
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TO APPEAR (FINAL DRAFT) 1

A guide to the literature on learning probabilistic
networks from data

Wray Buntine

Abstract|This literature review discusses di�erent meth-

ods under the general rubric of learning Bayesian networks

from data, and includes some overlapping work on more gen-

eral probabilistic networks. Connections are drawn between

the statistical, neural network, and uncertainty communi-

ties, and between the di�erentmethodological communities,

such as Bayesian, description length, and classical statistics.

Basic concepts for learning and Bayesian networks are in-

troduced and methods are then reviewed. Methods are dis-

cussed for learning parameters of a probabilistic network,

for learning the structure, and for learning hidden variables.

The presentation avoids formal de�nitions and theorems, as

these are plentiful in the literature, and instead illustrates

key concepts with simpli�ed examples.

Keywords| Bayesian networks, graphical models, hidden

variables, learning, learning structure, probabilistic net-

works, knowledge discovery.

I. Introduction

Probabilistic networks or probabilistic graphical mod-
els are a representation of the variables in a problem and
the probabilistic relationships among them. Bayesian net-
works, a popular kind of probabilistic network, have been
used in di�erent applications including fault diagnosis,
medical expert systems, and software debugging [1]. In
this review of learning I focus mainly on Bayesian networks
which are based on directed graphs.
Probabilistic networks are increasingly being seen as a

convenient high-level language for structuring an other-
wise confusing morass of equations. They are an explicit
representation of dependencies or independencies between
variables that ignores the speci�c numeric or functional
details. Depending on interpretation, they can also rep-
resent causality [2], [3], [4], [5]. Probabilistic networks in
this broad sense were independently developed in a num-
ber of communities [6]: in genetics [7], in social science, in
statistics to factor multi-dimensional contingency tables;
in arti�cial intelligence to model probabilistic intelligent
systems [8]; and in decision theory to model complex deci-
sions [9]. An area not considered in this review is graphical
modeling in social science which has had rich development
and application, and strong interactions with the arti�cial
intelligence and statistical communities [10], [3], [11], [12].

Networks in general play the role of a high-level language,
as is seen in arti�cial intelligence, statistics, and to a lesser
degree in neural networks (where biological views o�er an
alternative interpretation). See the survey by Ripley [13].
Networks are used to build complex models from simple
components. Networks in this broader sense include prob-
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abilistic graphical models of the kind considered here, as
well as neural networks [14], and decision trees [15]. Proba-
bilistic networks have the distinguishing characteristic that
they specify a probability distribution|they therefore have
a clear semantics that allow them to be processed in or-
der to do diagnosis, learning, explanation and many other
inference tasks necessary for intelligent systems. For in-
stance, a new research area considered brie
y in the last
section is where a probabilistic network is the input speci-
�cation for a compiler that generates a learning algorithm.
This compilation is made easier because the network de-
�nes a probability distribution.
Why is learning probabilistic networks of particular in-

terest? Most of the earlier work in arti�cial intelligence on
building expert systems involved a tedious process of man-
ual knowledge acquisition [16]. This tedium spurred two
developments that more or less continued independently
until recently: machine learning which originally focused
on learning rule based systems [17], [18], and uncertainty
in arti�cial intelligence which focused on developing co-
herent probabilistic knowledge structures whose elicitation
su�ered less pitfalls. For instance, Henrion and Cooley give
a detailed case study [19], and Heckerman developed sim-
ilarity networks [20] which allow a complex network to be
elicited more simply than one would expect. The interest
in arti�cial intelligence in learning of probabilistic networks
is a result of the marriage of machine learning and uncer-
tainty in arti�cial intelligence.
Neural network learning has developed concurrently,

based almost exclusively on learning from data. The net-
works in the computational side of neural networks (in-
terested in information processing as opposed to biological
modeling) have increasingly been moving in the direction
of probabilistic models. Therefore, there is some overlap
between learning of probabilistic networks and neural net-
works [21], [22], [23]. In statistics, many general inference
techniques [24], [25], [26] have been developed that have
been applied to learning of probabilistic networks. Com-
puter scientists, for instance in arti�cial intelligence, have
often contributed more in terms of combining and scal-
ing up these techniques, and generalizing them to classes
of representations. More examples of the variety of proba-
bilistic networks and their applications to learning are given
in [23], [27].
Learning of probabilistic networks includes a number of

complications: learning the structure, the parameters given
a structure, hidden variables whose values are never present
in the data, and values of a variable that are sometimes
missing. This review describes some current literature ad-
dressing these various tasks, reviews the major methodolo-
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gies applied, and describes some of the major algorithms.
Available software for learning Bayesian networks is not
discussed in this review. An extensive list of software for
general inference on probabilistic networks is maintained
on the World Wide Web [28]. A list of relevant online tu-
torial articles and slides, several of those mentioned here, is
also available at [29]. Another area not considered in this
review is the empirical evaluation of learning algorithms for
probabilistic networks. Empirical evaluation of learning al-
gorithms is fraught with di�culties [30]. Notwithstanding,
interesting empirical studies appear in [31], [32], [33], [34],
[35], [36], [37], [38].

II. An introduction to probabilistic networks

This section introduces Bayesian networks, and some
more general probabilistic networks. For tutorial articles
on Bayesian networks see [39], [40], [41]. For an intro-
duction from the arti�cial intelligence perspective, see [8].
For a statistical introduction to graphical models in gen-
eral see [42], and a tutorial introduction see [43]. For an
introduction to Bayesian networks and Bayesian methods
for learning them see [44]. Other kinds of networks include
Markov (undirected) networks and Markov random �elds
are considered widely in image analysis, spatial statistics
[45] and neural networks [14].
This section introduces Bayesian networks with a simple

example, and then illustrates the richness of the representa-
tion with additional examples. Consider Bayesian networks
on discrete variables. In their simplest form these consist
of a network structure and its associated conditional prob-
ability tables. The example below is adapted from [39].

A. The structure, S

The network structure is represented by a Directed
Acyclic Graph (DAG) as given in Fig. 1. This network

Occupation ClimateAge

DiseaseSymptoms

Fig. 1. A simple Bayesian network

is by de�nition equivalent to the following functional de-
composition for the joint probability (full variable names
have been abbreviated):

p(Age;Occ; Clim;Disease; Symptoms) = (1)

p(Age) p(Occ) p(Clim) p(DiseasejAge;Occ; Clim)

p(SymptomsjDisease) ;

which is in turn equivalent to the following set of condi-
tional independence statements:

Occ ?? Age ;

Clim ?? fAge;Occg ;

Symptoms ?? fAge;Occ; Climg jDisease :

TABLE I

Two of the five probability tables

Age < 45 0.46
Age � 45 0.54

p(Age)

Disease

Symptoms stomach myocardial neither
ulcer infarction

stomach pain 0.80 0.05 0.05
chest pain 0.15 0.90 0.10
neither 0.05 0.05 0.85

p(SymptomsjDisease)

Here, A??BjC reads that A and B are independent given
C [8], [46]. Take the node for Symptoms as an exam-
ple. This node only has one parent, Disease, but three
other ancestors, Age;Occ; Clim. From this one reads the
assumption that the symptoms are only dependent on
age, occupation and climate indirectly through their in-

uence on the disease. This network substructure, by
de�nition, translates into the third independence state-
ment above. Bayesian networks therefore simplify the
full joint probability distribution for a set of variables,
p(Age;Occ; Clim;Disease; Symptoms) and show indepen-
dencies between the variables.

B. The conditional probability tables, parameters �

Conditional probability tables are needed to specify a
probability distribution based on the network. For the
structure in Fig. 1, we see from Equation (1) that the tables
for p(Age), p(Occ), p(Clim), p(DiseasejAge;Occ; Clim),
and p(SymptomsjDisease) need to be speci�ed. These
tables may be speci�ed in any form: implicitly by some
parametric probability distribution, or explicitly as ta-
bles. Two such tables are given below for p(Age) and
p(SymptomsjDisease). Notice that Age, while being a
real valued variable, is discretized to create a binary vari-
able. Symptoms is a three valued discrete variable, as is
Disease. Without the assumptions of the network which
leads to Equation (1), instead of �ve smaller tables, one
large joint table on all �ve variables would be required.
Networks provide a way of simplifying the representation
of a probability distribution.

C. Some extensions

While the variables above are treated as simple discrete
variables, and the conditional probabilities in the example
above are simple tables, in general a variety of variables
and functions can be used on Bayesian networks. Vari-
ables could be real valued, integer valued, or multivariate.
A real-valued variable may have a probability density func-
tion such as a Gaussian. Instead of giving a probability ta-
ble for it as above, the mean and variance of the Gaussian
would be given as functions of the parent variables. These
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constructions allow Bayesian networks to represent stan-
dard statistical models such as regression with Gaussian
error, and log-linear models [42]. Furthermore, graphical
models are not restricted to be directed. Undirected arcs
can be used in problems such as diagnosis where associa-
tion between symptoms might be represented, and image
analysis, for associations between regions of an image. The
combination of directed and undirected graphical models,
developed by Lauritzen andWermuth [47], forms a rich rep-
resentation language. For an introduction to these combi-
nations see [48]. As an example of this richness, I consider
feed-forward neural networks next.

D. Connections to feed-forward neural networks

Fig. 2 shows the transformation of a feed-forward neural
network predicting real valued variables into a probabilis-
tic network. Fig. 2(a) shows a feed-forward network in

m2

x1 x2 x3

m1

o1 o2

h1 h2 h3

SigmoidSigmoid

Sigmoid Sigmoid

Gaussian
Gaussian

(b)

x1 x2 x3

m1 m2

(a)

h1
h3h2

Fig. 2. A feed-forward network to a Bayesian network

the form used in [14], and Fig. 2(b) shows a corresponding
probabilistic network with a bivariate Gaussian error distri-
bution grafted onto the output nodes of the network. The
feed-forward neural network has the three lower nodes �lled
in to indicate they are input nodes. The bivariate Gaus-
sian has been represented on the probabilistic network as
two nodes with a directed arc between them; an equivalent
representation would use an undirected arc. The transfor-
mation into the Bayesian network needs to be quali�ed in
several ways. Notice that the interior nodes in the Bayesian
network are labeled as Simoids, the transfer function typ-
ically used in a feed-forward network. The nodes are also
double ovals rather than single ovals. This is short-hand to
say that the variable is a deterministic function of its in-
puts, rather than a probabilistic function. Neural networks
usually have a weight associated with each arc, giving in
some sense the strength of the association. In probabilis-
tic networks, the arc indicates some form of probabilis-
tic dependence or correlation, and any weights are instead
associated with each node, and are used to parameterize
the functions at the node instead. Furthermore, the prob-
abilistic network explicitly includes the measured output
variables in the network, o1 and o2, whereas the neural net-
work only includes the predicted output variables m1 and
m2. The probabilistic network therefore explicitly repre-
sents the error function, whereas the neural network leaves
it unspeci�ed. In summary, the Bayesian network indicates

A B C

Class

Fig. 3. A simple clustering model

that the output variables, o1 and o2, have a Gaussian distri-
bution based on the variablesm1 andm2, which themselves
are deterministic Sigmoid functions of the hidden variables
h1; h2; h3, and so forth.
More sophisticated dynamic networks are the recurrent

neural networks [49]|roughly, these might be thought of as
a 
exible, non-linear extension to probabilistic models like
Kalman �lters and hidden Markov models. While these
networks are based on feed-forward neural networks, the
relationship of these to probabilistic networks is still under
development.

E. Connections to statistics and pattern recognition

Whittaker [42], and Wermuth and Lauritzen [50] provide
a rich set of examples of modeling statistical hypotheses
using graphical models, some using mixed graphs incorpo-
rating both undirected and directed networks.
Consider clustering, a style of unsupervised learning. A

Bayesian network can be drawn for a clustering algorithm
such as Autoclass [51], where it is assumed that the ob-
served variables are independent given the hidden class. In
clustering, the cases are to be grouped in some coherent
manner. The probabilistic network in Fig. 3. suggests a
way of doing this. A discrete variable class is introduced
that is termed a latent or hidden variable. Its value never
appears in the data, and it indicates the unknown class to
which each case belongs. The advantage of this construc-
tion is that once the class value is known for a case, the
probability distribution becomes a simple one with A, B
and C independent, needing only 3 real valued parameters
to de�ne it. This model is called a mixture model because
the joint probability is a mixture of the data obtained for
the di�erent classes. For a visual illustration of the power
of mixture models, consider real valued variables X;Y . A
bivariate Gaussian places an oval shaped cloud centered at
a point. A mixture of four bivariate Gaussians is illustrated
in Fig. 4 has four clouds of points. When the mixture con-
tains many classes, the density can become quite complex.
Popular models used in pattern recognition, speech

recognition and control, the Kalman �lter and the hidden
Markov model (HMM) can also be modeled with Bayesian
networks [52], [53]. A simple hidden Markov model is given
in Fig. 5. A sequence of observations are made, such as
phonemes in an utterance. These are indicated with the
shaded nodes observe1, ..., observei , observei+1 . Shad-
ing indicates the variables have been observed. The ob-
servations are dependent on the hidden states hidden1, ...,
hiddeni, hiddeni+1 of the underlying system. If the ob-
servations are phonemes, then the hidden states may be
letters of the underlying word being spoken, which are of
course hidden from the observer. These kinds of models are
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Fig. 4. Data from a 2-dimensional mixture of Gaussians

hidden1

observe1

hiddeni

observei

hiddeni+1

observei+1

Fig. 5. A simple hidden Markov model.

dynamic, in the sense that the network is a set of repeated
units that are expanded in time, as for instance used in
forecasting [54].

F. Causal networks

A useful trick used in the elicitation of Bayesian networks
is to assume the arcs represent causality. Consider the net-
work from [39], reproduced in Fig. 1. One could imagine
the environmental variables causing the disease, which in
turn causes the symptoms, and this is a nice way of explain-
ing this particular graph to the expert. When Bayesian
networks have this interpretation, they are sometimes re-
ferred to as causal networks [2], [3], [4], [55]. Causality is of
fundamental importance in science because of the notion
of intervention [55], [5]. While identifying the observed
probabilities relating smoking, sex, and lung cancer is an
interesting task in itself, the real goal of such a study is
to establish that the act of changing someone's smoking
habits will change their susceptibility to lung cancer. This
kind of action is an external intervention on the variables.
A causal model is expected to be stable under acts of ex-
ternal intervention: conclusions drawn from them are still
valid. In the probabilistic interpretation of networks used
elsewhere in this review, there is an assumption that cases
are got through passive observation of independently and
identically distributed examples. Networks can be used to
represent causality in this manner, but these networks have
a di�erent interpretation to the probabilistic networks con-
sidered here. Causality, networks and learning causlity are
not covered in this review. Learning and identi�cation of
causality is considered in [56], [3], [57], [58], [59].

TABLE II

A sample database in a relational table

case A B C

1 T F T
2 T T T
3 F T T
4 F T T

III. Some simple examples, and some basic

concepts

As an example of learning, consider data about three bi-
nary variables, A;B;C. This data would take the form of
a table, as given in the simple example in Table II. The
4 rows in the table give 4 cases, which might be di�erent
patients. More typically, hundreds or thousands of cases
would exist in a relational database. In Table II, each case
has three variables measured and their values recorded.
The values for each variable are either true, indicated by
T or false, indicated by F . A variable could also have the
value \?". This represents a missing value, which means
the value for the variable is unknown. Missing values are
common in some domains, especially where variables are
expensive to measure.

A. The hypothesis space

Some example Bayesian networks that might match this
problem are given in Fig. 6. First consider structure (a),

A

B

C A

B

C

A

B

C

A

B

C

A

B

CA

B

C

Fig. 6. Some Bayesian networks on three variables, A;B; C.

I will denote Sa, which represents that the three variables
are independent. For this structure, probability tables for
p(A), p(B) and p(C) are needed. Since the variables are
binary, these three probabilities are speci�ed by three real
numbers between 0 and 1. Denote these tables by the pa-
rameter set �a 2 <3. For structure (c) denoted Sc, prob-
ability tables for p(A), p(B) and p(CjB), denoted �c, are
needed. This parameter set is in <4 because while p(A)
and p(B) are speci�ed by one value each, p(CjB) is spec-
i�ed by two values, for instance p(C = T jB = T ) and
p(C = T jB = F ). Consider the conditional probability
distributions that complete the network Sm. The proba-
bility table for p(XjY ) will be a subset of the real space of
(jXj�1)jY j-dimensions, where jXj is the number of values
of the variable X. The fully connected network matching
Table II, where every two variables are connected, will have
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7 real values, where 7 is calculated from 23 � 1. So a net-
work of k binary variables needs between k and 2k� 1 real
values to specify its conditional probability tables. A real-
valued node whose conditional probability distribution is a
Gaussian with k parents will require k(k+1)=2 real values
to specify the mean and the covariance matrix. In gen-
eral, the real values used to specify conditional probability
tables either explicitly (in a table) or implicitly (in some
formula) are referred to as the parameters of the network.
A simple counting argument shows there are 25 di�erent

networks on just the three variables in Fig. 6. However, it
happens that several of these are equivalent in the sense
that they represent equivalent independence statements.
For these networks there are only 11 di�erent equivalence
classes of networks on three variables. For instance, con-
sider the last three networks given in Fig. 6, (d), (e) and (f).
The networks have the following functional decompositions
respectively (labeled d, e and f):

pd(A;B;C) = pd(A) pd(BjA) pd(CjB) ;

pe(A;B;C) = pe(C) pe(BjC) pe(AjB) ;

pf (A;B;C) = pf (A) pf (C) pf (BjA;C) :

Some basic algebra using the laws of conditional proba-
bility show that the Bayesian networks (d) and (e) have
equivalent functional decompositions and therefore equiv-
alent independence properties, but the Bayesian network
for (f) is di�erent. The structures Sd and Se are said to
be equivalent probability models. Properties of this equiva-
lence relation have been worked out in general for Bayesian
networks [2] (this is discussed further in Section V). Since
there are k(k�1)=2 di�erent undirected arcs one can place
on a network of k variables, that means there are 2k(k�1)=2

di�erent undirected networks on the k variables. If the
variables are ordered ahead of time so that an arc can only
point towards a variable later in the ordering, then there
are 2k(k�1)=2 di�erent directed networks. There would be
many more if the ordering is allowed to vary (although
some will be equivalent probability models).

B. The sample likelihood

Themaximum likelihood approach is the starting point of
most statistical theory, so it is introduced here. First, �x a
structure Sm and its parameters �m for the model matching
the problem of Table II, and calculate the likelihood of the
sample as follows:

p(samplejSm ; �m) =
Y
i

p(caseijSm; �m) ; (2)

where the case probabilities p(caseijSm; �m) are calculated
using the probability tables given by �m. This formulation
assumes that each case is independent of the others given
the \true" model Sm; �m, that is they are independently

and identically distributed. The \true" model is the un-
known model believed to represent the process generating
the data, and is assumed to exist for purposes of modeling
(perhaps a reasonable approximation exists, perhaps not).

For instance, for structure Sd from Fig. 6,

p(case1jSd; �d) = p(A = T j�d) p(B = F jA = T; �d)

p(C = T jB = F; �d) :

The three terms on the right of this equation are found
from the corresponding entries in the probability tables �d.
This quantity Equation (2) is called the sample likelihood.
The maximum likelihood approach for �xed structure Sm
chooses the parameters �m to maximize the sample likeli-
hood.
It is important to notice the structure of the maximum

likelihood calculation. The probability p(A = T j�d) ap-
pearing in the likelihood for case 1 is a function of the pa-
rameters used in the conditional probability table for the
variable A. The parameters �d for the Bayesian network
structure Sd can be partitioned into the di�erent parame-
ters at each node (A;B and C):

�d = f�d;A; �d;B ; �d;Cg ;

where �d;B represents the parameters for the conditional
probability table for the variable B. The sample likelihood
now becomes:

p(samplejSd ; �d) (3)Y
i

p(Aij�d;A) p(BijAi; �d;B) p(CijBi; �d;C) :

Notice this product has separate terms for �d;A, �d;B , and
�d;C , so maximum likelihood optimization of � can be de-
composed into maximum likelihood optimization of these
three di�erent variable sets individually. This can be rep-
resented as

p(samplejSd ; �d)

= p(sampleA j�d;A) p(sampleBjA j�d;B) p(sampleCjB j�d;C) ;

to show we have three local maximum likelihood problems,
one for each node. The sample likelihood is said to decom-

pose for Bayesian networks which have neither determinis-
tic variables, missing or hidden values, nor undirected arcs
[60], [61], [23], [37], [62]. This decomposition also applies
as a network is incrementally modi�ed, for instance during
search [23], [60].
If all the parameters �d describe probability tables for

binary variables, as in Table II, then Equation (3) corre-
sponds to a product of binomials. For instance,

p(sampleAj�d;A) = �
pA
d;A(1� �d;A)

nA

where the counts pA and nA give the occurences of A = T

and A = F respectively in the data. As is the case for the
binomial, the maximum likelihood is given by the observed

frequency, d�d;A = pA
nA+pA

. Likewise for the other variables
and all the entries in the other tables.
An important and common assumption used in comput-

ing the sample likelihood is the complete data assumption.
This holds when no case has missing values. This can be an
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unrealistic assumption. For instance, if data comes from a
historical medical database it is likely that expensive mea-
surements would not have been taken and recorded if they
were not considered critical to the diagnosis. The complete
data assumption simpli�es calculation of the sample likeli-
hood for a network. For instance, consider the model for
Fig. 6(f), and consider the likelihood for case 3. Suppose
the variable C had a missing value, \?".

p(case3jSd; �d) =X
C2fT;Fg

p(A = F j�f ) p(Cj�f ) p(B = F jA = T;C; �f )

As before, the three terms on the right of this equation are
simply the corresponding entries in the probability tables
�f . However, notice the summation outside this. When
there are many of these summations, there is no longer a
simple closed form solution for maximizing the sample like-
lihood. Furthermore, the optimization problem no longer
decomposes, as was demonstrated with Equation (3). Hid-
den variables lead to the same problem, and violate the
complete data assumption, because the summations above
always appear in the sample likelihood.
A concept central to these and subsequent techniques is

the family of statistical distributions known as the expo-

nential family [26], [63]. An introduction in the context of
probabilistic networks appears in [23]. This family, which
includes the Gaussian, the Bernoulli, and the Poisson has
the general functional form of

p(xj�) / exp

 X
i

si(�)ti(x)

!
;

which lends itself to many convenient computational prop-
erties including compact storage of the training sample,
simple calculation of derivatives, and �tting guaranteed to
be linear in the size of the sample. One needs to become fa-
miliar with these features of the exponential family in order
to understand many of the recent developments in learning
probabilistic models. Many of the properties of the sample
likelihood, the impact of complete data assumption, ex-
act solutions to the maximum likelihood equations and so
forth follow directly from standard results for the exponen-
tial family|the e�ort is usually expended in formulating
the probabilistic network as a member of the exponential
family, and then the standard results for exponential family
follow [26], [63].

C. Basic statistical considerations

Suppose the structure Sm of a network on discrete or
Gaussian variables is �xed. Then it remains to learn the
parameters, �m. For the probability tables considered ear-
lier and with enough data, the sample likelihood is a well-
behaved di�erentiable function of its parameters. This is
often called a parametric problem. A non-parametric prob-
lem, in contrast, has potentially an in�nite number of pa-
rameters, or no coherent likelihood function is de�ned so
it is un-parameterized. This is not always clear from the

literature because in some cases a model is presented in a
non-parametric manner, whereas it can be given a para-
metric basis (classi�cation trees are an example [64], [15]).
Now consider the problem of learning the structures as well,
and remember there are a �nite number of them. A �xed
network structure has its own distinct set of parameters.
When allowing a set of di�erent structures, each with its
own parameters, the full probability density has no single,
natural, global real-valued parameterization, but has dif-
ferent parameterizations depending on which structure is
used. Such problems are sometimes referred to as semi-
parametric, but the same quali�cations apply. Of course, a
clever mathematician can coerce a full speci�cation of the
network and its parameters into some single real number.
However, this would be an arti�cial construct with complex
non-continuous derivatives. Furthermore, for the struc-
tures of Fig. 6, the probability distributions represented
by structure Sa are a set of measure zero in the probabil-
ity distributions with structure Sb, which themselves are a
set of measure zero within Se

1. By o�ering these struc-
tures as valid alternatives, the set of measure zero is not to
be ignored. I will refer to this combination of detail|for a
given structure their is a neat parametric model, and struc-
tures form nested hierarchies with some being a subset of
measure zero of others|as the parametric structure of the
problem.
Learning network structures from data is sometimes

termed a model selection problem in the sense that each
network corresponds to a distinct model, and one is to be
selected based on the data. Both non-parametric meth-
ods and model selection are active research areas in mod-
ern statistics [65], [25], [66]. More recently, researchers
in statistics have focused on model uncertainty because it
is accepted that selection of a single \best" model from
an exponential-sized family of models|as is the case for
learning Bayesian networks|is often infeasible [67], [68],
[25]. Rather than selecting a single best model, one looks
at a subset of \reasonable" models, attempting to quantify
uncertainty about them.

D. The complexity of learning

So network learning involves choosing from, possibly, an
exponential number of network structures, and giving val-
ues to, possibly, an exponential number of real values. Why
is this a problem? Basic results from computational learn-
ing theory show how di�cult this can be, both in terms of
the number of cases required for training, and the time or
space required for the optimization. These two aspects are
referred to as sample complexity and computational com-

plexity respectively.
In learning there are roughly three distinct phases as

more cases are obtained to learn from: the small sample,
medium sample, and large sample phases. Initially with

1For the purposes of this paper, a subspace has measure zero if its
integrated area relative to the full space is zero. Usually this means
it is a space of lower dimension. A line has measure zero in a �nite
plane, but a rectangle on the �nite plane has non-zero measure. A
two-dimensional slice of a cube has measure zero in the full three-
dimensional cube.
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a small sample, learning corresponds to going with one's
biases or priors. With a large sample, learning close to
the \true" model is possible with high probability, where
\close" is measured according to some reasonable utility
criteria such as mean-square error or Kullback-Leibler dis-
tance. This learning should be possible by many reasonable
algorithms that asymptotically converge to the \truth". In
between the small and large sample phase is a medium
sample phase where some algorithms should perform bet-
ter than others, depending on how well their particular
biases align with the \true" model. I use the term biases
here in a loose sense. As more cases are obtained to learn
from, performance may increase gradually or sometimes in
jumps as the algorithm better approximates the \truth".
This is illustrated by the learning curve in Fig. 7 which
plots error of some idealized algorithm as it gains more
cases (represented by the sample size N ). The asymptotic
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Fig. 7. An idealized learning curve.

error in this example approaches the Bayes optimal error

rate from above. Without prescience, there will be a lower
bound on what error rate can be achieved by any algorithm
(for instance, in predicting coin tosses from a fair coin, the
Bayes optimal error rate is 50%). The theory of learning
curves is developed, for instance, in [69]. Suppose the hy-
pothesis space is a family of probabilistic networks (Si; �i)
for i = 1; : : : ;K. Results from computational learning the-
ory [70] show that under many conditions the transition
to the large sample phase is made when the sample size is
given by

N = O(max
i

dim(�i)) + O(logK) :

This sample size is the sample complexity. For the discrete
Bayesian networks discussed earlier, the �rst term will be
exponential in k (the number of variables), and the second
term quadratic.
Of course, this ignores the issue of computational com-

plexity. Given that there are an exponential number of
networks, it should not be surprising that in some formula-
tions, learning a Bayesian network is an NP-complete prob-
lem [71], [72], [36]. In some formulations, learning is viewed
as a maximization problem: �nd the network maximizing
some quality measure. As is the case for the the sample
likelihood, these scores usually decompose, often because
they are based on the sample likelihood, see for instance
[61], [23], [37], [62]. The optimization problem is to �nd a

network S on variables X maximizing some function of the
form:

quality(Sjsample) =
X
x2X

quality(xjparentsS (x); sample)

where the network S in
uences the quality measure
through the parents function, parentsS(:), and the qual-
ity measure may be a log-probability, log-likelihood, or a
complexity measure (to be minimized). These measures
are discussed further in Section VIII. This maximization
problem is an instance of a maximum branchings prob-
lem (see the discussion in [37]) which in general (allowing
any quality function at the nodes) is NP-complete even if
variables in network are restricted to have at most 2 par-
ents. It is polynomial if each variable has at most 1 parent.
Another variation of this problem, discussed in [37], is to
�nd the best l networks in terms of the quality measure.
For Bayesian networks, this search problem is also con-
founded because of the existence of equivalent networks.
Nevertheless, experience with existing systems shows that
standard search algorithms such as greedy algorithms and
iterated local search algorithms often perform well. Basic
greedy search is explored in [35]. Furthermore, the search
problem adapts nicely to branch and bound using some
standard methods from information theory to provide the
bounds [73], and savings over an exhaustive search appear
to be many orders of magnitude.

IV. Parameter fitting

For a �xed graphical structure, Sm, the parameter �t-
ting problem is to learn the parameters �m from data. The
mathematics of �tting parameters to a Bayesian/Markov
network is an extension of standard �tting procedures in
statistics. Fitting algorithms exist for Bayesian networks
and more general probabilistic networks in the cases of
complete and missing data [74], [42], [75], [76]. See Whit-
taker for a more extensive discussion and review of meth-
ods and theory. In the case of a Bayesian network with
complete data, where the distributions at the nodes are
discrete probability tables or Gaussians, fast close form so-
lutions exist that can be computed in time proportional
to the size of the data set. As an example, consider �t-
ting the model of Fig. 6(a) to the data in Table 6. Each
of the probabilities � in this model occurs in the sample
likelihood in the form �n(1 � �)m, which has a maximum

at �̂ = n
n+m

. The maximum likelihood solution for the
parameters is therefore equal to the observed frequency of
the relevant probabilities:

p(A = T j�a) � 1=2 ;

p(B = T j�a) � 3=4 ;

p(C = T j�a) � 1 :

In other cases, a variety of iterative algorithms exist that
make use of these fast closed form solutions as a subrou-
tine. Some common techniques I shall not explain here are
the expectation maximization (EM) algorithm [77] and the



8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TO APPEAR (FINAL DRAFT)

iterative proportional �tting (IPF) algorithm [75]. Once
again, the exponential family is important here.
Maximum likelihood approaches su�er from so-called

sparse data because, for instance, they may become unde-
�ned whenever a table of counts total to zero. Consider the
model of Fig. 6(e) and consider estimating p(B = T jC =
F; �e). Notice there are no instances of C = F in the sam-
ple, so the maximum likelihood estimate for this probabil-
ity is unde�ned since the sample likelihood does not exist.
For k binary variables and a fully connected Bayesian net-
work (where every two variables are directly connected),
clearly need greater than 2k�1 cases in the sample for the
maximum likelihood estimate to be de�ned.
A related problem is the problem of over-�tting. Suppose

sparse data is not a problem. Observe the maximum like-
lihood estimate above for p(C = T j�a). This was equal to
1.0 because in the data, all observed cases of the variable C
had the value T . Now this is based on four cases. It would
seem reasonable that the \true" value could be 0.9, and
by chance have all T 's in the data. The estimate 1.0 must
be an upper bound on the probability. By de�nition, the
maximum likelihood value (1:04) must be an over-estimate
of the \true" sample likelihood (0:94). As the sample size
gets larger and larger, the over-estimate will gradually con-
verge to the \true" value; assured in most cases by large
sample properties of maximum likelihood theory (for an
introduction see [78]). However, for small samples, the
maximum likelihood value may be much larger than the
\true" likelihood, and in general the maximum likelihood
solution will attempt to �t the data as well as possible|for
instance, regression using 10 degree polynomials will �t 11
data points exactly, whereas for 11 data points one might
more reasonably attempt to �t a 2 or 3 degree polynomial
and assume the remaining lack of �t is due to noise in the
data. The maximumlikelihood parameter values are there-
fore said to over-�t the data. This is a well-known problem
in supervised learning, for instance as addressed by pruning
methods for classi�cation trees [64], [15].
The BayesianMaximum a-posterior (MAP) approach ex-

tends the maximum likelihood approach by introducing a
prior probability. Good introductions to this simpli�ed
Bayesian approach and some of its extensions can be found
in [79], [80]. The approach places a probability distribu-
tion on the unknown parameters � and reasons about them
using the axioms of probability theory. The likelihood is
augmented with a prior that gives the initial belief about
� before seeing any data. Consider just the column of data
for A in Table II, and consider �A, the parameter giving
the probability of A. By Bayes Theorem:

p(�Ajsample) =
p(samplej�A) p(�A)

p(sample)
;

where the numerator contains the sample likelihood and
the prior, and the denominator is obtained by integrating
the numerator,

p(sample) =

Z
p(samplej�A) p(�A) d�A :

Again, these computations become simpli�ed in some cases
of the exponential family,mentioned previously, Gaussians,
Bernoulli, and so forth. An example is given in Fig. 8. The

Fig. 8. Priors, likelihoods and posteriors for �A.

left graph shows two di�erent priors. These priors are Beta
distributions with parameters � marked on the plot. The
second prior with � = (5; 3) has a mild preference for � to
be about 0.625, whereas the other prior is agnostic. The
middle graph shows the likelihoods for 3 di�erent samples
(0,1 or 2 counts of A = T in a sample size of 4), and the
right graph shows the resulting posterior for the (2 � 3)
posteriors resulting. The cluster of three peaks at the top
are three posteriors for the prior � = (5; 3). Notice how
the agnostic prior (� = (0:5; 0:5)) is more in
uenced by
the likelihood, whereas the three posterior peaks for the
mild prior re
ect the shape of the prior quite strongly. The
maximumposterior value is the value of � at the maximum
of each curve. Notice how it is e�ected by both the prior
and the likelihood.

Many general algorithms exist for addressing parameter
�tting problems of probabilistic networks: missing and la-
tent variables, large samples, recursive or incremental tech-
niques, special nodes, and subjective priors [26], [24], [81],
[25], [23], [42] Table III lists the major techniques and their
application. References given are introductions, new ex-
tensions or examples of their use, and are by no means
a thorough list of references in the area. The common
versions of the EM and IPF algorithms, and mean �eld
theory are based on the exponential family, although gen-
eralizations exist. Used in conjunction with these meth-
ods are a large number of optimization techniques, for
�nding a MAP, or computing the various quantities used
in the Laplace approximation. Several optimization tech-
niques are speci�c to parameter �tting in learning. This
includes the Fisher Scoring method [89], which is an ap-
proximate Newton-Raphson algorithm, and stochastic op-
timization which computes gradients on subsamples or in-
dividual cases at a time [90]. Variations of this method are
popular in neural networks [91], having been a feature of
early methods [92], and have proven to yield computational
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Algorithm Problems Refs.
MAP general [25]
Laplace 2nd-order approx. [25], [82]
EM missing and hidden values [77], [76], [83]
IPF undirected network [75]
mean �eld approximate moments [84], [22]
Gibbs approximate moments [85], [86]
MCMC approximate moments [87], [88]

TABLE III

Some general algorithms for parameter fitting

savings in many studies.
An extension of parameter �tting to handle sequential

(on-line) learning and missing data is described in [93].
This uses Bayesian methods to overcome the problems of
sparse data, by de�ning a Dirichlet prior of entries for the
probability tables. A full implementation in described in
[94]. Extensions have been made to Gaussians and other
popular nodes types for the Bayesian network [95]. When
combined with some structure elicitation, techniques for
parameter �tting can prove powerful in applications, for
instance in dynamic models in the medical domain [96],
[54].

V. Structure identification methods

Ignoring the issue of sample size for the moment, a di�-
cult question is whether particular network structures with
or without latent variables are identi�able in the limit with
probability 1. That is, assuming there are large amounts of
data to accurately estimate various probabilities, can the
\true" probabilistic network be reconstructed at all in the
sense that a learning algorithm, given a su�ciently large
sample, will invariably return a hypothesis (graphical struc-
ture and parameters) close to the \truth"? This question is
formalized and addressed from several angles in computa-
tional learning theory [97] under the name of identi�cation
and learnability, as well as in statistics [78], [26] under the
name of consistency. This is the situation of N ! 1 in
Fig. 7.
In Bayesian networks, this question is confounded by

the existence of equivalence classes of graphs (one exam-
ple of a redundant model [78]) and by the use of hidden
or latent variables. For instance, consider the networks
given in Fig. 6 again. The Bayesian networks (d) and (e)
have equivalent probability models but the Bayesian net-
work for (f) is di�erent. Therefore, Bayesian networks (d)
and (e) have equivalent sample likelihoods and cannot be
distinguished from data without some additional criteria or
knowledge, whereas the Bayesian network (f) could be iden-
ti�ed from data alone. A theoretical tool used to analyze
identi�ability is the equivalence of graphical models with
latent variables [98], [56], [99] and without [100], [101], [2],
[102], and more recently involving causality where variables
are manipulated [57]. A thorough treatment of the issues
of equivalence, latent variables, and causality appears in

[3]. In some cases, only a class of equivalent graphs can be
reconstructed from data, and in other cases latent variables
and their properties cannot be identi�ed uniquely.
These identi�cation methods have lead to some of the

earliest algorithms for learning structure from data [103],
[56], and a related approach that also combines cross val-
idation to address model selection is [104]. Identi�cation
methods are also used in TETRAD II, the successor to
TETRAD [12].
The theory of network identi�cation from data and net-

work equivalence are a precursor to techniques for learning
from medium sized samples of Fig. 7. Network equivalence
is an important concept used in some Bayesian techniques
for learning Bayesian networks from data, used in advanced
work on priors for Bayesian networks [105], [37]. This will
be discussed later.

VI. Diagnostics, elicitation and assessment

The day to day practice of learning and data analysis
may have a learning algorithm at its core but a lot of the
work involves modeling and assessment: building a model
and trying to �nd out what is going on with the data, and
with the expert's opinions. Some of the work relevant to
learning here comes from statisticians who generally have
more experience [106], [107] and decision analysts who use
these methods in constructing systems and working with
experts [41], [108].
The basic problem of elicitation is a twist on the problem

of knowledge acquisition for expert systems.
� In the medium sample regime, which applies fre-
quently, data should be complemented with prior
knowledge and constraints if reliable and useful results
are to be obtained.

� Prior knowledge can often only be obtained from the
domain experts by the manual process of knowledge
elicitation.

� Domain experts can be poor at judging their own lim-
itations and capabilities, and estimating probabilities
[109]. One of the common mistakes of beginners is to
assume that the expert's claims are valid.

In applications these issues are crucial because a learning
problem does not come prepackaged in its own neat wrap-
per with instructions for assembly: \here's the data, use
these �ve variables, and try the C4.5 tree program." A
learning problem is usually embedded in some larger prob-
lem. A domain expert may be needed just to circumscribe
the learning component: which variables might be used,
what is being predicted from what, and so forth. Some-
times this is crucial to success, and the learning algorithm
used is almost incidental [110].
A number of techniques exist at the interface of learn-

ing and knowledge acquisition. Diagnostics are measures
used to evaluate particular model assumptions [111], [112]
[113]. Sensitivity analysis [114] measures the sensitivity of
the results of a study to the model assumptions, using the
same techniques taught to engineers everywhere: wiggle
the inputs to the model (in the case of learning, this means
the constraints and priors) and watch how the output of
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the model wiggles. Assessment and elicitation is the usual
process discussed in manual knowledge acquisition of in-
terviewing an expert in order to obtain prior estimates of
relevant quantities. Because the elicitation and evaluation
of probabilistic networks is a well developed area, the fur-
ther re�nement of networks via learning is made possible,
as is discussed later under priors.

VII. Learning structure from data

The earliest result in structure learning was the Chow
and Liu algorithm for learning trees from data [115]. This
algorithm learns a Bayesian network whose shape is a tree.
If there are k variables, then there are O(k2) trees, much
less than the exponential number of Bayesian networks.
The sample complexity is thus O(2 logk) more than the
sample complexity for each tree, which is O(k), thus learn-
ing is feasible from small samples. Furthermore, the com-
putational complexity of searching for a tree shaped net-
work requires at most a quadratic number of network eval-
uations. Herskovits and Cooper [116] demonstrated on a
problem of signi�cant size that complex structure learning
was possible from quite reasonable sample sizes (in their
case, about 10,000), despite being faced with a potentially
exponential sample complexity and an NP-complete search
problem. Other early work on structure learning was often
based on the identi�cation results discussed in the previous
section, for instance [103], [56], [104], [117].
Problems like learning the structure of a Bayesian net-

work su�er when samples are smaller. This happens be-
cause of over-�tting in the structure space, similar to over-
�tting in the parameter space discussed previously. Max-
imum likelihood and hypothesis-testing methods provide
techniques for comparing one structure to another, \shall
add an arc here?" \Is model Sc better than model Sf?"
This is done, for instance, using the likelihood ratio test
[42], [43]. Repeated use of this test can lead to problems
because, by chance, hypothesis tests at the 95% con�dence
level should fail 1 in 20 times, and hundreds of such tests
may need to be made when learning a network structure
from data. A comparable problem in the statistics litera-
ture is variable subset selection in regression. In this prob-
lem, one seeks to �nd a subset of variables on which to
base a linear regression. The pitfalls of hypothesis testing
in this context are discussed in [67]. The basic problem
is that model selection focuses on choosing a single \best"
model.
For discrete variables at least, the problem of learning

Bayesian networks from complete data is related to the
problem of learning classi�cation trees, exempli�ed by the
CART algorithm [64] in statistics and ID3 and C4 in ar-
ti�cial intelligence [15]. This relationship holds because
the sample likelihood for a binary classi�cation tree can be
represented as a product of independent binomial distribu-
tions, just like the sample likelihood for the Bayesian net-
works on binary variables described in Section III. Both
problems also have a similar parametric structure. The
classi�cation tree problem has a long history and has been
studied from the perspective of applied statistics [64], ar-

ti�cial intelligence [15], Bayesian statistics [118], minimum
description length (MDL) [119], [120], genetic algorithms,
and computational learning theory. An adaptation of a suc-
cessful tree algorithm to an algorithm for learning Bayesian
networks appears in [121], and the relationship between the
two approaches is discussed in [122].
Another adaptation, which is not quite as direct, is

the Constructor algorithm of [104] which adapts the cost-
complexity technique from the CART algorithm for trees.
There are a variety of heuristic techniques developed for
trees, including the handling of missing values [123] and the
discretization of real-valued attributes [124], which have yet
to �nd their way into algorithms for probabilistic networks.

VIII. Statistical Methodology

In most work on learning structure, researchers have ap-
plied standard statistical methodology for �tting models
and handling over-�tting. It is therefore appropriate to
discuss these standard methodologies, done so in this sec-
tion. The problem of over-�tting was encountered and ad-
dressed by the earliest methods. It is important to note
that the role of a statistical methodology is to convert a

learning problem into an optimization problem. Some of
the statistical methodologies, despite their wide philosoph-
ical di�erences, reduce a learning problem to the same kind
of optimization problem, so the practitioner could well be
left wondering what all the di�erences are about. It is
also important to note that most structure learning is built

around some form of parameter learning as a sub-problem.
In general, the many di�erent structure learning methods
are extensions of the general algorithms summarized in Ta-
ble III. In some cases, this can be as simple as placing a
model selection wrapper around a parameter �tting system
[125], in other cases more sophistication is layered on top.
It is perhaps unfortunate that so many di�erent, com-

peting statistical methodologies exist to address essentially
the same problem. Partly, this stems from the apparent im-
possibility of handling smaller sample learning problems in
any objective manner, and the di�culty of establishing a
basis on which a statistical methodology can be judged.
See, for instance, the e�orts made to compare di�erent
learning algorithms in [30], and consider that a statistical
methodology is a higher level of abstraction than a learn-
ing algorithm. A discussion of the Bayesian perspective
on the issues of learning appears in [26], touching on prior
probabilities, and subjective statistical analysis. Di�erent
disciplines have addressed these problems in parallel while
they attempted to extend the classical maximumlikelihood
and hypothesis testing approaches from statistics. Each
methodology comes with a cast of staunch protagonists
and antagonists and a litany of standard claims, dogma,
paradoxes, and counter-claims. It is useful to become fa-
miliar with the di�erent approaches and the mappings and
approximations between them to better understand their
di�erences, however this can be di�cult given the confusing
state of the literature. Each methodology has its particu-
lar strengths that make it suitable under certain conditions:
ease of implementation, adequate for large samples, more
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appropriate for the engineer, availability of software and
training. and so forth. I believe no one methodology is
superior in all respects.
My comments in this review are colored from a Bayesian

perspective. I have tried to keep my comments below to the
realm of what is \generally believed" by those knowledge-
able in this area rather than merely repeating the dogma of
each community. Also, this section is not an introduction
to these methodologies. I include appropriate tutorial ref-
erences below. Finally, there are really hundreds of di�er-
ent methodologies, one for each small cluster of researchers.
The list below presents di�erent corners in a continuum.

A. Maximum likelihood and Minimum cross entropy meth-

ods

The maximum likelihood approach says to �nd the net-
work structure Sm whose maximum likelihood over param-
eters �m is the largest

argmaxSm max
�m

p(samplej�m; Sm) :

The minimum cross entropy approach says to �nd the
structure whose minimum cross entropy with the data is
the smallest. These two approaches are equivalent [126],
and they are also well known to su�er from over-�tting, as
discussed in Section IV. If the \true" model has one sin-
gle equivalent representative in the hypothesis space, then
the maximumlikelihood approach is consistent in the sense
that in the limit of a large sample it will converge on this
\truth" [78]. The maximum likelihood method can also be
viewed as a simpli�cation of most other approaches, so it is
an important starting point for everyone. When in a large
sample regime, the best strategy is to use the maximum
likelihood approach to avoid all the mathematical or im-
plementation details of the more complex approaches. The
results from computational learning theory for bounding
the onset of the large sample phase are useful for decid-
ing when to do this. For Bayesian networks, the maxi-
mum likelihood approach has been applied by [127], [116].
The paper by Herskovits and Cooper was the major break-
through in learning Bayesian networks. It was clear from
this paper that MDL and Bayesian methods, which extend
the maximum likelihood approach, could be applied in all
their detail.

B. Hypothesis testing approaches

Hypothesis testing is the standard model selection strat-
egy from classical statistics. For probabilistic networks
methods are well developed and a variety of statistical soft-
ware exists [28], [43], [13]. As mentioned before, the prob-
lem is that this is only a viable approach if a small number
of hypotheses are being tested. Clever or greedy search
techniques can help here [128] by reducing the number of
hypothesis tests required. Another way for thinking about
this is to deal with multiple hypotheses: let hypothesis test-
ing return a set of possible models rather than expecting it
to isolate a single one [128]. This strategy then resembles a
Bayesian approach where multiple models are considered.

This is discussed in the context of probabilistic networks
below.

C. Extended likelihood approaches

A number of extensions to the maximum likelihood ap-
proach have been proposed to overcome the problem of
over-�tting, and to overcome the problems inherent in hy-
pothesis testing. These approaches replace the sample like-
lihood by a modi�ed score that is to be maximized. Exam-
ples include the penalized likelihood, Akaike information
criteria (AIC), the Bayesian information criteria (BIC) and
others [66], [129]. Typically, this involves minimizing a for-
mula such as the BIC formula

BIC(Sm jsample)

= � log p(samplejc�m ; Sm) + 1

2
dim(�m) logN ;

where c�m is the maximum likelihood estimate of �m �xing
the structure to be Sm, N is the sample size and dim(�m)
is the dimensionality. The BIC criteria and some related
variations are asymtotically Bayesian but avoid speci�ca-
tion of the prior, and are similar to variations of the mini-
mum information complexity approaches described below.
Examples for undirected probabilistic networks with the
BIC criteria appear in [67].

D. Minimum information complexity approaches

There are several di�erent schools under the general
rubric of minimizing some information complexity measure
(\code length"), for instance minimum description length
(MDL) [130], minimum message length [131], and mini-
mum complexity [132]. A simple approximation for MDL
is equivalent to the BIC above, but other variations in-
volve statistical quantities such as the Fisher Information,
and hypothesis dependent complexitymeasures chosen par-
ticularly for the domain. These approaches are popular
among engineers and computer scientists who learn cod-
ing and information theory as undergraduates. From one
perspective, these methods are related to Bayesian MAP
methods although there are subtle di�erences [133]. One
advantage that some proponents claim of this approach
(particularly those in the MDL school) is that it requires
no prior and is hence objective. In most instances a cor-
responding \implicit prior" can be constructed from the
code. Some authors use this approach so that they can
use Bayesian methods in disguise without being ridiculed
by their anti-Bayesian colleagues. Search bounds, for in-
stance [134], are one area where the information complex-
ity approach takes advantage of the techniques developed
in information theory. Suzuki has developed a branch and
bound technique for learning Bayesian networks based on
information-theoretic bounds [73]. For Bayesian networks,
MDL has been applied by [61], [135], [136].

E. Resampling approaches

Modern statistics has developed a variety of resampling

schemes for addressing over-�tting in parametric situations



12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TO APPEAR (FINAL DRAFT)

like learning networks. Resampling refers to the fact that
pseudo-samples are created from the original sample. A
popular approach is cross validation, applied by [104]. Re-
sampling schemes have been used to great success in ap-
plied multivariate statistics, see for instance a tutorial in
[137]. Their strength lies in the fact that they are reli-
able black box method that can be used without requiring
some of the complex mathematical treatment found in the
Bayesian or minimum complexity methods [138]. These
resampling schemes therefore provide a good benchmark
for comparison with more complex schemes which have ad-
ditional mathematical and implementation pitfalls. Their
theoretical justi�cation is large sample, although they have
empirical successes in the small sample case for a wide
range of problems.

F. Bayesian approaches

There are a rich variety of Bayesian methods, and de-
pending on the approximations and shortcuts made, most
of the previous methodologies can be reproduced with
some form of Bayesian approximation. In its full form the
Bayesian approach requires speci�cation of a prior proba-
bility (for a tutorial and a list of references, see [139]). A
good general introduction to Bayesian methods for learning
Bayesian networks can be found in [79]. Advanced intro-
ductions and reviews of Bayesian methods for learning can
be found in [25], [26], [24].
The Bayesian approach has many di�erent approxima-

tions. The simplest MAP approach seeks to �nd the struc-
ture Sm maximizing the log-probability

log p(Sm; sample) = logp(Sm) + log p(samplejSm) :

The term p(samplejSm) is called the evidence and di�ers
from the likelihood p(samplejSm ; �m). The evidence is the
average sample likelihood rather than the maximumsample
likelihood used in the earlier techniques:

p(samplejSm) =

Z
�m

p(samplejSm ; �m) p(�mjSm) d �m :

Sometimes a relative value is calculated instead,

p(Sm; sample)

p(S0; sample)

for some base structure S0. This is called the Bayes factor
and a variety of techniques and approximations exist for
computing it [25], [26], [23].
The basic technique for Bayesian learning of Bayesian

network structures from complete data uses standard
Bayesian methods, and was worked out in one form or an-
other, by many [140], [35], [121], [111], [112], [68], [141],
[142], [143], [37], [38]. Certainly, these techniques use stan-
dard Bayesian manipulations and should be obvious to
most students of Bayesian theory. The general case for
the exponential family is worked through in [105]. Good
summaries of this line of work can be found in [111], [68],
[144], [37], [23], and a thesis covering many of the issues is
[36].

The full Bayesian approach is a predictive one: rather
than returning the single \best" network, the aim might
be to perform prediction or estimate probabilities for new
cases. For instance, one might be interested in the probabil-
ity of new cases based on the sample, p(new-casejsample).
In general this is estimated by averaging the predictions
across all possible networks using the probability identity

p(new-casejsample) =
X
Sm

p(new-casejSm ; sample)

This situation is represented in Fig. 9. This approaches
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Fig. 9. Averaging over multiple Bayesian networks

matches the intuition: \�ve di�erent networks all seem
quite reasonable so let's hedge our bets and combine them."
In practice this full summation is not possible so approx-
imations are used. Bayesian methods for learning proba-
bilistic networks in this more general sense can be found in
[121], [68], [143], [144], [145], [35], [146], [147]. Computa-
tional aspects of �nding the best l networks are discussed
in [37]. A related concern is how to combine the posterior
network probabilities e�ciently and to compute conditional
posterior probabilities [148], [111], [32].

A general Bayesian algorithm family for inference that
applies in any context, parameter �tting or structure learn-
ing, is the Markov Chain Monte Carlo (MCMC) family of
algorithms. An introduction is given in [149], [23], and an
extensive review is given by [87]. This family uses the fol-
lowing kind of trick. Suppose we wish to sample from the
distribution p(A;B;C). In general this might be a com-
plex distribution and no convenient sampling algorithm
may be known. When the complete data assumption is
violated for instance, as discussed in Section III-B, it is
quite easy to get an intractible sample likelihood distribu-
tion for network parameters, and hence the posterior dis-
tribution for network parameters may have no convenient
functional form to sample from|this is exactly the kind
of problem that MCMC methods were designed for. They
can even be used for instance, to estimate posterior predic-
tions when learning with complex parametric systems such
as sigmoidal feed-forward neural networks [88]. To sam-
ple from p(A;B;C) using the Gibbs sampler, the simplest
kind of MCMC method, we start at A0; B0; C0, and then
repeatedly re-sample each variable in turn according to its
current conditional distribution (\�" should be read as \to
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be sampled from"):

A1 � p(AjB = B0; C = C0);

B1 � p(BjA = A1; C = C0);

C1 � p(CjA = A1; B = B1);

A2 � p(AjB = B1; C = C1);

B2 � p(BjA = A2; C = C1);

: : :

Probabilistic networks are an ideal framework for devel-
oping MCMC methods because these conditional distribu-
tions can be generated automatically from the network.
MCMC methods can be used for parameter �tting, to sam-
ple di�erent network parameters, and for structure learn-
ing, to sample from di�erent possible probabilistic network
structures. Use of MCMC methods for learning proba-
bilistic networks is discussed in [85], [144], [147], [146],
[23]. Madigan, Gavrin and Raftery [146] refer to the use of
MCMC methods for averaging over multiple probabilistic
networks|the full predictive approach|as Markov Chain

Monte Carlo Model Composition (MC3).
The key distinction between Bayesian and non-Bayesian

methods is the use of priors. Priors can unfortunately
be complex mathematically, so poorly chosen priors can
make a Bayesian method perform poorly against other
methods|a real danger in the case of Bayesian networks
because of their semi-parametric nature. Both informative
priors [68], [111], [121], [37], [35], [38], [146], [147], and non-
informative priors can be used. A fundamental assumption
is that equivalent network structures should have equiva-
lent priors on their parameters [121], [60], [37], [150]. For
instance, consider structures Sd and Se from Fig. 6. The
prior probability p(�djSd), by virtue of equivalence, can be
converted into a prior for �e using a change of variables
with the Jacobian for the transformation:

q(�ejSe) = p(�djSd) det

�
d�d
d�e

�
:

Notice this prior is constructed from the prior for Sd, and
is not necessarily equal to the prior actually used for Se,
p(�ejSe). The assumption of prior equivalence sets these
two priors equal, something not applicable if the network
has a causal interpretation [58]. This gives a set of func-
tional equations that the prior should satisfy. This basic
theory and other properties of priors for Bayesian networks
is discussed in [105], extending techniques presented in [37].
The ability to use a variety of informative, subjective

priors for Bayesian networks is one of their strengths. In-
formative priors can include constraints and preferences on
the structure of the network [121], [37], as well as prefer-
ences on the probabilities, and even using the expert to
generate \imaginary data" [146]. An example in the lan-
guage of chain graphs (an extension to Bayesian networks)
is given by [38]. The potential for using Bayesian networks
as a basis for knowledge re�nement has been suggested by
[121], [37], [111], [146], and in applications this o�ers an
integrated approach to the development and maintenance

of intelligent systems, long considered one of the potential
fruits of arti�cial intelligence.

IX. More on Learning Structure

An exact algorithm for handling incomplete data or miss-
ing values can be found in [151]. The problems involved
here for exact methods were previously explained in [35].
While impractical for larger problems, this could serve as
a tool to benchmark on non-trivial sized problems for the
many approximate algorithms that exist, for instance, some
are mentioned in Table III.
Simple clustering algorithms learn Bayesian networks

with a single latent/hidden variable at the root of the net-
work. So these kinds of problems have been addressed in a
limited sense for many years in the AI and statistics com-
munity [152]. A Bayesian method is [153], [51]. Likewise.
missing values can be handled by the well known EM al-
gorithm [76], or more accurately by Gibbs sampling [85].
More recent versions of these clustering algorithms search
over possible structures as well [51].
Some algorithms do not �t neatly into the categories

above. Learning Markov (undirected) networks from data
is related to the early Boltzmann machine from neural net-
works [21]. Also the earlier Bayesian methods seemed to
require as input a strict ordering of variables [35], [121],
whereas the identi�cation algorithms did not require this.
So one thought is a combinationof Bayesian with identi�ca-
tion algorithms [33]. But Bayesian methods do equivalent
things in the large sample case to the independence tests
used by identi�cation algorithms, and the strict ordering
is not entirely necessary for the Bayesian algorithms [32],
[37]. A variety of hybrid algorithms exist [59], [104], [12],
[73] that provide a rich source of ideas for future develop-
ment.

X. Constructing learning software

For a variety of network structures with latent vari-
ables and di�erent parametric nodes (Logistic, Poisson,
and other forms), the BUGS program can generate Gibbs
samplers automatically [154], [86]. This e�ectively allows
data analysis algorithms to be compiled from speci�ca-
tions given as a probabilistic network, and the technique
addresses a number of non-trivial data analysis problems
[155], [86]. Unfortunately, Gibbs sampling without much
thought to domain speci�c optimization can be time in-
tensive because convergence may be slow, so other meth-
ods need to be developed to make this approach more
widely applicable. Other algorithm schemas from Ta-
ble III can be applied within this compilation framework
as well, so it may be possible to construct more e�-
cient algorithms automatically. An exposition of the tech-
niques used by algorithms for learning Bayesian networks|
decomposition, exact Bayes factors, and di�erentiation|
all readily automated|can be found in [23], [156].
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