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394 PROBLEMS AND SOLUTIONS

where M is r r and nonsingular. In what follows, it will be assumed without
loss of generality that A is already partitioned as above, for if RAC BG is a
nonnegative rank factorization of RAC, then A (RrB)(GCr) is a nonnegative
rank factorization of A.

If P is a real matrix with r columns, then define c(p)= {Pxlx >= 0} and
(P) {x >= OlPx >= 0}. Note that (#(P) and c(p) are polyhedral cones. A cone
,f will be said to be solid if there exists a nonsingular matrix N of rank r such that
C(N) _. ,.cT, and simplicial if there exists such an N for which equality holds.

THEORF,M. If A is an m x n nonnegative matrix of rank r where r satisfies
0 < r < min {m, n} and A is partitioned as stated previously, then A has a non-
negative rank factorization if and only if there exists a simplicial cone , satisfying
N([M, MQ])

_
,cT

_
c(p).

Proof. If such an ,9 exists, then , oN(X), where X is r x r and non-
singular. Thus X >= 0 and PX >= O. Since N([M, MQ])_ Y, there exist non-
negative matrices Y and Z such that M X Y and MQ XZ. Then A has the
nonnegative rank factorization

A .(Y,Z).
PX

Conversely, suppose

is a nonnegative rank factorization of A, where X and Y are r x r. Since M is
nonsingular, then so are the nonnegative matrices X and Y. Let 5T c(X).
Then ,cT is simplicial and also 5T

_
off(p) since PX W and W is nonnegative.

Since M X Yand MQ XZ,
COROLLARY. Every rank and rank 2 nonnegative matrix has a nonnegative

rank factorization.
Proof. Every solid polyhedral cone in R and R2 is simplicial.
In light of the corollary, the minimum dimensions and rank possible for a

nonnegative matrix A having no nonnegative rank factorization are 4 x 4 and 3,
respectively. The following is such a matrix"

0 0

A=
0 0

0 0 1

0 0

Proof. P [-1, 1, 1]. (P)is not simplicial, while (#([M, MQ]) (P).
A. BFN-ISRAF,L (The Technion, Haifa, Israel) also gave a similar counter-

example.

Problem 73-17, A Hadamard-Type Bound on the Coefficients of a Determinant

of Polynomials, by A. J. GOLDSTFIN and R. L. GRAHAM (Bell Telephone
Laboratories).

If A (aij) is an n x n matrix, a classical inequality of Hadamard [2, p. 253
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asserts that

Idet A[ <= laijI 2 H(A).
i=1 j=l

In recent studies on coefficient growth in greatest common divisor algorithms
for polynomials, W. S. Brown [1] was led to inquire about possible analogues of
this inequality for the case in which the entries of the matrix are polynomials.

Let A(x)= (Aij(x)) be a matrix whose elements are polynomials and let
ao, al,"" be the coefficients of the polynomial representation of det A(x). If
W (wij), where wij denotes the sum of the absolute values of the coefficients
of Aj(x),then show that

( lakl2)1/2 =< H(W).
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Solution by O. P. LOSSERS (Technological University, Eindhoven, the
Netherlands).

Since IA,l(e91 W,l, it follows from Hadamard’s inequality that

Idet A(eit)[ 2 <= ]Akl(eit)l 2 Wkl (H(W))2.
k=l /=1 k=l /=1

However,

f: f eikt) ilt)) 2

2z Idet (e")l dt (( a ( Ztl e- dt- lal

Hence

Idet A(e")l dt <_ -n (H(W)) dt= (H(W))2

Also solved by A. A. JAGERS (Technische Hogeschool Twente, Enschede, the
Netherlands) and the proposers.


