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Abstract 

A simple procedure is provided to write the 
equations of motion of controlled mechanical sys- 
tems with constraints as controlled Hamiltonian 
equations with respect to a "Poisson" bracket which 
does not necessarily satisfy the Jacobi-identity. Based 
on the Hamiltonian form a stabilization procedure 
is proposed. 

1 Introduction 
In a recent paper we have shown that (uncontrolled) me- 
chanical systems with classical constraints can be written 
as Hamiltonian equations of motion with respect to a gen- 
eralized type of Poisson bracket, and with respect to a 
Hamiltonian which is obtained by restricting the internal 
energy to  the constrained state space. This bracket does 
not necessarily satisfy the Jacobi-identity, which is one of 
the defining properties of a true Poisson bracket. In fact, 
the Jacobi-identity is satisfied if and only if the constraints 
are holonomic. This work was motivated by a paper of 
Bates & Sniatycki [3] on the Hamiltonian formulation of 
nonholonomic systems, as well as by our previous work on 
the Hamiltonian formulation of non-resistive physical sys- 
tems by network modelling [SI, [9]. 

In the present paper we extend this set-up to controlled 
nonholonomic mechanical systems. Furthermore we show 
how the Hamiltonian form of the equations (the Jacobi- 
identity being satisfied or not) may be used for stabilization 
purposes. Indeed we show how the stabilization procedure 
for standard Hamiltonian control systems as proposed in 
(141, [ l l ] ,  see also [5], can be extended to this case. These 
considerations were very much motivated by the papers (21, 
[4] on stabilization of controlled nonholonomic systems. We 
close with our treatment of two well-known simple exam- 
ples of nonholonomic systems, discussed before in [2]. 

2 The Hamiltonian formulation of 
systems with constraints 

1,t.t Q be an n-dimensional configuration manifold with lo- 
cal coordinates y = (yl, ' . . , q n ) .  Consider a smooth La- 
grangian function L : TQ -+ R, denoted by L(q,q),  satis- 
fying throughout the usual regularity condition 

dZ L [ 3 x 1  + 

'Lab. d'Automatisme Industriel, Conservatoire National des Arts 

!Dept. of Applied Mathematics, University of Twente, P.O. Box 
et  MQtiers, 21 rue Pinel, 75013 Paris, France 

217, 7500 AE Enschede, The Netherlands 

0-7803-1 968-0/94$4.0001994 IEEE 2950 

(This is e.g. satisfied if L equals kinetic energy with pos- 
itive definite generalized mass matrix minus potential en- 
ergy.) Classical constraints are given in local coordinates 
as 

AT(q)q = 0 (2) 

with A ( q )  a k x n matrix, k 5 n, with entries depending 
smoothly on q. Throughout we assume that A(q)  has rank 
equal to k everywhere. The constraints (2) determine a 
k-dimensional distribution D on Q, given in every point 
qo E Q as 

D(qd = kerAT(qd (3) 
The constraints (2) are called holonomic if the distribution 
D is involutive, i.e. for any two vectorfields X ,  Y on Q 

X E D, Y E D + iX-, l ~ ]  E D (4) 
with [ X ,  Y] the Lie-bracket, defined in loca: coordinates q 
as [ X ,  Y](q) = g ( q ) X ( q )  - $$(q)Y(q), with 2,  the 

Jacobian matrices. In this case we may find, by Frobenius' 
theorem, local coordinates t j  = ( G I , .  ' .  , qn) such that the 
constraints (2) are expressed as 

- .- -- 

&-h+, = . . ' = 9, = 0, (5) 

or equivalently qnn-k+l = Cn-k+l, .  . qn = c, for certain con- 
stants ~ , - k + ~ ,  . . . , c, determined by the initial conditions, 
and we may eliminate the coordinates q,,-k+1,. . . , Qn. The 
constraints (2) are called nonholonomzc if D is not involu- 
tive, implying that we can not use the above elimination 
procedure. 

The equations of motion for the mechanical system on 
Q with Lagrangian L(y, 4) and constraints (2) are given as 
(see e.g. [101, [131, (11) 

A*(y)G = 0, X E R k ,  U E R" 

where B(q)u are the external forces (controls) applied to 
the system, with B(q)  an n x m matrix with entries de- 
pending smoothly on z. Here % denotes the column vec- 

tor (e,. . . , E)T,  and similarly for $$ and subsequent ex- 
pressions. The constraint forces A(q( t ) )X( t )  are determined 
by the requirement that the constraints A*(q(t))q( t )  = 0 
have to be satisfied for all t .  

Defining in the usual way the Hamiltonian H ( q , p )  by 
the Legendre transformation 

(7) 



the constrained Euler-Lagrange equations ( 6 )  transform 
into the constrained Hamiltonian equations on T’Q 

An intrinsic definition of the constrained Hamiltonian equa- 
tions may be given as follows. The cotangent bundle T’Q 

is equipped with its canonical Poisson bracket {,}, in nat- 
ural coordinates (q ,p )  = ( q l , . . . , q n , p I , . . . , p n )  for T’Q ex- 
pressed as (with F and G smooth functions on T’Q) 

with J the standard Poisson structure matrix. Recall that 
for any smooth function H : T’Q -+ R its Hamiltonian 
vectorfield .YIf on 2”Q is defined i n  the local coordinates 
( q . 1 1 )  as 

Similarly, for any one-form a on T’Q we may define the 
“Ilainiltonian” vectorfield 2, as 

a l ( q , P )  

( ; )4(  an(q> ; P )  ) (11) 

where ( a l ( q , p ) ,  . . .  , a , ( y , p ) )  is the local coordinateexpres- 
sion of the one-form a. (Note that Z ~ H  = X H . )  Now the 
columns of A(q) define in local coordinates k one-forms 
al,. . . , ak on Q .  Similarly, the columns of B(q)  define m 
one-forms p’, . . . , p” on Q.  Since any one-form on Q may 
be also regarded as a one-form on T’Q, we can thus define 
the vectorfields z,, ,... , z , k ,  201 , . - .  , Z p  on T’Q. It can 
now be readily seen that a coordinate-free description of 
the first part of (S) is given as (see also [2]) 

X = X,( I )  + u ( z ) X  + ~ ( z ) u ,  I E T’Q, (12) 

where U(.)  is the matrix with columns Z,I,. . . , z , k ,  and 
b ( r )  is the matrix with columns Zpl , . . . , Z p .  

The Lagrange multipliers X may be computed by dif- 
ferentiating A * ( q ) F  (q ,p )  = 0 along (S), i.e. 

[ @ 4 % ) g % , P ) ) ] *  g%?,P) + A%@(q,P). 

[ - g + P )  + B ( S b ]  + AT(q)9 (4 ,p )A(q )X  = 0 
(13) 

with the Hessian matrix with respect to  p .  This equa- 
tion may be solved for X (as function of q,p,u)  as long 
as 

which condition is obviously satisfied because of our stand- 
ing assumptions (1) and rank A(q)  = k. Expressing X as 
a function of (q ,p,u)  and substituting in (8) then leads to 
the dynamical equations of motion on the constrained state 
space 

As shown in [15] a much more efficient and insightful way of 
obtaining the equations of motion on X, is however the fol- 
lowing. Since rank A(q)  = k ,  there exists locally a smooth 
n x ( n  - k) matrix S(q) of rank n - k such that 

(Equivalently, S(q) is such that D ( q )  = ZmS(q).) Now 
d e f i n e j =  ( j l , j z )  = (PI,...,jn-k,jn-k+~,...,jn) as 

It immediatelyfollowsfrom(l6) that  ( q , p )  H (q,jY,P2)isa 
coordinate transformation. The constrained Hamiltonian 
dynamics (8) in the new coordinates (q , j1 , j2 )  take the 
following form. In the new coordinates ( q , j )  the Poisson 
structure matrix transforms from (9) into 

and the constrained Hamiltonian dynamics (8) trans- 
form into 

with A(*) := A*(q)A(q) an invertible matrix, and h(q,fi) 
the Hamiltonian H(q,  p )  expressed in the new coordinates 
q, 13. Now truncate the transformed Poisson structure ma- 
trix j in (18) by leaving out the last k columns and last 
k rows, and let j satisfy the constraint equation = 0. 

J,  
on X,. An explicit expression for J, is obtained as follows 
[15]. Denote the i-th column of S(q) by Si(q), then 

This defines a (271 - k) x (271 - k) skew-symmetric matrix 8 9  

where p is expressed as function of q , i ,  with fi satisfying 3 = 0. Note that rank J,  = 2(n - k) everywhere on X,. 
Furthermore, define the reduced Hamiltonian H, : Er + R 
as H ( q , j )  with fi satisfying 3 = 0. 
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Clearly, ( q , j j l )  serve as local coordinates for X,. It imme- 
diately follows from (19) by disregarding the last equations 
involving A and noting that g(q,lj) = 0 that the dynamics 
on X, in coordinates ( q ,  j') are described as 

F(%F1) ( ;I ) = JJn3F') ( s(q,fil) ) + ( "r,,, ) 421)  

These equations are in Hamiltonian format! Indeed, the 
matrix J,  defines a bracket {, } 7  on X, by setting 

for any two smooth functions F,,G, : X, -+ R. Clearly, 
this bracket satisfies the first two defining properties of a 
Poisson bracket (see e.g. [6],[12], [ 7 ] ) ,  

(i) {Fry G J r  = -{Gv, F r } r  

(skew-symmetry) 
(23) 

( 2 2 )  {Fr,G,Hr)r = {Fr,Gr)rHr + G r { F r , H r } r  
(Leibnit' rule) 

for every F,,G,, H,  : X, -+ R. However, for { , } 7  to be 
a Poisson bracket also the following property 

(iii) { & I  { G , ) B v ) r ) r  + { G r ,  {Hr,F,Ir}r 
(24) +{If,, {F,, G,}7}7 = O(Jacobi-identity) 

needs to be satisfied. If (24) is satisfied then (21) with 
U = 0 defines a genemlized Hamiltonian system with respect 
to a Poisson bracket, see e.g. [12], [7], [8]. In this case 
local coordinates ( q , p , a )  for X, may be found such that 
the system for U = 0 takes the form [6], [12], [8) 

s = o ,  s € Rk.  

However, in [15] it has been shown that {,}, satisfies the 
Jacobi-identity (and thus is a true Poisson bracket) zf and 
only zfthe constraints AT(q)q  = 0 are holonomic! This un- 
derscores the difficulties of nonholonomic constraints. On 
the other hand, even i f  the Jacobi-identity is not satisfied 
(as -in the case for nonholonomic systems), the (pseudo- 
)Hamiltonian format (21) may still be useful, as we wish 
to indicate in the next section. 

Note that our approach is not unrelated to the approach 
taken in [4]. Were the Lagrange multipliers X in the Euler- 
Lagrange equations (6) a.re eliminated by premultiplying 
the equations (6) by the matrix S T ( q ) ,  and it is shown 
tha.t the thus reduced equations can be written as a set of 
first-order differential equations in q a.nd 7 E R"-k with 
ci = S(q)q  parametrizing the admissible velocities 4. This 
can he rega.rded as the "Lagrangian counterpart" of our 
IIamiltonian approach. 

3 Stabilization 
We note that the dynamics (31) & I C  v ~ ~ e r g y  preserving. In 
fact, by skew-symmetry of J ,  we immediately obtain 

with -$ denoting differentiation along (21). Suppose now 
that (q0, f i ; )  is a stationary point of the Hamiltonian H,, 

i.e. T(q0,fi;) = 0, %(qo,FA) = 0, implying that (qo,&) 
is an equilibrium of the uncontrolled constrained dynamics 
(U = 0) 

If H, happens to have a strict minimum in (qo, f iA) ,  then 
it follows from (26) with U = 0 that (q0, j ; )  is a Lyapunov 
stable equilibrium of (27). On the other hand, as in the 
case of ordinary Hamiltonian control systems (see e.g. 1141, 
[ l l]) ,  equation (26) suggests for improved stabilization the 
smooth state feedback 

(28) 

which results in the ,monotonous energy decrease 

(Note that (28) can be written as U = -y ,  with y the 
conjugated effort corresponding to the generalized flow U 
[SI.) If H ,  has a strict miiiimum in (yo,R), then ( q 0 , & )  
will thus be a t  least a Lyapunov stable equilibriuni of the 
closed-loop system (21), (2S), and moreover the trajcctorics 
will converge to the largest invariant, (with respect to ( 2 7 ) )  
set contained in 

However it can be shown. as in [?I. [4], tt1a.t (31) docs 
not satisfy Brockett's necessary condition, ai i t l  thus calinol 
be asymptotically stabilized by a smooth state fcrclback. 
Hence this hrgest invariant set will hc always litrgc.1. t h l  

the singleton { ( q o , $ A ) ) .  
If If, does not havca st.rict rninimuni in  (cjo,jj,!,) t,lien, as 

i n  the casc of ordinary Hamiltonian control systciiis ( [ I ' I ] ,  
[ I l l ) ,  we may try to shape by preliniinary feedback the 
internal energy t l , :  if possible, to a function which docs 
have a strict minimum in  (qo.p;). Indeed, let H ,  he of the 
form, a s  usua.lly encountered i l l  applications, 

(potential energy plus kinetic energy). Necessarily ph = 0, 
and Z ( q 0 )  = 0. Now consider the equation 

( 3 2 )  
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For every smooth function V such that S T ( q ) g ( q )  E 
Im B,(q),  for all q ,  we can determine a smooth feedback 
U = G ( q )  which solves (32). Application of the feedback 
U = G ( q )  + v ,  with v the new control variables, will result 
in a modified system (instead of (21)) 

0 1 0 + 0 0  
x 0 0  0 0 cosp  

P I  -1 0 0 0 0  
y = o o  o o s i n p  

- o -cosp -sin9 o o - - P z  

with fir(q,5') = H r ( q , f i l )  + V ( q ) .  (This results from the 
special form of J ,  given in (20).) If it is possible to find in 
this manner a function v such that V + V has a strict min- 
imum in qo, then fir will have a strict minimum in (qo, 0), 
and thus the additional feedback (2S), with U replaced by 
v, will further stabilize the system. The resulting combined 
feedback is then given as --a- 

&E a 
& - aP2 - 

(34) 

with & ( q )  solviiig (92) .  
'The treatment of [ 2 ] .  [SI coriespoiids to the special case 

that B,(q) has raiik ni = n - k .  I n  this case equation (32) is 
solvable for every function V ( q ) ,  and thus the potential en- 
ergy can be shaped in an arbitrary fashion. Therefore, for 
H ,  given by (31),  every point ( q 0 , O )  E Er can be rendered 
a Lyapunov stable equilibrium by a feedback (34). Note 
furthermore that in this case the largest invariant (with 
respect to (27)) set contained in (30) is actually given as 

(35) 

(as follows from the form of J ,  given in (20)), where V is 
taken such that V+V ha.s a strict minimum in qo. A similar 
result has been obtained before in [4] (in the reduced La- 
grangian framework) using a different Lyapunov function, 
and a different feedback control Lased on this. The main 
difference is that in our approach the Lyapunov function Hr 
is directly based on the internal energy of the constrained 
dynamics, and consequently that U given in (34) has a di- 
rect physical interpretation. Furthermore, contrary to  [4], 
we consider the stabilization problem for arbitrary B, and 
an arbitrary number of controls. 

We now treat within our approach two examples of non- 
holonomic control systems, both of which have been stud- 
ied before in [2]. 

Example 3.1 (Knife edge) Consider the control of a knife 
edge moving in point contact on a plane surface. The con- 
strained Lagrangian equations are given as (all numerical 
constants are set to  unity) 

i = X s i n p + u l c o s p  

ji = - X c o s p + u l s i n p  (36) 

+ = uz 

with (x,y) Cartesian coordinates of the contact point, p 
the heading angle of the knife-edge, ti1 the control in the 
direction of the heading angle, and 212 the control torque 

about the vertical axis. The nonholonomic constraint is 

(37) Xsinp - y c o s p  = 0 

The total energy H is given as $p: + 1 2Py + 1 'Py' ' with 
pz, py, pv the corresponding generalized momenta. The con- 
straint (37) can be written asp, sin 9 - p y  cosp  = 0. Define 
as in (17) new coordinates 

PI = Pw 

p3 = p,sinp -p,,cosp 

Then ( p , z , y , p ~ , p z )  are coordinates for X,, and the dy- 
namics (21) is computed as 

r o  0 1  

(39) 

with H , ( ~ , x , Y , P I , P z )  = :P: + $pi. Take V(~,I,Y) = 
1 2 + fx' + fy2, then the preliminary feedback G(cp,x, y) 2 9  
is determined by (see (32)) 

and the resulting combined feedback (34) is 
u1 = -zcoscp-ysinp --pz 

U2 = -v -PI (41) 

The trajectories will converge to  the invariant set cp = 0, 
I = 0, p1 = 0, pz = 0. A different V ,  however, will gener- 
ally yield a different invariant set. 0 

Example 3.2 (Rolling vertical wheel) Let x, y be the Carte. 
sian coordinates of the point of contact of the wheel with 
the plane, cp denotes heading angle, and 0 rotation angle. 
With all constants set to  unity, the Lagrangian equations 
of motion are 

5 = A, 
ji = x z  
e = - A  1 cos9  - Xzsinp + U ]  
(;i = U2 

with u1 the control torque about the rolling axis and uz the 
control torque about the vertical axis. The nonholonomic 
constraints are (rolling without slipping) 

(43) X = Ocosp, y = Osinp 

The total energy H is ip; + :pi + :pi + $p:, and the 
constraints can thus be rewritten as pt = pecosp,p, = 
pe sin cp. Define according to  (17) new coordinates 
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r -e&- - x l  0 cos $0 - 
8 -  0 1  
3 1 0  

& 
& 
& 

0 sin cp Y 0 4  

- 

PI 0 0 0 - 1 0  0 &E 
- -cosv s i n 9  -1 o o o - 

c 8P2 - - P2 d 

(45) 

with H ,  = i p : +  i p ; .  A feedback (34) can be computed as 
in the preceeding example. Note that Example 2 (as well 
as Example 1) can be easily generalized to a knife edge or 
rolling wheel on any surface. This corresponds to adding a 
potentia1 energy to  H (and to  Hr). Furthermore, in both 
examples one control torque instead of two control torques 
can be considered. 0 

4 Conclusions 
We have shown, as an extension to  [15], that  the equations 
of motion of controlled mechanical systems with constraints 
may be directly formulated as Hamiltonian equations of 
motion with respect to a bracket which for nonholonomic 
constraints does not satisfy the Jacobi-identity, and with 
respect to a reduced Hamiltonian which is obtained by re- 
stricting the total energy to the constrained state space. 

Like for ordinary Hamiltonian control systems a stabi- 
lization procedure has been proposed, based on the use of 
the reduced Hamiltonian as a candidate Lyapunov func- 
tion. However, since Brockett’s necessary condition is not 
sat,isfied, this will only result in Lyapunov stability, whereas 
asymptotic convergence is to a non-trivial invariant set. 
The main challenge is to investigate how the Hamiltonian 
structure may be used for asymptotic stabilization, in which 
case discontinuous or time-varying feedback is needed ([2], 
141). 
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