
A Hardware-Based Performance Monitor for the Intel iPSC/2 Hypercube

Allen D. Malony’

Center for Supercomputing
Research and Development

University of Illinois

Urbana, Illinois 61801

Abstract

The complexity of parallel computer systems makes a

priori performance prediction difficult and experimen-

tal performance analysis crucial. A complete character-
ization of software and hardware dynamics, needed to

understand the performance of high-performance paral-

lel systems, requires execution time performance instru-

mentation. Although software recording of performance

data suffices for low frequency events, capture of de-

tailed, high-frequency performance data ultimately re-

quires hardware support if the performance instrumen-
tation is to remain efficient and unobtrusive.

This paper describes the design of HYPERMON, a

hardware system to capture and record software per-

formance traces generated on the Intel iPSC/Z hyper-

cube. HYPERMON represents a compromise between

fully-passive hardware monitoring and software event
tracing; software generated events are extracted from

each node, timestamped, and externally recorded by

HYPERMON. Using an instrumented version of the

iPSC/S operating system and several application pro-

grams, we present a performance analysis of an oper-

ational HYPERMON prototype and assess the limita-

tions of the current design. Based on these results, we

suggest design modifications that should permit cap

ture of event traces from the coming generation of high-

performance distributed memory parallel systems.

*Supported in part by the National Science Foundation under
Grants No. NSF MIP-86-07776 and No. NSF ASC 84-04556, and

the NASA Ames Research Center Grant No. NCC-2-669.

+Supported in part by the National Science Foundation under

grents NSF CCRW67696, NSF CCR87-06663 and NSF CDAU-

22836, by the National Aeronautics and Space Administration
under NASA Contract Number NAG-1-613, and by grants from
AT&T, Intel Scientific Computers and the Digital Equipment
Corporation External Research Program.

Permission to copy without fee all or pati of this material is granted provided

that the copies are not made or distributed for direct commercial advantage, the

ACM copyright notice and the title of the publication and its dete appear, and

notice is given that copying is by permission of the Assoclatian for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.

0 1990 ACM 099791~369~9/90/OCKW0213...$1.50

Daniel A. Reed+

Department of Computer Science
University of Illinois

Urbana, Illinois 61801

1 Introduction

To observe and measure the performance characteris-

tics of a parallel system, the performance analyst must

implicitly or explicitly solve several problems. First,

one must specify the desired performance data and de-

termine instrumentation points. Given a description of
the desired data and associated data capture points, one

must capture and record the data while balancing instru-

mentation coverage against instrumentation intrusion.

Finally, one must present, reduce, and analyze the data

(e.g., via a statistical analysis or visualization tools). An

integrated performance monitoring environment for a

particular parallel computer system necessarily requires

many design compromises in performance specification,

data capture and recording, and data reduction and pre-

sentation [6]. Further, performance measurement, no

matter how unobtrusive, introduces perturbations, and

the degree of perturbation must be balanced against the

need for detailed performance data [7].

In this paper, we focus on the simple, though difficult,

problem of data capture and recording. As technology

makes possible the creation of parallel systems far from

the center of the von Neumann architecture spectrum,

we believe that capture of detailed performance data

will become increasingly important to both system de-

signers and application software developers. Although

software performance data can take many forms, includ-

ing samples, counts, and running sums, event traces pro-

vide greater flexibility; given a trace, one can compute
counts, sums, distributions, and profiles of both proce-

dure occupancy and parallelism.

Designing a machine independent data capture sys-

tem is exceedingly difficult - the variety of system in-

terfaces limits generality. Because message-based par-

allel systems typically lack both a global clock for

event timestamps and a common memory for event data

buffering, they pose particularly vexing, and interesting,
instrumentation problems. Without hardware support,

event trace extraction either must compete with system
and application programs for access to network com-

munication bandwidth, or the traces must be buffered

213

locally in individual node memories, limiting both trace

size and application program memory. Given these

problems, hardware support for event data capture and

recording is crucial to minimizing instrumentation per-

turbations.

In this paper, we describe the design of an opera-
tional hardware prototype, called HYPERMON, that

supports hardware capture, timestamp generation, and

recording of software trace events from the Intel iPSC/Z

hypercube. In addition to reporting the measured data

capture rate, we compare the performance perturba-

tions of software data recording and hardware data cap-

ture using HYPERMON. Based on an analysis of this

data and the HYPERMON design, we present some

lessons that should guide design of performance data

capture hardware for the coming generation of high-

performance distributed memory parallel systems.

The remainder of the paper is organized as follows.

In 32, we briefly describe the Intel iPSC/P hypercube

and its software environment. We follow in $3 with

a detailed description of the HYPERMON design. In

54, we describe the particular hardware configuration

used to test HYPERMON, followed in 95 by a perfor-

mance analysis of the HYPERMON design. Based on

this data, in 36 we describe guidelines for the design of

performance data recording systems.

2 Intel iPSC/2 Description

The design of hardware support for performance data
capture necessarily depends on the underlying parallel

system - system software and hardware determine the

requirements for and limitations of the data capture in-

terface. Thus, an instrumentation environment must be

understood in the context of the intended architecture
- the Intel iPSC/2, a second generation, distributed

memory parallel system.

The Intel iPSC/2 hypercube [l, 3] incorporates evo-

lutionary advances in technology, including an Intel

80386/80387 microprocessor pair, a 64K byte cache, and

up to 16 megabytes of memory on each node, The

iPSC/2 includes an autonomous routing controller to
support fixed path, circuit-switched communication be-

tween nodes. This communication system eliminates

most of the store-and-forward latency that existed in

earlier distributed memory systems.

The software development interface for the iPSC/2 is

a standard Unix system that transmits executable pro-

grams to the nodes, accepts results from the nodes, and

can, if desired, participate in the computation. Finally,

the Unix host supports node file I/O to its local disk

and to remote disks via a network file system protocol.

To reduce dependence on the Unix host and to

provide input/output performance commensurate with

computing power, the Intel iPSC/S nodes also support

link connections to I/O nodes. Eiach I/O node is identi-

cal to a standard compute node, with the exception of

an additional daughter card that provides a SCSI bus

interface. The SCSI bus supports up to seven peripher-

als and has a peak transfer rate d 4 megabytes/second.

Physically, the I/O sub-system can be packaged as a

separate cabinet with cable connections to the compute

nodes.

Because the I/O nodes provide a superset of the com-

pute node functionality, software support for disk and

file access is realized by augmenting the NX/2 node op-

erating system on both the compute and I/O nodes.

The Concurrent File System (CFS) allows application

programs to create, access, or modify files on both the

hypercube host and the individual hypercube disks. As

we shall see, this provides the mechanism for archiving

performance data after its capture by our HYPERMON

instrumentation support hardware.

Although each iPSC/2 node contains a local clock

with one microsecond resolution, the node clocks are not

globally synchronized and can drift apart at a measur-
able rate. Consequently, event timestamps on different

nodes may violate casuality (e.g., a message might ap-

pear to be received before its transmission). Although

software techniques can ameliorate the effects of clock

drift by synchronizing the clocks and reordering times-

tamped events, a high-resolution, global time reference

is the simplest and most desirable solution.’ Even with

a global time reference, the distributed event data still

must be collected for analysis and presentation.

3 HYPERMON Design

The absence of a global, accurate, and consistent

time exacerbates the already difficult measurement and

recording of distributed events 153. The constraints

on measurement resolution created by distributed clock

synchronization, coupled with the overheads of software

tracing, limit the range of performance behavior that

can be accurately observed. The design of the HY-

PERMON architecture attempts to circumvent these

problems. Below, we describe the design and opera-

tion of HYPERMON, followed in 55 by a summary of

results obtained from HYPERMON bandwidth experi-

ments and performance tests using real message passing

programs.

3.1 iPSC/2 Event Visibility

The hardware basis for HYPERMON is a little-known,

though standard, feature of the iPSC/2 that makes pos-
sible external access to software events generated by

each node, Five “performance” bits from a port in

1 See [8] for a description of software causality maintenance and

its limitations.

214

the I/O address space on each iPSC/2 node board are
routed via the system backplane to an empty slot in
the system cabinet. The standard cabinet holds up to

32 iPSC/2 nodes and all 160 signals are present at the

spare node slot. However, the current HYPERMON

prototype supports data capture from only the first 16

nodes.

Because the software performance instrumentation

generates event data by writing to an I/O port, one bit

must be reserved as a software strobe to signal that the

remaining four event data bits are valid. The five data

bits written to the I/O port are interpreted 8s follows.

4 3 0

Strobe 1 Event Data

A software event is generated by writing the event data

to the 5-bit port, first with a strobe of zero then with a

strobe of one. The 16 MHz 80386 microprocessor in the

Intel iPSC/Z requires approximately six cycles to com-

plete an I/O write operation, versus two for a standard

memory access. Thus, a minimum of twelve cycles are

needed to write a 4-bit software event.

Clearly, the sixteen possible events representable with

a 4-bit event identifier greatly restrict the range of pos-

sible instrumentation. If additional events are needed,

or, equally likely, if data are associated with an event,
multiple I/O write operations will be required. A per-

formance instrumentation of the Intel NX/2 operating

system [lo], produces a range of event sizes, ranging

from two to thirteen bytes plus a timestamp. More-

over, an analysis of these operating system traces shows

that most events are four or more bytes, excluding the
software timestamp.

Unfortunately, transmitting larger events is expen-

sive. In addition to the twelve cycle memory access

penalty for each 4-bit I/O operation, there is software

shift and mask overhead to extract 4-bit items from

event words. Clearly, a larger I/O event field is desirable

to increase event bandwidth and to reduce the cost of

bit field extraction. However, backplane hardware con-

straints limit the number of available backplane signals.

Despite these limitations, hardware support for data

collection permits real-time extraction of performance
data and, consequently, capture of larger traces than

otherwise possible with node memory trace buffering.2

3.2 Hypermon Architecture

Figure 1 shows the primary components of the HYPER-

MON architecture and their physical relation to the In-

tel iPSC/Z. Reflecting the physical packaging of the

‘In 55 and $6, we will return to the question of node hardware
support for data extraction. The current HYPERMON design

reflects the 5-bit iPSC/P data extraction interface.

iPSC/2, HYPERMON is partitioned between the cab-

inet that contains the iPSC/S compute nodes and the
cabinet containing the I/O nodes and disks. As just

described in 53.1, each iPSC/2 compute node indepen-

dently sends C-bit (four bits and a strobe) event data to

HYPERMON.

In the compute node cabinet, the HYPERMON event

regeneration board (ERB) converts the 5-bit TTL-level

event signals from each node into differential form be-

fore transfer to the event capture board (ECB) residing

in the I/O cabinet. The ECB captures the events, gen-

erates global timestamps, and stores the resulting event

data in internal memory buffers for access by I/O nodes.

To prevent disruption of event data capture and pertur-

bation of user I/O requests, one or more I/O nodes are

dedicated to event data recording.

In principle, the I/O nodes can be used for prelimi-

nary analysis of the event data. In practice, however,

the desirability of real-time data reduction, with a possi-

ble decrease in disk I/O requirements for data recording,

must be balanced against the probability of ECB data

buffer overruns if too many I/O node compute cycles are

diverted from disk service. Clearly, the most efficacious

mix of real-time data reduction and disk recording, with

post-mortem analysis, depends on the event data rate

and instrumentation requirements.

3.2.1 Event Capture

Figure 2 shows the functional design of the event cap-

ture board, the primary hardware component of HY-

PERMON. There are five major parts: event data

queueing, event strobe synchronization, timestamp gen-

eration, event frame construction, and I/O node inter-

face; each is described below.

After signal regeneration by the HYPERMON ERB

board, the $-bit event data from each iPSC/Z node are

placed in a separate FIFO buffer that is clocked by the
corresponding software event strobe signal (i.e., the fifth

bit from each node). Each node FIFO is 64,4-bit entries

deep and provides buffering during the event frame con-

struction process; see below. Figure 3 shows the timing

diagram for the two writes needed to assert valid event

data from a node.

Because the individual node clocks are asynchronous,

this is no direct timing relationship among the valid

event data in FIFOs for different nodes. Thus, early

in the HYPERMON design, we were forced to decide

where to synchronize the externally received event data
with the internal ECB clock. Because the event data

FIFOs provide implicit synchronization of the data bits,

only the event strobe signals need be sampled relative

to the internal ECB clock. In the HYPERMON design,

the software event strobes are sampled in successive 800
nanosecond time windows.8 Valid event strobes within

5The syncbronieationperiod can be shortened to 400 nanosec-

215

iPSCI2 Compute External
Nodes Cabling

II0
Nodes

Figure 1: HYPERMON Architecture

Event Strobe
Synchronization

-7

4

m--.

Event Data FIFOs Event Frame
--- ..--. . . Control

Event Frame
FIFO

Strobe Vector -. ..- - -.. .--.

FIFOs I b. ..___. . .__.
(1K deep)

I I (1K deep)

Figure 2: HYPERMON Event Capture

event data clocked
into data FIFO

---mm --s-w
Strobe \ \

-e-s- ---e-
-HI- data setup

Event
Data xxxxx DATA VALID

I+- >8OOns + >8OOns d

Figure 3: Event Data Timing

216

a time window are marked in an event strobe uector and

stored in the strobe vector FIFO.
Figure 4 illustrates event strobes from different nodes

and the corresponding strobe vectors during three suc-

cessive time windows. The shaded bits in each strobe

vector indicate which event data FIFOs have valid data

from compute nodes.

Separate fzorn the synchronization issue is the gen-

eration of event data timestamps. Although high-level

events can be of any length, and one need generate only

one timestamp for each event, the HYPERMON hard-

ware must assume that every four bits of event data

represent a separate software event. Why? The IIY-

PERMON hardware embodies no notion of event types

or lengths. Thus, each event data nibble must be as-

signed a 32-bit timestamp.

To avoid the expense of separate timestamp hardware

for each node, a single timestamp generator is used.
For each generated strobe vector, a timestamp also is

stored in the timestamp FIFO. In general, the choice

of timestamp resolution need not be dependent on the

event strobe synchronization period. However, in the

current ECB hardware, they are equal.

The design motivation for strobe vector and times-

tamp unification iz to reduce hardware complexity. As a

design alternative, each event nibble, a 4-bit node iden-

tifier, and a 32-bit timestamp could be sent to the I/O

node. However, in this approach, 80 percent of the in-

formation would represent timestamp data. Moreover,

for events occurring within the same time 800 nanosec-

ond window, the timestamps for these events would be

redundant. Instead, we adopted a strategy that pack-

ages event data as event frames. These event frames are

the unit of transfer to the I/O node.

In the event frame approach, the strobe synchroniza-

tion period is the time basis for event frame construc-

tion. Each such event frame consists of four 32-bit

words; see Figure 5. Four event data bits from each

node FIFO always are placed in the frame. However,

only those FIFO’s with valid data, as determined by the

strobe vector, for this time window, will be shifted into

the event frame; the other event data fields in the frame

are undefined. The strobe vector is recorded as part of

the frame to identify the valid event data fields. Finally,

the corresponding 32-bit timestamp is saved with each

frame. Once an event frame is constructed, it is saved

in the ECB’s frame FIFO, To eliminate useless data,

an event frame is constructed for a time window only if

at least one of the nodes produces an event during the

window.

If we compare separately transferring each event nib-

ble to the use of event frames, it is clear that when there

is only one valid event nibble in a frame, the overhead

onds or 200 nanoseconds through jumpers on the ECB. This al-
lows faster event gencrstion rates to be accommodated in the

future.

is substantial. In this case, only three percent of the

frame is data. Only when four or more nodes have valid

event data will transfer of event frames require fewer

bits. The motivation for merging event data from mul-

tiple nodes is that the efficiency of event transfer is more

important when more nodes are producing event data.

In thii case, the likelihood of multiple nodes producing

event data within the same time window increases, and

the ratio of valid event data to overhead also increases.

When few nodes are generating event data, the need for

efficient transfers to the I/O node is not as great.

3.3 Event Processing

The ECB supports a parallel bus interface (the PBX

bus) to an iPSC/2 I/O node. Via this bus, event

frames can be transferred to the I/O node’s memory.

These PBX bus transfers are mapped through the I/O

node’s memory space. In addition, the ECB provides a

writable 8-bit control register to reset the board. There

is a 4-bit status register used to signal error conditions,

most often FIFO overruns. The number of event frames

generated since the last reset is accessible through a 12-

bit frame count register. Finally, the event frame can

be accessed using a single frame FIFO address. Refer-
encing thiz PBX address will transfer one 32-bit frame

word to the I/O node.

Once in the I/O node’s memory, event frames can be
decomposed into separate event streams for each instru-

mented node. Additionally, the I/O node’s processor

can be used to compress the event trace by computing

statistics directly from the event data. Finally, the event

trace data can be stored on the I/O node CFS disks for

post-mortem analysis or transferred to the iPSC/2 host

and associated workstations for analysis and presenta-

tion.

The abiity to record trace data on local CFS disks or

on remote disks attached to either the iPSC/P host or

a workstation, coupled with real-time or deferred trace

analysis, provides a wide variety of trace storage and

analysis configurations with distinct costs; see Figure 6.

Selection of a trace processing mode depends on event

frequency, density, and complexity. If the mean time

interval between valid event frames is small, and we have

observed that thii often is true for operating system

event traces, real-time event processing (e.g., statistical

analysis) may not be possible -the I/O node minimally

must record event data without loss.

4 Current Configuration

The HYPERMON prototype only recently became op-
erational. It is implemented as a wire-wrapped, two-

board set consisting of 115 integrated circuits - 20 on

the ERB and 95 on the ECB. The experimental re-

217

i i+l

Figure 4: Strobe Vector Example

Event 15 Event 14 Event 13 Event 12 Event 11 Event 10 Event 9 Event 8

Event 7 Event 6 Event 5 Event 4 Event 3 Event 2 Event 1 Event 0

Unused Strobe Vector

Timestamp

Figure 5: Event Frame Format

sults reported in this paper were obtained with eight

nodes. We currently are testing HYPERMON with six-

teen nodes.

Figure 7 shows the current HYPERMON configura-
tion. At present, we are using a PBX-equipped node

processor to communicate with HYPERMON. Disk ac-

cess must be done through the iPSC/2 host using the

hypercube message communication links. Upon addi-

tion of an I/O node with PBX support, we will be able
to test I/O transfer to CFS storage.

5 HYPERMON Evaluation

The value of the HYPERMON design can only be deter-

mined through experiments with real applications and

software instrumentation support. Architecturally, HY-

PERMON has the advantages of external event capture

and real-time data access, but this must be weighed

against the substantial overheads in event production;

see $3.1.

In the remainder of this section, we describe the re-

sults of a set of experiments conducted with the HY-
PERMON prototype. First, we used a series of syn-

thetic benchmarks to measure the raw data bandwidth

of the current configuration. Here, the goal was to deter-

mine potential data recording bottlenecks. Second, we

used a software instrumentation [8] of the Intel iPSC/2

NX/2 operating system as a source of event data for HY-

PERMON. This instrumentation generates a detailed

event trace of operating system and application pro-

gram interactions. The results of these experiments are

discussed below.

5.1 Bandwidth Tests

A cursory examination of the HYPERMON architec-

ture suggests several points where measurement of raw

bandwidth might reveal fundamental performance con-

straints. Below, we examine three: event generation

from the node processors, ECB internal event frame

construction, and PBX event frame transfers.

Given the interface constraints on the individual
iPSC/2 nodes (software event strobing, a three-fold in-

crease in access time to an I/O port, and software ex-

traction of event nibbles), the overhead to send event

data to the HYPERMON ECB is substantially greater

than that needed to record event data in a node’s mem-

ory. To quantify this overhead, we began our tests with

a simple, synthetic benchmark that generated events at

the maximum possible rate on a single node. With soft-

ware event recording, 3.9 seconds were needed to pro-

duce l,OOO,OOO events (assuming four bytes per event).

This translates to a maximum software event recording

rate of 1.02 Mbytes/second. In contrast, HYPERMON

recorded an equal amount of event data in 88.5 seconds,

a hardware data recording rate of 45 Kbytes/second.4

Simply put, the Intel iPSC/2 interface to HYPERMON

transfers data at a rate roughly 22.7 times less than that

for software recording. Although the timestamp gener-

ation is done automatically by the HYPERMON hard-

ware, this savings in data transfer is greatly overshad-

owed by the costs of nibble extraction, software event

strobing, and the use of an I/O instruction rather than

a memory MOVE operation.

Internally, the HYPERMON ECB can sustain a high

‘Recall that the total amount of data recorded by HYPER
MON is much larger and includes t:he strobe vectors and invalid

data nibbles in each event frame.

218

lPSC/Z message
comunicarions link II0 Node

2 Im/sec HYPERMON

I ERB I ECB

tttttttttt

/ /

Workstation
Intel iPSCI2

SCSI
4.0 MBtsec

--

CFS Disk Storage

Figure 6: Event Trace Processing/Storage Options

Figure 7: Current HYPERMON Configuration

219

F

:
m
e
s

I

@ I’ Node i
• I 2 Nodes 1

lgoK-i \ A 4 Nodes
x 6 Nodes 1

130K

1OOK

7OK

40K

10K
6 i0 40 SO 80 100

Wait Loop Interval

Figure 8: IIYPERMON Bandwidth Results

event frame production rate. Thii value can be cal-

culated directly from the internal ECB timing. The

finite state machine controlling event frame generation

operates at 20 MHz and requires eight cycles to build a

frame. When all sixteen nibbles of event data in a frame

are valid, this translates to a peak event data band-

width of 10 Mbytes/second. As the number of valid

data nibbles decreases, the event bandwidth decreases

proportionally.

Finally, an I/O node must retrieve the event data

from the ECB via the PBX bus. The PBX is an asyn-

chronous, master-slave bus with a peak bandwidth of

18 Mbytes/second. However, when synchronization,

address decoding, and data enabling overheads are in-

cluded, the potential transfer rate across the PBX inter-

face drops to 8 Mbytes/second. In practice, the software

overheads for PBX transfers to the I/O node (the mas-

ter) degrade bandwidth performance further. Using op

timized PBX interface software, we have achieved PBX

transfer rates of 5 Mbytes/second to an I/O node.

To assess the interactions of the bandwidth limita-

tions just described, we constructed a synthetic bench-

mark that generates a specified volume of event data for

a user-selectable number of nodes. Figure 8 shows the

maximum experimental bandwidths obtained via HY-

PERMON when running this benchmark. In the bench-

mark, a delay parameter controls each node’s event nib

ble generation rate; this delay parameter is the number

of iterations of a null wait loop on the 16 MHz 80386. As
expected, when the delay interval decreases, the band-

width through HYPERMON increases.

When only one node generates event data, every four

bits of event data forces the creation of a separate event

frame. A single node can generate significant frame

0

0 wait loop 20

0 wait loop 40

o Wait loop 60

1 2 3 4 5 6 7

Node Processors

Figure 9: Event Frame Merging

bandwidth (113,000 frames/second, or equivalently, 1.8
Mbytes/second at sixteen bytes per frame). However,

when two nodes produce event data at their maxi-

mum rates, the PBX bandwidth limits are challenged

(202,000 frames/second or 3.2 Mbytes/second). Beyond

two nodes, the ECB reports a frame FIFO overrun con-

dition, and no experimental data can be obtained unless

nodes delay the creation of successive event nibbles.

We indicated earlier that HYPERMON was designed

to be more efficient as the demand for event data band-

width increased. This requires increased frame merging

and amortization of the strobe vector and timestamp
overhead over move valid event nibbles (i.e., the event

frame creation rate should increase sublinearly with the

number of nodes that simultaneously generate event

data). Unfortunately, our experimental results suggest

that the event data bandwidths must be very high to

achieve effective merging. Figure 9 shows the percent-

age of merged event data as a function of the number of

active nodes. Although the figure suggests that a high

merging percentage should occur with high event data

rates, merging does not increase quickly enough to off-

set the increase in the total event frame bandwidth seen

at the PBX interface.

Although the high event data rates that cause PBX

bandwidth saturation (evidenced by frame FIFO over-

runs) are beyond the sustained rate requirements for the

HYPERMON design, such conditions can exist during

event data bursts; see $6. Overrun conditions depend

on the length of these bursts relative to the size of data

buffers in the ECB. Our prototype implementation lim-

its the frame FIFO size to 1K frames. As our results
below suggest, this buffer size makes HYPERMON sus-

220

Code

Simple2

Life

M&Mu1

Place

Description

a parallel linear optimization pro-

gram based on a column-wise

Simplex algorithm [ll]

8 parallel implementation of Con-
way’s famous cellular automaton

PI
a simple distributed memory ma-

trix multiplication code

a standard cell placement algo-

I rithm based on simulated anneal-

inn 121

Table 1: Application Test Programs

ceptible to event data bursts of moderate duration.

5.2 Monitoring Real Applications

Ultimately, the software instrumentation level required

to capture the execution behavior of a parallel compu-

tation will dictate the frequency and volume of data

that must be recorded by the monitoring system. Not

surprisingly, certain instrumentation levels can exceed

the capabilities of any data recording system. Event

processing and analysis requirements impose additional

constraints on feasible performance experiments. As a

consequence, performance observability mandates a bal-

ance between the rate of event data generation and anal-

ysis, and the fundamental limitations of the monitor’s

operation.

To understand HYPERMON performance in an in-

strumentation environment for real applications, we

compared the execution of four programs in three mon-

itoring environments: no event data generation (raw),

software event recording to node memory, and hard-

ware event recording with HYPERMON. The execu-

tion data for the latter two cases was restricted to that

captured by an instrumentation of the iPSC/2 NX/2

operating system source code [9]. Thii system gener-

ates three classes of operating system events: message

transmissions, process states transitions including con-

text switches, and system calls. Below, we describe

the characteristics of the application programs, the ob-

served performance data, and HYPERMON’s perfor-

mance.

5.2.1 Execution Statistics

Table 1 shows the four application programs used in our

study of data capture for operating system instrumen-
tation. Each of these applications was run on 1, 2, 4,
and 8 nodes for each of the three data capture scenar-

ios. To prevent event data bursts that might saturate

the PBX bandwidth and overrun the event frame FIFO,

we set the delay interval for hardware event recording

to twenty (i.e., writing of successive event nibbles waz

separated by twenty iterations of a null loop).

Not surprisingly, Table 2 shows that hardware

data recording using HYPERMON consistently causes

greater perturbations than software recording in the

node memories. This was expected from our ear-

lier analysis of performance penalties imposed by the

node interface to HYPERMON. However, the degree

of perturbation differs for each application program

and number of nodes. Simply put, differences in pro-

gram behavior are manifest as differences in the time

varying demands placed on the data recording system.

For instance, the minor perturbations of the MatMul

code contrast sharply with the substantial slowdown
of the Place code when data are recorded from eight

nodes with HYPERMON. Unlike matrix multiplication,

which,generates only a small number of instrumentation

events, the cell placement code is highly dynamic and

the variance in its event generation rate is high; see §S.

Table 2 further shows that the difference in total data
volume between software and hardware data recording

is large. With software event recording in individual

node memories, each recorded event includes the asso-

ciated data and a 16-bit timestamp delta. In contrast,

the total data volume recorded using HYPERMON is

calculated from the total number of event frames trans-

ferred across the PBX interface. With software data

recording, only one timestamp is assigned to a multiple

byte event; HYPERMON must timestamp each data

nibble.

Clearly there is greater overhead with hardware data

recording, but one might expect merging to increase

the efficiency at higher event rates by amortizing times-

tamps across multiple event nibbles. Unfortunately, the

software recording rates indicate that the potential for

merging iz small. Thus, we conclude that the large dif-

ference in the volume of recorded data reflects the fact

that most event frames contain only one valid event data

field.

Even when each node delays for twenty iterations
of a null loop between transfer of event data nibbles,

data overruns occur in real applications (e.g., the eight

node Place execution). Although the sustained hard-

ware recording rate of 2.5 Mbytes/second for this pro-

gram (as extrapolated from the software recording rate)

does not exceed the PBX bandwidth, the burst event

rate is higher. In this case, the only alternative is to

increase the interval between the output of successive
event nibbles.

5.2.2 Dynamic Monitoring Requirements

AS just noted, sustained recording rates do not reflect

instantaneous demands on the monitoring system. Un-

derstanding the dynamics of event creation is important

221

Total Time Logged Data Logging Rate

Application (seconds) (bytes) (‘bytes/second)

Raw soft Hard Soft Hard soft Hard

Simplez

1 node 151.059 151.261 154.838 63437 2302144 419 14868

2 node 77.850 78.396 86.524 417476 10273040 !;325 118730

4 node 42.068 42.561 54.338 1245712 27763296 2!3269 510937

8 node 24.277 24.931 41.045 3190873 67493104 127988 1644368

&fe

1 node 152.222 152.335 154.157 34103 1204608 224 7814

2 node 111.869 112.274 120.280 277359 10155584 2470 84433

4 node 78.505 79.112 93.048 752373 27607776 9510 296705

8 node 43.981 44.741 58.202 1670188 60352768 37330 1036954

MatMul (2562256)

1 node 245.660 245.840 248.808 54706 1928096 223 7749

2 node 123.118 123.210 124.696 55215 1947792 448 15620

4 node 61.975 62.045 62.677 56277 1985376 907 31676

8 node 31.369 31.423 31.859 58456 2069136 1860 64947

Place

1 node 318.012 318.473 322.325 74225 2628192 233 8154

2 node 82.000 85.071 143.356 2018749 74003616 23730 516223

4 node 69.668 72.851 137.145 4147564 149195680 56932 1087868

8 node 38.498 41.427 102.221 7977226 (overrun) 192561 (overrun)

Table 2: HYPERMON Application Results

for two reasons. First, it suggests where buffers in HY-

PERMON are most needed to ameliorate the effects of

event data bursts. Second, it identifies those portions of

a parallel computation where program execution might

be most susceptible to performance perturbation from

performance instrumentation.

For each of the four application programs of Table 1,

we used HYPERMON to record and compute statistics

on the time varying rate of operating system event gen-

eration. For each application program, we recorded in

the PBX node’s memory the number of event frames

and the elapsed time between the first and last frame

for each group of event frames read.s

To generate Figures 10-13, the elapsed time for each

program was divided into one hundred intervals of fixed

sise and the average event frame rate was computed for

each interval. To show differing numbers of nodes on a

single graph, we show normalized time intervals (i.e., for

each number of nodes, an interval represents a different

absolute amount of time). The total time range for each

curve is shown in the legend.

Figure 10 shows the time varying event frame rate for

the Simplez code. Clearly, the event frame rates follow a

periodic pattern, and analysis of the code shows a regu-

‘Retell that the HYPERMON interface to the PBX I/O node
includes a counter of the number of buffered event frames. This

count defines the number of events read in each “group.” Due

to PBX node memory limits, only the first 100,000 event rate
distribution samples were recorded.

o 1 Node (144.03 seconds)
F 0.15 l 2 Nodes (24.94 seconds)

:
m
; 0.12

ii

; 0.09

E 1
p * 4 Nodes (13.32 seconds) 0.06

(14.69 seconds)

:

:
d 0.03

0 20 40 60 80 100

Distribution Interval

Figure 10: Simple2 Event Frame Rate Distribution

222

0.125
I I I I

o 1 Node (154.87 seconds) 1

F
I
l% 0.1
e

:
; 0.075
m

t
6 0.05

:
:
"d 0.025

0.0
0 20 40 GO 80 1C

Distribution Interval

Figure 11: Life Event Frame Rate Distribution

F
; 0.012
m
e

o 1 Node (249.00 seconds)

l 2 Nodes (124.78 seconds)

* 4 Nodes (63.13 seconds)

iFI
f 0.12

:

; 0.09

C

i 0.06

ii
fj 0.03

o 1 Node (279.41 secondsj

o 4 Nodes (5.93 seconds)

Distribution Interval

s o 8 Nodes : (32.28 seconds) Figure 13: Place Event Frame Rate Distribution 0.009

r
Ifl

1

; 0.006
0
S

:
Fj 0.003

0.0
0 20 40 GO 80 100

Distribution Interval

Figure 12: M~lMuZ Event Frame Rate Distribution

223

lar cycle of computation and global data exchange ill].

Communication generates a burst of operating system

instrumentation events (e.g., context switches, message

buffering, and message transmission) [S], and this is re-

flected in the event frame rate. As the number of nodes

increases, the ratio of communication to computation

increases and the event frame rate increases commensu-

rately.

Unlike the Simplez or MatMul codes, where the

amount of computation on each node varies little during

successive computation cycles, the Life code updates a

grid of cells whose sparsity changes over time. Figure

11 shows that the data recording requirements of such

codes can change substantially as the computation load
balance changes.

The MatMu event frame rate distribution in Fig-

ure 12 reflects the simple structure of the application

code. The computation first distributes the matrix to

the nodes, where they compute independently until re-

turning their partial results to the host. The initial ma-

trix broadcast is not shown in Figure 12, but the trans-

mission of sub-matrices to the host is clearly visible.

Because no communication occurs during the compu-
tation phase, most recorded events are node time slice

context switches. Finally, the event rates for PIace ap-

plication, shown in Figure 13, are random, bursty, and

high. In $6, we describe the underlying reasons for this

behavior and the implications for hardware event data

recording.

As Figures lo-13 show, the dynamics of event frame

rates are closely tied to application behavior and can

vary widely across application types. This disparity in

burst rates has important implications for capture hard-

ware design, the subject of the next section.

6 Lessons Learned

The design of HYPERMON was subject to the engi-

neering constraints imposed by the iPSC/S system: the

4-bit I/O event data interface, the physical separation

of event regeneration from event capture, and the PBX

I/O node interface. Although the larger overhead for

recording event data via HYPERMON was expected,

and we knew that many applications exhibited cyclic

communication behavior, we did not foresee all the im-
plications of bursty event data rates.

The lesson regarding decreased execution time pertur-

bations with hardware data recording is clear. External

interfaces used to record event data via hardware should

have sufficient bandwidth to avoid delaying the compu-

tation processors. Ideally, the access time to the inter-

face should be no larger than that needed to write the

event words to memory (i.e., hardware event recording

should have less overhead than that for software buffer
management and data recording).

Regarding bursty event data rates, further investigcc

tion of event data bursts using software event traces

reveals significant variances in event data rates during

the lifetime of most computations, Figure 14 shows

the event data volume generated by our NX/2 operat-

ing system instrumentation [S] in one millisecond inter-

vals for the Place application 011 four, eight and six-
teen nodes. Although the average event data rates

are 82 Kbytes/second, 276 Kbyteslsecond, and 629

Kbytes/second, respectively, event data bursts signifi-

cantly exceed these rates. In particular, the data rate

for the sixteen node Place execution can reach two to

three Mbytes/second in twenty millisecond bursts. To

support this type of software performance instrumen-

tation, a hardware data recording system must be de-

signed with sufficient buffer capacity to accommodate

event data bursts. Analysis of software event traces

can be instrumental in defining buffer requirements. At

present, we are using the software traces as input to

simulation models of monitor designs to understand dy-

namic buffering requirements.

An important decision in the HYPERMON design

was to treat each 4bit event datum as a potentially

unique event. This determined timestamp generation

and motivated the notion of event frames to amortize

timestamp overhead. In practice, our NX/2 operating

system instrumentation produced logical events com-
posed of multiple event data nibbles. Significant reduc-

tions in the volume of data recorded by HYPERMON

would have been possible had we chosen to timestamp

larger data units (e.g., 32-bit quantities). In this case

we would accumulate a 32-bit word on each 4-bit input

port before storing it in the event data FIFO. The size

of timestamped quantities should be chosen so that only

a small fraction of the avsilable bandwidth is lost. Ide-

ally, there should be support for selective timestamping

of event data such that timestamps are produced only

when directed by the software.

The experiments conducted with the instrumented

NX/2 operating system, described in $5.2, represent

HYPERMON stress tests. Clearly, there exists a spec-

trum of data recording and data analysis alternatives.

No reduction of event data occurred in our experiments

prior to writing data to HYPERMON. The use of par-

allel, on-the-fly data reduction, possibly in the form of

periodic statistical summaries, would eliminate many of

the problems encountered during our stress tests of HY-

PERMON operation. Although improvements in the

HYPERMON design can extend its operational range,

there are many performance experiments that can take

advantage of the current prototype’s real-time monitor-

ing capabilities.

224

Time (seconds)

Time (seconds)

4ogv----- ’
I I

I
Data Sixteen Nodes

Volume

(bytes)
1024

0
8.dOO 8.125 8.250

Time (seconds)

8.375 8.500

Figure 14: Place Event Data Volume (One Millisecond Intervals)

225

7 Conclusions

Despite the manifest need for dynamic performance in-

strumentation and data capture, their efficient imple-

mentation is non-trivial. HYPERMON was designed in

response to the iPSC/2 hardware interface for captur-

ing software event traces. In contrast to software-based

recording in individual node memories, HYPERMON

uses external memory for trace storage and generates

globally-synchronized timestamps automatically.

In addition to the considerable development effort

for the HYPERMON prototype, our initial experience

clearly indicates the need for careful analysis of the in-

teractions with the iPSC/Z’s hardware interface. For

example, the 4-bit I/O interface from each node has ob-

vious performance limitations; only a wider I/O port

will alleviate the instrumentation perturbations when

HYPERMON is used.

The experiments conducted with the instrumented

NX/2 operating system, described in $5.2, represent

HYPERMON stress tests. The spectrum of data record-

ing and data analysis alternatives is vast. The use of

parallel, on-the-fly data reduction, possibly in the form

of periodic statistical summaries, rather than the de-

tailed operating system performance instrumentation

used in our stress tests, seems the best match to the

4-bit I/O interface and HYPERMON’s buffer require-

ments.

Acknowledgments

Justin Rattner (Intel Scientific Computers) first sug-

gested implementing a performance monitor via signals

from the iPSC/2 backplane. Since that time, Paul Close

(Intel Scientific Computers), has provided technical in-

formation and support. Without their help, the design

of the iPSC/2 hardware monitor would not have been

possible.

References

[l] R. Arlauskas. iPSC/2 System: A Second Genera-

tion Hypercube. In Proceedings of the Third Con-

ference on Hypercube Concurrent Computera and

Applications, Volume I, pages 38-42, Pasadena,

CA, January 1988. Association for Computing Ma-

chinery.

[2] R. J. Brouwer and P. Banerjee. A Parallel Sim-

ulated Annealing Algorithm for Channel Routing

on a Hypercube Multiprocessor. In Proceedings of

the International Conference on Computer Design,

pages 4-7, Rye Brook, NY, October 1988.

[3] Paul Close. The iPSC/2 Node Architecture. In
Proceedings of the Third Conference on Hypercube

Concurrent Computera and Applications, Volume

I, pages 43-50, Pasadena, CIA, January 1988. As-

sociation for Computing Machinery.

Martin Gardner. Mathematical Games. Scientific

American, pages 120-123, October 1970.

Leslie Lamport. Time, Clocks, and the Ordering of

Events in a Distributed System. Communications

of the ACM, 21(7):558-565, July 1978.

Allen D. Malony, Daniel A. Reed, James W.

Arendt, Ruth A. Aydt, Dominique Grabas, and

Brian K. Totty. An Integrated Performance Data
Collection Analysis, and Visualization System. In

Proceedings of the Fourth Conference on Hypercube

Concurrent Computers and Applications, pages

229-236, Monterey, CA, March 1989. Association

for Computing Machinery.

Allen D. Malony, Daniel A. Reed, and Harry
Wijshoff. Performance Measurement Intrusion

and Perturbation Analysis. Technical Report

CSRD No. 923, University of Illinois at Urbana-

Champaign, Center for Supercomputing Research

and Development, October 1989.

Daniel A. Reed and David C. Rudolph. Experi-

ences with Hypercube Operating System Instru-

mentation. International Journal of High Speed

Computing, 1990. to be published.

D. C. Rudolph and Daniel A. Reed. CRYSTAL:

Operating System Instrumentation for the Intel

iPSC/S. In Proceedinga of the Fourth Conference

on Hypercube Concurrent Computers and Applica-

tions, pages 249-252, Monterey, CA, March 1989.

David C. Rudolph. Performance Instrumentation

for the Intel iPSC/2. Master’s thesis, University

of Illinois at Urbana-Champaign, Department of

Computer Science, July 1989.

C. B. Stunkel and D. A. Reed. Hypercube Imple-

mentation of the Simplex Algorithm. In Proceed-

inga of the Third Conference on Hypercube Com-

puters and Concurrent Applications, pages 1473-

1482, Pasadena, CA, January 1988. Association for

Computing Machinery.

226

