expect vε to converge to the groundstates of the limit
equation (4.20). While groundstates of (4.20) exist for p ∈

(
N+α
N , N+α

N−2
)
, the

existence of solutions to the inequality 4.21 is restricted by the Liouville
theorem 4.1. The admissible range for the existence of semi-classical solutions
of (4.18) is then given by the intersection of both regimes.

The penalised nonlinearity gε : RN × R→ R defined in [152] as

gε(x, s) := χΛ(x)sp−1
+ + χRN\Λ(x) min

(
sp−1

+ , Hε(x)
)
.

where Λ ⊂ RN is a potential well around the local minimum point a of the
potential V , and Hε is a penalisation potential, which penalises large values
of s outside Λ. In case lim inf |x|→∞ V (x) > 0 the penalisation Hε is usually
chosen as a positive constant. In [152] the penalisation Hε is constructed as

Hε(x) ≈ cεU(x)p−1,

where cε > 0 is a suitable constant and U is a positive solution of inequality
(4.21), provided that such a solution exists. With such a choice of Hε it is
possible to show using the Stein–Weiss convolution inequality (A.4), that the
penalised functional

Jε(u) = 1
2

∫
RN

(
ε2|∇u|2 + V (x)|u|2

)
− p

2εα

∫
RN

∣∣Iα
2
∗Gε(u)

∣∣2,
where Gε(x, s) =

∫ s
0 gε(x, t) dt, is well defined and satisfies all the assumptions

of the mountain-pass lemma in the space H1
V (RN ). Note that the action

functional (3.2) of the limit problem (4.20) is defined in H1(R) 6= H1
V (RN ), so

the limit and perturbed problems are posed in the different function spaces!
A concentration analysis combined with the use of a nonlocal comparison

principle allow to conclude in the case p ≥ 2 that for ε > 0 close enough to
0, the mountain-pass critical point of the functional Jε solves the original
problem (4.18) and concentrates to a local minimum inside the set Λ. The case
p < 2 remains open and we are not aware of any results about the existence
of semiclassical solutions for (4.18), although p < 2 includes some admissible
regimes. For p ≥ 2 the results in [152] are optimal from the point of view of
the assumption on the admissible range of p and decay of V .

Theorem 4.2 ([152]). Let α ∈ ((N − 4)+, N) and V ∈ C(RN ; [0,∞)).
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i) Assume that p = 2 and either α < N − 2 or
inf
x∈RN

V (x)
(
1 + |x|N−α

)
> 0. (4.22)

ii) Assume that p ∈ (2, N+α
(N−2)+

) and either p > 1 + max(α,1+α
2 )

(N−2)+
or

lim inf
|x|→∞

V (x)|x|2 > 0.

If Λ ⊂ RN is an open bounded set such that
0 < inf

Λ
V < inf

∂Λ
V,

then the equation (4.18) has a family of positive solutions (uε) such that for a
family of points (aε) ⊂ Λ and for every ρ > 0, limε→0 V (aε) = infΛ V and

lim inf
ε→0

ε−N
∫
Bερ(aε)

|uε|2 > 0, lim
R→∞
ε→0

‖uε‖L∞(RN\BεR(aε)) = 0.

The global positivity assumption in (4.22) cannot be removed. In fact,
an interesting essentially nonlocal phenomenon occurs in the range α > N − 2
for p = 2. If the potential V (a0) = o(|x− a0|)

4
α+2−N−2 at some a0 ∈ RN then

for any solution uε of (4.18) and for any compact set K ⊂ RN \ {a0},∫
K

u2
ε = o(εN ) as ε→ 0.

In particular, equation (4.18) can not have solutions that concentrates inside
Λ. The nonlocal interaction with a zero of V forces the rescaled solution to
vanish everywhere outside this zero. An even more delicate behaviour occurs
in the case α = N − 2, see [152, theorems 4 and 5].

In the planar case N = 2, semiclassical solutions have been constructed
for an exponential nonhomogeneous nonlinearity [3]. For N ≥ 3, similar results
have been obtained for a general homogeneous nonlinearity as in §3.4.4 [217],
following a strategy of [39,40] for local problems. Semiclassical solutions for
Choquard equations involving p–Laplacian are studied in [6, 7]

Problem 4. Construct a concentrating family of solutions of (4.18) in the
subquadratic case p ∈ (N+α

N , 2).

Some existence results in this direction have been obtained when the
external potentials V is confining [215].

4.1.8. Strong electric field régime. When N−2
N+α <

1
p <

N
N+α , the problem

−∆u+ (1 + µV0)u =
(
Iα ∗ |u|p

)
|u|p−2u,

admits solutions for µ > 0 sufficiently large if the function V0 is nonnegative,
vanishes on an open set and has a positive sublevel set of finite measure; the
solutions converge as µ → ∞ to solutions of a Choquard problem on the
zero set of the function V0 [137]. When the zero set of the function V0 has k
connected components, then the problem has at least 2k−1 distinct nontrivial
solutions when µ is large enough [5].
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4.1.9. L2–constrained groundstates and symmetry breaking. In [13] the au-
thors have considered the constrained minimisation problem

Mλ := inf
{
AV (u) : u ∈ H1(RN ),

∫
RN

u2 = λ
}
,

in the case where V ∈ C(RN ) is a bounded external potential such that the
bottom of the spectrum of −∆ + V is an eigenvalue. It is proved that if
λ > 0 is sufficiently small then the minimisation problem Mλ admits a unique
positive minimiser, while for large λ minimisers of Mλ concentrate around
local minima of V . In the case when there are several equivalent up to the
symmetry local minima of V this means that a minimiser has to concentrate
to one of them. As a consequence, the uniqueness and underlying symmetry
of the minimisers (wit respect to the symmetries of V ) can not be preserved.

Related issues in the case of a confining potential V have been discussed
in [67,219].

4.2. Magnetic potential
For a given magnetic potential A : RN → RN and an electric potential
V : RN → R, the Choquard equation with a variable electromagnetic field
imposes the function u : RN → C to satisfy

(−i∇+A)2u+ V u =
(
Iα ∗ |u|p

)
|u|p−2u in RN . (4.23)

The constant magnetic fields and vanishing electric field case was reviewed in
§3.4.3 above.

The existence of groundstates has been proved when N = 3, p = 2 and
α = 2 under trapping conditions, that is, when V is a reasonably bounded
and localised perturbation of a constant and the groundstate level satisfies a
strict inequality with a problem at infinity [100, theorem 2.4].

When the potentials V and A are compatible with the action of a group
of isometries on RN , infinitely many solutions have been constructed when all
the orbits of points in RN \{0} are infinite [56, theorem 1.1] and the existence
of several solutions has been proved under weaker assumption on the orbits
but more stringent assumptions on the magnetic potential A, implying its
decay at infinity [56, theorem 1.2; 181]

The study of the magnetic Choquard equation had been initiated earlier
by S. Cingolani, S. Secchi and M. Squassina [60], with the analysis of the
semi-classical problem

(−iε∇+A)2u+ V u =
(
Iα ∗ |u|p

)
|u|p−2u in RN .

For V positive, solutions for ε > 0 small enough concentrating around finitely
many local minimum points as ε→ 0 have been constructed [57, theorem 1.1].
Under symmetry assumptions on the electric potential V and the magnetic
potential A, multiple families of solutions concentrating around some points
have been constructed [181,216]. Multiple concentrating families of solutions
exist when α > N − 2 with a nonhomogeneous nonlinearity [4]. When V
achieves 0 as a minimum at one point of RN , solutions concentrating around
that point have been constructed [216].
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Problem 5. Understand the semi-classical limit in the strong magnetic field
régime A ' ε−1, as it has been performed for the nonlinear Schrödinger
equation [70].

4.3. Nonlinear perturbation and other equations
4.3.1. Source term. The Choquard equation

−∆u+ V u =
(
Iα ∗ |u|p

)
|u|p−2u+ µf(x) in R3, (4.24)

with N = 3, α = 2, p = 2, V ≡ 1 and a source term f ∈ H−1(R3) has been
studied in [119]: for some µ∗∗ ≥ µ∗ > 0 equation (4.24) possesses at least
two positive solutions for µ ∈ (0, µ∗) and no positive solution for µ > µ∗∗, in
accordance with an earlier result for local nonlinear equations on bounded
domains [197] (see also [220–222]). A similar result in the case of a confining
potential V for N ≥ 3, α ∈ (0, N) and N−2

N+α <
1
p <

N
N+α has been obtained

[213].

4.3.2. Nonautonomous nonlocal term. The existence of groundstates for the
nonautonomous equation

−∆u+ u =
(
Iα ∗K|u|p

)
K|u|p−2u,

where K ∈ C(RN ) is a nonnegative nonlinear potential and N−2
N+α <

1
p <

N
N+α

has been studied [206]. Other nonautonomous modifications of the nonlocal
term have been considered [42,223].

4.3.3. Local nonautonomous perturbation. A number of authors considered
nonautonomous perturbation of the Choquard equation of the type

−∆u+ V u =
(
I2 ∗K|u|p

)
K|u|p−2u+ a|u|q−2u in R3. (4.25)

The corresponding autonomous case was discussed in §3.4.5.
In [202], the case p = 2, q ∈ (2, 6) and V ≡ 1 has been considered. The

potentialsK, a : R3 → R are positive functions such thatK(x)−K∞ ∈ L2(R3)
and a(x) − a∞ ∈ L

6
6−q (R3), for some positive constants K∞, a∞. Under

additional structural conditions onK and a, [202] has established the existence
of a positive groundstate for (4.25). In [203], under additional assumption
q = 3 the existence of a positive bound state has been proved in the situation
when groundstates may not exists. The paper also addresses the uniqueness
and nondegeneracy of the radial groundstate of the associated autonomous
limit problem

−∆u+ u =
(
I2 ∗K∞|u|2

)
K∞u+ a∞|u|u in R3,

see [203, proposition 3.6 and theorem 3.7].
Nonautonomous Choquard equations of type (4.25) with p = 2, constant

potentials V and K and a general local nonlinearity f(x, u) superlinear
subcritical type instead of a|u|q−2u have been considered in [112, 156] (for
related systems of equations, see [105, 106]). Equation (4.25) with a general p
and q on bounded domains has been studied in [14].
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Equation (4.25) with p = 2, q ∈ (3, 6), constant potentials K > 0 and
a < 0, and a periodic potential V such that 0 is in a spectral gap of −∆ + V
has been studied in [50]. The case q = 10

3 is related to a Hartree-type model
for crystals [47,121]. The existence of a nontrivial solution has been proved in
[50] for all sufficiently small K using a linking theorem.

Groundstates of the equation (4.25) when K is a perturbation of |x|−β
with β ∈ (0, 2− N−α

2 ) and p = 2 in RN with N ≥ 3 have been constructed
[101].

Appendix A. About the Riesz potentials
The Riesz potential have been introduced by M.Riesz in the 1930s [173] and
was systematically studied in his fundamental paper [174]. An exposition on
basic functional–analytic properties of the Riesz potentials could be found
in E. Stein’s monograph [189, §5.1] and also in many places in [129]. A
systematic potential theoretic study of the Riesz potentials is presented in
the monographs by N. Landkof [120] (see also N. duPlessis [77, chapter 3] for
a shorter exposition).

A.1. Definition and semigroup property
The Riesz potential Iα of order α ∈ (0, N) on the Euclidean space RN of
dimension N ≥ 1 is defined for each x ∈ RN \ {0} by

Iα(x) = Aα
|x|N−α

, where Aα =
Γ(N−α2 )

Γ(α2 )πN/22α
.

The choice of normalisation constant Aα ensures the semigroup property

Iα ∗ Iβ = Iα+β , ∀α, β > 0 such that α+ β < N ,

and, for N ≥ 3, the property

−∆Iα = Iα−2, ∀α ∈ (2, N).

In addition, −∆I2 = δ, where δ is the Dirac delta function, that is I2 is the
Green function of the Laplacian −∆ on RN . More generally, Iα could be
interpreted as the inverse of the fractional Laplacian operator (−∆)α/2. See
e.g. [120, §I.1; 174; 189, §V.1.1] for the study of these fundamental properties
of the Riesz potentials.

When α → 0, Iα → δ, in the vague sense [120, p. 46]. When α → N ,
Iα ∗ f → AN log

( 1
|x|
)
∗ f for every f ∈ C∞c (RN ) such that

∫
RN f = 0, where

AN = limα→N (N − α)Aα = 1/
(
Γ(d/2)πd/22d−1) [120, p. 50].

The definition of the Riesz potentials as well as the semigroup property
could be extended from α ∈ (0, N) to arbitrary complex α with Re(α) > 0
and α−N

2 6∈ N∪{0}, however then the convolution Iα ∗f should be interpreted
in the distributional sense, see for example [120] or [182, chapter 2] for a more
recent exposition. In this survey we always assume that α ∈ (0, N) and the
convolution Iα ∗ f is understood in the sense of the Lebesgue integral.
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A.2. Lp–estimates
The Riesz potential of order α ∈ (0, N) of a function f ∈ L1

loc(RN ) is defined
as

Iα ∗ f(x) := Aα

∫
RN

f(y)
|x− y|N−α

dy.

The latter integral converges in the classical Lebesgue sense for a.e. x ∈ RN if
and only if

f ∈ L1(RN , (1 + |x|)−(N−α)dx
)
, (A.1)

Moreover, if (A.1) does not hold then Iα ∗ |f | = +∞ everywhere in RN
[120, p.61-62].

The Riesz potential Iα is well–defined as an operator on the whole space
Lq(RN ) if and only if q ∈ [1, Nα ). The Hardy–Littlewood–Sobolev inequality
[107, theorem 382; 187] (see also [129, theorem 4.3; 189, theorem V.1]), which
states that if q ∈ (1,∞) and if α < N

q , then for every f ∈ Lq(RN ), we have
Iα ∗ f ∈ L

Nq
N−αq (RN ) and(∫

RN

∣∣Iα ∗ f ∣∣ Nq
N−αq

) 1
q−

α
N ≤ CN,α,q

(∫
RN
|f |q

) 1
q

. (A.2)

If q = 2N
N+α , then the optimal constant is given by [84; 128; 129, theorem 4.3]

CN,α,q =
Γ(N−α2 )

2απα/2Γ(N+α
2 )

(Γ(N2 )
Γ(N)

) α
N

. (A.3)

The inequality (A.2) implies that if q ∈ (1,∞), α < N
q and 1

r = 1
q −

α
N , then

Iα : Lq(RN )→ Lr(RN )

is a bounded linear operator. If f ∈ L1(RN ) then in general Iα∗f 6∈ L
N

N−α (RN )
(see for example [189, §V.1.2]), however

Iα : L1(RN )→ Lr
(
RN , (1 + |x|)−λdx

)
is a bounded operator for any r ∈ [1, N

N−α ) and λ > N − r(N −α) [182, p. 38].
When q ≥ N

α then Iα is not well defined on the whole space Lq(RN ). However,
if f ∈ LN

α (RN ) and we additionally assume that Iα ∗ f is almost everywhere
finite on RN then Iα ∗ f is a function of bounded mean oscillation (BMO)
[155, theorem 7; 191, theorem 2]. If Iα ∗ f is almost everywhere finite on RN ,
f ∈ Lq(RN ) and N

q < α < N
q + 1 then Iα ∗ f is Hölder continuous of order

α− N
q [76, theorem 2].
These mapping properties of the Riesz potentials are important not

only as a tool to control the domain of definition of the action functional of
the Choquard equation but also in the study of the regularity properties of
solutions by bootstrap type procedures (see §3.3.1).

The weighted version of the Hardy–Littlewood–Sobolev inequality due
to E. Stein and G. Weiss [190] states that if q ∈ (1,∞), s < N(1− 1

q ), t < N
r ,
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s+ t ≥ 0, q ≤ r < +∞ and 1
r = 1

q + s+t−α
N then for any f ∈ Lq(RN , |x|sq dx),(∫

RN

∣∣Iα ∗ f(x)
∣∣r|x|−rtdx) 1

r ≤ C
(∫

RN
|f(x)|q|x|sqdx

) 1
q

. (A.4)

When r = q the inequality is also known as the Hardy–Rellich inequality.
Optimal constants for (A.4) are known in some special cases, see [19, 20, 108,
149,183,214].

B. Rubin [176] has proved that for radial functions f ∈ Lqrad(RN , |x|sq dx)
the same inequality (A.4) holds for a wider range s+ t ≥ −(N − 1)

( 1
q −

1
r

)
(see also [69,75]). Weighted inequalities of Stein–Weiss type become important
in the analysis of nonautonomous Choquard equations with confining (§4.1.3)
or decaying (§4.1.7) potentials.

A.3. Energy properties
The Riesz potential Iα naturally induces the quadratic form Dα defined by

Dα(f, g) := Aα

∫∫
RN×RN

f(x)g(y)
|x− y|N−α

dy dx.

A direct consequence of the semigroup property (A.1) is the inequality

Dα(f, f) =
∫
RN

(
Iα ∗ f)f =

∫
RN

∣∣Iα/2 ∗ f |2 ≥ 0, (A.5)

valid for all functions f such that Dα(|f |, |f |) < +∞. Moreover, Dα(f, f) = 0
if and only if f ≡ 0 [120, theorem 1.15].

The Riesz–Sobolev rearrangement inequality states that for any two
nonnegative functions f, g such that D(f, g) < +∞,

Dα(f∗, g∗) ≤ Dα(f, f), (A.6)

where f∗ denotes the symmetric decreasing rearrangement of f . It was first
established by F.Riesz [172] in one dimension, then S. L. Sobolev [187] extended
the result to RN (see also [31]). The equality in (A.6) occurs if and only if
f is the translation of radially symmetric and nonincreasing function [38;
127, lemma 3; 129, §3.7–3.9]. Inequality (A.6) is fundamental in the study of
radial symmetry of groundstates of Choquard equation (§3.3.3).

A.4. Positivity and decay estimates
When the function f ∈ L1

loc(RN ) is nonnegative, an elementary estimate
shows that for every x ∈ RN ,

Iα ∗ f(x) ≥ Aα
RN−α

∫
BR(x)

f(y) dy.

In particular, if the function f is positive on a set of positive measure of RN ,
then Iα ∗ f is everywhere strictly positive on RN . Similarly, for each x ∈ RN
one can estimate

Iα ∗ f(x) ≥ Aα
(2|x|)N−α

∫
B2|x|(x)

f(y) dy ≥ c

|x|N−α
, (A.7)
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that is Iα ∗ f can not decay faster than Iα at infinity, even if the function f
is compactly supported.

These decay properties of the Riesz potential are essential for the study
of asymptotic decay of groundstates of Choquard equations (§3.3.4) and
Liouville’s theorems (§4.1.6). To illustrate the decay of the Riesz potentials
at infinity, assume that the pointwise bound

lim sup
|x|→∞

f(x)|x|γ < +∞

holds. Then, by a direct computation [150, lemma A.1],
lim sup
|x|→∞

(Iα ∗ f)(x) |x|γ−α < +∞ if α < γ < N,

lim sup
|x|→∞

(Iα ∗ f)(x) |x|
N−α

log|x| < +∞ if γ = N,

lim sup
|x|→∞

(Iα ∗ f)(x) |x|N−α < +∞ if γ > N,

and the bounds are optimal, as can be seen by choosing f(x) = (1 + |x|)−γ in
the case γ ≥ N , and by comparing with (A.7) in the case γ > N .

If γ > N then the decay of Iα ∗ f explicitly depends on ‖f‖L1(RN ). More
specifically [151, lemma 6.2], assume that

sup
RN
|f(x)|(1 + |x|)γ < +∞, (A.8)

for some γ > N . Then

Iα ∗ f(x) =
(
Iα(x)

∫
RN

f(y) dy
)(

1 + o(1)
)

as |x| → ∞. (A.9)

Note that the assumption f ∈ L1(RN ) alone does not imply that Iα ∗ f =
O(|x|−(N−α)) even if f is radial: some additional control on the decay of f
at infinity is always needed [186]. However, if f is radial and α > 1 then
Iα ∗ f = O(|x|−(N−α)) if and only if f ∈ L1

rad(RN ) [186, theorem 5.A]. Radial
estimates on the Riesz potentials could be found in [69,75,145,176,199].
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