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Abstract

Motivation: Reconstructing high-quality haplotype-resolved assemblies for related individuals of various

species has important applications in understanding Mendelian diseases along with evolutionary and

comparative genomics. Through major genomics sequencing efforts such as the Personal Genome

Project, the Vertebrate Genome Project (VGP), the Earth Biogenome Project (EBP) and the Genome in

a Bottle project (GIAB), a variety of sequencing datasets from mother-father-child trios of various diploid

species are becoming available.

Current trio assembly approaches are not designed to incorporate long-read sequencing data from parents

in a trio, and therefore require relatively high coverages of costly long-read data to produce high-quality

assemblies. Thus, building a trio-aware assembler capable of producing accurate and chromosomal-scale

diploid genomes in a pedigree, while being cost-effective in terms of sequencing costs, is a pressing need

of the genomics community.

Results: We present a novel pedigree-graph-based approach to diploid assembly using accurate Illumina

data and long-read Pacific Biosciences (PacBio) data from all related individuals, thereby generalizing

our previous work on single individuals. We demonstrate the effectiveness of our pedigree approach on

a simulated trio of pseudo-diploid yeast genomes with different heterozygosity rates, and real data from

Arabidopsis Thaliana. We show that we require as little as 30× coverage Illumina data and 15× PacBio

data from each individual in a trio to generate chromosomal-scale phased assemblies. Additionally, we

show that we can detect and phase variants from generated phased assemblies.

Availability: https://github.com/shilpagarg/WHdenovo

Contact: shilpa_garg@hms.harvard.edu, gchurch@genetics.med.harvard.edu

1 Introduction

The ability to faithfully reconstruct genomes is a crucial step in better
understanding evolution and the nature of inherited disease (Tewhey
et al. (2011)). De novo genome assembly aims to address this problem
by generating complete genome sequences from error-prone sequencing
reads alone, without the use of a reference genome. Creating a de novo

assembler that resolves genomic repeats and is generalized to genomes
of varying heterozygosity rate (the average proportion of loci that differ
between homologous sequences) has posed a significant challenge to
the scientific community. Assembling diploid genomes adds further
difficulty; in order to accurately represent diploid genomes, assemblies
must correctly identify and phase (i.e. determine the correct haplotype
of) homologous sequences. One promising approach to diploid genome
assembly is incorporating sequencing information from a related set of
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Fig. 1. The Illumina data (middle) from the trio of genomes can be represented as a pedigree

graph. The bubbles in the graph (bottom) show four different variants; from the left, there

is an indel, SNV, SV, and SNV.

individuals, particularly from mother-father-child trios, and using the
Mendelian information offered by the corresponding pedigree to infer the
layout of alleles along homologous sequences.

Some assemblers (Levy et al., 2007; Pryszcz and Gabaldón, 2016;
Simpson and Durbin, 2012; Bankevich et al., 2012; Li, 2015) tackle single-
individual assembly using Next-Generation Sequencing data; however,
while accurate, the short length of NGS reads often leads assemblies to
fragment at repetitive and highly-heterozygous regions. Other assemblers
(Koren et al., 2017; Vaser et al., 2017; Berlin et al., 2015; Chin et al.,
2013) utilize longer Third-generation sequencing reads to obtain more
contiguous sequences, and to help resolve repeats and heterozygous
regions. Yet, these require high coverage due to the high error rate in
long-read data, which is very costly. Hybrid assemblers utilize both types
of reads, taking advantage of the accuracy of short reads and the scale of
long reads to generate complete, high-quality assemblies (Bashir et al.,
2012; Antipov et al., 2015; Zimin et al., 2017).

However, the methods described above collapse differences between
homologous pairs into a single consensus sequence, without regards for
the rich information given by the layout of different alleles along two
DNA strands (Simpson and Pop, 2015). By contrast, other assemblers by
Chin et al. (2016); Garg et al. (2018); Weisenfeld et al. (2017) have been
developed to generate haplotigs, haplotype-resolves assemblies for diploid
genomes.

Certain assemblers have been developed to employ pedigree
information into the process of assembly as well, specifically for the case
of mother-father-child trios. For example, trio-sga creates haplotypes of
the child based on parental Illumina data (Malinsky et al., 2016), while
TrioCanu uses such data to partition child long-read data and subsequently
assembles the partitioned reads separately (Koren et al., 2018). Yet, these
two methods cannot phase variants which are heterozygous in all three
individuals in a trio, and by relying solely on parental Illumina data,
may not correctly haplotype long reads which cover repetitive genomic
regions. Furthermore, TrioCanu does not work properly at low coverages
of long-read data.

Another method approaches the diploid assembly problem by aligning
long-read data from all individuals in a pedigree to a reference-genome,
then finding the most likely partitioning of reads as determined by the
PedMEC problem (Garg et al., 2016). Essentially, the PedMEC (Weighted
Minimum Error Correction on Pedigrees) problem finds the partitioning of
reads from related individuals that incurs the least cost, which is calculated
based on the likelihood of errors occurring at various locations along the
reads as well as recombination costs between each site of heterozygosity.
This method, however, only concerns bi-allelic variants, and contains
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Fig. 2. Input: This figure shows the pedigree graph (top) (consisting of four SNVs and two

SVs) and the PacBio reads (gray) with respective alleles (white digits). Output: the final

haplotigs (crimson) for each individual in a trio. Our method can phase the variants that are

heterozygous (SNV1) in all individuals and any variant covered by atleast one read from

any individual (SV2 in child), resulting in continuous and complete haplotigs

reference bias, meaning that unique DNA sequences may not be detected
or phased correctly.

Thus, developing a haplotype-resolved de novo assembly approach for
related individuals which is cost-effective, flexible with regard to genomic
complexity and heterozygosity rate, and which does not contain reference
bias, is a pressing need for the genomics community.

Contributions. Our graph-based method, implemented as a new tool
WHdenovo, performs phasing in the space of a pedigree graph (defined
below), and is generalized to assemble genomes of varying heterozygosity
rate and with multi-allelic variants, thus allowing for the creation of
accurate, complete haplotigs.

More precisely, our approach builds a pedigree graph, or joint sequence
graph, using combined Illumina data from all individuals in a pedigree; the
graph represents heterozygous locations as bubbles, as shown in Figure 1.
Given a pedigree graph containing a series of bubbles, long-read (PacBio)
data from each individual are threaded through it; in essence, the most
probable paths that the long reads trace through the bubbles in our pedigree
graph, and which obey the Mendelian constraints imposed by the pedigree,
represent our true haplotypes. We draw key concepts from the graph-based
assembly approach for single individuals described in Garg et al. (2018)
and the PedMEC formulation set forth in Garg et al. (2016), yet synthesize
and extend them to overcome their respective shortcomings.

Our graph-based approach poses several advantages. For example, we
can detect and phase all types of small and large variants, and require
relatively low coverage of costly long-read data. We can also phase variants
that are heterozygous in all individuals; for example, SNV1 from Figure
2. Moreover, by incorporating hybrid data from all related individuals, we
can effectively phase reads in repetitive genomic regions, and as shown by
SV2 in Figure 2, if parental reads span a variant but child reads do not, we
can still correctly identify and phase the variant in all three individuals.
Assemblers such as TrioCanu would not be able to phase variants under
these circumstances, and may forced to break assembly contiguity.

To demonstrate the practical effectiveness of our method of haplotype-
aware de novo assembly for related individuals, we assemble two sets of
genomes. First, we haplotype the genomes of a simulated trio of pseudo-
diploid yeast, which allows us to comprehensively study assembly at
varying read coverage and heterozygosity rates. Then, we use real data to
assemble the complete diploid genome of a trio of Arabidopsis Thaliana.
These results indicate that our hybrid method is adaptable to genomes of
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Fig. 3. Overview of the pedigree-aware phased assembly pipeline. After we generate a

pedigree graph using Illumina data, we align PacBio reads from all related individuals

from a pedigree to the graph. Using these alignments, we detect ordered sequences of

heterozygous regions, represented as bubble chains. We then find the best partitioning of

each set of reads into haplotypes based on the paths taken through the bubble chains, and

assemble the partitioned reads.

varying heterozygosity rates. We demonstrate that our method is cost-
effective, requiring only 30× short-read coverage and 15× long-read
coverage for every individual in a pedigree to generate near chromosomal-
scale assemblies for all individuals. Moreover, at these coverages, we show
that our assemblies for both real and simulated data are more accurate and
contiguous when compared to those produced by TrioCanu at 45× child
long-read coverage. In a final experiment, we also show that we can detect
and phase variants.

2 Pedigree-aware phased assembly pipeline

In this section, we present the workflow of our pipeline, which takes input
as raw Illumina and PacBio sequencing data from all related individuals
in a pedigree, and outputs final, polished haplotigs. Once we create a
pedigree sequence graph, our goal is to find the walks through this graph
that correspond to the true haplotypes of all related individuals. These
haplotype paths will encode the phasing of all variants in the haplotigs
for each individual in the pedigree. Due to errors of Illumina data and
genomic characteristics such as repeats, there are inevitably multiple paths
through this graph that do not correspond to true haplotype paths. Thus,
to construct the true haplotype paths, we seek the maximally likely paths
based on confidence scores of how the nodes are connected to each other
over long distances, which we determine using PacBio reads aligned to
our graph.

This pipeline generalizes our previous single-individual approach
(Garg et al., 2018) to related individuals to yield the chromosome-scale
haplotigs. Figure 3 represents a conceptual workflow of our pipeline,
detailed below.

Pedigree Graph. We use short, accurate Illumina reads from all related
individuals as the basis for generating a pedigree graph. We denote the
bidirected pedigree graph as Gp, containing a set of nodes Np and
a set of edges Ep. Conceptually, each node ni ∈ Np represents a
segment of DNA found in the Illumina data, and the node n′

i represents
its reverse complement. Note that because nodes are generated using the
combined reads of all individuals in a pedigree, not every node sequence
is necessarily present in the genome of every individual. Additionally,
nodes can be traversed in either direction; when traversed in the reverse

Fig. 4. This figure considers a toy example of our algorithm to find bubble chains. Shown

is the joint sequence graph, containing nodes and bubbles, with many reads spanning them.

In the filtration step, n3 is filtered because it is only covered by a single read, and n7 is

removed because it branches (has degree > 2). Unitigs U1-4 are generated by using DFS for

the pairs of edges and bubbles whose connection are covered by at least 5 reads. Because

there is a read that spans U1 and U2, and a read that spans U2 and U3, we can combine

these smaller unitigs into larger final bubble chain C1.

direction, its sequence is considered reverse-complemented. Every edge
eij ∈ Ep represents an adjacency between the sequences represented by
node ni and nj .

The pedigree graph Gp contains a set of bubbles L that represents
heterozygous variants (or sequencing errors). The terminology bubble is
drawn from Garg et al. (2018) and follows from the ultrabubble coined
by (Paten et al., 2017). Graphically speaking, bubbles are directed and
acyclic, biconnected, and minimal, as discussed by Garg et al. (2018).
We define each bubble lk to be the set of allele paths contained within it,
where each allele path is a unique sequence of nodes spanning a common
start and end node. Intuitively, each bubble is bookended by common
sequences —the start and end nodes —and the unique node sequences
connecting them represent the alleles gleaned from our Illumina data.
Figures 1 demonstrates the bubbles representing various variants.

PacBio Alignments. We align PacBio long reads from all individuals to
produce paths through the pedigree graph Gp, in a similar process to Garg
et al. (2018). The concept of aligning a PacBio read to Gp captures the
idea that the sequence of a single PacBio read can trace a path through
the sequences contained in many nodes. Thus, for a given PacBio read,
we define a read alignment ri to be a path through Gp, defined by the
oriented nodes n1 . . . nk which map to a particular read. Given a set of
individuals I, we will align the PacBio reads from every individual i ∈ I

to Gp, resulting in a set of read alignments Ri = {r1, r2, . . . , rj} for
every individual. As an intuitive checkpoint, note that as PacBio reads
from different individuals trace different paths through nodes and bubbles
in Gp, we gain information about not only the correct ordering of nodes
to form the genome in question, but also the alleles and phasing present in
each individuals.

Bubble Chains. To consolidate the information gained by the PacBio
alignments, we need to formalize the process of finding ordered bubble

chains which represent the layout of heterozygous sites across the genome.
Ideally, we would be able to use our PacBio alignments to obtain C, a set
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of bubble chains containing one continuous bubble chain corresponding
to each chromosome. Before generating bubble chains, we must perform
a series of filtration steps to remove erroneous bubbles according to the
algorithm described in the following paragraph:

On input R, the set of all read alignments Ri for individuals i ∈ I, we
project all partial alignments to bubble space—that is, for every instance
where a read traverses a bubble, we replace the corresponding set of nodes
by the appropriate bubble ID. We now perform our filtration steps; for
every pair of nodes or bubbles from every alignment path in R, denoted
as (x, y) ∈ R, we compute the coverage c(x,y), and if c(x,y) < 5, we
remove the pair. Next, we calculate the degree of every remaining node x,
and if deg(x) ≥ 3, we remove all pairs containing x. Using the resulting
filtered pairs, we then perform DFS to findU , an initial set of unambiguous
bubble chains termed unitigs. Finally, if there is at least one read connecting
two unitigs every pair of unitigs in U , we can gain information about the
ordering between these initial unitigs. Record the resulting orderings as
C, the set of final bubble chains. Figure 4 demonstrates the algorithm with
a basic example.

Fig. 5. For a subgraph of Gp , the example shows three bubbles l1 , l2 , and l3 , and their

corresponding alleles. Reads from mother, father and child traverse the bubbles.

Graph-based phasing on pedigrees. We introduce the Graph version of

Weighted Minimum Error Correction on Pedigrees Problem, or gPedMEC,
as our central phasing algorithm. gPedMEC relates to the PedMEC
formulation set forth by Garg et al. (2016), which concerns alignment to
a reference genome and applies only to bi-allelic variants. Considering
multi-allelic variants in the gPedMEC framework requires additional
phasing-related observations. Specifically, bubbles which represent bi-
allelic variants ensure that a child’s haplotype paths must be the same
as a combination of parental haplotype paths. By contrast, in bubbles
containing multi-allelic variants, it is possible for child haplotype paths to
differ from parental ones; this would occur under the circumstance that the
variant encoded by the bubble is long, and a new allele were created as a
result of recombination within the variant itself. Based on these insights,
we create a new algorithm to determine the haplotypes of any set related
individuals in a more flexible, accurate, and representative manner.

Ultimately, the goal of solving gPedMEC is to recreate the haplotype
paths of every individuals through the bubble chains we calculated in C.
The haplotype paths for a given individual are determined by deducing
the two paths through the bubble chains which incur the least cost (i.e. are
most likely), where cost is determined by confidence in alignment paths
and recombination costs. Doing so will inherently also compute long-read
partitionings.

In order to represent the paths taken through our bubble chains
for each set of alignments Ri, we create bubble matrices Fi ∈

{0, 1, . . . e,−}Ri×M for each individual i. Here, e is the maximum
number of alleles contained in any bubble, andM is the number of bubbles
in a chain. Figure 5 shows a sample 3-bubble chain with PacBio reads from
each individual aligned to it; the corresponding bubble matrices are shown
for the three individuals are shown below:

F1 =











l1 l2 l3

r1 1 0 0

r2 0 0 0

r3 1 0 1

r4 1 0











,F2 =











l1 l2 l3

r5 2 1 1

r6 2 1 1

r7 2 0 0

r8 2 0 0











,

F3 =











l1 l2 l3

r9 0 0 0

r10 2 1 1

r11 0 1 0

r12 1 1











(1)

If all reads in a bubble matrix Fi were to follow exactly one of two
paths through a bubble chain, solving for the true haplotype paths for the
corresponding individual, h0

i , h
1
i ∈ {0, 1, ..., e,−}M , would be trivial.

For example, F2 is conflict–free, and the corresponding haplotype paths
are self-evident. However, due to long-read sequencing errors, conflicts
within bubble matrices are inevitable. Thus, our goal is to find the optimal
set of matrix entries which can be flipped in order to create conflict free
matrices containing a bipartition of reads which follow the two haplotype
paths of each individual (and which obey the Mendelian constraints of the
pedigree). So, for every individual, we also need to introduce a weight
matrix Wi ∈ ◆Ri×M×e, where each entry Wi(j, k, x) represents the
cost of flipping read j, at bubble lk , to allele x, where k ∈ {0, 1, ...M}

and x ∈ {0, 1..., |lk|}. An example weight matrix, corresponding to F1,
is shown below:

W1 =











l1 l2 l3

r1 [2, 0, 10] [0, 1] [0, 10]

r2 [0, 10, 10] [0, 2] [0, 5]

r3 [12, 0, 5] [0, 1] [4, 10]

r4 [7, 0, 8] [0, 10]











,
(2)

Other weight matrices can be written similarly.
We need to account for the Mendelian constraints imposed by the

pedigree as well. Thus, we introduce the transmission vectors ~tm,~tf ∈

{0, 1, na}M for each triple (m, f, c) ∈ T to denote the alleles passed
from each parent to child at every location in a bubble chain, where
~tm = 1 if the mother passes on an allele from h1

m, and so on. Under the
circumstance that recombination occurs within a bubble, in which case the
value of na is passed on, no haplotype of any parent is directly transmitted
to the child. Thus, the recombined sequences will form allele-paths in the
bubble.

Additionally, we introduce recombination costs X ∈ N
M , where

X (k)denotes the cost between bubbles of indicesk−1 andk. For example,
if a transmission vector ~tf passes on an allele from h1

f
at location k − 1

and an allele from h0
f

at k, this would incur a recombination cost of X (k).

Yet, when transmission vector ~tm passes on na at location k − 1 and an
allele from h0

f
at bubble k, this would not incur any recombination cost.

Having defined all necessary terms, we can now more clearly define
the gPedMEC problem. Consider a pedigree graph Gp containing bubble
chains C and recombination costs X , from a pedigree with individuals
I and relationships T ; each individual has corresponding PacBio read
alignments Ri, and matrices Fi and Wi. The crux of gPedMEC is then
to determine the set of all bubble matrix entries to be flipped which
accrues the minimal cost, based on a) the weight of flipping these entries
coupled with b) the recombination cost incurred by the transmission
vectors implied by the resulting child haplotype paths. Once these matrix
entries are determined, the haplotypesh0

i andh1
i for all individuals become

self-evident.

Dynamic Programming to Solve gPedMEC. In the following section, we
discuss our dynamic programming (DP) algorithm to solve gPedMEC,
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Fig. 6. This figure shows the process of our DP algorithm. The top row shows the three

input bubble matrices from mother, father and child, with their weights (a). The following

rows show sample processes for DP column initialization and recurrence. In block (c),

sample bipartitions and transmission values are shown with the respective calculations in

block (d). The cost calculation finds the best assignment of allele-pairs to the example

set of partitions which accrues the minimum cost. For example, for computing the allele

assignment cost of allele 0 to the green partition, we pay a cost of 2. The other costs can

be computed similarly. In block (f), the recurrence step is shown that minimizes the value

of the bipartition for all previous columns, plus the initialization cost, and allowing various

possibilities of recombinations. This process will be repeated for all possible transmission

vectors and compatible partitions until last column. Figure adapted from Garg (2018)

which is the generalization of Garg et al. (2016), to which we refer the
reader to for additional information about the algorithm. The motivation
behind using a dynamic programming algorithm is utilize a DP table to
determine the optimal haplotype paths more efficiently than with a brute
force algorithm, which would require exponential time with respect to the
number of bubbles and alignments.

DP cell initialization As in Garg et al. (2016), we proceed by first
computing the initial DP cell cost ∆C(k,B, t) accrued by flipping entries
in column k of each bubble matrix, where k is the index of bubble
lk , B is a bipartition of reads and t ∈ {0, 1, na}2 is a transmission
tuple indicating which haplotype from mother and father is respectively
inherited, if applicable.

Intuitively, there is a relationship between a bipartition B, a
transmission tuple t, and the resulting set of readsets induced at location k,
termed S(k,B, t). For example, if the transmission tuple does not contain
any na values, then the child’s haplotype path must be a combination
of parental haplotypes - correspondingly, the reads in the child’s bubble
matrix can be merged with bipartitions in the parental bubble matrices due
to the identity by descent (IBD) condition. In the case of a trio, this would
lead to two resulting bipartition readsets. In the presence of na values, the
child’s reads would not be merged with parental reads, leading to three
bipartition readsets in the case of a trio.

For a given bubble lk , each bipartition can be assigned any pair of
alleles (x, y), of which there are (

(|lk|
2

)

+ |lk|) (the added |lk| accounts
for the possibility of assigning the same allele). To notate this, we let
W d

k,R
represent the cost of flipping reads for a specific bipartition readset

R ∈ S(k,B, t) to an allele-pair (d1, d2) ∈ A, where A is the set of
allele-pairs {(x, y) ∈ lk × lk|x ≤ y}:

W d
k,R = min{wx

k,X + wy
k,Y

,wx
k,Y + wy

k,X
}

where X and Y are the readsets of a bipartition readset R. The cost of
flipping to a given allele can be computed as:

wd
k,C =

∑

(i,j)∈C

JFi(j, k) 6= dK · Wi(j, k, d),

Thus, to initialize the cost∆C(k,B, t), we need to find the assignment
of allele pairs to all bipartition readsets which incurs the minimal flipping
cost. This can be formalized in the following way:

∆C(k,B, t) = min
a∈AS(k,B,t)







∑

R∈S(k,B,t)

W
a(R)
k,R







(3)

The inner sum computes the minimum allele-pair assignment cost from
all bipartitions in S(k,B, t). The calculations in Figure 6 provide a
more concrete example for calculating DP cell initialization cost. In this
example, we assume a sample partition of reads and child partition as per
transmission value shown in Figure 6(c) where the mother passes on the
green allele and the father passes on the blue. To calculate the DP cell
initialization cost in (d), we find the assigment of allele-pairs to each of
the bipartition readsets which incurs the lowest cost. For example, the cost
associated with the allele-pair assignment (0,2) and (0,1) to bipartitions
(green, purple) and (orange, blue), respectively, is (2) + (5+8) + (4+1) +
(3+4+4) = 29 because the minimum cost of flipping all reads in the green
partition to allele 0 is 2, that of flipping the purple partition to allele 2
is (5+8) = 13, and so on. In this way, we can compute costs for other
allele-pair assignments and store the minimum in the DP cell.

DP column initialization. Every entry C(1, B, t) in the first column of
the DP table is filled with the the corresponding cell initialization cost
∆C(k,B, t) for all bipartitions B and transmissions t. Thus, on input
the set of reads covering l1, each C(1, B, t) is calculated according to
Equation 3.

As described in Patterson et al. (2014) and Garg et al. (2016), we
enumerate over bipartitions in Gray code order, thus ensuring a runtime

of O((
(|lk|

2

)

+ |lk|)
|I|−|T |

· 2|F(k)|+2·|T |).

DP recurrence. In the recurrence step, we compute C(k,B, t) at column
k, which intuitively represents the optimal allele-pair assignment cost to
bipartitions B until column k. In general, the cell C(k,B, t) can be
computed as the optimal accumulated cost of the bipartitions B until k−1

columns plus ∆C(k,B, t) under various possibilities of recombination.
Thus we add ∆C(k,B, t) to values from column k − 1, where possible
recombination costs are incurred according to the various values of t. The
additional constraint is that only entries in column k−1whose bipartitions
are compatible with ∆C(k,B, t) are considered, where two bipartitions
are deemed compatible if they share the same readsets. By only considering
compatible readsets, we are ensuring that we maintain the reality that a
single PacBio read cannot come from more than one haplotype. For two
bipartitions B and B′, compatibility is denoted as B ≃ B′.

In more formal terms, the value of C(k,B, t) can be written as
following:

C(k,B, t) = ∆C(k,B, t) (4)

+ min
B′∈B(F(k−1)):B′≃B

t′∈{0,1,na}2|T |

{

C(k − 1, B′, t′) + dH(t, t′) · X (k)
}

,

In this equation, the term dH(t, t′) refers to the distance, or number
of changes, between two transmission vectors and thereby represents the
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number of recombination costs which need to be considered. In the case
where any entry is na we assume no recombination cost.

For a sample walkthrough calculation of DP recurrence, we again
turn to Figure 6. The initialization cost of the sample cell ∆C(2, B, t)

is (6+4+6) = 16, as determined according to Equation (3). In order to
find the minimal value for the DP cell cost in column 2, we need to
consider the costs from column 1. In the calculations shown in part (f), we
only consider partitions which agree on the readsets involved, but want to
consider the possibilities of recombinations between the first and second
bubbles. Minimizing over all possible previous transmission vectors and
compatible bipartitions gives us our DP cell value C(2, B, t).

We continue this process for all DP cells at column 2. In a similar
manner, we repeat the DP algorithm until the last column.

Backtracing. At the end of our DP algorithm, the minimial value stored
in the final column represents the lowest possible cost incurred. We can
backtrace through the DP table to find the transmission vectors, bipartitions
of readsets and final haplotype paths that led to this value.

Generation of final assemblies. One we obtain the partitions of long-read
data for each individual, we can perform haplotype-aware error-correction
on the reads. Subsequently, we can use an external assembler to assemble
these partitions separately create final haplotype-resolved assemblies for
all individuals in a pedigree.

3 Datasets and Experimental Setup

Our objective was to study trios which present different genomic
heterozygosity rates, and for which Illumina and PacBio data are readily
available. Due to the lack of sufficient parental long-read data to pursue this
goal (which major sequencing efforts will likely produce in the near future),
we primarily considered simulated data for our comprehensive study of
assembly behavior at varying heterozygosity rates and long-read coverage.
Subsequently, we applied our method to real data of the widely-studied
Col-0 and CVI-0 strains of Arabidopsis Thaliana.

To generate our simulated data, we created a series of diploid
genomes by adding mutations at varying rates to the haploid yeast strain
DBVPG6765 (Yue et al. (2017)). The four parental haplotypes were
generated in this way; subsequently, one haplotype from each parent was
selected to form the child diploid genome.

We performed this process three times to generate trio of pseudo-
diploid yeast genomes with heterozygosity rates of 0.5%, 1.0%, and 1.5%.
For each genome in each trio, we simulated Illumina data with average read
length of 150 bp and 30× coverage. Furthermore, we simulated PacBio
data for each individual in each trio at 5×, 10×, and 15× coverage.
For the three trios of heterozygosity rates 0.5%, 1.0%, and 1.5%, the
average PacBio read lengths, respectively, were: 6,202, 6,220 and 6,212,
at 5× coverage, 6,202, 6,157 and 6,256 at 10× coverage, and 6,231, 6190
and 6,220 at 15× coverage. For comparison with TrioCanu (Koren et al.

(2018)), we simulated child PacBio data at 15,×, 30×, 45× and 80×

coverage .
Additionally, we considered data of Arabidopsis Thaliana, with

heterozygosity rate of 1.36%, for which assemblies have been produced by
TrioCanu (Koren et al., 2018). Due to unavailability of Illumina data for
the Col-0 and CVI-0 strains, we simulated Illumina and PacBio data for
each of them using properties of real data (Chin et al., 2016). Thus, for this
experiment, we were able to consider real child data and combined it with
simulated parental data. We down-sampled the data for each individual in
a trio to 15× coverage, with an average read-length of 17 kbp.

3.1 Pipeline implementation.

We used a modified version of SPAdes v3.10.1 (Bankevich et al.,
2012) to construct our pedigree graph based on Illumina data from
all related individuals. In order to maintain heterozygosity information
in our graph, we ignored the bubble removal step, running it with
default parameters along with the --only-assembler flag, thereby
producing our pedigree graph, without any error correction. Then,
using VG (Garrison et al., 2017), we converted the assembly graph to
a bluntified sequence graph—that is, with redundant node sequences
removed. Subsequently, we detected regions of heterozygosity, (i.e. snarls)
with the snarl decomposition algorithm from VG (Paten et al., 2017).
Using GraphAligner1, we aligned PacBio reads from all individuals to
the generated graph. Using our own implementation, we obtain bubble
chains from the combined PacBio alignments according to the algorithm
described in Section 2. Taking the resulting ordered bubble chains and
long-read PacBio alignments, we solved the gPedMEC problem. In our
calculations, we assumed constant recombination costs X and weights
in the weight matrices Wi for all individuals. We determined the optimal
partitions for each individual via backtracing, as detailed in our description
of the algorithm. The final haplotigs were generated by assembling these
computed partitions separately using Canu v1.8 Koren et al. (2017). These
steps have been implemented as a new available tool, WHdenovo.

3.2 Assembly performance assessment

We evaluate the child’s predicted haplotype-resolved assemblies by
aligning our predicted assemblies to the true simulated genome in our
yeast-based experiments, and to TrioCanu’s published assemblies of A.

Thaliana when handling real data. Our measures of success are introduced
and described below:

Partitioning accuracy rate. For simulated data, we computed
partitioning accuracy rate by directly comparing our predicted read
partitions to the truth.

Average Percent Identity. We consider the best assignment of each
haplotig to either of the two true references, obtained by aligning the
haplotig to them. For each whole diploid assembly, we compute the average
of the best-alignment percent identities over all haplotigs.

Assembly contiguity. We assess the contiguity of the assemblies by
computing the N50 of haplotig size.

Assembly completeness. We assess the completeness using the total
length of haplotigs assembled by each method.

4 Results

We present the results of our analysis of the child diploid assemblies based
on the datasets described above, as assembled by both our method and by
TrioCanu.

Coverage and heterozygosity analysis. To explore a cost-effective
method of assembling the child diploid genome when trio information
is available, we consider PacBio datasets of varying coverage for each
individual in a trio — specifically, 5×, 10× and 15× coverages. We
compared our own results using coverages of 5×, 10× and 15× for all
individuals in a trio to the results of TrioCanu using child PacBio data at
15×, 30×, 45×, and 80× coverages. In general, we found that TrioCanu
requires 80× child coverage to achieve results comparable to our method
at 15× for all individuals.

Table 1 reports the assembly performance statistics of our method
applied to genomes of varying heterozygosity rates. To assess the accuracy
of the child assemblies, we computed the average percent identity over

1 https://github.com/maickrau/GraphAligner
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Approach Het PacBio #phased %partition Identity N50 Total

rate cov. bubbles accuracy [%] length

Child phased assemblies

Simulated data

WHdenovo 0.5 3*5× 55,561 94.2 99.3 21k 7.6m
WHdenovo 0.5 3*10× 56,233 94.7 99.4 220k 11.5m
WHdenovo 0.5 3*15× 56,563 94.9 99.9 720k 11.9m
TrioCanu 0.5 1*45× — — 89.1 8.5k 51.1m
TrioCanu 0.5 1*80× — — 99.9 730k 11.9m

WHdenovo 1.0 3*5× 45,418 95.1 97.8 21k 7.6m
WHdenovo 1.0 3*10× 46,228 96.3 99.4 210k 11.5m
WHdenovo 1.0 3*15× 47,528 96.4 99.8 540k 11.9m
TrioCanu 1.0 1*45× — — 88.8 8.6k 51.9m
TrioCanu 1.0 1*80× — — 99.9 542k 11.9m

WHdenovo 1.5 3*5× 35,027 97.4 97.5 20k 7.5m
WHdenovo 1.5 3*10× 39,021 98.3 99.4 210k 11.5m
WHdenovo 1.5 3*15× 41,126 98.6 99.8 520k 11.9m
TrioCanu 1.5 1*45× — — 88.8 8.8k 51.5m
TrioCanu 1.5 1*80× — — 99.9 540k 11.9m

Real data (A.thaliana)

WHdenovo 1.36 3*15× 298,519 — 99.9 6.1m 119m
TrioCanu 1.36 1*45× — — 88.9 81k 400m
TrioCanu 1.36 1*100× — — 99.9 7m 120m

Table 1. Phased assembly performance of child averaged over both haplotypes

from our approach (WHdenovo) and TrioCanu. Please note that the PacBio

coverage is for every individual in a trio for WHdenovo, whereas the coverage

is for only child in TrioCanu.

both child haplotypes at varying PacBio coverages. In our approach, we
observe that as we increase the long read coverage from 5× to 15×
for each individual, the average identity of the haplotigs increases from
99.3% to 99.9%. This behavior is consistent across genomes of different
heterozygosity rates. Table 1 also reports the performance of TrioCanu
assemblies at 45×and 80× child coverage (lower coverages produced
results equivalent or worse than 45×, and were hence omitted). TrioCanu
produced haplotigs with average identity of 88-90% at coverages of 15×,
30×, and 45× for child data, requiring 80× to attain success comparable
to our method. For real data from Arabidopsis Thaliana we produced
haplotigs with 99.9% average identity. We believe that the Illumina-
based graph used in our approach helps lead to this result. Furthermore,
optimally solving the gPedMEC formulation of the phasing problem likely
contributes to generating accurate haplotigs. Overall, our analysis supports
the conclusion that our approach delivers accurate haplotype sequences
even at a long read coverage as low as 15× for each individual in a trio.

In measuring partitioning accuracy of long reads, we considered reads
to be classified only if covering a fixed threshold of bubbles. We observe
that the partitioning accuracy improves with the heterozygosity rate. For
example, for genomes with heterozygosity rate of 1.5%, our calculated
partitioning accuracy rate is 98.6% for 15×-fold child data. By contrast, if
the heterozygosity rate is low, at 0.5%, our partitioning accuracy is 94.9%
at 15×-fold data of child.

With an increase in average PacBio coverage from 5× to 15×,
the haplotype contiguity achievable using our approach dramatically
improves from 21 kbp to 720 kbp for trios with heterozygosity rate
of 0.5%, approaching the contiguity of chromosomal-scale assemblies.
When heterozygosity rate is high (>=1.0) our assemblies are somewhat
fragmented (e.g. 540 kb) even at 15× coverage. This fragmentation is a
result of repetitive and highly diverging regions, which cause assemblers to
break contigs. For Arabidopsis Thaliana, we produced haplotigs with 6.1

50k

100k

150k

200k

59139 58541

118203 117995

179018 178743

het0.5 het1.0 het1.5

Fig. 7. This figure shows the true and predicted variants from the phased assemblies

generated using our method at various heterozygosity rates.

Mb N50 length. In comparison, TrioCanu produced N50 of length 7-9 kb
at coverage of 45× for different heterzygosity rates of yeast simulated data
and 81 kb for Arabidopsis Thaliana. Using whole high-coverage PacBio
data, TrioCanu was able to produce high quality assemblies; these results
indicate that TrioCanu is not designed for the low coverages which our
method utilizes.

Regarding haplotype completeness, our approach yields average child
diploid assemblies of length ~11.5 Mbp at 10× and 15× coverages. For
real data from Arabidopsis Thaliana, we can produce complete assemblies
of 119 Mb at 15× coverage for each individual in a trio.

In summary, our approach delivered higher quality haplotypes from
15× long-read coverage of all individuals in a trio than TrioCanu at 45×
coverage of the child. The results from these experiments indicate that our
approach is generalized to produce phased assemblies for genomes with
different heterozygosity rates. Further, our graph-based approach is also
generalized to produce assemblies for both parents (in addition to that for
the child), and can help find recombination maps.

Variant detection. As a second goal, we aimed to study haplotype-resolved
variant detection. To pursue this, we aligned our predicted haplotype-
resolved assemblies to each other and detected the variants, such as
SNVs. From Figure 7, we observe that the the number of predicted SNVs
or short indels rises in response to increasing heterozygosity rate; for
example, 58,541 and 178,743 for genomes with heterozygosity rates of
0.5% and 1.5%, respectively. This result is expected because the number of
variations between two haplotypes directly depends on heterozygosity rate.
Additionally, the plot indicates that the number of variants we can detect
with our approach (red) is very close to the true number of variants (blue).
In summary, this plot indicates that our haplotype-resolved assembly
approach helps to detect variants.

5 Discussion

Advances in sequencing technologies such as PacBio, ONT and others,
which can span multiple heterozygous variants, have enabled the
reconstruction of accurate phased assemblies for related individuals.
Furthermore, the generation of accurate, phased assemblies for all
individuals in a pedigree is essential for studies of intra-specific variation,
chromosome evolution, and allele-specific expression.

The TrioCanu method (Koren et al., 2018) is a hybrid approach that
takes advantage of parental Illumina data and long reads from the child in a
trio; yet, it has the limitation of not phasing variants that are heterozygous
in all individuals. Moreover, it requires high coverage of long-read child
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data to produce high quality assemblies of 99.99% average identity and
chromosomal-scale continuity. As sketched in Figure 2, given long reads
from multiple individuals in a trio, we can efficiently phase all variants
over the genome and generate chromosomal-scale assemblies.

We have developed a novel pedigree graph based approach to the
problem of diploid genome assembly for pedigrees that combines short-
and long-read sequencing technologies. By combining the accuracy of
short reads with the contiguity offered by long reads, along with pedigree
information, our approach produces accurate, complete and contiguous
haplotypes. By requiring relatively low long-read coverage, our method
is also a cost-effective way of generating high quality diploid assemblies.
Furthermore, by performing phasing directly in the space of a pedigree
graph, we can detect and phase all variants, including those that are
heterozygous in all individuals. We tested our approach using simulated
data from a trio of pseudo-diploid yeast genomes and real data from
Arabidopsis Thaliana, resulting in accurate, complete haplotigs.

One restriction in our model is the use of constant recombination rates;
we aim to fine tune this parameter in the future according to genomic
distances, and properly incorporate recombination hotspots. Moreover,
we have produced haplotype partitions of reads, but still rely on using
an external assembler for producing final assemblies. The next step for
this work involves producing assemblies alongside the process of graph-
based phasing on pedigrees. This task may also involve phasing repeat
regions, which we plan to perform using polyploid phasing as described
by Chaisson et al. (2017). The general idea of our phasing approach can be
even applied to polyploid genomes, with some gain in computation time.
We will explore heuristic approaches to perform polyploidy phasing in an
efficient manner, and will aim to use a joint phasing framework to obtain
more contiguous diploid genome assemblies.

Our framework, in principle, is generalized to incorporate any variety
of datasets; in the future, we hope to optimize our method by incorporating
data such as chromatin conformation capture (Burton et al., 2013) and
linked read sequencing (Weisenfeld et al., 2017). Each type of sequencing
data will offer new information about the true haplotype paths through our
graph. Additionally, incorporating PacBio CSS data (Wenger et al., 2019)
in our pedigree graph generation may help scale our pipeline to larger
genomes. Finally, we hope to use haplotype-resolved variants we detect to
shed new light on open biological questions concerning inherited disease.
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