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Abstract 

The complexity of parallel computer systems makes a 

priori performance prediction difficult and experimen- 

tal performance analysis crucial. A complete character- 
ization of software and hardware dynamics, needed to 

understand the performance of high-performance paral- 

lel systems, requires execution time performance instru- 

mentation. Although software recording of performance 

data suffices for low frequency events, capture of de- 

tailed, high-frequency performance data ultimately re- 

quires hardware support if the performance instrumen- 
tation is to remain efficient and unobtrusive. 

This paper describes the design of HYPERMON, a 

hardware system to capture and record software per- 

formance traces generated on the Intel iPSC/Z hyper- 

cube. HYPERMON represents a compromise between 

fully-passive hardware monitoring and software event 
tracing; software generated events are extracted from 

each node, timestamped, and externally recorded by 

HYPERMON. Using an instrumented version of the 

iPSC/S operating system and several application pro- 

grams, we present a performance analysis of an oper- 

ational HYPERMON prototype and assess the limita- 

tions of the current design. Based on these results, we 

suggest design modifications that should permit cap 

ture of event traces from the coming generation of high- 

performance distributed memory parallel systems. 
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1 Introduction 

To observe and measure the performance characteris- 

tics of a parallel system, the performance analyst must 

implicitly or explicitly solve several problems. First, 

one must specify the desired performance data and de- 

termine instrumentation points. Given a description of 
the desired data and associated data capture points, one 

must capture and record the data while balancing instru- 

mentation coverage against instrumentation intrusion. 

Finally, one must present, reduce, and analyze the data 

(e.g., via a statistical analysis or visualization tools). An 

integrated performance monitoring environment for a 

particular parallel computer system necessarily requires 

many design compromises in performance specification, 

data capture and recording, and data reduction and pre- 

sentation [6]. Further, performance measurement, no 

matter how unobtrusive, introduces perturbations, and 

the degree of perturbation must be balanced against the 

need for detailed performance data [7]. 

In this paper, we focus on the simple, though difficult, 

problem of data capture and recording. As technology 

makes possible the creation of parallel systems far from 

the center of the von Neumann architecture spectrum, 

we believe that capture of detailed performance data 

will become increasingly important to both system de- 

signers and application software developers. Although 

software performance data can take many forms, includ- 

ing samples, counts, and running sums, event traces pro- 

vide greater flexibility; given a trace, one can compute 
counts, sums, distributions, and profiles of both proce- 

dure occupancy and parallelism. 

Designing a machine independent data capture sys- 

tem is exceedingly difficult - the variety of system in- 

terfaces limits generality. Because message-based par- 

allel systems typically lack both a global clock for 

event timestamps and a common memory for event data 

buffering, they pose particularly vexing, and interesting, 
instrumentation problems. Without hardware support, 

event trace extraction either must compete with system 
and application programs for access to network com- 

munication bandwidth, or the traces must be buffered 
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locally in individual node memories, limiting both trace 

size and application program memory. Given these 

problems, hardware support for event data capture and 

recording is crucial to minimizing instrumentation per- 

turbations. 

In this paper, we describe the design of an opera- 
tional hardware prototype, called HYPERMON, that 

supports hardware capture, timestamp generation, and 

recording of software trace events from the Intel iPSC/Z 

hypercube. In addition to reporting the measured data 

capture rate, we compare the performance perturba- 

tions of software data recording and hardware data cap- 

ture using HYPERMON. Based on an analysis of this 

data and the HYPERMON design, we present some 

lessons that should guide design of performance data 

capture hardware for the coming generation of high- 

performance distributed memory parallel systems. 

The remainder of the paper is organized as follows. 

In 32, we briefly describe the Intel iPSC/P hypercube 

and its software environment. We follow in $3 with 

a detailed description of the HYPERMON design. In 

54, we describe the particular hardware configuration 

used to test HYPERMON, followed in 95 by a perfor- 

mance analysis of the HYPERMON design. Based on 

this data, in 36 we describe guidelines for the design of 

performance data recording systems. 

2 Intel iPSC/2 Description 

The design of hardware support for performance data 
capture necessarily depends on the underlying parallel 

system - system software and hardware determine the 

requirements for and limitations of the data capture in- 

terface. Thus, an instrumentation environment must be 

understood in the context of the intended architecture 
- the Intel iPSC/2, a second generation, distributed 

memory parallel system. 

The Intel iPSC/2 hypercube [l, 3] incorporates evo- 

lutionary advances in technology, including an Intel 

80386/80387 microprocessor pair, a 64K byte cache, and 

up to 16 megabytes of memory on each node, The 

iPSC/2 includes an autonomous routing controller to 
support fixed path, circuit-switched communication be- 

tween nodes. This communication system eliminates 

most of the store-and-forward latency that existed in 

earlier distributed memory systems. 

The software development interface for the iPSC/2 is 

a standard Unix system that transmits executable pro- 

grams to the nodes, accepts results from the nodes, and 

can, if desired, participate in the computation. Finally, 

the Unix host supports node file I/O to its local disk 

and to remote disks via a network file system protocol. 

To reduce dependence on the Unix host and to 

provide input/output performance commensurate with 

computing power, the Intel iPSC/S nodes also support 

link connections to I/O nodes. Eiach I/O node is identi- 

cal to a standard compute node, with the exception of 

an additional daughter card that provides a SCSI bus 

interface. The SCSI bus supports up to seven peripher- 

als and has a peak transfer rate d 4 megabytes/second. 

Physically, the I/O sub-system can be packaged as a 

separate cabinet with cable connections to the compute 

nodes. 

Because the I/O nodes provide a superset of the com- 

pute node functionality, software support for disk and 

file access is realized by augmenting the NX/2 node op- 

erating system on both the compute and I/O nodes. 

The Concurrent File System (CFS) allows application 

programs to create, access, or modify files on both the 

hypercube host and the individual hypercube disks. As 

we shall see, this provides the mechanism for archiving 

performance data after its capture by our HYPERMON 

instrumentation support hardware. 

Although each iPSC/2 node contains a local clock 

with one microsecond resolution, the node clocks are not 

globally synchronized and can drift apart at a measur- 
able rate. Consequently, event timestamps on different 

nodes may violate casuality (e.g., a message might ap- 

pear to be received before its transmission). Although 

software techniques can ameliorate the effects of clock 

drift by synchronizing the clocks and reordering times- 

tamped events, a high-resolution, global time reference 

is the simplest and most desirable solution.’ Even with 

a global time reference, the distributed event data still 

must be collected for analysis and presentation. 

3 HYPERMON Design 

The absence of a global, accurate, and consistent 

time exacerbates the already difficult measurement and 

recording of distributed events 153. The constraints 

on measurement resolution created by distributed clock 

synchronization, coupled with the overheads of software 

tracing, limit the range of performance behavior that 

can be accurately observed. The design of the HY- 

PERMON architecture attempts to circumvent these 

problems. Below, we describe the design and opera- 

tion of HYPERMON, followed in 55 by a summary of 

results obtained from HYPERMON bandwidth experi- 

ments and performance tests using real message passing 

programs. 

3.1 iPSC/2 Event Visibility 

The hardware basis for HYPERMON is a little-known, 

though standard, feature of the iPSC/2 that makes pos- 
sible external access to software events generated by 

each node, Five “performance” bits from a port in 

1 See [8] for a description of software causality maintenance and 

its limitations. 
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the I/O address space on each iPSC/2 node board are 
routed via the system backplane to an empty slot in 
the system cabinet. The standard cabinet holds up to 

32 iPSC/2 nodes and all 160 signals are present at the 

spare node slot. However, the current HYPERMON 

prototype supports data capture from only the first 16 

nodes. 

Because the software performance instrumentation 

generates event data by writing to an I/O port, one bit 

must be reserved as a software strobe to signal that the 

remaining four event data bits are valid. The five data 

bits written to the I/O port are interpreted 8s follows. 

4 3 0 

Strobe 1 Event Data 

A software event is generated by writing the event data 

to the 5-bit port, first with a strobe of zero then with a 

strobe of one. The 16 MHz 80386 microprocessor in the 

Intel iPSC/Z requires approximately six cycles to com- 

plete an I/O write operation, versus two for a standard 

memory access. Thus, a minimum of twelve cycles are 

needed to write a 4-bit software event. 

Clearly, the sixteen possible events representable with 

a 4-bit event identifier greatly restrict the range of pos- 

sible instrumentation. If additional events are needed, 

or, equally likely, if data are associated with an event, 
multiple I/O write operations will be required. A per- 

formance instrumentation of the Intel NX/2 operating 

system [lo], produces a range of event sizes, ranging 

from two to thirteen bytes plus a timestamp. More- 

over, an analysis of these operating system traces shows 

that most events are four or more bytes, excluding the 
software timestamp. 

Unfortunately, transmitting larger events is expen- 

sive. In addition to the twelve cycle memory access 

penalty for each 4-bit I/O operation, there is software 

shift and mask overhead to extract 4-bit items from 

event words. Clearly, a larger I/O event field is desirable 

to increase event bandwidth and to reduce the cost of 

bit field extraction. However, backplane hardware con- 

straints limit the number of available backplane signals. 

Despite these limitations, hardware support for data 

collection permits real-time extraction of performance 
data and, consequently, capture of larger traces than 

otherwise possible with node memory trace buffering.2 

3.2 Hypermon Architecture 

Figure 1 shows the primary components of the HYPER- 

MON architecture and their physical relation to the In- 

tel iPSC/Z. Reflecting the physical packaging of the 

‘In 55 and $6, we will return to the question of node hardware 
support for data extraction. The current HYPERMON design 

reflects the 5-bit iPSC/P data extraction interface. 

iPSC/2, HYPERMON is partitioned between the cab- 

inet that contains the iPSC/S compute nodes and the 
cabinet containing the I/O nodes and disks. As just 

described in 53.1, each iPSC/2 compute node indepen- 

dently sends C-bit (four bits and a strobe) event data to 

HYPERMON. 

In the compute node cabinet, the HYPERMON event 

regeneration board (ERB) converts the 5-bit TTL-level 

event signals from each node into differential form be- 

fore transfer to the event capture board (ECB) residing 

in the I/O cabinet. The ECB captures the events, gen- 

erates global timestamps, and stores the resulting event 

data in internal memory buffers for access by I/O nodes. 

To prevent disruption of event data capture and pertur- 

bation of user I/O requests, one or more I/O nodes are 

dedicated to event data recording. 

In principle, the I/O nodes can be used for prelimi- 

nary analysis of the event data. In practice, however, 

the desirability of real-time data reduction, with a possi- 

ble decrease in disk I/O requirements for data recording, 

must be balanced against the probability of ECB data 

buffer overruns if too many I/O node compute cycles are 

diverted from disk service. Clearly, the most efficacious 

mix of real-time data reduction and disk recording, with 

post-mortem analysis, depends on the event data rate 

and instrumentation requirements. 

3.2.1 Event Capture 

Figure 2 shows the functional design of the event cap- 

ture board, the primary hardware component of HY- 

PERMON. There are five major parts: event data 

queueing, event strobe synchronization, timestamp gen- 

eration, event frame construction, and I/O node inter- 

face; each is described below. 

After signal regeneration by the HYPERMON ERB 

board, the $-bit event data from each iPSC/Z node are 

placed in a separate FIFO buffer that is clocked by the 
corresponding software event strobe signal (i.e., the fifth 

bit from each node). Each node FIFO is 64,4-bit entries 

deep and provides buffering during the event frame con- 

struction process; see below. Figure 3 shows the timing 

diagram for the two writes needed to assert valid event 

data from a node. 

Because the individual node clocks are asynchronous, 

this is no direct timing relationship among the valid 

event data in FIFOs for different nodes. Thus, early 

in the HYPERMON design, we were forced to decide 

where to synchronize the externally received event data 
with the internal ECB clock. Because the event data 

FIFOs provide implicit synchronization of the data bits, 

only the event strobe signals need be sampled relative 

to the internal ECB clock. In the HYPERMON design, 

the software event strobes are sampled in successive 800 
nanosecond time windows.8 Valid event strobes within 

5The syncbronieationperiod can be shortened to 400 nanosec- 
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a time window are marked in an event strobe uector and 

stored in the strobe vector FIFO. 
Figure 4 illustrates event strobes from different nodes 

and the corresponding strobe vectors during three suc- 

cessive time windows. The shaded bits in each strobe 

vector indicate which event data FIFOs have valid data 

from compute nodes. 

Separate fzorn the synchronization issue is the gen- 

eration of event data timestamps. Although high-level 

events can be of any length, and one need generate only 

one timestamp for each event, the HYPERMON hard- 

ware must assume that every four bits of event data 

represent a separate software event. Why? The IIY- 

PERMON hardware embodies no notion of event types 

or lengths. Thus, each event data nibble must be as- 

signed a 32-bit timestamp. 

To avoid the expense of separate timestamp hardware 

for each node, a single timestamp generator is used. 
For each generated strobe vector, a timestamp also is 

stored in the timestamp FIFO. In general, the choice 

of timestamp resolution need not be dependent on the 

event strobe synchronization period. However, in the 

current ECB hardware, they are equal. 

The design motivation for strobe vector and times- 

tamp unification iz to reduce hardware complexity. As a 

design alternative, each event nibble, a 4-bit node iden- 

tifier, and a 32-bit timestamp could be sent to the I/O 

node. However, in this approach, 80 percent of the in- 

formation would represent timestamp data. Moreover, 

for events occurring within the same time 800 nanosec- 

ond window, the timestamps for these events would be 

redundant. Instead, we adopted a strategy that pack- 

ages event data as event frames. These event frames are 

the unit of transfer to the I/O node. 

In the event frame approach, the strobe synchroniza- 

tion period is the time basis for event frame construc- 

tion. Each such event frame consists of four 32-bit 

words; see Figure 5. Four event data bits from each 

node FIFO always are placed in the frame. However, 

only those FIFO’s with valid data, as determined by the 

strobe vector, for this time window, will be shifted into 

the event frame; the other event data fields in the frame 

are undefined. The strobe vector is recorded as part of 

the frame to identify the valid event data fields. Finally, 

the corresponding 32-bit timestamp is saved with each 

frame. Once an event frame is constructed, it is saved 

in the ECB’s frame FIFO, To eliminate useless data, 

an event frame is constructed for a time window only if 

at least one of the nodes produces an event during the 

window. 

If we compare separately transferring each event nib- 

ble to the use of event frames, it is clear that when there 

is only one valid event nibble in a frame, the overhead 

onds or 200 nanoseconds through jumpers on the ECB. This al- 
lows faster event gencrstion rates to be accommodated in the 

future. 

is substantial. In this case, only three percent of the 

frame is data. Only when four or more nodes have valid 

event data will transfer of event frames require fewer 

bits. The motivation for merging event data from mul- 

tiple nodes is that the efficiency of event transfer is more 

important when more nodes are producing event data. 

In thii case, the likelihood of multiple nodes producing 

event data within the same time window increases, and 

the ratio of valid event data to overhead also increases. 

When few nodes are generating event data, the need for 

efficient transfers to the I/O node is not as great. 

3.3 Event Processing 

The ECB supports a parallel bus interface (the PBX 

bus) to an iPSC/2 I/O node. Via this bus, event 

frames can be transferred to the I/O node’s memory. 

These PBX bus transfers are mapped through the I/O 

node’s memory space. In addition, the ECB provides a 

writable 8-bit control register to reset the board. There 

is a 4-bit status register used to signal error conditions, 

most often FIFO overruns. The number of event frames 

generated since the last reset is accessible through a 12- 

bit frame count register. Finally, the event frame can 

be accessed using a single frame FIFO address. Refer- 
encing thiz PBX address will transfer one 32-bit frame 

word to the I/O node. 

Once in the I/O node’s memory, event frames can be 
decomposed into separate event streams for each instru- 

mented node. Additionally, the I/O node’s processor 

can be used to compress the event trace by computing 

statistics directly from the event data. Finally, the event 

trace data can be stored on the I/O node CFS disks for 

post-mortem analysis or transferred to the iPSC/2 host 

and associated workstations for analysis and presenta- 

tion. 

The abiity to record trace data on local CFS disks or 

on remote disks attached to either the iPSC/P host or 

a workstation, coupled with real-time or deferred trace 

analysis, provides a wide variety of trace storage and 

analysis configurations with distinct costs; see Figure 6. 

Selection of a trace processing mode depends on event 

frequency, density, and complexity. If the mean time 

interval between valid event frames is small, and we have 

observed that thii often is true for operating system 

event traces, real-time event processing (e.g., statistical 

analysis) may not be possible -the I/O node minimally 

must record event data without loss. 

4 Current Configuration 

The HYPERMON prototype only recently became op- 
erational. It is implemented as a wire-wrapped, two- 

board set consisting of 115 integrated circuits - 20 on 

the ERB and 95 on the ECB. The experimental re- 
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sults reported in this paper were obtained with eight 

nodes. We currently are testing HYPERMON with six- 

teen nodes. 

Figure 7 shows the current HYPERMON configura- 
tion. At present, we are using a PBX-equipped node 

processor to communicate with HYPERMON. Disk ac- 

cess must be done through the iPSC/2 host using the 

hypercube message communication links. Upon addi- 

tion of an I/O node with PBX support, we will be able 
to test I/O transfer to CFS storage. 

5 HYPERMON Evaluation 

The value of the HYPERMON design can only be deter- 

mined through experiments with real applications and 

software instrumentation support. Architecturally, HY- 

PERMON has the advantages of external event capture 

and real-time data access, but this must be weighed 

against the substantial overheads in event production; 

see $3.1. 

In the remainder of this section, we describe the re- 

sults of a set of experiments conducted with the HY- 
PERMON prototype. First, we used a series of syn- 

thetic benchmarks to measure the raw data bandwidth 

of the current configuration. Here, the goal was to deter- 

mine potential data recording bottlenecks. Second, we 

used a software instrumentation [8] of the Intel iPSC/2 

NX/2 operating system as a source of event data for HY- 

PERMON. This instrumentation generates a detailed 

event trace of operating system and application pro- 

gram interactions. The results of these experiments are 

discussed below. 

5.1 Bandwidth Tests 

A cursory examination of the HYPERMON architec- 

ture suggests several points where measurement of raw 

bandwidth might reveal fundamental performance con- 

straints. Below, we examine three: event generation 

from the node processors, ECB internal event frame 

construction, and PBX event frame transfers. 

Given the interface constraints on the individual 
iPSC/2 nodes (software event strobing, a three-fold in- 

crease in access time to an I/O port, and software ex- 

traction of event nibbles), the overhead to send event 

data to the HYPERMON ECB is substantially greater 

than that needed to record event data in a node’s mem- 

ory. To quantify this overhead, we began our tests with 

a simple, synthetic benchmark that generated events at 

the maximum possible rate on a single node. With soft- 

ware event recording, 3.9 seconds were needed to pro- 

duce l,OOO,OOO events (assuming four bytes per event). 

This translates to a maximum software event recording 

rate of 1.02 Mbytes/second. In contrast, HYPERMON 

recorded an equal amount of event data in 88.5 seconds, 

a hardware data recording rate of 45 Kbytes/second.4 

Simply put, the Intel iPSC/2 interface to HYPERMON 

transfers data at a rate roughly 22.7 times less than that 

for software recording. Although the timestamp gener- 

ation is done automatically by the HYPERMON hard- 

ware, this savings in data transfer is greatly overshad- 

owed by the costs of nibble extraction, software event 

strobing, and the use of an I/O instruction rather than 

a memory MOVE operation. 

Internally, the HYPERMON ECB can sustain a high 

‘Recall that the total amount of data recorded by HYPER 
MON is much larger and includes t:he strobe vectors and invalid 

data nibbles in each event frame. 
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event frame production rate. Thii value can be cal- 

culated directly from the internal ECB timing. The 

finite state machine controlling event frame generation 

operates at 20 MHz and requires eight cycles to build a 

frame. When all sixteen nibbles of event data in a frame 

are valid, this translates to a peak event data band- 

width of 10 Mbytes/second. As the number of valid 

data nibbles decreases, the event bandwidth decreases 

proportionally. 

Finally, an I/O node must retrieve the event data 

from the ECB via the PBX bus. The PBX is an asyn- 

chronous, master-slave bus with a peak bandwidth of 

18 Mbytes/second. However, when synchronization, 

address decoding, and data enabling overheads are in- 

cluded, the potential transfer rate across the PBX inter- 

face drops to 8 Mbytes/second. In practice, the software 

overheads for PBX transfers to the I/O node (the mas- 

ter) degrade bandwidth performance further. Using op 

timized PBX interface software, we have achieved PBX 

transfer rates of 5 Mbytes/second to an I/O node. 

To assess the interactions of the bandwidth limita- 

tions just described, we constructed a synthetic bench- 

mark that generates a specified volume of event data for 

a user-selectable number of nodes. Figure 8 shows the 

maximum experimental bandwidths obtained via HY- 

PERMON when running this benchmark. In the bench- 

mark, a delay parameter controls each node’s event nib 

ble generation rate; this delay parameter is the number 

of iterations of a null wait loop on the 16 MHz 80386. As 
expected, when the delay interval decreases, the band- 

width through HYPERMON increases. 

When only one node generates event data, every four 

bits of event data forces the creation of a separate event 

frame. A single node can generate significant frame 

0 

0 wait loop 20 

0 wait loop 40 

o Wait loop 60 

1 2 3 4 5 6 7 

Node Processors 

Figure 9: Event Frame Merging 

bandwidth (113,000 frames/second, or equivalently, 1.8 
Mbytes/second at sixteen bytes per frame). However, 

when two nodes produce event data at their maxi- 

mum rates, the PBX bandwidth limits are challenged 

(202,000 frames/second or 3.2 Mbytes/second). Beyond 

two nodes, the ECB reports a frame FIFO overrun con- 

dition, and no experimental data can be obtained unless 

nodes delay the creation of successive event nibbles. 

We indicated earlier that HYPERMON was designed 

to be more efficient as the demand for event data band- 

width increased. This requires increased frame merging 

and amortization of the strobe vector and timestamp 
overhead over move valid event nibbles (i.e., the event 

frame creation rate should increase sublinearly with the 

number of nodes that simultaneously generate event 

data). Unfortunately, our experimental results suggest 

that the event data bandwidths must be very high to 

achieve effective merging. Figure 9 shows the percent- 

age of merged event data as a function of the number of 

active nodes. Although the figure suggests that a high 

merging percentage should occur with high event data 

rates, merging does not increase quickly enough to off- 

set the increase in the total event frame bandwidth seen 

at the PBX interface. 

Although the high event data rates that cause PBX 

bandwidth saturation (evidenced by frame FIFO over- 

runs) are beyond the sustained rate requirements for the 

HYPERMON design, such conditions can exist during 

event data bursts; see $6. Overrun conditions depend 

on the length of these bursts relative to the size of data 

buffers in the ECB. Our prototype implementation lim- 

its the frame FIFO size to 1K frames. As our results 
below suggest, this buffer size makes HYPERMON sus- 
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Code 

Simple2 

Life 

M&Mu1 

Place 

Description 

a parallel linear optimization pro- 

gram based on a column-wise 

Simplex algorithm [ll] 

8 parallel implementation of Con- 
way’s famous cellular automaton 

PI 
a simple distributed memory ma- 

trix multiplication code 

a standard cell placement algo- 

I rithm based on simulated anneal- 

inn 121 

Table 1: Application Test Programs 

ceptible to event data bursts of moderate duration. 

5.2 Monitoring Real Applications 

Ultimately, the software instrumentation level required 

to capture the execution behavior of a parallel compu- 

tation will dictate the frequency and volume of data 

that must be recorded by the monitoring system. Not 

surprisingly, certain instrumentation levels can exceed 

the capabilities of any data recording system. Event 

processing and analysis requirements impose additional 

constraints on feasible performance experiments. As a 

consequence, performance observability mandates a bal- 

ance between the rate of event data generation and anal- 

ysis, and the fundamental limitations of the monitor’s 

operation. 

To understand HYPERMON performance in an in- 

strumentation environment for real applications, we 

compared the execution of four programs in three mon- 

itoring environments: no event data generation (raw), 

software event recording to node memory, and hard- 

ware event recording with HYPERMON. The execu- 

tion data for the latter two cases was restricted to that 

captured by an instrumentation of the iPSC/2 NX/2 

operating system source code [9]. Thii system gener- 

ates three classes of operating system events: message 

transmissions, process states transitions including con- 

text switches, and system calls. Below, we describe 

the characteristics of the application programs, the ob- 

served performance data, and HYPERMON’s perfor- 

mance. 

5.2.1 Execution Statistics 

Table 1 shows the four application programs used in our 

study of data capture for operating system instrumen- 
tation. Each of these applications was run on 1, 2, 4, 
and 8 nodes for each of the three data capture scenar- 

ios. To prevent event data bursts that might saturate 

the PBX bandwidth and overrun the event frame FIFO, 

we set the delay interval for hardware event recording 

to twenty (i.e., writing of successive event nibbles waz 

separated by twenty iterations of a null loop). 

Not surprisingly, Table 2 shows that hardware 

data recording using HYPERMON consistently causes 

greater perturbations than software recording in the 

node memories. This was expected from our ear- 

lier analysis of performance penalties imposed by the 

node interface to HYPERMON. However, the degree 

of perturbation differs for each application program 

and number of nodes. Simply put, differences in pro- 

gram behavior are manifest as differences in the time 

varying demands placed on the data recording system. 

For instance, the minor perturbations of the MatMul 

code contrast sharply with the substantial slowdown 
of the Place code when data are recorded from eight 

nodes with HYPERMON. Unlike matrix multiplication, 

which,generates only a small number of instrumentation 

events, the cell placement code is highly dynamic and 

the variance in its event generation rate is high; see §S. 

Table 2 further shows that the difference in total data 
volume between software and hardware data recording 

is large. With software event recording in individual 

node memories, each recorded event includes the asso- 

ciated data and a 16-bit timestamp delta. In contrast, 

the total data volume recorded using HYPERMON is 

calculated from the total number of event frames trans- 

ferred across the PBX interface. With software data 

recording, only one timestamp is assigned to a multiple 

byte event; HYPERMON must timestamp each data 

nibble. 

Clearly there is greater overhead with hardware data 

recording, but one might expect merging to increase 

the efficiency at higher event rates by amortizing times- 

tamps across multiple event nibbles. Unfortunately, the 

software recording rates indicate that the potential for 

merging iz small. Thus, we conclude that the large dif- 

ference in the volume of recorded data reflects the fact 

that most event frames contain only one valid event data 

field. 

Even when each node delays for twenty iterations 
of a null loop between transfer of event data nibbles, 

data overruns occur in real applications (e.g., the eight 

node Place execution). Although the sustained hard- 

ware recording rate of 2.5 Mbytes/second for this pro- 

gram (as extrapolated from the software recording rate) 

does not exceed the PBX bandwidth, the burst event 

rate is higher. In this case, the only alternative is to 

increase the interval between the output of successive 
event nibbles. 

5.2.2 Dynamic Monitoring Requirements 

AS just noted, sustained recording rates do not reflect 

instantaneous demands on the monitoring system. Un- 

derstanding the dynamics of event creation is important 
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Total Time Logged Data Logging Rate 

Application (seconds) (bytes) (‘bytes/second) 

Raw soft Hard Soft Hard soft Hard 

Simplez 

1 node 151.059 151.261 154.838 63437 2302144 419 14868 

2 node 77.850 78.396 86.524 417476 10273040 !;325 118730 

4 node 42.068 42.561 54.338 1245712 27763296 2!3269 510937 

8 node 24.277 24.931 41.045 3190873 67493104 127988 1644368 

&fe 

1 node 152.222 152.335 154.157 34103 1204608 224 7814 

2 node 111.869 112.274 120.280 277359 10155584 2470 84433 

4 node 78.505 79.112 93.048 752373 27607776 9510 296705 

8 node 43.981 44.741 58.202 1670188 60352768 37330 1036954 

MatMul (2562256) 

1 node 245.660 245.840 248.808 54706 1928096 223 7749 

2 node 123.118 123.210 124.696 55215 1947792 448 15620 

4 node 61.975 62.045 62.677 56277 1985376 907 31676 

8 node 31.369 31.423 31.859 58456 2069136 1860 64947 

Place 

1 node 318.012 318.473 322.325 74225 2628192 233 8154 

2 node 82.000 85.071 143.356 2018749 74003616 23730 516223 

4 node 69.668 72.851 137.145 4147564 149195680 56932 1087868 

8 node 38.498 41.427 102.221 7977226 (overrun) 192561 (overrun) 

Table 2: HYPERMON Application Results 

for two reasons. First, it suggests where buffers in HY- 

PERMON are most needed to ameliorate the effects of 

event data bursts. Second, it identifies those portions of 

a parallel computation where program execution might 

be most susceptible to performance perturbation from 

performance instrumentation. 

For each of the four application programs of Table 1, 

we used HYPERMON to record and compute statistics 

on the time varying rate of operating system event gen- 

eration. For each application program, we recorded in 

the PBX node’s memory the number of event frames 

and the elapsed time between the first and last frame 

for each group of event frames read.s 

To generate Figures 10-13, the elapsed time for each 

program was divided into one hundred intervals of fixed 

sise and the average event frame rate was computed for 

each interval. To show differing numbers of nodes on a 

single graph, we show normalized time intervals (i.e., for 

each number of nodes, an interval represents a different 

absolute amount of time). The total time range for each 

curve is shown in the legend. 

Figure 10 shows the time varying event frame rate for 

the Simplez code. Clearly, the event frame rates follow a 

periodic pattern, and analysis of the code shows a regu- 

‘Retell that the HYPERMON interface to the PBX I/O node 
includes a counter of the number of buffered event frames. This 

count defines the number of events read in each “group.” Due 

to PBX node memory limits, only the first 100,000 event rate 
distribution samples were recorded. 
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Figure 10: Simple2 Event Frame Rate Distribution 
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lar cycle of computation and global data exchange ill]. 

Communication generates a burst of operating system 

instrumentation events (e.g., context switches, message 

buffering, and message transmission) [S], and this is re- 

flected in the event frame rate. As the number of nodes 

increases, the ratio of communication to computation 

increases and the event frame rate increases commensu- 

rately. 

Unlike the Simplez or MatMul codes, where the 

amount of computation on each node varies little during 

successive computation cycles, the Life code updates a 

grid of cells whose sparsity changes over time. Figure 

11 shows that the data recording requirements of such 

codes can change substantially as the computation load 
balance changes. 

The MatMu event frame rate distribution in Fig- 

ure 12 reflects the simple structure of the application 

code. The computation first distributes the matrix to 

the nodes, where they compute independently until re- 

turning their partial results to the host. The initial ma- 

trix broadcast is not shown in Figure 12, but the trans- 

mission of sub-matrices to the host is clearly visible. 

Because no communication occurs during the compu- 
tation phase, most recorded events are node time slice 

context switches. Finally, the event rates for PIace ap- 

plication, shown in Figure 13, are random, bursty, and 

high. In $6, we describe the underlying reasons for this 

behavior and the implications for hardware event data 

recording. 

As Figures lo-13 show, the dynamics of event frame 

rates are closely tied to application behavior and can 

vary widely across application types. This disparity in 

burst rates has important implications for capture hard- 

ware design, the subject of the next section. 

6 Lessons Learned 

The design of HYPERMON was subject to the engi- 

neering constraints imposed by the iPSC/S system: the 

4-bit I/O event data interface, the physical separation 

of event regeneration from event capture, and the PBX 

I/O node interface. Although the larger overhead for 

recording event data via HYPERMON was expected, 

and we knew that many applications exhibited cyclic 

communication behavior, we did not foresee all the im- 
plications of bursty event data rates. 

The lesson regarding decreased execution time pertur- 

bations with hardware data recording is clear. External 

interfaces used to record event data via hardware should 

have sufficient bandwidth to avoid delaying the compu- 

tation processors. Ideally, the access time to the inter- 

face should be no larger than that needed to write the 

event words to memory (i.e., hardware event recording 

should have less overhead than that for software buffer 
management and data recording). 

Regarding bursty event data rates, further investigcc 

tion of event data bursts using software event traces 

reveals significant variances in event data rates during 

the lifetime of most computations, Figure 14 shows 

the event data volume generated by our NX/2 operat- 

ing system instrumentation [S] in one millisecond inter- 

vals for the Place application 011 four, eight and six- 
teen nodes. Although the average event data rates 

are 82 Kbytes/second, 276 Kbyteslsecond, and 629 

Kbytes/second, respectively, event data bursts signifi- 

cantly exceed these rates. In particular, the data rate 

for the sixteen node Place execution can reach two to 

three Mbytes/second in twenty millisecond bursts. To 

support this type of software performance instrumen- 

tation, a hardware data recording system must be de- 

signed with sufficient buffer capacity to accommodate 

event data bursts. Analysis of software event traces 

can be instrumental in defining buffer requirements. At 

present, we are using the software traces as input to 

simulation models of monitor designs to understand dy- 

namic buffering requirements. 

An important decision in the HYPERMON design 

was to treat each 4bit event datum as a potentially 

unique event. This determined timestamp generation 

and motivated the notion of event frames to amortize 

timestamp overhead. In practice, our NX/2 operating 

system instrumentation produced logical events com- 
posed of multiple event data nibbles. Significant reduc- 

tions in the volume of data recorded by HYPERMON 

would have been possible had we chosen to timestamp 

larger data units (e.g., 32-bit quantities). In this case 

we would accumulate a 32-bit word on each 4-bit input 

port before storing it in the event data FIFO. The size 

of timestamped quantities should be chosen so that only 

a small fraction of the avsilable bandwidth is lost. Ide- 

ally, there should be support for selective timestamping 

of event data such that timestamps are produced only 

when directed by the software. 

The experiments conducted with the instrumented 

NX/2 operating system, described in $5.2, represent 

HYPERMON stress tests. Clearly, there exists a spec- 

trum of data recording and data analysis alternatives. 

No reduction of event data occurred in our experiments 

prior to writing data to HYPERMON. The use of par- 

allel, on-the-fly data reduction, possibly in the form of 

periodic statistical summaries, would eliminate many of 

the problems encountered during our stress tests of HY- 

PERMON operation. Although improvements in the 

HYPERMON design can extend its operational range, 

there are many performance experiments that can take 

advantage of the current prototype’s real-time monitor- 

ing capabilities. 

224 



Time (seconds) 

Time (seconds) 

4ogv----- ’ 
I I 

I 
Data Sixteen Nodes 

Volume 

(bytes) 
1024 

0 
8.dOO 8.125 8.250 

Time (seconds) 

8.375 8.500 

Figure 14: Place Event Data Volume (One Millisecond Intervals) 

225 



7 Conclusions 

Despite the manifest need for dynamic performance in- 

strumentation and data capture, their efficient imple- 

mentation is non-trivial. HYPERMON was designed in 

response to the iPSC/2 hardware interface for captur- 

ing software event traces. In contrast to software-based 

recording in individual node memories, HYPERMON 

uses external memory for trace storage and generates 

globally-synchronized timestamps automatically. 

In addition to the considerable development effort 

for the HYPERMON prototype, our initial experience 

clearly indicates the need for careful analysis of the in- 

teractions with the iPSC/Z’s hardware interface. For 

example, the 4-bit I/O interface from each node has ob- 

vious performance limitations; only a wider I/O port 

will alleviate the instrumentation perturbations when 

HYPERMON is used. 

The experiments conducted with the instrumented 

NX/2 operating system, described in $5.2, represent 

HYPERMON stress tests. The spectrum of data record- 

ing and data analysis alternatives is vast. The use of 

parallel, on-the-fly data reduction, possibly in the form 

of periodic statistical summaries, rather than the de- 

tailed operating system performance instrumentation 

used in our stress tests, seems the best match to the 

4-bit I/O interface and HYPERMON’s buffer require- 

ments. 
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