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A gut microbiome signature for cirrhosis
due to nonalcoholic fatty liver disease
Cyrielle Caussy1,2, Anupriya Tripathi3,4,5,6, Greg Humphrey4, Shirin Bassirian1, Seema Singh1, Claire Faulkner1,

Ricki Bettencourt1,7, Emily Rizo1, Lisa Richards1, Zhenjiang Z. Xu4, Michael R. Downes8, Ronald M. Evans8,

David A. Brenner1,9, Claude B. Sirlin10, Rob Knight 3,4,11,12 & Rohit Loomba1,7,9

The presence of cirrhosis in nonalcoholic-fatty-liver-disease (NAFLD) is the most important

predictor of liver-related mortality. Limited data exist concerning the diagnostic accuracy

of gut-microbiome-derived signatures for detecting NAFLD-cirrhosis. Here we report 16S

gut-microbiome compositions of 203 uniquely well-characterized participants from a pro-

spective twin and family cohort, including 98 probands encompassing the entire spectrum

of NAFLD and 105 of their first-degree relatives, assessed by advanced magnetic-resonance-

imaging. We show strong familial correlation of gut-microbiome profiles, driven by shared

housing. We report a panel of 30 features, including 27 bacterial features with discriminatory

ability to detect NAFLD-cirrhosis using a Random Forest classifier model. In a derivation

cohort of probands, the model has a robust diagnostic accuracy (AUROC of 0.92) for

detecting NAFLD-cirrhosis, confirmed in a validation cohort of relatives of proband with

NAFLD-cirrhosis (AUROC of 0.87). This study provides evidence for a fecal-microbiome-

derived signature to detect NAFLD-cirrhosis.
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N
onalcoholic fatty liver disease (NAFLD) is the most pre-
valent cause of chronic liver disease worldwide1,2 and yet
remains largely underdiagnosed even in individuals with

advanced stage of the disease3. NAFLD-cirrhosis represents the
most severe stage of the disease, carries a significant risk of
hepatocellular carcinoma (HCC), and is consistently identified as
the most important predictor of liver-related morbidity-mortality
in NAFLD4,5. Hence, the most important clinical challenge for
the field remains to identify the high-risk populations of
advanced NAFLD and to determine the optimal strategy for their
screening using accurate, non-invasive, widely available and
easy-to-perform screening test applicable at the level of these
high-risk populations.

Over the last decade, the gut-liver axis has emerged as a pivotal
component of NAFLD6–11 and represents a potential source
of non-invasive biomarkers for the detection and stage of liver
disease6,7,12,13. Limited data are available regarding the diagnostic
accuracy of a stool microbiome-derived signature for detecting
NAFLD-cirrhosis especially among high-risk populations.

We previously demonstrated that first-degree relatives of pro-
bands with NAFLD-cirrhosis have a high risk of advanced-
fibrosis (AF)14. However, factors associated with progression
towards NAFLD-cirrhosis among families remain obscure.
Although earlier studies reported familial aggregation of NAFLD
and NAFLD-related cirrhosis15–19, and demonstrated that both
liver steatosis and fibrosis are heritable20,21, known genetic risk
only accounts for ~10–30% of the variance observed in
NAFLD22–25. This suggests an additional role for environmental
factors, which predominate over genetic factors in shaping the
human gut-microbiome26–28. Heritability of gut-microbiome
features has been reported in twins studies26,27, but limited data
exist regarding the similarity of gut-microbiome composition
among family members, and whether similar microbiomes
associate with disease traits especially in the entire spectrum of
NAFLD including NAFLD-cirrhosis. Finally, the ability of a gut-
microbiome-derived signature for the non-invasive screening of
advanced fibrosis among a high-risk population such as first-
degree relatives of probands with NAFLD-cirrhosis is unknown.

Therefore we study the stool microbiome of a unique twin and
family cohort including well-characterized and prospectively
recruited participants with and without NAFLD including stool
samples collection and assessed using MRI proton density fat
fraction (MRI-PDFF) for quantifying hepatic steatosis29 and MR-
elastography (MRE) for quantifying liver fibrosis30–33. Our aim is
to examine the familial similarity of gut-microbiome composition
and to test whether a non-invasive stool-microbiome-derived
signature accurately detects NAFLD-cirrhosis.

Results
Baseline characteristics of study population. This cross-
sectional analysis included 203 well-characterized, prospectively
recruited participants, encompassing the entire spectrum of
NAFLD divided into three groups (NAFLD-cirrhosis, NAFLD
without AF, non-NAFLD controls) paired with their first-degree
relatives. Subjects included 26 probands with NAFLD-cirrhosis
and 37 of their first-degree relatives, 18 probands with NAFLD
(MRI-PDDF ≥ 5%) without AF (MRE < 3.63 kPa) and 17 of their
first-degree relatives, and 54 non-NAFLD normal controls (MRI-
PDFF < 5%) and 44 of their first-degree relatives. The detailed
derivation of the study cohort is shown in Supplementary Fig. 1.
The detailed demographic, biochemical, imaging data of the
different groups are provided in Supplementary Tables 1 and 2.

Significant familial correlation of the gut-microbiome com-
position. The gut-microbiome profile showed significant

correlation within biologically related pairs compared to random-
unrelated pairs at the level of the phyla (p= 0.023) Kruskal-
Wallis test. Fig. 1a and at the level of exact 16S sequences of
bacterial strains in the gut microbiome (p= 2.4E-41), Kruskal-
Wallis test Fig. 1b. In our analyses at the phylum level, this
familial correlation was mainly driven by significant correlation
of Bacteroidetes (r= 0.22, p= 0.01) and Actinobacteria (r= 0.29,
p= 0.002), spearman correlation, between related individuals.
Furthermore, phylogenetic dissimilarity assessed by unweighted
UniFrac distances among biologically related pairs was sig-
nificantly lower than in random-unrelated pairs (p= 3.0E-05)
Kruskall–Wallis test. When stratified by the liver phenotype of
the proband, the phylogenetic dissimilarity remained significantly
lower among non-NAFLD controls and relatives (p= 0.001) and
probands with NAFLD without AF and relatives (p= 0.015)
compared to unrelated pairs, while no significant difference was
observed among probands with NAFLD-cirrhosis and relatives
(p= 0.107), Kruskal-Wallis test Fig. 1c. These results remained
consistent when related pairs were stratified by monozygotic
status. These results suggest that familial gut-microbiome simi-
larities are independent of mild/moderate liver phenotype but are
impacted by severe stage of liver disease. Finally, related indivi-
duals with shared-housing had a lower phylogenetic dissimilarity
than those who did not share housing (p= 0.045), Kruskal-Wallis
test Fig. 1d.

The gut-microbiome profile across NAFLD features. The gut-
microbiome profile was first assessed in a derivation cohort
including the 3 groups of probands encompassing the entire
spectrum of NAFLD. As shown in previous studies12,13, α-
diversity as measured by Faith’s phylogenetic diversity decreased
with increase in liver damage severity Fig. 2a. The β-diversity
(unweighted UniFrac distances) was lower among individuals
with moderate liver damage (NAFLD without AF) compared to
non-NAFLD controls (p= 1.1 E-18, Kruskal-Wallis test), whereas
it was higher among individuals with severe liver damage
(NAFLD-cirrhosis) compared to probands with moderate liver
damage (NAFLD without AF) (p= 3.3E-15, Kruskal-Wallis test)
Fig. 2b. This suggests an hourglass signature of disease severity in
the gut-microbiome, with an initial decrease in phylogenetic
diversity associated with a moderate stage of the disease that
progress towards a phylogenetic dispersion in individuals with
severe stages of disease such as NAFLD-cirrhosis.

Gut-microbiome taxa alteration across the spectrum of
NAFLD. At the genus level, both NAFLD-cirrhosis and NAFLD
without AF group were enriched with Streptococcus but only the
NAFLD-cirrhosis group was enriched with Megasphaera. In
addition, Bacillus and Lactococcus were enriched in both non-
NAFLD controls and NAFLD without AF whereas Pseudomonas
was enriched only in the non-NAFLD controls Fig. 2c. Species
belonging to the family Enterobacteriaceae and the genera
Streptococcus and Gallibacterium were the most enriched in
NAFLD-cirrhosis, while Faecalibacterium prausnitzii and species
belonging to the genus, Catenibacterium and the families Rike-
nellaceae, Mogibacterium, Peptostreptococcaceae were enriched
in non-NAFLD controls. These results are consistent with the
study performed by Ponziani and colleagues in an Italian cohort
showing higher Enterobacteriaceae and Streptococcus in NAFLD-
cirrhosis with and without HCC10. In addition, it confirms a shift
towards more Gram-negative microbes in advanced fibrosis
stages, as previously reported in NAFLD6,8,10.

A stool-microbiome signature accurately detects NAFLD-
cirrhosis. A Random Forest model comprised of 30 features
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(including 27 bacterial features and age, sex and body mass index
(BMI)) identifies probands with NAFLD-cirrhosis. The bacterial
features most important for predicting NAFLD-cirrhosis and
their relative abundances in non-NAFLD controls, NAFLD
without AF and NAFLD-cirrhosis are shown in Fig. 3. In a
derivation cohort of probands, the model had a robust diagnostic
accuracy, with an AUROC of 0.92 after cross-validation for
detecting NAFLD-cirrhosis Fig. 4a. The diagnostic accuracy of the
model was then confirmed in a validation cohort of first-degree
relatives of proband with NAFLD-cirrhosis with a good diag-
nostic accuracy, with an AUROC of 0.87 for the detection of
advanced fibrosis with a high negative predictive value of 91.6%
Fig. 4b. We performed sensitivity analyses by adjusting the pre-
diction model for the presence of type 2 diabetes and the findings
did not differ with an AUROC of 0.87. In addition, we performed
sensitivity analyses in another validation group enriched with
mild to moderate stage of NAFLD including probands with
NAFLD without AF. The diagnostic accuracy of the model was
confirmed and yielded a very good diagnostic accuracy with an
AUROC of 86% Supplementary Fig. 2.

Discussion
Here we report, using a unique twin and family study design,
including well-characterized participants with and without

NAFLD, a strong familial similarity of the gut-microbiome
among first-degree relatives independent of mild/moderate liver
phenotype and involving shared housing. These results confirm a
strong impact of the environment in the familial similarity of the
gut-microbiome26–28. This study builds on the seminal study by
Song et al. demonstrating that couples sharing the same housing
share microbiota with one another, providing additional evidence
of a shared gut-microbiome profile among biologically related
individuals34. In addition, these results confirm a strong impact
of the environment in the familial similarity of the gut-
microbiome26–28 independent of liver phenotype and demon-
strate that shared-housing is a major determinant that should be
controlled for in study designs assessing the microbiome in liver
disease. In line with previous studies12,13, we observed an initial
decrease in both alpha and beta diversity in the moderate stage of
NAFLD. Interestingly, we observed a decrease in alpha-diversity
and increase in beta-diversity in severe stage of disease (NAFLD-
cirrhosis) compared to NAFLD without AF. This suggests
that the extreme form of disease is characterized by a less-diverse
but also significantly less stable microbiome. These findings are
in line with the Anna Karenina principle and suggest that disease-
linked changes in the microbiome are likely stochastic, leading
to community instability35–37. However, further investigations
with larger sample sizes are needed to determine whether
this phylogenetic dispersion reflects a distinct profile among
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analysis was done after filtering rare 16S sequences to avoid spurious correlations due to sparsity (total abundance <10E-6 across all samples in each

disease group). The correlation among related individuals was significantly higher at both phylum (p= 0.023) and 16S tag sequences (p= 2.4E-41) levels.

Similar plot showing the distribution of unweighted UniFrac distances between related in purple and unrelated pairs stratified by disease status (c). The

beta-diversity was significantly lower among related individuals (p= 3.22E-05), non-NAFLD controls and relative in blue (n= 38 pairs) (p= 0.0011) and

probands with NAFLD without AF and relatives in yellow (n= 15) (p= 0.0156) when compared to the same among unrelated pairs in orange, while the

difference between NALFD-cirrhosis patients and relatives in pink (n= 33) and unrelated pairs in orange was not statistically significant (p > 0.1). When

stratified by shared housing (d), beta-diversity was significantly lower among related individuals sharing a house in purple (n= 35 pairs) (p= 0.0455).

Additionally, related individuals not sharing a house in white (n= 51 pairs) had significantly lower beta-diversity compared to unrelated pairs in orange

(p= 0.028). All p value were determined by two-sided Kruskal-Wallis test. *p value < 0.05. Source data are provided as a Source Data file
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NAFLD-cirrhotic patients, and whether it is associated with
specific NAFLD-cirrhosis related outcomes.

Finally, we identified a specific stool-microbiome-derived
signature of NAFLD-cirrhosis that yielded a robust diagnostic
accuracy for the detection of NAFLD-cirrhosis. Hence, this
conveniently assessed microbial biomarker could present an
adjunct tool to current invasive approaches to determine stage of
liver disease.

We previously demonstrated that a microbial biomarker can
detect AF in biopsy-proven NAFLD6. This study leverages from
a unique and well-characterized cohort including participants
with NAFLD-cirrhosis which allows studying the specific gut-
microbiome signature of this extreme and well-defined clinical
phenotype. The fundamental difference between the previous
study and the present study is the clinical context of use of the
gut-microbiome signature. In the present study, the clinical
question is to accurately differentiate using a non-invasive gut-
microbiome signature who among the first-degree relatives have
advanced form of NAFLD and who are unaffected in a general
setting as opposed to a liver clinic setting. We acknowledge that
several non-invasive methods are currently available for the
diagnosis of cirrhosis including MRE, ultrasound-based vibration
controlled transient elastography (VCTE), laboratory tests and
clinical prediction rules in the setting of liver clinics. However, the
context of use is critical for biomarker development as suggested
by the BEST Guidelines by FDA38. Indeed, recent reports suggest
that the application of the current standard developed from
NAFLD cohorts may perform poorly in other high-risk popula-
tions such as obese or type 2 diabetic individuals39,40. In order to

address this clinically important question, this study leverage
from 2 distinct levels of innovations. First, its study design as
this innovative study leverages from a unique prospectively
recruited case-control study design. This cross-sectional analysis
included 203 well-characterized participants, encompassing the
entire spectrum of NAFLD divided into three groups (NAFLD-
cirrhosis, NAFLD without advanced fibrosis, non-NAFLD con-
trols) paired with their first-degree relatives. Secondly, the
discovery of shared housing effect: the familial cohort design
enabled us to discover the effect of shared housing on the gut-
microbiome signature related to NAFLD-cirrhosis. This unique
familial cohort study design led us to a the discovery that
shared housing had a dominant effect on microbiome. This effect
would not be apparent from previous study in NAFLD among
unrelated individuals.

We acknowledge the following limitations of this study. This is
a single-center study performed in a center with expertise in
clinical investigation of NAFLD with advanced MRI-based phe-
notyping, and the generalizability of the findings in other clinical
settings remains to be established. 16S rRNA sequencing may not
have capture additional insights associated with the disease status
available at the species or strain level. In addition, due to the
single-center design, the generalization of the gut-microbiome
signature in population from other geographical locations is
unknown41. Finally, the association does not suggest causality,
and additional studies are needed to assess whether these
microbial species impact gut permeability and/or induce NAFLD
progression through cross-talk between serum metabolites and
the liver7,11,42,43. However, the strengths of the study include a
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evaluating ability to predict advanced Fibrosis using Random Forest classification. Each curve represents the sensitivity and specificity to distinguish

subjects with NAFLD-cirrhosis (1, brown line) from non-NALFD controls (0, green line). a Mean ROC curve from cross-validation within training data

comprised of NAFLD-cirrhosis probands (n= 24) and non-NAFLD controls (n= 47). Cross-validation was performed by iteratively (10 times) training the

Random Forest model with 70:30 train/test split on this training data. b ROC curve representing diagnostic accuracy of Random Forest classification model

tested on first-degree relatives of NAFLD-cirrhosis probands (n= 32). The negative predictive value (NPV) of the model was 91.6% and the positive

predictive value was 62.5%. Source data are provided as a Source Data file
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prospective study design, detailed phenotyping of participants
using the most accurate non-invasive imaging modalities
available, and assessment of accuracy using AUROC in both a
derivation and validation cohort. Further multi-center studies
including larger number of individuals from diverse geographical
origin are needed to validate the clinical utility and applicability
of the proposed microbiome-derived signature to detect NAFLD-
cirrhosis in high-risk population for advanced stage of NAFLD.

Methods
Study design. This is a cross-sectional analysis of a prospective family cohort
study of participants from the Familial Cirrhosis cohort and Twins and Family
cohort who were participating in a biobank initiative and prospectively recruited
at the University of California at San Diego (UCSD) NAFLD Research Center
between December 2011 and December 2017. All participants underwent a
standardized exhaustive clinical research visit including detailed medical history,
physical examination, and testing to rule out other causes of chronic liver diseases
(see inclusion and exclusion criteria for further details), fasting laboratory tests
at the University of California at San Diego (UCSD) NAFLD Research
Center14,20,21,44. Participants also underwent an advanced magnetic resonance
examination including magnetic resonance imaging proton-density-fat-fraction
(MRI-PDFF) and magnetic resonance elastography (MRE) at the UCSD MR3T
Research Laboratory for the screening of NAFLD and advanced fibrosis30–32.
Participants from the Familial Cirrhosis cohort also underwent an ultrasound-
based vibration controlled transient elastography (VCTE) assessment using a
FibroScan. At the time of each research visit, patients provided stool samples.
These were collected and immediately stored in a −80 °C freezer. Written informed
consent was obtained from every participant.

Probands with NAFLD-cirrhosis and first-degree relatives. This study included
26 probands with NAFLD-cirrhosis and 37 of their first-degree relatives from the
Familial Cirrhosis cohort prospectively recruited at the UCSD NAFLD Research
Center14. Probands with NAFLD-cirrhosis had a documented evidence of NAFLD
with either biopsy-proven or meeting imaging criteria for cirrhosis. Definition
for NAFLD was based upon American Association for the Study of Liver Study
(AASLD) Practice Guidelines45. The study complies with all relevant ethical reg-
ulations for work with human participants and was approved by the UCSD
Institutional Review Board number 140084. Written informed consent was
obtained from all participant.

Probands and first-degree relatives had to be at least 18 years old. Probands
were required to have documented diagnosis of NAFLD-cirrhosis either by liver
biopsy or by documented imaging evidence by a protocol-specified criterion. First-
degree relatives (sibling, child, or parent) with written informed consent who did
not meet any exclusion criteria were included in the study.

Exclusion criteria included the following: regular and excessive alcohol
consumption within 2 years of recruitment (≥14 drinks/week for men or ≥7 drinks/
week for women); use of hepatotoxic drugs or drugs known to cause hepatic
steatosis; evidence of liver diseases other than NAFLD, including viral hepatitis
(detected with positive serum hepatitis B surface antigen or hepatitis C viral RNA),
Wilson’s disease, hemochromatosis, alpha-1 antitrypsin deficiency, autoimmune
hepatitis, and cholestatic or vascular liver disease; clinical or laboratory evidence of
chronic illnesses associated with hepatic steatosis, including human
immunodeficiency virus infection (HIV), celiac disease, cystic fibrosis,
lipodystrophy, dysbetalipoproteinemia, and glycogen storage diseases; evidence of
active substance abuse, significant systemic illnesses, contraindication(s) to MRI,
pregnant or trying to become pregnant, or any other condition which, in the
investigator’s opinion, may affect the patient’s competence or compliance in
completing the study.

Control Proband and first-degree relatives. The study included 140 participants
from the Twin and Family study corresponding to 100 twins (50 twin-pairs; 30
monozygotic twin-pairs, 20 dizygotic twin-pairs) and 40 siblings or parents-
offspring. The non-NAFLD controls included 54 probands and 44 first-degree
relatives and the group with NAFLD without AF included 18 probands and 17
first-degree relatives of community-dwelling controls either twin, sib-sib or parent-
offspring pairs14,20,44. These twin, sib-sib, and parent-offspring pairs were pro-
spectively recruited and they reside in southern California. Twins without evidence
of NAFLD (MRI-PDFF < 5%) and advanced fibrosis (MRE < 3.63 kPa) were con-
sidered as non-NAFLD control and twins with evidence of NAFLD (MRI-PDFF ≥
5%) without evidence of advanced fibrosis (MRE < 3.63 kPa) and their twin pair
were randomly assigned as proband or first-degree relatives. The study complies
with all relevant ethical regulations for work with human participants and was
approved by the UCSD Institutional Review Board number 111282. Written
informed consent was obtained from all participant.

Patients were included if they were twins, siblings or parent-offspring at least
18 years old, willing and able to complete all research procedures and observations.
For each twin pair, a detailed assessment of twin-ship status (ie, monozygotic (MZ)
or dizygotic (DZ)) was obtained. The majority of twin-pairs (34) were diagnosed by

their physician as either MZ or DZ by genetic testing. Furthermore, twin-ship
status was confirmed by using a previously published questionnaire20,21.

Participants were excluded from the study if they met any of the following
criteria: significant alcohol intake (>10 g/day in females or >20 g/day in males) for
at least 3 consecutive months over the previous 12 months or if the quantity
of alcohol consumed could not be reliably ascertained; clinical or biochemical
evidence of liver diseases other than NAFLD (eg, viral hepatitis, HIV, coeliac
disease, cystic fibrosis, autoimmune hepatitis); metabolic and/or genetic liver
disease (eg, Wilson’s disease, haemochromatosis, polycystic liver disease, alpha-1-
antitrypsin deficiency, dysbetalipoproteinaemia); clinical or laboratory evidence of
systemic infection or any other clinical evidence of liver disease associated with
hepatic steatosis; use of drugs known to cause hepatic steatosis (eg amiodarone,
glucocorticoids, methotrexate, L-asparaginase and valproic acid) for at least
3 months in the last past 6 months; history of bariatric surgery; presence of
systemic infectious illnesses; females who were pregnant or nursing at the time of
the study; contraindications to MRI (eg metal implants, severe claustrophobia,
body circumference greater than the imaging chamber); any other condition(s)
which, based on the principal investigator’s opinion, may significantly affect the
participant’s compliance, competence, or ability to complete the study.

Clinical assessments and laboratory test. All participants underwent a stan-
dardized clinical research visit at the UCSD NAFLD Research Center. A detailed
history was obtained from all participants. A physical exam, which included vital
signs, height, weight, and anthropometric measurements, was performed by a
trained clinical investigator. Body mass index was defined as the body weight
(in kilograms) divided by height (in meters) squared. Alcohol consumption was
documented outside clinical visits and confirmed in the research clinic using the
Alcohol Use Disorders Identifications Test and the Skinner questionnaire. A
detailed history of medications was obtained and no patient took medications
known or suspected to cause steatosis or steatohepatitis. Other causes of liver
disease and secondary causes of hepatic steatosis were systemically ruled out using
detailed history and laboratory data. After completion of the earlier described
elements of the history and physical examination, participants had comprehensive
fasting laboratory including metabolic and liver assessment14,20,21,44,46.

MRI-PDFF assessment. MRI was performed at the UCSD MR3T Research
Laboratory using the 3T research scanner (GE Signa EXCITE HDxt; GE Health-
care, Waukesha, WI) with all participants in the supine position. MRI-PDFF was
used to measure hepatic fat content and MRE was used to measure liver fibrosis. It
acquires multiple echo sequences at different times when fat and water signals are
nominally in phase or out of phase with each other. Data from each echo time
are passed into an algorithm that estimates and corrects T2* effects, models the fat
signal as a superposition of multiple frequency components, and estimates fat and
water proton densities from which the fat content is calculated. A magnitude‐based
technique was applied to echo sequences to avoid phase errors, which can adversely
affect fat quantification. This algorithm is applied to the source images using
custom analysis software developed at the UCSD Liver Imaging Group to generate
a PDFF parametric map depicting fat quantity and distribution throughout the
liver47,48. The image analysts were blinded to all clinical and biochemical data
including the study group of the participants.

MRE assessment. A standard 60-Hz shear-wave was generated by an acoustic
passive driver attached to the body wall anterior to the liver and coupled with an
acoustic active driver outside the MR examination room. A 2-dimensional
motionsensitized gradient-recalled echo MRE pulse sequence synchronized to the
shear wave frequency was acquired to obtain 4 noncontiguous axial slices (10-mm
thickness, 10-mm inter-slice gap), each during a 16-s breath hold, through the
widest transverse section of the liver with short recovery times in between. The
acquisition parameters were as follows: repetition time, 50 milliseconds; echo time,
20.2 milliseconds; flip angle, 30 degrees; matrix, 256 × 64; field of view, 48 × 48 cm;
one-signal average; receiver bandwidth ±33 kHz; and parallel imaging accelerating
factor, 2. The total acquisition time was approximately 2 min. The wave images
from each slice location were automatically processed on the scanner computer
using inversion algorithm to generate axial liver stiffness maps called elastograms.
The elastograms were transferred and analyzed offline by a trained image analyst
(at least 6 months of experience with MRE analysis) blinded to clinical and
histologic data.

Ultrasound-based VCTE assessment. VCTE was performed by a trained tech-
nician, using the FibroScan® 502 Touch model (M Probe; XL Probe; Echosens,
Paris, France). VCTE measurement was obtained in the supine position with the
right arm fully adducted by scanning the area of abdomen at the location of the
right liver lobe during a 10 s breath hold. Participants were asked to fast at least 3 h
prior to the exam. The procedure included a minimum of 10 measurements to
determine the median valid liver stiffness measurements (LSM) in kilopascals (kPa)
and the interquartile range (IQR). According to the manufacturer protocol, all
patients were first scanned using the M probe (3.5 MHz) and when indicated by the
equipment upon initial assessment, patients were re-scanned using the XL probe
(2.5 MHz)31,33. The threshold used for the classification of cirrhosis (stage 4)
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was VCTE > 11.8 kPa as previously determined in reference31. Among the first-
degree relatives of proband with NAFLD-cirrhosis, 11 did not have an MRE
assessment due to contraindication and the presence of advanced fibrosis was
determined using a VCTE threshold >11.8 kPa as previously determined in
reference31.

Justification for not using liver biopsy. Liver biopsy was not used for hepatic fat
content and fibrosis assessment of controls and first-degree relatives as they were
asymptomatic with no suspected liver disease and therefore performing a liver
biopsy would have been unethical. A non-invasive, accurate quantitative imaging
method was used to estimate liver fat and fibrosis. We have previously shown that
MRI-PDFF is a highly precise, accurate, and reproducible non-invasive biomarker
for the quantification of liver fat content49,50. In addition, MRE is the most
accurate, currently available, non-invasive quantitative biomarker of liver
fibrosis30,31,51. MRE has been shown to be have excellent diagnostic accuracy in
differentiating between normal liver and mild fibrosis (stage 0–2) and between
non-advanced fibrosis and advanced fibrosis (stage 3–4)31,52,53.

Definition of NAFLD. Participants were considered to have NAFLD if they had
hepatic steatosis (MRI-PDFF ≥ 5%) and no secondary causes of hepatic steatosis
due to factors including the use of steatogenic medications, other liver diseases, and
significant alcohol intake (see Exclusion Criteria above for details).

Definition of cirrhosis and advanced fibrosis. Participants were considered to
have NAFLD-related cirrhosis if they had NAFLD according to the definition
above, and have biopsy-proven cirrhosis (histology fibrosis stage 4). We have
previously validated that a liver stiffness cut point of >3.63 kPa on MRE provides
an accuracy of 0.92 for the detection of advanced fibrosis, and it is the most
accurate non-invasive test for the diagnosis of advanced fibrosis30,31,54–56.
Advanced fibrosis among first-degree relatives was determined by either imaging
evidence of nodularity and presence of intraabdominal varices or other evidence
imaging evidence of portal hypertension or liver stiffness assessment with MRE
threshold ≥ 3.63 kPa30,31,51 or if MRE were not performed using transient elasto-
graphy assessment with VCTE threshold ≥ 11.8 kPa31.

Microbiome composition by 16S rRNA gene amplicon analysis. DNA extraction
and 16S rRNA amplicon sequencing were done using Earth Microbiome Project
(EMP) standard protocols (http://www.earthmicrobiome.org/protocols-and-
standards/16s)57,58. DNA was extracted using the Qiagen MagAttract PowerSoil
DNA kit59. Amplicon PCR was performed on the V4 region of the 16S rRNA gene
using the primer pair 515 f to 806r with Golay error-correcting barcodes on the
reverse primer (Supplementary Data 1). Amplicons were barcoded and pooled in
equal concentrations for sequencing. The amplicon pool was purified with the MO
BIO UltraClean PCR cleanup kit and sequenced on the Illumina MiSeq sequencing
platform. Sequence data were demultiplexed and minimally quality filtered using
the QIIME 1.9.1 script split_libraries_fastq.py, with a Phred quality threshold of 3
and default parameters to generate per-study FASTA sequence files60.

Statistical analysis. Development of a model utilizing stool derived 16S gut-
microbiome profiles to predict NAFLD-cirrhosis. To build a model capable of
distinguishing samples belonging to NAFLD-cirrhosis from those of non-NAFLD-
controls, we developed a custom machine learning process that employed Random
Forest (RF) analysis61,62. The set of input features for model building consisted of
16S sequences and patient metadata features. Features from stool microbiome data
consisted of the number of 16S sequences (~5700 features) and the patient
metadata consisted of age, gender and BMI. The first step in building an RF model
consisted of training RF and then selecting features with the most importance score
>0.005 (27 features) in a second step. The final random forest model included the
27 bacterial features and important patient metadata (age, sex, and BMI) for a total
of 30 predictive features.

Patients’ demographic, anthropometric, clinical, and biochemical characteristics
were summarized. Categorical variables were shown as counts and percentages, and
associations were tested using a Χ2 test or Fisher’s exact test. Normally distributed
continuous variables were shown as mean (± standard deviation), and differences
between groups were analyzed using a two-independent samples t- test or
Wilcoxon–Mann–Whitney test. Statistical analyses on cohort characteristics were
performed using SPSS 25.0 (IBM, Chicago, IL). A two-sided p value < 0.05 was
considered statistically significant.

Sample size estimation. On the basis of our previous study, including 16 indi-
viduals with NASH-cirrhosis/advanced fibrosis and 33 controls, we could identify
significant differences compared to 33 controls6. The patient data and species
abundance had an AUROC of 0.88. Therefore, the study including 26 participants
with NAFLD-cirrhosis and 72 controls would be adequate to detect clinically
meaningful differences between the sub-groups with a power of at least 80% with a
two-tailed p value of less than 0.01.

Data availability
The data sets generated during and/or analysed during the current study are available in

the European Bioinformatics Institute (EMBL-EBI) repository, under the accession

number ERP110543. The source data files underlying Figs. 1a–d, 2a–c, 3a–b, 4 are

provided as a Source Data file.

Code availability
the analysis was done using QIIME and in-house scripts. All analyses are documented in

Jupyter notebooks available at https://github.com/knightlab-analyses/familial-cirrhosis.
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