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Abstract—Microscopy imaging, including fluorescence micro-
scopy and electron microscopy, has taken a prominent role in life
science research and medicine due to its ability to investigate the
3D interior of live cells and organisms. A long-term research in
bio-imaging at the sub-cellular and cellular scales consists then
in inferring the relationships between the dynamics of macro-
molecules and their functions. In this area, image processing and
analysis methods are now essential to understand the dynamic
organization of groups of interacting molecules inside molecular
machineries and to address issues in fundamental biology driven
by advances in molecular biology, optics and technology. In this
paper, we present recent advances in fluorescence and electron
microscopy and we focus on dedicated image processing and
analysis methods required to quantify phenotypes for a limited
number but typical studies in cell imaging.

Index Terms—Fluorescence microscopy, electron microscopy,
image processing, image analysis, denoising, detection, segmenta-
tion, motion analysis, intra-cellular traffic analysis, cell motility
analysis, neuron shape analysis.

I. INTRODUCTION

T HE use of microscopy imaging in biology is currently
undergoing a revolution with the incorporation of all

new kinds of microscopic techniques that allow the visual-
ization, in vitro and in vivo, of tissues, cells, proteins and
macromolecular structures at all levels of resolution (light,
X-ray, and electron microscopy), different functional states
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Fig. 1. An illustration of microscopy modalities used for investigation in cell
biology at the sub-cellular and cellular scales (by courtesy of france-bioimaging.
org).

through fluorescent labeling (GFP—Green Fluorescence Pro-
tein probes), chemical composition (fluorescence and spectral
microscopy) and dynamic analysis (time-resolved microscopy).
Furthermore, molecular (RNA interference, defective mutants),
mechanical (micro-patterning) and optical (photoactivation)
perturbations combined with multiparametric microscopy
image acquisition allow one to confirm the established biolog-
ical models and to discern whether the changes in expression
have a role in the mechanisms under study. A more quantitative
and integrated description, in space and time, of molecular in-
teractions and coordination within macromolecular complexes
at different scales observed in multidimensional microscopy,
appears now essential for the global understanding of live
mechanisms. The results will have a strong potential for ap-
plications in biotechnology and precision medicine: disease
diagnosis, viral infection or defense mechanisms, detection
of genomic instabilities, pathogenesis of hereditary genetic
disorders, deterioration of cell cycle, epigenetic mechanisms,
cancer prevention, neurodegenerative diseases and neurological
disorder mechanisms

To tackle all these stimulating challenges driven by techno-
logical progress in optics and molecular biology, constant ef-
forts are necessary to develop innovative approaches and cut-
ting-edge methods in multidimensional image processing and
image analysis. In what follows, the term “image processing”
is meant to convey low level operations on images (e.g., filters)
which are often used for pre-processing type operations such
as enhancements, denoising, deblurring, while the term “image
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analysis” is used for the remaining tasks which are related to
information extraction, segmentation, tracking .

A. Main Challenges in Image Processing and Analysis

Advances in cell imaging have created specific challenges
for researchers in image processing and image analysis. Indeed,
light microscopy (LM) and electron microscopy (EM) have lim-
itations that need to be overcome.

First, in image reconstruction the limitations of LM are driven
by photon characteristics, such as spectroscopic properties of
fluorescence, by the optical aberrations and the resolution of
the overall microscopy system, and last but not least, by the
photon budget available in the specimen. A direct consequence
of cutting-edge acquisition implies the development of new con-
cepts and algorithms for addressing challenging inverse prob-
lems including image denoising/deconvolution to preserve the
integrity of samples in fluorescence and electron microscopy,
accurate localization of proteins/molecules and motion anal-
ysis of single molecules. In EM some prior knowledge needs
to be more used during the reconstruction process like the fact
that macromolecules are constituted by atoms, the statistical
distribution of coefficients in real space, Fourier space, etc. as
well as their local structure in a sort of a priori distribution of
local neighborhoods. Traditional image processing techniques
are the core of methods in LM and EM, but they still need to
be improved and adapted significantly to face the revolution of
modern microscopy imaging.

Second, LM and EM are characterized by the nature of the
observable objects (cells, organelles, single molecules, ) in
2D/3D time, by the large number of small size and mobile ele-
ments (chromosomes, vesicles, ), by the complexity of the
dynamic processes involving many entities or groups of en-
tities sometimes interacting, by particular phenomena of coa-
lescence often linked to image resolution problems, finally by
the association, dissociation, recomposition or constitution of
those entities (such as membrane fusion and budding). One typ-
ical challenge in LM is to detect and track xFP tags with high
precision in movies representing several gigabytes of image
data. However, low signal-to-noise ratios (SNR) and multiple
objects confound tracking and it is hard to associate measure-
ments with the correct objects, i.e., solve the data association
problem [1]. More generally, post acquisition analysis is a lim-
iting factor in front of the complexity of LM and EM data.
In most cases, semi-automated image analysis workflows (e.g.,
“image denoising—object detection—object tracking—trajec-
tory classification”) with minimal human intervention are de-
signed to facilitate the interpretation of the information asso-
ciated to large image corpus. On-line processing methods, cut-
ting-edge algorithms as well as speed-ups of the currently ex-
isting ones are frequently developed to generate morpholog-
ical/dynamical features that need to be matched to proteomics/
trasncriptomics/genomics information.

B. Positioning and Paper Organization

In recent years, image analysis in microscopy has gained im-
portance and the number of image processing and image anal-
ysis papers submitted to dedicated journals [2] in this area but
also to more generalist magazines, workshops and conferences
including in microscopy and bioinformatics, increased signifi-

cantly in the last decade. The IEEE International Symposium
on Biomedical Imaging (ISBI) focuses typically on microscopy
image processing and analysis methods and cutting-edge algo-
rithms. Moreover, several workshops/challenges are regularly
organized. For instance, the DIADEM (“Digital Reconstruc-
tion of Axonal and Dendritic Morphology”) challenge was first
launched in 2009 to create algorithmic methods for automated
neuronal tracing. The next initiatives “Particle Tracking” (ISBI
2012 [1]), “Cell Tracking” (ISBI 2013, 2014, 2015 [3]), “3D
Deconvolution Microscopy” (ISBI 2013, 2014), “Single Mol-
ecule Localization Microscopy” (ISBI 2013), “3D segmenta-
tion of Neurites in Electron Microscopy” (ISBI 2013), are par-
ticularly useful to define the state-of-the-art algorithms to be
included into analysis workflows, to compare standard and re-
cent cutting-edge algorithms and to specify future progress and
advances for specific topics. Moreover, related books [4], [5]
and special issues [6]–[9] include a few tutorial-style overview
articles covering progress in recent years for a large variety
of topics (e.g., tracking in fluorescence bioimaging [10]–[12],
sub-diffraction limited imaging and single molecule localiza-
tion [13], [14], parametric active contour-based image segmen-
tation [15] ). Finally, several authors presented independently
state of the art methods for specific and important topics in-
cluding cell-shape analysis [16], neuron tracing [17], co-local-
ization (percentage of co-detection of interacting protein types
at the same location) [18], [19], 3D image deconvolution [20],
spot detection [21] in fluorescence microscopy Even if it
is generally a difficult task to present a broad view of activi-
ties in bio-image processing and analysis [2], several authors
[22]–[25] already explained successfully how computer vision,
image analysis and visualization algorithms combined in work-
flows, will play a significant role in image-based studies of cell
biology.

In this paper, our ambition is not to cover all the topics in
bio-imaging but to present with more details a few important
image processing problems and applications not addressed in
the aforementioned challenges and surveys (e.g., [18], [21], [1],
[3]). Accordingly, we focus arbitrarily on dedicated image pro-
cessing and image analysis methods that generally are included
into workflows developed for specific biological studies. The
remainder of the paper is organized as follows. In Section II,
we present previous works, recent advances and challenges re-
lated to instrumentation in electronic and photonic microscopy.
They include computational aspects on the reconstruction in
LM, EM and correlative approaches. In Section III, we focus on
dedicated image processing methods and algorithms required
to quantify phenotypes observed at the intracellular and cel-
lular scales. Four typical biological systems and applications
are considered: cell integrity preservation during acquisition,
molecular mobility quantification, cell motility analysis, anal-
ysis of neuron functionalities. In Section IV, we give the moti-
vations for developing methods for computational biology and
bioimage informatics. Section V contains concluding remarks
and perspectives.

II. ADVANCES IN ELECTRON AND FLUORESCENCE
MICROSCOPY AND INSTRUMENTS

The last two decades have especially witnessed the explosion
of the digital microscopy imaging: ion milling, multi-photon,
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Fig. 2. Left: Example of a projection of HIV-1 envelope glycoprotein as seen
at the electron Microscope. Right: corresponding 3D reconstruction at 6 res-
olution from several thousands of such projections [41].

stimulated emission depletion (STED) microscopy, structured
illumination microscopy (SIM), 3D Multi-angle Total internal
reflection fluorescence (TIRF), photo-activated localization
microscopy (PALM) and stochastic optical reconstruction
microscopy (STORM), near-field scanning optical microscopy,
transmission full-field X-ray microscopy (TXM), scanning
transmission X-ray microscopy (STXM), scanning photo-
electron microscopy, micro-X-ray fluorescence, synchrotron
radiation X-ray tomographic microscopy (SRXTM), etc.
Current technological advances include structured and more
coherent beam sources, faster and more sensitive detectors,
the use of smaller and more sensitive molecular probes, au-
tomation of image acquisition. Additionally, the same device
may include multiple different kinds of microscopes providing
complementary information about the sample being visual-
ized. In this section, we present trends in EM and LM image
reconstruction.

A. Image Reconstruction in Electron Microscopy (EM)

Electron microscopy of frozen hydrated samples has proved
to be a very effective tool in Structural Biology to elucidate
the three-dimensional structure of biological macromolecules.
Structural information is key to fully understand the physi-
ological function of these macromolecules, as well as their
pathological misfunctions. The electron microscope produces
2D images with very low contrast and very low SNR (see
Fig. 2 left) on which image processing and tomographic al-
gorithms are applied in order to produce a high-resolution 3D
volume compatible with the measurements acquired by the
microscope (Fig. 2 right). The image processing workflow in-
cludes automatic identification of high-resolution micrographs,
the identification of the electron microscope transfer function,
identification of particles in the micrographs, evaluation of
their quality, 2D classification and identification of projection
outliers or contaminants, construction of a low-resolution initial
model, refinement of this model and classification of particles
into different conformational states [26], [27]. These steps are
normally performed using integrative packages (like Spider
[28], Eman [29], Imagic [30], Xmipp [31]–[33], Bsoft [34],
Sparx [35], Frealign [36] or Relion [37]) where several options
for each step are available. There are projects like Appion [38]
or Scipion [39] where all these packages are given a unified
user interface.

The current resolution limit is about 3 (the radius of an atom
is between 1 and 2 ). However, in the last 3-4 years, the whole
field has experienced a technological revolution due to the in-
troduction of Direct Detector Devices (DDDs) and the number
of structures solved in the 4–3 range has rapidly grown in the
last 2 years [40]. This technological advance has been accompa-
nied by more accurate and robust image processing algorithms
that help to better exploit the information contained in the mi-
crographs. We may group the image processing advances in the
last 3 years into those aiming at improving the resolution and
those aiming at improving the throughput and robustness. Alto-
gether, the goal is to have a robust high-throughput, high-reso-
lution electron microscopy. The following sections summarize
the advances in the last 3 years in the two aspects.
1) High-Resolution Electron Imaging:

Direct Detection Devices (DDD): As already mentioned,
the recent introduction of Direct Detection Devices allows di-
rectly imaging electrons without the need of an scintillator that
transforms electrons into photons with a significant blurring of
the image. A number of works have characterized the perfor-
mance of these new cameras [42]–[44]. Interestingly, due to the
small exposure times of these new devices, it has been realized
that the specimen actually moves inside the ice matrix [45] due
to its interaction with the electron beam (most likely, this has
been one of the most resolution limiting factors in years). Algo-
rithms, as well as experimental ways [46], aimed at correcting
this drift have been explored [47], [48], [43], [44], [49], [50] and
it is still an active field of research.

Image Formation Process: As the data quality improves,
very accurate image formation models have been proposed as
a way to increase the resolution achievable. These models ex-
plore how electrons interact with matter (the macromolecule
and its hydration layer [51]) and finally produce an image that is
recorded by the device [52], [53]. For the moment, none of the
previous advances in image formation has made its way into a
3D reconstruction algorithm, but certainly having a high-reso-
lution model of how the image is formed in the microscope is a
necessary step forward. Experimental procedures to reduce ra-
diation damage have also been put forward as a way of better
preserving the structural information contained in images [54].
2) Robust High-Throughput Imaging:

Image Acquisition: Acquisition in current electron micro-
scopes is fully automated in the sense that several grids with
frozen samples can be loaded at once, and a robot takes one
by one these grids, put them inside the microscope, dedicated
software will analyze the grid, decide the interesting regions
and acquire electron micrographs. The precision of this process,
keeping the samples at liquid nitrogen temperature and stabi-
lizing the microscope operation over an extended period of time
(up to 36h without human intervention) has been a technolog-
ical challenge (still ongoing) but to a certain extent achieved.
These long microscopy sessions produce thousands of micro-
graphs that have to be analyzed. The quality of the acquired mi-
crographs and some sort of automatic selection of micrographs
need to be performed [27]. Current methods primarily rely on
features calculated on the Power Spectral Density of the micro-
graphs. Then, the defocus of each micrograph is automatically
estimated [55]. From each micrograph, a number (ranging from
a few tens to a thousand) of individual particles are identified
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(like the one in Fig. 2 left). In total between 20k and 1M parti-
cles are extracted from the set of micrographs (normally using
some automatic or semiautomatic algorithm [56] based on pat-
tern matching, normally using rotational invariant features). In
case that micrographs are taken as tilt pairs (one micrograph at
zero tilt and the next one at some non-zero tilt angle), automatic
methods have been put forward for identifying particle corre-
spondences [57]. State-of-the-art algorithms produce a False
Positive rate of about 15%. Algorithms aiming at identifying
those incorrectly identified particles have been investigated in
[58], [59].

2D Image Analysis and Clustering: Particles extracted
from micrographs are normally analyzed in 2D (the most
common operation is a clustering) in order to have a summary
of the data collected and as an exploratory tool to realize the
possible different conformations and possible contaminants.
This step is relatively settled in the field. Notwithstanding,
some new developments have been introduced in the recent
years addressing the speed of the clustering process [60], which
is an important issue as the number of particles grows over 1M,
the stability of the clustering [61] and the presence of outliers
[62]. Additionally, some works have explored the possibility to
denoise particles as a way to improve SNR [63].

Estimation of the Initial Volume: A key step in the image
processing of single particles is the starting volume. The refine-
ment process is iterative and the choice of the starting volume
can drastically bias the results towards a totally incorrect recon-
struction corresponding to a local minimum of the landscape
of solutions. Recent years have been very active in the devel-
opment of robust algorithms for constructing a suitable initial
volume without any a priori information [64]–[71]. They all
exploit some sort of stochastic optimization and/or the special
geometrical constraints imposed by the Central Slice Theorem.

3D Reconstruction: As the number of particles grows,
new 3D reconstruction methods are developed in order to make
the process more efficient [72], [50]. Another research line
is making the reconstruction process more robust to noise by
promoting sparsity in the reconstructed volume [73]. In order
to remove unreliable particles, those whose angular assignment
is not well understood may be removed from the process [74],
this increases the robustness of the 3D reconstruction step.

Analysis of 3D Heterogeneity: Macromolecular structures
are flexible objects (flexibility allows physiological functions)
and EM is a specially well suited technique to capture many
different conformations. However, this advantage has to be
matched with image processing techniques capable of identi-
fying the different conformations (otherwise, they would all
contribute to a single, blurred volume). This is currently one of
the main open problems in the field and many new algorithms
are trying to tackle the problem. Major trends come from i) a
discretization of the conformational space through Maximum
Likelihood or Maximum A Posteriori framework [75], [76], ii)
the analysis of the continuous conformational space [77], [78],
iii) or the analysis of the covariance matrix of the reconstructed
volume [79]–[81].

Validation and Quality Assessment: Three-dimensional re-
construction in Single Particle Analysis is a technique that may
easily fall into local minima. A major concern in the field is val-
idating the correctness of the reconstruction obtained. In this re-

gard, there has been a number of works aiming at providing cri-
teria to check the validity of the reconstructed volume [82]–[85].
Once, we are confident about the result, we may wonder which
is its resolution. The concept of local resolution has recently
made its way into the field [86].

Analysis of Volumes in Structural Biology: Finally, we
may try to recognize secondary structure elements [87]–[89],
we may identify components by constraining the identification
with other experimental sources like mass spectroscopy [90]
and proteomics and chemical cross-linking [91], we may add a
priori knowledge about atomic models that should fit into the
3D reconstruction [92]–[96], or analyze its possible deforma-
tion paths [97], [98].
3) Subcellular Imaging and Electron Tomography: Electron

microscopy is also used to image thin cellular slices. This tech-
nique is called Electron Tomography and it takes projections
from the same slice at different tilt angles (typically between

60 and 60 ). In the recent years, the main algorithmic ef-
fort in Electron Tomography has concentrated on a technique
called subtomogram averaging. A tomogram is the 3D recon-
struction of the cellular slice imaged at the microscope. In these
slices we may see multiple copies of the same biological en-
tity (for instance, ribosomes) in different conformations (each
entity is in a different state of its biological cycle). We may ex-
tract from the tomogram each one of these entities, called sub-
volumes. These subvolumes have relatively low SNR, although
larger than the SNRs in the micrographs, and an important lack
of information in Fourier space (called the missing wedge). Sub-
volumes in the same conformation can be averaged as a way to
improve the SNR, the resolution and to fill the missing regions
in Fourier space. This problem is known as Subtomogram Av-
eraging and may involve subvolume alignment (taking care of
not comparing the missing areas) as well as subvolume classi-
fication. In the last years several subvolume alignment and/or
classification methods have appeared [98]–[101]. Special atten-
tion has been paid to identify model bias [102] and to under-
stand the limitations of subtomogram averaging [103]. We may
think of subtomogram averaging as an alternative to Single Par-
ticle Analysis. Subnanometer 3D reconstructions using subto-
mogram averaging have been obtained [104]. However, the res-
olution achieved by subtomogram averaging (about 7–8 ) is
still far from the current resolution achieved by single particle
analysis (between 2–3 ).

A different technique whose first pioneering works have re-
cently appeared is called Single Molecule Tomography [105].
This technique is similar to Electron Tomography in its image
acquisition scheme, but it differs in that, unlike Electron To-
mography, a single molecule, not a cellular slice, is imaged. In
this way, 3D reconstructions are obtained for each individual
molecule. Then, these reconstructions can be combined using
the same algorithmic techniques used for subtomogram aver-
aging. At this moment, this technique is not widely used prob-
ably for several experimental (need for image acquisition au-
tomation, limitations in dose and molecular weight) as well as
algorithmic (difficulties to locate and align the individual im-
ages due to the low contrast and SNR caused by the dose frac-
tionation) constraints.
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Finally, some 3D reconstruction techniques have been pub-
lished to deal with the discrete tomography problems that
steams from energy filtered acquisitions [106], [107], some
other algorithms try to get rid of reconstruction artifacts due to
the missing wedge [108] and the use of gold beads to align the
images [109].
4) Discussion and Perspectives: In the long run, the ideal

for EM of single particles would be a situation in which sev-
eral grids of the sample are loaded into the microscope and,
automatically, this collects images that are processed online to
produce one or multiple 3D reconstructions analyzing the dy-
namics of the structure at high-resolution. This process, ideally,
would be mostly unattended and the image processing algo-
rithms and microscope collaborate to produce high resolution
structures without contaminants and sorting the different hetero-
geneous populations into different classes, even providing con-
tinuous paths along which the structure fluctuates. These high
resolution volumes could serve as the basis for structure-based
drug design by the pharmaceutical industry.

In the short run, different building blocks will pave the way
towards this long run vision. At the level of microscope, phase
plates [110] will help to work with smaller molecules yielding
better contrasted images. These images along with their current
standard images counterparts will allow regular reconstruction
to 4–5 , as long as there is no heterogeneity in the sample.
Sample heterogeneity and sorting of the different conforma-
tional states as well as continuous changes will remain an open
issue for long time, and new image processing algorithms are
expected in this area. DDD cameras are expected to improve
and give even better resolution data. In order to break the 3
resolution barrier, we will need to locally estimate second and
higher order microscope aberrations and incorporate into the
3D reconstruction algorithm the nonlinearities of a more phys-
ically based image formation model. 3D Reconstruction algo-
rithms should exploit basic properties of standard molecules
(like being sparse in some appropriate basis) and regularize the
3D reconstruction so as to get rid of as much noise as pos-
sible. The analysis of the different structure conformations is
currently one of the most resolution limiting factors and new al-
gorithms will appear to handle the molecular heterogeneity. Al-
together, technological improvements at the microscope level
along with image processing improvements of the data pro-
duced as well as the better integration of the EM results with
already existing biochemical information will make EM one
of the techniques of choice when developing new drugs using
structural information of the target.

B. Recent Trends in Sub-Diffraction and Correlative

Microscopy

The advances in optics, digital sensing technologies and
labeling probes (XFP—Colored Fluorescence Protein) [111]
(Nobel prize in chemistry 2008) have enabled to provide a very
fine description of the components of the cell at the scale of a
few nanometers to several hundreds of nanometers for a variety
of applications in cell biology (see Fig. 1). In this section,
we present recent trends in fluorescence, sub-diffraction and
correlative microscopy.

1) Diffraction-Limited Microscopy and Previous Works:

Investigating the impact of molecule clustering using diffrac-
tion-limited microscopy on the signaling pathway and beyond,
was a tedious challenge, and even impossible in some cases.
The most advanced available techniques, which allow for
measuring molecular protein properties in the living cell,
could offer information on concentration (FCS—Fluores-
cence Correlation Spectroscopy), dynamics (FCS, FRAP
(Fluorescence Recovery After Photobleaching)), interactions
(FCCS—Fluorescence Cross-Correlation Spectroscopy) and
protein proximities (FRET—Fluorescence Resonance Energy
Transfer) (see [112] for an overview). However, those cor-
relation-based techniques have their drawbacks: i) some of
them are invasive (FRAP-related techniques); ii) the data they
produce are poorly compatible with precise spatial localization
(FRET ); iii) most of them have strong protein concentration
constraints (FCS, FCCS); and iv) some are based on rather slow
measurement that are incompatible with molecular dynamics
(photon counting-based FLIM (Fluorescence Lifetime Imaging
Microscopy)) and related physiological consequence studies,
at the whole single cell level. Characterizing the mobility and
spatial organization of the implicated molecular actors, was not
easily supported. Therefore, improving the optical resolution
beyond 200 nm diffraction limit, while retaining the advantages
of LM and the specificity of molecular imaging, has been a
long-standing goal.
2) Sub-Diffraction Fluorescence Microscopy: Sub-diffrac-

tion limited microscopic techniques fulfill some of the
requirements such as to close the resolution gap between con-
ventional LM and EM methods. SIM (structured illumination
microscopy) [118], [119] was first able to produce multi-color
3D imaging reconstruction of fluorescently labelled speci-
mens with a lateral resolution approaching 100 nm. Other
advances—STED [113] (photo-switchable probes), STORM
[114], [115] (inorganic photo-switchable dyes) or PALM [116],
[117] (photo-activable fluorescent probes, Nobel prize in chem-
istry in 2014)—allow localization of single-molecules inside
the cells at the scale of several dozens of nanometers. There-
fore, they give access to precise determination of the spatial
organization of the actors of signaling pathways on the mem-
brane, at the single-molecule level. Whereas d(irect)-STORM
produces static images, PALM can also be used to reconstruct
single-molecule trajectories on the membrane (“single-particle
tracking”(spt)-PALM). In general, single fluorescent molecule
are detected in each image frame and tracked using a dedi-
cated algorithm [235] and Gaussian fitting. The localization
accuracy, depending on the SNR, is of the order of 20–25 nm,
that is an image resolution of 40–50 nm. Trajectory are then
computed using nearest neighborhood methods and consists
of successive positions of 5–100 points in an average. The
great advantage of sub-diffraction microscopy is to potentially
be compatible with chemical treatments that putatively alter
clustering and trafficking and can be used to measure the effect
of this treatment at the level of the whole cell response, thus
ensuring experimentally that the chemical treatment indeed had
the expected effect on clustering.

The first limitation of sub-diffraction microscopy is that
it naturally put severe constraints on tagging. For instance,
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u-PAINT ((universal Point Accumulation for Imaging in
Nanoscale Topography) [124] is able to reach slighter resolution
than spt-PALM and provides dynamical information on a single
live cell with large statistics revealing localization-specific
diffusion properties of membrane biomolecules; nevertheless,
u-PAINT needs to be coupled to antibodies, which can generate
biological artifacts. d-STORM is appropriate to map endoge-
nous proteins using fused fluorescence probes, smaller than
antibodies, which can be reversibly photo-switched. Albeit
used on fixed (dead) cells, d-STORM gives very fine spatial
localization accuracy (20–30 nm) with two to three colors.
Finally PALM is not suited when one wants to use two or three
different colors/markers, which can be quite useful co-localiza-
tion/clustering studies. Finally, a typical single cell spt-PALM
experiment leads to a set of several thousands of images that
need to be processed in order to extract molecule localization
and dynamics.

Actually, all these point-by-point approaches (PALM,
STORM) aim at improving the resolution to the detriment of ac-
quisition rate. For example a 28 28 micrometer square image
with a lateral resolution of 60 nm is recorded in approximately
1 minute with PALM technique [120]. Even SIM is poorly com-
patible with time regimes expected in most live cell imaging,
which restrict its application mostly to fixed samples. Advances
in information restoration will probably make sub-diffraction
imaging more compatible with the imaging of molecular
dynamic in live cells in the future. Very recently, high-NA
(numerical aperture) TIRF-SIM [121], PA (pattern activation)
non-linear SIM citeLiBetzig2015 and lattice light-sheet mi-
croscopy (LLSM) [122] permitted to image respectively with
high spatial and temporal resolution the dynamic associations
of cortical filaments with proteins (high-NA TIRF-SIM, 97 nm
resolution), the remodeling of the actin cytoskeleton (PA NL
SIM, 62 nm resolution) and the intracellular dynamics in 3D
(LLSM). In this line of work, an innovative way to perform
high-resolution in photonic microscopy, while keeping access
to the accurate dynamic ranges within single cells, is based on
azimuthal spinning TIRF imaging [123]. Unsurpassed TIRF
image quality is provided by fast rotational laser illuminations,
minimizing (by averaging) the fringe aberrations commonly
observed in TIRF microscopy. A dedicated 3D reconstruction
algorithms have been proposed and enable to visualize and
quantify fast cellular events localized at or close to the plasma
membrane of live adherent cells (up to 1 m in depth with at
least 30 nm axial resolution) [125]. The temporal resolution of
the high resolution 3D TIRF (up to 35–40 frames per second)
makes this technique appropriate for studying the coordination
of vesicle recycling at the plasma membrane and cytoskeleton
dynamics, at the same time and in depth. also compatible
with dynamics study at the single cell level and the very low
photobleaching and phototoxicity.
3) Full Correlative Microscopy and Hybrid Strategies: To

define the temporal frame of a biological event, the spatial infor-
mation at both the nano-or micrometric scales needs to be cor-
related with optical microscopy of living cells that will be im-
mobilized in a time resolved way. To extract biophysical infor-
mation of one particular molecular species in its macromolec-
ular context and thus to understand complex biological systems,

there is a necessity of multiparametric measurements that cap-
ture diffusion, flow or exchange of proteins, protein-protein in-
teractions in time and space, in living cells. The information
gathered at these different levels is not coherent and cannot
presently be integrated easily. A key approach is to correlate
information extracted from diverse microscopy techniques, be-
yond advanced LM.

Combination of Diffraction-Limited Microscopes: While
a lot of image acquisition technologies giving access to various
scales of biological material exist, pinpoint and manipulation
of the biological samples, through the different setup is only
achieved through tedious and timeless experimental procedures.
Consequently, multiparametric instruments enabling biologists
to use different techniques simultaneously or sequentially as fast
as possible, and to render them applicable to high throughput
analyses, are currently investigated. Ideal instruments would
be automatic positioning “multimodal microscopes” based, for
example, on multipoint confocal and Total Internal Reflection
Fluorescence (TIRF) microscopy, using diverse laser-assisted
techniques (4 Dimensional, TIRF-Dual Channel, TIRF-FLIM,
FRAP, Photo-conversion and activation, optical tweezers).
Combined approaches including FLIM, FRET and live LM
have started to demonstrate that macromolecular complexes
determine an ultrastructural architecture whose function gives
rise to the integrative scale of the life matter within cell and
tissues.

CLEM Microscopy: Another very active field in the do-
main of microscopy imaging has been to search for ways of
combining EM with LM (CLEM) [126] to combine the advan-
tages of live fluorescence microscopy with the high resolving
power of EM [126]. Extensive research has been performed
in designing probes that can be seen in both modalities, de-
signing sample holders that can be used in both microscopes,
the physical construction of microscopes with the two kinds of
imaging, etc. A major limitation within CLEM strategies is the
time interval between cell selection under the light microscope
and the fixation step (chemical fixation but also transfer to the
high pressure freezing apparatus) that takes a few seconds and
up to minutes, far too slow to fix rapid intracellular movements
at the exact time of interest. To make it short, more integrated
instrumentation and protocols for sample preparation and han-
dling have been proposed. In this context, a topological aver-
aging of cell structures and standardization of cell shape, al-
lowing rapid and easy re-localization when passing from one
scale to the other, has been made available through micro-pat-
terning technologies [127].

C. Perspectives for Image Processing and Analysis Methods

To better elucidate the role of specific proteins inside their
multiprotein complexes and to decipher the dynamic coordina-
tion and organization of molecular complexes at the cell level,
image processing and image analysis methods, mathematical
models, and algorithms are increasingly investigated to build
an integrated imaging approach that bridges the resolution gaps
between the molecule and the whole cell, in space and time [23].
Facing the amount of information provided by high-throughput
multidimensional microscopy, the methodological approach
is to link in a single workflow, information extracted from
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imaging molecules by sub-diffraction limited resolution LM
using cutting-edge detection algorithms, eventually at a time
regime compatible with live cell imaging.

The overview of ultrastructural organization is achieved by
complementary electron microscopical methods. Since there
is a large resolution gap between conventional LM compat-
ible with live cell imaging and EM, microscopists needs fast,
robust and efficient computational methods and algorithms to
locate and pinpoint structures of interest, to improve image
contrast, to remove noise for a better interpretation of the image
contents and to register images [128], [129]. At first glance,
information theory criteria [130] seem more appropriate to
analyze images coming from different modalities. A number
of comparison studies in medical imaging (CT/MR imaging
or US/MRI imaging) shown that the similarity measures yield
different performances depending on the considered modality
combinations [131]. Furthermore, data fusion and LM-EM
image matching are challenging issues and correspond to a
large variety of scales, image contents and noises. As shown in
[132], LM images are typically blurred when compared to EM
images.

III. FOCUS ON A FEW IMAGE PROCESSING AND ANALYSIS
METHODS AND APPLICATIONS IN BIOLOGICAL IMAGING

Image processing and analysis applied to microscopy has
become a key tool in molecular biology since it enables to
quantify biological processes in space and time at the subcel-
lular and cellular levels. Theories, methods and algorithms have
been developed to face multidimensional spatial-temporal data
provided by imaging sensors and technologies as described
below. Nevertheless, microscopists and biologists are at present
flooded with data that they have to normalize, filter, denoise,
deblur, reconstruct, register, segment, classify, etc. All these
operations are currently performed by basic and/or advanced
signal and image processing algorithms, which are gaining
more and more importance as the collected data becomes more
sophisticated and more complex in its acquisition and image
formation model. These operations are generally gathered into
image analysis workflows for specific biological experiments.

In this section, we present a few very popular bio-image pro-
cessing methods generally integrated into workflows to analyse
the structure and dynamics of molecules, proteins and cells. We
focus on four biological studies:

• Preservation of cell integrity (photo-toxicity versus expo-
sure time) using image denoising methods;

• Traffic analysis from particle motion and molecule trajec-
tories in live-cell imaging;

• Cell motility analysis using tracking algorithms;
• Analysis of structure and functionalities of neurons using

segmentation algorithms
They represent typical biological studies which are conducted in
cell imaging and cell biology. For each study, we give biological
issues, methodology and perspectives.

A. Preservation of Cell Integrity in Live Cell Imaging

1) Motivation: Many live-cell fluorescence imaging exper-
iments are limited in time to prevent phototoxicity and photo-
bleaching. It is established that the amount of light and time

required to observe entire cell divisions or intracellular mech-
anisms or processes can generate biological artifacts [133]. It
has been demonstrated that image denoising allows images to be
taken more frequently or over a longer period of time, while pre-
serving image quality [134]–[136]. Such post-acquisition pro-
cessing can improve the frame rate by a factor of 100 times
[133]. Conversely, for a given acquisition rate, it can permit
to reduce the sensitivity threshold, allowing imaging for long
time regimes without photodamages. This strategy has been suc-
cessfully applied to wide-field and Nipkow disk based confocal
[137], regular laser scanning confocal microscopy [138], TIRF
(Total Internal Reflection Fluorescence microscopy [139], and
3D-PALM microscopy [140]. The major advantage of denoising
algorithms is to potentially acquire images at very low SNR
while recovering denoised 2D T(ime) and 3D T(ime) images.
Such developments will be also required to be compatible with
“high-throughput microscopy” since several hundreds of cells
are observed at the same time and the exposure times are typi-
cally reduced.
2) Image Denoising Methods in Fluorescence Microscopy:

In this section, we present the state-of-the-art methods adapted
to remove Poisson and Poisson-Gaussian noise generally mea-
sured in fluorescence microscopy. Image denoising is generally
the first step of many image analysis workflows since it helps to
visualize the phenomena and mechanisms under study.

Noise Modeling: An imaging set-up consists generally of
an optical system followed by a photodetector and associated
electrical filters. The photodetector converts the incident optical
intensity (i.e., photons) into electrons. Unfortunately, the sig-
nals are generally damaged by many different sources of noise
during acquisition. Poisson noise typically arises in adverse con-
ditions such as poorly illuminated environments, short exposure
times, and low-efficiency photon detectors. This is especially
true in microscopy. In LM imaging, signals are known to be
corrupted by intensity dependent Poisson noise but also by ad-
ditional sources of electron noise [141]. Formally, the most pop-
ular model in fluorescence microscopy is as follows

where is the intensity observed at space-time location
is gain of the overall electronic system, is the

number of photo-electrons at pixel assumed to be Poisson
distributed with unknown mean is
a white Gaussian noise and represents “dark current”. Such a
noise is signal dependent and requires to adapt the conventional
denoising approaches.

Variance Stabilization Transform: In the literature, most of
methods have been developed for Poisson noise reduction. The
key challenge in Poisson intensity estimation problems is that
the variances of the observed counts are different. The effect of
Poisson noise increases (i.e., the SNR decreases) as the mean
intensity value decreases. The first category of methods dealing
with Poisson noise are based on variance stabilization tech-
niques [142], [143], [137], [144], Anscombe transform [145]
and Haar-Fisz transformation [146]. The idea consists in con-
verting Poisson noise into a Gaussian noise with unit variance
[142], [147], [143], [137], [144]:

(1)
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and then applied commonly-used denoising algorithms for pro-
cessing additive for additive white Gaussian noise. Stabiliza-
tion techniques provides satisfying results when the number of
collected photons is high enough [137], [144]. Furthermore, it
is also assumed that the data are corrupted by additive white
Gaussian noise with signal dependent variance such as:

and . Many conventional de-
noising methods for white Gaussian noise are then adapted for
this situation of high count numbers (e.g., see [78]). For very
limited-photon imaging, this approximation does not hold and
alternative approaches are required for restoration. In the most
severe cases, the measurements are 0 is most locations in the
image or 1 corresponding the arrival of one photon. In fluo-
rescence imaging, this situation is not usual but is considered
in Time-Correlated Single Photon Counting (TCSPC)—Fluo-
rescence Lifetime Imaging Microscopy (FLIM) [148], [149].
A alternate approach is to consider Poisson noise statistics (or
Poisson-Gaussian noise statistics [150]–[152]) and maximum
likelihood estimators [153] or Maximum a Posteriori estima-
tors [154]. The idea is to directly handle Poisson noise without
“Gaussianization” of the data, which is more appropriate for low
SNRs.

Patch-Based and Wavelet-Based Methods: To date, the
most competitive methods for dealing with Poisson noise fall
in the two following categories:

• Patch-based methods: In the case of additive white
Gaussian noise, the NL-means filter [155] is considered as
an efficient and simple approach for noise reduction while
preserving image geometry. This method exploits image
redundancy captured by patches to restore information. In
order to optimally perform in the case of Poisson noise,
the NL-means has been combined with Fisz transform
[156], [157]. Other authors proposed to combine more
efficiently Principal Component Analysis [158] and dic-
tionaries [159] to patch-based representation to reduce
Poisson noise. In [160], the authors proposed an extension
of the NL-means based on probabilistic similarities to
compare patches. Additional adaptation of NL-means for
two-photon microscopy [161] and FLIM imaging has been
proposed in [162], [163].

• Wavelet-based methods: Traditionally, wavelet-based
methods are recommended for image denoising [164]
including for Poisson noise reduction [165], [143]. The
combination of a risk estimate for Poisson statistics with
the Haar multiresolution provided fast (PURE) algorithms
with applications in fluorescence microscopy [166], [167].
In this area, [168] and [169] addressed the problem of
mixed Poisson-Gaussian noise.

In another line of work, compressive sensing is currently inves-
tigated to save time and measurements in biological imaging
[170], [171].

The case of 2D-3D multiframe analysis has been addressed
with patch-based [137] and wavelet-based [172] and was
especially dedicated to fluorescence imaging (see Fig. 3).
Nevertheless, additional efforts are required to adapt the above
mentioned mathematical frameworks mostly designed for 2D
images corrupted by Poisson or Poisson-Gaussian noise to be
compatible with time-lapse cell imaging and “high-throughput
microscopy”.

Fig. 3. Comparisons of two multiframe denoising methods. Left: original
image; middle: wavelet-based method [172]; right: patch-based method [137].

3) Denoising-Deconvolution Methods and Perspectives: To
preserve live samples during image acquisition, the illumina-
tion intensity must be set to safe levels. This induces increased
noise in images and a severe loss of resolution to the extent
that the subcellular components appear to be blurred. Several
methods [20], [173] and software [174], [175] have been pro-
posed to improve signal to noise ratio and resolution assuming
a Gaussian noise or a Poisson noise (e.g., Richardson-Lucy al-
gorithm [176], [177]). In recent years, the most popular de-
convolution methods in fluorescence microscopy are based on
the minimization of an energy functional being the sum of two
terms: A data fidelity term depending on the image formation
process (e.g., noise statistics, point spread function) and a reg-
ularization term imposing some prior on the solution. Gener-
ally, a additional constraint is considered to promoting posi-
tivity of the solution. In this framework, several regularizers
have been investigated to suppress large amounts of noise while
restoring spatial details and structures: Tikhonov, wavelet-based
[178], Total Variation (TV) (e.g., [179]), second-order deriva-
tives (e.g., Laplacian, Hessian [180]) eventually combined with
entropy-based potentials [181]. Mixed norms combining first
and second order derivatives have been also designed to atten-
uate stair-case effects of the TV norm. Finally, optimization al-
gorithms are required and need to be customized for image re-
construction (e.g., see [178], [181], [180], [179]).

Interestingly, the combination of patch-based denoising
(sparse coding denoising) and deconvolution algorithms in
[179] produced impressive results on the synthetic datasets of
the “3D deconvolution microscopy” challenge (ISBI 2013).
In [137], the deconvolution of denoised 3D time images
significantly improved the image resolution in real experi-
ments. Building on these success, a new line of work will
be to combine intelligently denoising and deconvolution al-
gorithms in an appropriate signal processing framework to
recover structural details and improve spatial resolution, while
at the same time pushing the illumination to extreme low
levels in order to limit photo-damages and photo-toxicity.
Denoising-deconvolution methods can actually improve the
quality of any type of microscope and new results on STED
[113] and SIM [118] will demonstrate in the forthcoming years
the novel synergy between sub-diffraction limited imaging
techniques and image deconvolution as already investigated in
[182]–[184], [125]. Finally, the high computational time will
require the development of accelerated versions of the most
used restoration algorithms in microscopy to face massive data
(e.g., 4D wide-field microscopy) to process.

B. Intracellular Traffic Analysis and Molecular Mobility

In live cell imaging, the analysis of fluorescence fluctuations
in time in a given volume allows measuring motion and den-
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sity of the fluorescently labeled molecules and proteins inside
the sample. The methodological approach (e.g., image analysis
workflow) is then to i) detect, ii) track and iii) classify dynamics
of proteins and molecules using dedicated image processing
methods, at a time regime compatible with live cell imaging.
Quantitative analysis of molecule or groups of molecules trajec-
tories is the next issue. In this section, we present an overview of
methods for i) detecting spots/molecules and for iii) molecular
mobility estimation. An complete overview of fluorescently la-
beled proteins tracking (item ii)) is given in [1].
1) Biological Issues: Eukaryotic cells are characterized by

membrane bound organelles. Their abilities to divide and fulfil
their various functions within integrated tissues rely on the tight
regulation of membrane composition, on the generation of ubiq-
uitous and specialized organelles and on their capability to com-
municate with each other. Current research efforts in cell bi-
ology have already contributed to identify hundreds of compo-
nents defining key machineries of essential functions.

A new long-term goal in fundamental biology is to deci-
pher the dynamic coordination and organization of interacting
molecules within molecular complexes at the single cell level
and to explore the role of transport intermediates (e.g., vesi-
cles) to higher levels of complexity, as during remodeling
of the plasma membrane, differentiation and cell migration
in contexts in forced two dimensions (micro-patterns), or in
reconstituted three-dimensional environments. Targeting of
specific proteins is essential for cell homeostasis, specialized
tissue function and development of living organisms. This is
achieved by protein sorting through the different intracellular
organelles of the secretory and endocytic pathways of non-po-
larized and polarized eukaryotic cells and vesicular transport of
soluble and membrane components. It has emerged during the
last 20 years that transport from one compartment to the next
one follows similar mechanistic principles, that is formation
of coated vesicles, which bud from a donor compartment and
then fuse with the recipient compartment. They involve similar
protein networks controlling soluble and membrane protein
sorting and vesicle formation, transport vesicle movement
along cytoskeleton elements (actin nucleation machineries and
molecular motors) and membrane fusion. Nevertheless, it is
still difficult and challenging to understand how these different
machineries using multiple protein-protein and protein-lipid
interactions are interconnected and coordinated in time and
space during a given reaction like for intracellular transport,
for instance. Also are unclear the mechanisms by which these
processes are regulated in highly differentiated cells in order to
properly function in a tissue.
2) Spot and Particle Detection in Microscopy Images: In-

vestigations in LM at the single cell level have been faced with
the problem of estimating the location and dynamics of spots,
such as microtubule end-tips, adhesion molecular complexes,
or vesicles. Intra-cellular objects of interest inside the cells are
generally small and often appear as bright spots, which can be
round or elongated, with intensity that varies along time over a
possible time-varying and cluttered background.

Detecting subcellular particles in fluorescence microscopy
is a crucial task for further quantitative analysis including
particle counting [185], particle pattern recognition [186],
particle tracking [187], [188], [1] or dynamics classification
[189]–[192]. For instance, in [193], a point process modeling

is proposed in order to characterize some properties of the
endo/exocytosis process such as the presence of clusters from
detecting spots. Generally, the manual detection of objects
over a cluttered time-varying background is very tedious es-
pecially in 3D and subjective. Automatic methods have the
obvious advantage of being quicker and reproducible. Several
approaches have been then developed recently for detecting
multiple small moving subcellular objects. Specific applica-
tions include for cell segmentation [194], [195] and nuclei
detection [196]–[198]. Comparisons of spot detection methods
have been reported in [21], [199]. We give a complementary
overview of methods in this area, from basic methods (e.g.,
image thresholding) to more established methods (e.g., LoG
filtering, wavelet- and morphological-based methods).

Image Histogram Analysis: In fluorescence microscopy,
existing methods usually assume that the background is static
and the moving object intensity is brighter than the background.
The central question is then how to adjust the threshold to
extract the desired objects. The simplest way of detecting
spots is to threshold the image intensities from the histogram.
The threshold value can be automatically found by using
the Otsu’s method [200], entropy minimization [201], [202]
or Expectation Maximization (EM) algorithms [203], [204].
Unfortunately, thresholding is not a good approach when the
SNR is low. Actually bright pixels do not necessarily belong to
spots, and pixels in spots can be very dim.

In most real images the background is not uniform and a
single global threshold fails to detect the objects of interest.
Therefore, numerous space-varying thresholding methods were
studied [205], [206]. If local thresholding methods demonstrate
a higher performance than global thresholding methods when
the background is spatially varying, cluttered backgrounds com-
posed of structures of different sizes are still challenging and
generally lead to poor results. To avoid misclassification of iso-
lated pixels, spatial coherence between neighboring pixels must
be taken into account. A common approach consists in first ap-
plying a low-pass filter to the image, such as a Gaussian filter.
However, the cutoff frequency parameter is critical for accurate
localization and detection.

LoG Filtering and Local Maxima Detection: More ad-
vanced methods not only smooth the image, but also enhance
the underlying signal. In [207], Thomann et al. defined the
objects of interest as the local maxima of intensity where the
local curvature (defined as the determinant of Hessian matrix)
is high. Instead of local curvature, the Laplacian of Gaussian
(LoG) [189], [208] has shown a good ability to determine the
object locations. In this area, the LoG filter is a band-pass filter
which enhances objects of a particular size, reduces noise and
lowers low-frequency background structures. Sage et al. [189]
empirically observed that the LoG filter is close to the optimal
whitened matched filter for Gaussian spots in fluorescence
microscopy images. Yet, the choice of the LoG filter bandwidth
is critical and highly dependent on the spot size. In [209]
the authors have then proposed a locally adapted threshold
automatically inferred from local intensity statistics and a given
probability of false alarm (see Fig. 4). Recently, a Markov Point
Process that uses multiscale blobness images obtained by LoG
filtering has been described to reduce the number of missed
detections [210].
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Fig. 4. Comparison of [147] (MSVST (middle)) and [209] (LoG-based
method, right) (2D-TIRF image depicting vesicles in a M10 cell, left).

Isotropic Undecimated Wavelet Transform: Wavelet
transform is also a very attractive and powerful approach and
a simple tool to decompose the image into different scales
and orientations. In bio-imaging, wavelet decomposition has
proved to be particularly appropriate for object detection [211],
[212], [147], [213]. In [211], [147], an isotropic undecimated
wavelet transform (IUWT) [214] is mainly exploited to detect
objects of various sizes. A wavelet multiscale product operation
in [211] is performed at each location to reveal correlations
across the scales. For a given wavelet scale, spots respond more
significantly to IUWT than uncorrelated noise. However, noise
can have a higher response than spots at smallest scales in
very noisy images inducing undesirable detections. It follows
that the smallest scales must be discarded to decrease the false
detection rate. Finally, the wavelet multiscale product map
is thresholded to get a binary detection map. In [147], the
authors described the so-called MSVST method which relies
on variance stabilization techniques to rule out insignificant
coefficients of IUWT (see Fig. 4).

Furthermore, the image is reconstructed by discarding the
coarsest scales corresponding to the background structures and
the smallest scales corresponding to noise. The spots are fi-
nally detected by thresholding the reconstructed image. It worth
noting that with both IUWT-based methods [211], [147], the set
of wavelet scales must be chosen carefully with respect to the
spot size.

Mathematical Morphology and -Dome Operators: In an-
other line of work, methods that directly detect objects and esti-
mate background are based on mathematical morphology [215],
[216]. In biological imaging, the “Top Hat” method [217], [218]
is especially well recommended to extract objects in 2D im-
ages by applying an erosion operator and a dilation operator
with a disk-based structuring element. By considering the image
as a 3D structure, the image intensity being the third dimen-
sion, the “Rolling Ball” method [219] performs a morpholog-
ical open transformation using a ball-based structuring element.
This is probably the most popular method to subtract image
background in fluorescence microscopy.

A more sophisticated and powerful method [21] is based
on the so-called “ -dome” operation [216], [21]. In [21],
a Gaussian blur is first applied to reduce noise. The image
background is then estimated by an opening operation which
removes objects smaller than the structuring element. The
image background is finally subtracted to detect spots. Peaks
with an amplitude higher than a given value are selected. The
“ -dome” map contains domes with small areas corresponding
to noise, domes corresponding to spots, and domes with large
areas corresponding to complex and irrelevant structures in
the background. To remove the undesirable domes, the authors

proposed to generate samples from the “ -dome” map viewed
as an importance sampling function. In this approach [21],
the algorithm parameters must be carefully chosen to provide
excellent results. Note that the objects of interest do not cor-
respond to a unique value of , so that the method sometimes
merges very bright neighboring spots, and sometimes misses
dark spots. To overcome this problem, [220] have proposed an
adaptive method for selecting the most appropriate value .
Furthermore, the spatial image gradient amplitude is thresh-
olded, which provided more satisfying results in the case of
abrupt changes in the background.

Spatio-Temporal Detection: The signal in time-lapse
microscopy typically varies with time due to photo-bleaching
and molecular processes or dynamics. So the threshold must be
adapted to each frame according to the current image intensity
and contents. A normalization procedure can be also applied
in some cases to handle photobleaching and global intensity
variations. In this area, extension of spot detection methods
to space-time analysis has been investigated in time-lapse
fluorescence microscopy.

Generally motion detection by background subtraction is well
addressed in video-surveillance [221]–[223] and was recently
investigated in Poisson video [224]. Nevertheless, mainly due to
the background intensity changes over time, the extension of ex-
isting methods to fluorescence image sequences needs specific
adaptation. Typically, no occlusion occurs as in natural scene
video images and one generally assumes that the signal emitted
by the background and the fluorescent objects are additive sig-
nals at each pixel in the image. Background and spots are then
jointly estimated using parametric models [225] or non-para-
metric approaches (e.g., “rolling ball” [219]). In video analysis,
Markov random field modeling and global energy minimization
methods are usually recommended to capture local statistics and
to represent spatial correlations in video analysis [222], [221];
this framework has been studied in fluorescence microscopy in
[226].

More specifically, some methodologies can be considered for
the automatic detection of appearing and vanishing spots of
fluorescently labelled clustered molecules in wide-field (WF)
and TIRF microscopy images [193], [190]. The difficulty is to
distinguish motions due to trafficking from the appearing and
vanishing spots. Two-frame approaches and frame difference
thresholding methods [227] are then more appropriate to detect
fast appearing and vanishing spots time-lapse microscopy. More
dedicated methods taking photobleaching and photon-limited
nature of images into account via a variance stabilization trans-
form has been successfully proposed in [190]. Complementary
approaches in this line of work are currently investigated to de-
tect “packing” and “un-packing” molecular events [228].

Discussion and Limitations: All the referenced methods
have in common critical parameters whose optimal value is
closely related to object sizes. If the object scale is chosen too
small, over-detection occurs induced by noise. If this value is
too high, objects are smoothed out or merged when close to
each other. In practical imaging, the scale parameter can often
be inferred from image data or provided by the biologist-ex-
pert. Note that spot detection methods produce binary detection
map after thresholding the wavelet-based, LoG or morpholog-
ical filter responses.
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In biological imaging and spot detection, the datasets used in
the experiments remain limited yet in terms of content and chal-
lenges [21], [199], [1]. Indeed, real images are far more complex
than images of this dataset, specifically, the SNR is generally
lower in real images and objects to be detected are smaller and
often darker. Additional more realistic and more challenging
datasets with ground truth and simulators to quantitatively eval-
uate and compare methods are under study.

Application to Co-Localization and Perspectives in Sub-

Diffraction Imaging: In fluorescence imaging, co-localization
defined as the percentage of co-detection of interacting protein
types at the same location, quantifies usually the presence of
two molecules in very close proximity [229], [18]. Co-localiza-
tion occurs when two or more molecules bind to the same struc-
ture or domain, without interacting, but somehow being spa-
tially correlated.

In the literature two categories of co-localization approaches
are generally considered, which are either intensity-based
or segmentation-based [18], [19]. The occurrence of yellow
signals in an overlay fluorescence image generally depicts the
correlation between the locations of the green and red signals
in the cell, thus showing some co-localization between the two
proteins under study. Correlation measurements (Manders’
descriptors [229]) are conventionally used in fluorescence
microscopy. In order to quantify the above phenomenon,
object-based methods have been applied in the literature (see
[230] and [231], [19], where the spots detected as described
above, are reduced to points and their interaction is analyzed by
spatial statistics methods (point processes, descriptive Ripley’s
functions [232]). In this area, False Discovery Rate framework
to test a set of distances between pairs of molecular entities
could be more investigated [233].

At nano-scales, co-localization is a novel and challenging
problem that needs to be more correctly addressed with the
emergence of sub-diffraction limited microscopy methods.
Super-resolution microscopy that rely on specific probes, like
PALM [116] (photo-activable fluorescent probes), naturally put
severe constraints on tagging, and cannot be easily combined
with commonly-used co-localization techniques. In general,
the notion of co-localization needs to be redefined when
dealing with dual-color super-resolved and computationally
reconstructed images at the scale of 10–20 nm. Nevertheless,
an important issue is how to take into account the size of anti-
bodies [234] and the segmentation (e.g., “watershed” algorithm
[235]) errors in the analysis.
3) Estimation of Molecular Mobility: For communication

between cell compartments, the transport intermediates cor-
responding to small spherical or turbo-vesicles, propelled by
molecular motors (e.g., kinesin, dynein, myosin ), move
along microtubules or microfilaments. As vesicles are trans-
ported away on microtubules and have been observed to
co-localize near fusion sites, it is most probable that the cy-
toskeleton may in part function to specify a domain-specific
fusion site. Finally, while being also stochastically defined, the
traffic is known to be oriented and it is established that local
dynamics of intermediate transports obey to biophysical laws,
including confined and free diffusion.

Measuring diffusion (or Brownian motion) and transport (or
directed flow) is central in cell biology (e.g., axonal transport of
motor proteins) because since they represent the main modes of

mobility of molecules in living cells. In this section, we present
the problem of estimating diffusion coefficient and directed flow
often representative of local change of the medium in time-lapse
fluorescence microscopy. Four categories of methods are gen-
erally considered. We present briefly each approach and discuss
their advantages and limitations.

Single Particle Tracking (SPT): is based on the identifica-
tion of the position of single particles, fluorescently tagged, and
the analysis of their trajectory over time. Given computed tracks
by nearest neighborhood algorithms or more sophisticated and
more robust to noise methods [1], the mean-square displacement
(MSD) of tracks is generally used to appropriately interpret and
detect free and confined diffusion and directed flow [236]. For a
given trajectory composed of points with a temporal
sampling , MSD is defined as:

(2)

where is the square of the Euclidean distance.
Inside the cell, diffusive dynamics (Brownian motion) is a

key component in short distance transportation (e.g., connec-
tivity for signal transduction). The diffusion phenomenon has
been described by Robert Brown in the early 19th after the sto-
chastic motion has been observed for pollen particles. It has
been later demonstrated that this motion is due to the thermal
agitation in the medium resulting in shock between molecules
and causing stochastic trajectories. By integration of the squared
displacement along the trajectory over time, we get the funda-
mental Stokes-Einstein equation:

(3)

where in 2D and the scalar diffusion coefficient is
linked to the viscosity of the medium and the size of the par-
ticle. Unrestricted free diffusion is then indicated by the lin-
earity of the plot of MSD. In confined environment (i.e., disk
of radius ), it has been demonstrated that MSD will saturate
[237]: . When the density of trajectories is high
(e.g., spt-PALM [234]), two-dimensional maps of the molecule
mobilities can be produced by displaying in a color-coded pixel
the local mean instantaneous diffusion constant of the molecules
detected in that pixel. These types of maps can provide for ex-
ample dynamic information of subcellular regions of a given
cell, in order to see if there is correlation between mobility and
location [234].

Another dynamical process that have been heavily studied in
the past decade is the motor-mediated transport (e.g., dynein,
kinesin, myosin) of molecules. Primarily supported by actin
filament and microtubule network, it ensures spatial organiza-
tion and temporal synchronization in the intracellular mech-
anisms and structures. The observed displacement presents a
locally constant speed along the cytoskeleton and we have
[238]: . Nevertheless, the complexity of in-
ternal structures and molecular processes in the living cell in-
fluence the molecular dynamics and prevent the systematic ap-
plication of pure Brownian or directed motion modeling. In the
Brownian diffusion case, intracellular clutter can cause anoma-
lous diffusion resulting in MSD measurements that differs from
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the theory. On the one hand, cytoskeleton density will hinder the
free displacement of the particle resulting in a non-linear evolu-
tion of the MSD below the theoretical expectation, a phenomena
called subdiffusion. On the other hand, the cytoskeleton elas-
ticity combined with thermal bending can contribute to active
diffusion which will result in higher MSD measurements than
predicted by a normal diffusion process [239]. To discriminate
dynamics, it is usual to fit MSD curves with the more general
model [240]:

(4)

where the constant determines the most probable motion
model: confined diffusion , obstructed motion

, Brownian motion , directed
motion . Generally, it is recommended to filter out
the last points of trajectories but eight points are required at
least for fitting. Finally, statistical methods for robust fitting
and correlations modeling are presented in [241]. Another
frequent intracellular scenario is the jerky motion of molecules
switching between diffusion and motor-mediated motion [238].

Spatio-Temporal Image Correlation Spectroscopy

(STICS): The most popular methods for diffusion analysis are
based on correlation measurements under the hypothesis of
temporal stationarity of fluorescence signals [242], [243]. The
so-called Spatio-Temporal Image Correlation Spectroscopy
(STICS), derived from fluorescence correlation techniques,
is widely used in fluorescence imaging to recover physical
parameters such as directional flow or diffusion parameters of
moving molecules. This method does not require any particle
or object tracking and integrates the variations of fluorescence
over space and/or time via correlation measures to access to in-
formation at the molecular level, such as diffusion coefficients
or dominant flow speed and direction [242]. The generalized
spatial and temporal correlation expression is defined as

(5)

where is an image sequence of frames
with the image domain, are the spatial lags,

is the temporal lag, is the spatial average over a
patch and . We point out that

is not a normalized correlation criterion but enables
to recover the biophysical parameters associated to density,
motion of molecules, and diffusion coefficient [242].

For transport estimation, the goal is to estimate the trans-
lation vector corresponding to the correlation peak maximum.
The static or immobile molecule population is usually filtered
by local averaging and is computed by Fast Fourier
Transform. A 2D Gaussian function is considered to estimate
accurately the correlation peak over time [242] using a Levend-
berg-Marquardt optimization scheme. In the experiments, the
analysis is performed on image blocks and the size of the blocks
determines the scale of moving objects retrieved (see Fig. 5).
The spatial lag between blocks is chosen to achieve an accept-
able trade-off between spatial accuracy and computational time.

In a diffusive motion scenario, the following heat diffusion
equation is satisfied: where is the temporal

Fig. 5. Motion estimation with STICS. Tracking of the correlation peak by
Gaussian fitting on correlation maps.

derivative of is the isotropic diffusion coefficient and
denotes the Laplacian operator. In order to estimate the scalar
value , the diffusion decay is derived from the following
equation obtained by combination of (5) and the heat equation
(see [244] for details):

(6)

where is the long-time offset and ( de-
notes the temporal average of (laser beam size)).

Fluorescence Recovery After Photobleaching (FRAP):

consists in analyzing the fluorescence recovery after its photo-
bleaching in an specified area by using a high intensity laser
pulse. FRAP analysis is performed directly by measuring the
mean intensity in the photobleached region over the image
sequence. The extracted fluorescence recovery curves are
normalized to 1 for the pre-bleached intensity. Furthermore,
all recovery curves are then adjusted using a non-linear least
square algorithm to the theoretical model proposed in [259].

Discussion and Comparison: The interest of STICS is
mainly the estimation over temporally extended subsequences,
which introduces a regularization effect and increases robust-
ness to noise. On the counterpart, the number of frames must
be carefully chosen such that motion can be approximated by
a constant translation over the sequence. This assumption of
temporal stationarity of motion is quite restrictive in practice.
Contrary to STICS, optical flow produces dense diffusion fields
and can adapted to transport or Brownian motion estimation.
Spatial variations can be recovered accurately, in particular at
discontinuities usually occurring across membranes. Unlike
STICS, optical flow exploits only two frames, which is either
an advantage but also a limitation since considering more
frames would produce better results.

A comparison between FRAP, FCS (Fluorescence Cor-
relation Spectroscopy), RICS (Raster Image Correlation
Spectroscopy) and SPT was described in [260] for the esti-
mation of translational mobility in 3D in neurons, but without
considering any data. This paper was aiming to help the reader
to choose a technique for practical use. SPT was recommended
to detect different classes of diffusion without considering a
parametric model unlike FCS or RICS methods; the analysis is
based on the slope of MSD curves over time.

Perspectives for Image Processing and Analysis: A ma-
jority of approaches for motion analysis in biological sequences
is based on individual tracking of biological objects (see e.g.,
[10], [246], [245]); the potential and limitations of particle
tracking algorithms have be well described in [1]. However
tracking methods are not always adapted for motion analysis,
especially when the density and the lack of prominent features
prevent the individual extraction of objects of interest under-
going complex motion. Accordingly, estimating motion fields
can be then more appropriate to capture complex dynamics
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observed in biological sequences [247], [248]. The usual ap-
proach for optical flow estimates the dense motion field by
minimizing a global energy functional composed of two terms:

(7)

where is the dense motion field, is a data
term penalizing deviations from a data conservation assump-
tion over time, is a regularization term enforcing smooth-
ness of the flow field and serves as regularization pa-
rameter to balance and contributions. A high value
of allows to retrieve only dominant motions of large struc-
tures by smoothing the flow field, while a small value of tol-
erates repeated close spatial variations corresponding to small
objects. Applications of global regularized method in biological
imaging have recently been investigated in [249], [250], [248],
[251]–[254]. Because of possible intensity changes (e.g., pho-
tobleaching), the data term needs to be adapted [255]. The data
term [256] based on the assumption of conservation of inten-
sity and spatial gradient of the image is typically robust to addi-
tive illumination changes, which is necessary for several biolog-
ical applications [257]. In a pure diffusive motion scenario, the
global energy can be specialized. Rather than estimating a con-
stant diffusion coefficient over patches as performed with the
STICS method, the idea in [258] is to consider a dense diffusion
field instead of . Reconciling optical flow, SPT
and STICS methods appears to be a promising and stimulating
research direction in the field of motion analysis and classifi-
cation. Also, SPT and motion analysis methods could be com-
bined to neuronal tracing algorithms to accomplish higher-level
objectives (e.g., see Section III.D).

C. Cell Motility Analysis

The study of the detailed mechanisms of cell motility has be-
come a major research area in life sciences, as motion is an es-
sential and critical feature of cellular processes (e.g., parasitic
infection, immune response, or tumor formation) [261]. Over
the past years, much attention has been focused on the molec-
ular and physical mechanisms of cell motility. The mechanisms
underlying cell movement are nonetheless poorly known, and
are studied using a variety of experimental approaches, one of
which being via the observation of living cells in their 3D envi-
ronments using fluorescence microscopy.
1) Biological Context: A large amount of work has concen-

trated on the first step of movement consisting in cell polariza-
tion and its regulation based on the activities of actin-based sub-
cortical cytoskeleton [262]. The dominant model of cell motility
indicates that the forces driving membrane protrusion are gen-
erated by monomeric globular G-actin polymerizing onto fila-
mentous F-actin at the cell front; closed to there, MyosinII pulls
the rear of the actin network. In protrusive structures, multiple
actin filaments are dynamically arranged in cross-linked webs
(as in lamellipodia) or parallel bundles (as in filopodia). Among
the several types of cell migration that have been identified,
amoeboid motion [263] is characterized by a crawling-like dis-
placement, and more precisely by the movement induced by the
production of blebs, that are local bulges in the cell membrane
[264], [265], [262]. These protrusions appear in a very fast and

sudden manner, and are thought to be produced by the rupture
of the links that attach the cell cytoskeleton to the membrane
[266]. Besides the amoeboid motion, many cell types motility
is based on the blebbing of the plasma membrane.

Dynamic analysis of membrane protrusion has recently
shown that bleb expansions occur when the membrane detaches
from the actin cortical cytoskeleton leading to bleb inflation
[266]. As expansion ceases, contractile cortex reassembles
under the membrane and drives bleb retraction. This is the
case of amoeboid cells where membrane deformations at high
frequency remind those from other cells where the plasma
membrane detaches from the cytoskeleton, e.g., apoptotic cell
[267], non-adherent carcinosarcoma cells [268], or melanoma
cells showing prolonged blebbing while spreading [265]. These
blebbing mechanisms are different of those described in [269],
where no cortical breakdown prior to membrane bulging has
been observed.
2) Cell Tracking Methods: In terms of image analysis,

quantitative analyses of cell shape [16] and motion primarily
require segmentation and tracking of individual cells. Typical
3D time data sets consist of thousands or tens of thousands of
images. However, and contrary to the sophistication of molec-
ular biology and biophysics tools used by biologists, the image
processing and analysis methods that are applied by end-users
for motion analysis are rather simple. Commercial microscopy
software packages generally feature tools for object segmenta-
tion and tracking, mostly based on standard image processing
schemes that are performed manually or using semi-automatic
procedures (see [282] for a representative list). As a result, cell
tracking is still extremely labor-intensive, in addition to being
prone to errors, user bias, and lack of reproducibility.

Besides methods based on thresholding and watershed, sev-
eral methods mostly based on deformable models like snakes
or level sets have been successfully demonstrated to outper-
form human analysis [270], [3]. The specific set of methods pro-
vided by active contours and deformable models is particularly
adapted to the problem of tracking highly deformable cells. De-
formable models, originating from the seminal paper [271], are
closed fronts (curves in 2D or surfaces in 3D) that iteratively
evolve in the image domain, usually according to a gradient de-
scent algorithm designed to minimize an energy functional. This
energy of the form:

(8)

is composed of both image-related terms where
denotes the image, which tend to be minimal when the front is
at the object boundary, and image-independent terms
that embody prior information on the computed boundary and
play the role of regularizers in ill-posed problems [272]. De-
formable models provide a powerful and flexible framework,
where suitable energy terms can be defined depending on the
image characteristics and prior knowledge specific to a given
application.

Two main categories of deformable models can be distin-
guished according to the mathematical representation of the
contour or surface:

i/ explicit models where the boundary is represented by
parametric functions (e.g., [271], [15]);
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ii/ implicit models where the boundary is defined as the zero
level set of a scalar function defined over the image do-
main (e.g., [273]).

This framework has been adapted for cell tracking indepen-
dently by several groups [270], [274]–[276].

Interestingly enough, the recent paper [3] reporting on a “Cell
Tracking” challenge organized in conjunction with ISBI 2013,
presents results where the standard techniques outperform more
elaborated algorithms. This benchmark of cell tracking algo-
rithms is based on the use of a common diverse video dataset
repository and ground truth with specific criteria for the evalua-
tion of the segmentation and tracking accuracy, and unified cri-
teria for comparing and ranking the algorithms. Although this
type of competition seems to indicate that computer-aided cell
tracking has somehow become a mature field, in reality the im-
pact of cell motility assessment has not been as high as expected,
at least in terms of usefulness to biological studies. This is prob-
ably due to the fact that extracting positions, contours and speed
is not enough to understand and model the mechanisms of cell
motility.

A better understanding of this complex process calls for new
approaches to extract and characterize the cell shape and the
large variety of protrusions exhibited by cells. Indeed, it appears
that cells and unicellular organisms usually exhibit an ordered
and highly regulated cycle of complex shape changes in order to
generate movement [261]. Hence, understanding cellular shape
and movement has become an area of active research that re-
quires efficient shape quantification tools to describe and clas-
sify the wide variety of shape configurations, with the aim of
deciphering the biological mechanisms underlying cell motion.
3) Discussion and Perspectives: A number of pioneering

studies in cell shape classification [278]–[281] based on the pre-
vious approaches have opened up the way to start and connect
phenomenological features like the structure of blebs, the dy-
namics of the subcortical cytoskeleton and its links to mem-
brane during protrusion to the underlying molecular mecha-
nisms that determine and regulate them. They represent also
a first step towards understanding how cells generate force for
shape change and movement and how they respond to mechan-
ical force stimuli. These topics certainly represent the next fron-
tier for the community working at the interface between physics,
biology, and image analysis.

In the context of highly deformable cells, such as cells ex-
hibiting amoeboid motion, robust shape description and analysis
is particularly challenging, due to the high degree of variability
that can be observed within a so-called homogeneous popula-
tion, while different populations may exhibit visually similar
deformation patterns. To this end, shape description techniques
have progressively shifted from contour-based shape represen-
tation and measurements to more advanced mathematical solu-
tions based on frequency analysis such as spherical harmonics
(SPHARM). The SPHARM transform considers any closed sur-
face as a function of the unit sphere, and simplifies this func-
tion into a unique set of coefficients, facilitating subsequent
shape characterization and classification. This technique offers
interesting properties such as position and orientation invari-
ance [266], and is thus well suited for shape sets with high vari-
ability such as living cells [263], [264]. They have been comple-
mented by the spherical wavelets [277] that are constructed by

analogy to wavelets in the plane via appropriate spherical pro-
jections, and are particularly well adapted to localize features
along surfaces.

D. Neuron Morphology and Structure Analysis

Deciphering the functionalities of the brain has been an aspi-
ration held by neuroscientists for many years. In the last decade,
due to the significant progress in experimental biology and mi-
croscopic imaging techniques, this daunting challenge of map-
ping the brain (in simple organisms) appears more attainable.
One may hypothesize that of the remaining technical challenges,
several key developments must emerge from the signal pro-
cessing community.

To solve the neuro-image problem in an automated fashion,
several fundamental subproblems must be addressed to design a
robust image analysis workflow: image acquisition, object seg-
mentation and structural analysis [17]. Broadly, the relevant re-
search in neuro-image analysis can be categorized into the fol-
lowing groups: segmentation and shape analysis of individual
neurons, classification of neurons and characterization of the
intra-neuronal structures.
1) Biological Context: The relationship between the mor-

phology and functionality of neurons was postulated by San-
tiago Ramón y Cajal in the 19th century. Cajal’s hypothesis
serves as the basis for modern day neuro-image analysis. Mor-
phological analysis of individual neurons and neuronal compo-
nents such as dendritic spines, synapses, mitochondria among
others has shown promise in better understanding and diagnosis
of various neurological disorders and neurodegenerative dis-
eases [283]–[288]. The scale of this problem varies between a
few hundred neurons in the roundworm C. elegans to a hundred
billion in an adult human brain. It is evident that neuro-image
analysis becomes a big data problem as we transition into the
study of vertebrates and eventually to humans. Such a scale in
analysis is not approachable by manual laboratory observation.
2) Image Acquisition for Neuron Observation: Choice of

a particular imaging modality depends on the specific appli-
cation. Fluorescence microscopy is a popular choice when the
study involves a global structural analysis of the neurons or
some neuronal components in the micrometer scale. For such
imaging techniques, the specimen is tagged with a fluorescence
protein (GFP, YFP etc.) which emits photons when illuminated
by a light source [289]. These photons are eventually detected
by a sensor to produce an image of an optical plane. Laser
scanning confocal microscopes are commonly used for fast
three dimensional imaging of neurons of model animals such
as Drosophila, rat, mice and others. Depending on the applica-
tion, other imaging techniques such as bright-field microscopy
[290], multiphoton microscopy [291] may also be used to
image neuronal structures.

EM is a popular choice for imaging neuronal structures at
nanometer scale. EM is particularly useful in analyzing subcel-
lular objects and surrounding structures such as mitochondria,
synapse, vesicles, etc. Focus Ion Beam Scanning Electron Mi-
croscopy (FIBSEM) [292] can now deliver near isotropic 3D
images with extremely high resolution and is emerging as the
imaging modality of choice for nano-scale analysis of neuronal
structures.
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3) Segmentation and Morphology of Neurons: Global struc-
tural analysis of neurons requires a two-stage pipeline. First, a
digital reconstruction should be obtained from the raw image
data. This is the segmentation (often called tracing in the bio-
logical community) stage. With the reconstruction available, the
next challenge is to devise a method to compare the structures.
It turns out that both these subproblems are loaded with their
own sets of challenges and complications

Neuron Segmentation: Neuron segmentation or neuron
tracing refers to the problem of acquiring the neural geometry
from raw image data. Recent emphasis is on analysis of 3D im-
ages and fluorescence microscopy is a commonly used imaging
technique for such purpose. Image processing is challenging
both due to the structural complexity of neurons as well as
due to imaging artifacts such as poor contrast, presence of
non-neuronal clutter and low signal to noise ratio of the images.
The objective is to perform 3D segmentation of the neuron,
which requires proper handling of the filament bifurcations as
well as accommodating signal attenuation.

Most of the existing neuron tracers assume that neurons are
tree-like structures. Semi-automated neuron tracers are popular
with biologists since such techniques allow user intervention,
thus providing more flexibility in tracing. Neuron tracing using
semi-automated techniques generally requires the user to input
some initial seed points. Subsequent seed points which reside
on the neuron centerline are generated either automatically or
with human aid [293], [17], [294]. With a set of points available
to trace, graph based algorithms are then used with the seeds
as nodes of the graph, to reconstruct the neuronal tree. Such
semi-automatic algorithms [294]–[296] provide useful means
for neural structure segmentation due to their speed and accu-
racy. However, it is argued that optimal seed point selection
is difficult to automate and while human assisted methods can
improve accuracy, such methods require significant technician
labor.

A separate set of methodologies have also been proposed that
focus upon neuron reconstruction without seed initialization.
A preprocessing step is often deployed to eliminate noise and
clutter, and the filament enhancing filter due to Frangi et al.
[297] has been used extensively for neuron contrast enhance-
ment and de-cluttering. The preprocessed image is used for
segmenting the neuronal structures. Existing automated neuron
segmentation methods use parametric and geometric active
contours [298], [299], graph based methods [300], steerable
filters [301], wavelets [302] etc. The general trend is to embed
the centerline of the segmented neuron in a graph theoretic tree
for further computational study. Open-source software suites
such as Vaa3d and NeuronStudio have emerged recently to aid
the neuroscientist in tracing.

Comparison of Structures: With the neuron structure
segmented and its morphology defined by a tree, the next
step is to design a platform to compare the morphology of the
segmented neurons [303]. A comparison typically involves
the computation of a similarity score for a particular type of
neuron based on the examples from a training dataset. To build
the training set, one needs to categorize the neurons on the
basis of their functionality. This categorization is a challenging
problem in itself, since neuron morphology varies significantly
by organism [304], [305]. Recently, promising results have
surfaced [306]–[310]. As more datasets of traced neurons are

made available, this initial progress should blossom into robust
comparison algorithms.
4) Detection and Classification of Dendritic Spines: Image

analysis of dendritic spines is the backdrop for exciting recent
developments in neurodegenerative disease studies. Neurons
in the nervous system are arranged to form an interconnected
network, with the axons and dendrites of the neurons connected
via synapses. It is understood that synaptic activities are directly
related to the morphological properties of dendritic spines,
which are the small, elongated structures on the dendritic sur-
face. Changes in spine morphology directly affect the synaptic
activity, which, in turn, influences the global functionality of
the neural system. These dendritic spines play an important role
in studying different neurological maladies such as Alzheimer’s
disease and Parkinson’s disease [311].

The spines are short, tubular protrusions from the dendritic
filaments, which are visible in fluorescence microscopy. There-
fore, many preprocessing tasks such as denoising and contrast
enhancement for automated spine detection borrow prepro-
cessing techniques for 3D microscopy imagery. Detecting
dendritic spines can be a challenging problem since the struc-
tures are small in size and they are often difficult to distinguish
from the background. Spine detection is often performed after
detecting the dendritic branch, since spines are attached to the
filaments. Automated detection techniques have been proposed
which use morphological filters [311], region growing [312],
[313], techniques based on spine geometry via key point identi-
fication [314], [315]. In many cases, it is necessary to deploy a
post-processing step to ensure spine connectivity to the neuron
shaft.

Once the spines are detected, the next step is to perform au-
tomated classification based on spine shape. A set of distin-
guishing features are generated based on the spine morphology
(maximum curvature, convexity, area etc.) and the derived fea-
ture set for a particular spine is used as input for a classifier in
order to predict the functional category [311], [316], [317].
5) Segmentation of Intra-Neuronal Structures: The third cat-

egory of active image analysis research for neurons is the anal-
ysis of subcellular structures such as synapses, mitochondria,
cell membranes, etc. The advances detailed to this point are
aimed at global morphology. In contrast, with high resolution
imaging by way of EM, it is possible to image neuronal struc-
tures at nanometer scale. This imaging can reveal rich informa-
tion regarding neural network substructures like the synapses,
mitochondria and vesicles. For example, changes in synapse ap-
pearance and distribution provide clues as to the neural develop-
ment process. Shape and size based properties of mitochondria
of neurons are indicators of the extent of neuronal degeneration.

A prominent issue in all EM analysis tasks is the sheer
volume of the data, which necessitates powerful computer
architecture and computationally efficient algorithms. The high
resolution image stacks provide useful local information, since
a number of subcellular structures are visible at the nanometer
scale. Synapses are vascular structures that are located at the
junction of two neurons. Synapse detection from 3D EM stacks
have been investigated using interactive methods via active
contours and recently, using statistical learning techniques
that perform synapse detection using local contextual cues
[318]–[321]. Other recent success stories include the detection



KERVRANN et al.: A GUIDED TOUR OF SELECTED IMAGE PROCESSING AND ANALYSIS METHODS FOR FLUORESCENCE AND ELECTRON MICROSCOPY 21

of mitochondria and cellular membranes for the purpose of
neural anomaly detection from EM [322]–[325].
6) Concluding Remarks and Perspectives: Several open

problems exist in the analysis of neuron structure, connectivity
and function. International research efforts are delivering online
repositories and software challenge workshops ([326], [327],
ISBI 2012, ISBI 2013, DIADEM challenge) as well as from
the recently announced BigNeuron Project [328]. Propelled by
advances in microscopy, signal processing will play a funda-
mental role in the reverse engineering of the brain.

IV. IMAGE PROCESSING AND ANALYSIS METHODS VS
COMPUTATIONAL BIOLOGY AND BIOIMAGE INFORMATICS

In cell and molecular biology [23], new challenges arise to ac-
quire a complete and quantified view from the scale of a “single”
cell to the scale of a multi-cellular structure, within the whole
organism. In the near future, image processing and analysis will
be central to the successful use of LM and EM in post-genomics
biology.

A. Impact of Microscopy Image Processing in Systems Biology

System biology is a field in expansion, which has evolved into
various branches and paradigms to address problems at various
scales ranging from ecology to molecular structures. It aims at
modelling system as a whole in an integrative perspective in-
stead of focusing on independent biophysical processes [329],
[23]. In the future, new mathematical approaches and image
processing and analysis methods are needed to deal with high
degrees of complexity and uncertainty inherent to biological
systems, especially for describing the interactions between the
different components in the cell observed in LM and EM. An
important goal is to bridge the gap between very detailed bio-
physical models and more integrative models. All the molecular
dialogues under concern at different spatial scales (atomic level,
protein level, compartments,) and temporal scales (from nano-
second to second) must be considered. One typical project is the
cell in silico as investigated in Harvard Medical School (http://
vcp.med.harvard.edu/) or the VCell of the University of Con-
necticut Health Center (http://www.nrcam.uchc.edu/). In this
line of work, several contributions to combine imaging, mod-
elling, image processing (as presented in Section III), statistics
and machine learning in cell biology need to be encouraged.

B. Processing of Mass of Data in High-Throughput

Microscopy

In the emerging era of high-throughput microscopy (bio-
chemical screens, cell-based screening [22]), systematic and
accurate correlation and analysis of the data cannot be per-
formed manually, since the image sequences are composed of
several hundred of 3D stacks. Consequently, data to manipulate
range from few to tens of terabytes. From the experimental
perspective, molecular (drugs, RNA interference), mechanical
(micro-patterning ), and optical (FRAP, photoactivation,
optogenetic ) functional modulations allow one to quantify
the importance of molecular linkage into macrocomplexes
within a single cell. Even with high-speed computers, the
intensive processing of very large images will considerably

slow down the whole analysis process. Therefore, a special
attention must be paid to the feasibility and scalability of
the developed algorithms. Fast implementation on graphical
units need to be investigated when necessary and the nowa-
days-widespread multicore processors must be exploited. The
development of fast algorithms should enable the processing
of image sequences in real time and offer new perspectives
especially during the acquisition process.

Moreover, efficient storage, fast retrieval and secure sharing
of microscopy images are also crucial challenges. An impor-
tant challenge consists in developing a robust and hybridized
architecture including an extensible, secure, and comprehen-
sive data model with semantic and spatial queries on imaging
data. In order to deal with the challenging problems mentioned
above, strong efforts have been made to organize the micro- and
macro-image into databanks (see OME-OMERO (http://www.
openmicroscopy.org/site) [330], but none has yet proven fully
satisfactory and functional. One important issue is then to de-
fine an image database with a built-in query system to annotate,
retrieve, process and integrate analysis from different imaging
modalities. The database will be able to search via meta-data and
includes menu selections that enable to run remote processing
from a cluster. Integrated image processing softwares in the in-
terface environment allow the database users to process their
images easily, and store associated results and parameters. The
main tasks to address are:

• standardisation of image acquisition, annotation and
storing protocols,

• development of a plan for interoperability of existing
image analysis platforms and open platforms for biolog-
ical image analysis,

• development of databases annotated with ground truth and
gold-standard for validation and benchmarking of algo-
rithms,

• development of access to infrastructures that support
large scale image computing. The observation and under-
standing of the life matter at the nano- and the microscopic
levels means a workflow of image data obtained along
multidimensional microscopy modes.

The combination of complementary skills (image processing
and analysis software, image data management) will yield a full
integration of the image and data life-cycle, from image acquisi-
tion and analysis, to statistical analysis and mathematical mod-
eling in systems biology.

C. Software Issues

Finally, connections with commonly-used free and commer-
cial softwares will be made in order to make popular the al-
gorithms [331]. This includes softwares for cell imaging (see
OBIA http://www.openbioimage.org/):

• ImageJ / http://rsbweb.nih.gov/ij/
• Fiji / http://fiji.sc/wiki/index.php/Fiji
• ICY / http://icy.bioimageanalysis.org/
• MetaMorph (commercial)
• http://www.moleculardevices.com/Products/Soft-

ware/Meta-Imaging-Series/MetaMorph.html
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• Amira (commercial) / http://www.amira.com/
• and softwares for electron tomography:
• Chimera / http://www.cgl.ucsf.edu/chimera/
• IMOD / http://bio3d.colorado.edu/imod/
• TomoJ / http://u759.curie.fr/fr/telechargements/softwares/

tomoj/tomoj-00733
• Digisens (commercial) / http://www.digisens3d.com/en/

soft/2-Digi_ECT.html
• Several academic softwares will be also considered

to adapt our dissemination strategy and extension for
end-users:

• http://bigwww.epfl.ch/algorithms/
• http://www.bioimagexd.net/
• http://www.cell profiler.org/
• http://penglab.janelia.org/software/Hanchuan_Peng_

Software/software.html
The experimental set-ups need nowadays to be combined with
adapted processing and analysis techniques for quantification
and representation of image contents in a reproducible fashion.
This includes object tracking, denoising and restoration, event
detection, background estimation Such a new generation of
acquisition setups based on integrated solutions have a high po-
tential for specific purposes of monitoring protein-protein in-
teractions and molecular behaviour in cell biology. It can also
serve for implementing high throughput methods for the iden-
tification of new biological targets and screening for chemical
drugs able to interfere with such processes.

V. GENERAL CONCLUSION AND PERSPECTIVES

New imaging techniques allow considering the precise
structural organization of their functions and their progressive
conversion as a function of temporally defined multi-molecular
interactions. Such a complexity is however only understood
if multiscale analysis and representation matches their molec-
ular description, which requires an important effort in image
processing and image analysis. The amount of information
provided by medium or high-throughput multidimensional
microscopy is constantly growing while offering new ways of
investigating the cell mechanisms.

The originality of the field lies on the direct cooperation be-
tween cell biologists, applied mathematicians, image processing
scientists and biophysicists, to understand the complexity of
molecular machines involved in intracellular transport, from
multiscale and multimodal microscopy. We will be concerned
with the following topics:

• Developing new bioimaging approaches combining inno-
vative optical and numerical methodologies, to observe the
coordinated dynamics in live material.

• Correlating spatiotemporal organization of protein net-
works at micro scales with the architectures of their
biological environment at the ultrastructural scale: this
requires rapid and easy processes to manipulate from
one scale to the other one, as well as to fuse and easily
visualize data obtained at different scales and modalities,
in space and time. New approaches to register LM images
and EM images will be investigated.

• Modeling intracellular and cellular mechanisms of refer-
ence biological complex systems and proposing new ex-
perimental plans in an iterative way.

• Managing, processing and analyzing the workflow of
image data obtained along different multidimensional
microscopy modalities, at different scales with application
in genome wide molecular screening, drug screening and
medical diagnostic.

Solving novel “inverse problems”, fusing multimodal and
multiscale images and simulating dynamical processes are cru-
cial as in many scientific fields. We hope the proposed integrated
and innovative approaches and methods will help to guide fu-
ture reasoning, modelling and experiments in cell biology.
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