
A Hardware Evaluation of Cache Partitioning to
Improve Utilization and Energy-Efficiency

while Preserving Responsiveness

Henry Cook*

hcook@eecs.berkeley.edu
Miquel Moreto*†

mmoreto@ac.upc.edu
Sarah Bird*

slbird@eecs.berkeley.edu

Khanh Dao*

khanhdao@berkeley.edu
David A. Patterson*

pattrsn@eecs.berkeley.edu
Krste Asanovic*

krste@eecs.berkeley.edu
*The Parallel Computing Laboratory †Computer Architecture Department

CS Division, EECS Department Universitat Politecnica de Catalunya
University of California, Berkeley, USA Jordi Girona, 1-3, 08034, Barcelona, Spain

ABSTRACT

Computing workloads often contain a mix of interac-
tive, latency-sensitive foreground applications and recurring
background computations. To guarantee responsiveness, in-
teractive and batch applications are often run on disjoint
sets of resources, but this incurs additional energy, power,
and capital costs. In this paper, we evaluate the poten-
tial of hardware cache partitioning mechanisms and policies
to improve efficiency by allowing background applications
to run simultaneously with interactive foreground applica-
tions, while avoiding degradation in interactive responsive-
ness. We evaluate these tradeoffs using commercial x86
multicore hardware that supports cache partitioning, and
find that real hardware measurements with full applications
provide different observations than past simulation-based
evaluations. Co-scheduling applications without LLC par-
titioning leads to a 10% energy improvement and average
throughput improvement of 54% compared to running tasks
separately, but can result in foreground performance degra-
dation of up to 34% with an average of 6%. With optimal
static LLC partitioning, the average energy improvement in-
creases to 12% and the average throughput improvement to
60%, while the worst case slowdown is reduced noticeably to
7% with an average slowdown of only 2%. We also evaluate
a practical low-overhead dynamic algorithm to control par-
tition sizes, and are able to realize the potential performance
guarantees of the optimal static approach, while increasing
background throughput by an additional 19%.

1. INTRODUCTION
Energy efficiency and predictable response times are first-

order concerns across the entire computing spectrum, rang-

© {Owner/Author | ACM} {2018}. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in https://dl.acm.org/
citation.cfm?doid=2485922.2485949

ing from mobile clients to warehouse-scale cloud computers.
For mobile devices, energy efficiency is critical, as it affects

both battery life and skin temperature, and predictable re-
sponse times are essential for a fluid user interface. Some
mobile systems have gone so far as to limit which applica-
tions can run in the background [1] to preserve responsive-
ness and battery life.

In warehouse-scale computing, energy inefficiencies in-
crease electricity consumption and operational costs and
can significantly impact the capital costs of the infrastruc-
ture needed to distribute power and cool the servers [2, 17].
As with mobile devices, researchers have also found unpre-
dictable response times to be very expensive in warehouse-
scale computing [31]. In one example, inserting delays in a
search engine slowed down user response time by more than
the delay, which decreased the number of overall searches,
user satisfaction, and revenue; the results were so negative
that the researchers stopped their experiment early [31].
To preserve responsiveness, cloud computing providers of-
ten dedicate large clusters to single applications, despite the
hardware being routinely utilized at only 10% to 50% [2].

In this paper, we study the potential to reduce the waste
from resources held idle in the name of responsiveness by
co-scheduling background applications with foreground ap-
plications. Although some application workloads already in-
clude parallelized codes, few applications scale perfectly with
increasing core count, leading to underutilized resources,
and potentially providing an opportunity to increase system
efficiency through consolidation. But this benefit can only
be realized if there is minimal degradation in responsiveness
of latency-sensitive user-facing tasks. In the client, the goal
is to complete background work while the foreground task
is active, so that the mobile device can quickly return to
a very low-power hibernation mode, thereby extending bat-
tery life. In the cloud, the goal is to co-schedule background
tasks, such as indexing, with user-facing web applications to
obtain the greatest value from the huge sunk investment in
machines, power distribution, and cooling.

Low-priority background tasks degrade the responsive-
ness of a high-priority foreground task primarily through
contention for shared hardware resources, such as on-chip
shared cache or off-chip DRAM bandwidth. In this pa-

per, we study partitioning the capacity of a shared last-

level cache (LLC) as a means to potentially mitigate the
negative performance effects of co-scheduling, and design
a lightweight practical algorithm to dynamically divide the
LLC among applications. Our study uses a prototype com-
mercial x86 multicore processor (Sandy Bridge) executing
multiple large parallel applications taken from several mod-
ern benchmark suites, and we measure power and energy to
explore the potential benefits of LLC partitioning. While
other mechanisms to mitigate such degradation are the sub-
ject of active research [16, 23] (in particular, techniques
for LLC partitioning [16, 20, 29, 33]), the past work has
predominantly considered sequential applications and has
mostly been simulation-based, which limits the size of pos-
sible workloads and the ability to accurately measure per-
formance and energy. We found that our conclusions differ
as a result of these differences in experimental methods.

In our analysis, we found significant potential for consoli-
dation of applications without harming their responsiveness.
The considerable size of the LLC (6MB) makes cache par-
titioning unnecessary in many cases—a result not observed
by previous work because the studies mostly simulated much
smaller cache sizes (1–2MB). Without any partitioning, we
found that nearly 50% of the 45 benchmarks tested slowed
down less than 2.5% with a co-scheduled background appli-
cation. This is unsurprising considering that, when studied
individually, we found that 44% of applications had working
sets that fit in 1MB and 78% fit in 3MB. Overall, consoli-
dation without LLC partitioning provided a 10% energy im-
provement and a 54% performance improvement. However,
sharing did occasionally result in significant slowdowns, of
up to nearly 35% in the worst case, with an average slow-
down of 6%.

Co-scheduling applications with optimal static LLC par-
titioning increased the average energy improvement to 12%
and the average performance improvement to 60%, while
more effectively protecting the foreground application—the
average slowdown was just 2% and the worst case only 7%.
For 16% of the cases (almost exclusively those running with a
low-scalability sensitive application), LLC partitioning pro-
vided even more significant speedups—20% on average.

We also introduce and evaluate a practical online dynamic
partitioning algorithm, and show that it maintains fore-
ground application performance to within 1% of the optimal
static partition, while increasing the background computa-
tion throughput by 19% on average and as much as 2.5× in
some cases.

2. EXPERIMENTAL METHODOLOGY
In this section, we describe the hardware platform and

benchmarks used in our evaluation. While this paper does
not evaluate server hardware, we believe the approach and
resulting conclusions are just as relevant for the cloud, al-
though the quantitative results would surely change.

2.1 Platform Configuration
We use a prototype version of Intel’s Sandy Bridge x86

processor that is similar to the commercially available client
chip, but with additional hardware support for way-based
LLC partitioning. By using a real hardware prototype, we
are able to run complete, full-sized applications for realistic
time scales on a standard operating system and accurately
measure performance and energy.

The Sandy Bridge client chip has 4 quad-issue out-of-order
superscalar cores, each of which supports 2 hyperthreads
using simultaneous multithreading [18]. Each core has pri-
vate 32KB instruction and data caches, as well as a private
256KB non-inclusive L2 cache. The LLC is a 12-way set-
associative 6MB inclusive cache, shared by all cores via a
ring interconnect. All cache levels are write-back.

The cache partitioning mechanism is way-based and works
by modifying the cache-replacement algorithm. Each core
can be assigned a subset of the 12 ways in the LLC. Way
allocations can be completely private, completely shared, or
overlapping. Although all cores can hit on data stored in
any way, a core can only replace data in its assigned ways.
Data is not flushed when the way allocation changes.

We use a customized BIOS that enables the cache parti-
tioning mechanism, and run unmodified Linux-2.6.36 for all
of our experiments. We use the Linux taskset command to
pin applications to sets of hyperthreads.

2.2 Performance and Energy Measurement
To measure application performance, we use the libpfm li-

brary [11,27], built on top of the perf_events infrastructure
introduced in Linux 2.6.31, to access performance counters
available on the machine [19].

To measure on-chip energy, we use the energy counters
available on Sandy Bridge to measure the consumption of
the entire socket and also the total combined energy of cores,
private caches, and the LLC. We access these counters using
the Running Average Power Limit (RAPL) interfaces [19].
The counters measure power at a 1/216 second granularity.
In addition, we use a FitPC external multimeter to mea-

sure the power consumed by the entire system at the wall
socket with a 1 second granularity. We correlate the wall
power data with the data collected from the hardware en-
ergy counters using time stamps. We observed less than one
second of delay in these measurements consistently across
all experiments. Together, these mechanisms allow us to
collect accurate energy readings over the entire course of an
application’s execution.

2.3 Description of Workloads
We build our workload using a wide range of codes

from three different popular benchmark suites: SPEC CPU
2006 [32], DaCapo [6], and PARSEC [4]. We include some
additional applications to broaden the scope of the study,
and microbenchmarks to exercise certain system features.

The SPEC CPU2006 benchmark suite [32] is a CPU-
intensive, single-threaded benchmark suite, designed to
stress a system’s processor, memory subsystem and com-
piler. Using the similarity analysis performed by Phansalkar
et al. [28], we subset the suite, selecting 4 integer bench-
marks (astar, libquantum, mcf, omnetpp) and 4 floating-
point benchmarks (cactusADM, calculix, lbm, povray).
Based on the characterization study by Jaleel [21], we also
pick 4 extra floating-point benchmarks that stress the LLC:
GemsFDTD, leslie3d, soplex and sphinx3. When multiple
input sets and sizes are available, we pick the single ref in-
put indicated by Phansalkar et al. [28]. SPEC CPU was the
only benchmark suite used in many previous characteriza-
tions of LLC partitioning [16,29,33], but only a few hundred
million instructions were simulated in these studies.

We include the DaCapo Java benchmark suite as a rep-
resentative of a managed-language workloads. The managed

1 2 3 4 5 6 7 8
Number of Threads

0

1

2

3

4

5

6

7

S
p
e
e
d
u
p

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanimate

freqmine

raytrace

streamcluster

swaptions

vips

x264

(a) PARSEC applications

1 2 3 4 5 6 7 8
Number of Threads

0

1

2

3

4

5

6

7

S
p
e
e
d
u
p

avrora

batik

eclipse

fop

h2

jython

luindex

lusearch

pmd

sunflow

tomcat

tradebeans

tradesoap

xalan

(b) DaCapo applications

1 2 3 4 5 6 7 8
Number of Threads

0

1

2

3

4

5

6

7

S
p
e
e
d
u
p

ParaDecoder

browser_animation

ccbench

g500_csr

stencilprobe

stream_uncached

(c) Parallel applications and mi-
crobenchmarks

Figure 1: Normalized speed up as we increase the number of threads allocated to each application.

nature of the Java runtime environment has been shown to
make a significant difference in some scheduling studies [12].
We use the latest 2009 release, which consists of a set of
open-source, real-world applications with non-trivial mem-
ory loads, including both client and server-side applications.

The PARSEC benchmark suite is intended to be repre-
sentative of parallel real-world applications [4]. PARSEC
programs use various parallelization approaches, including
data- and task-parallelization. We use the pthreads version
for all benchmarks, with the exception of freqmine, which is
only available in OpenMP. Although reduced input sets are
available for simulation studies, we use the largest input sets
designed for native execution. Previous characterizations of
PARSEC have found it to be sensitive to cache capacity [4],
but also resilient to performance degradation in the face of
intra-application cache sharing [39], .

We add four additional parallel applications from lo-
cal researchers to represent important algorithms at the
core of future applications: Browser_animation is a mul-
tithreaded kernel representing a browser layout anima-
tion [25]; G500_csr code is a breadth-first search graph al-
gorithm [3]; Paradecoder is a parallel speech-recognition
application that takes audio waveforms of human speech
and infers the most likely word sequence intended by the
speaker [10]; Stencilprobe simulates heat transfer in a fluid
using a parallel stencil kernel over a regular grid [22].

We also add twomicrobenchmarks that stress the mem-
ory system: stream_uncached is a memory and on-chip
bandwidth hog that continuously brings data from memory
without caching it, while ccbench explores arrays of different
sizes to determine the structure of the cache hierarchy.

3. PERFORMANCE STUDIES
Our first set of experiments explores the sensitivity of

each application to different resources in the system: hy-
perthreads, LLC capacity, prefetcher configurations, and the
on-chip LLC bandwidth and off-chip DRAM bandwidth. We
then use machine learning to cluster applications based on
their resource requirements, and select a set of representa-
tive applications for further evaluation.

3.1 Thread Scalability
We first study parallel scalability for a fixed problem size.

Figure 1 shows the speedup of each application as we in-
crease its allocation from 1 to 8 threads. When adding new
threads, we first assign both hyperthreads available in one

Table 1: Summary of thread scalability

Suite Low scalability Saturated scalability High scalability

PARSEC −
canneal, dedup, ray-
trace

blackscholes, body-
track, facesim,
ferret, vips, x264,
fluidanimate,
freqmine, stream-
cluster, swaptions

DaCapo
h2, tradebeans,
tradesoap

avrora, batik,
eclipse, fop, jython,
luindex, lusearch

pmd, sunflow, tom-
cat, xalan

SPEC all − −

Parallel
applica-
tions

paradecoder
browser animation,
g500, stencilprobe

−

µbench-
marks

ccbench, stream
uncached

− −

core before moving on to the next core. For example, al-
locations with four threads correspond to running on both
hyperthreads of two cores. This method fits our scenario
of consolidating applications in a multiprogrammed envi-
ronment, where different applications should be pinned to
disjoint cores to avoid thrashing at inner cache levels [36].

Many PARSEC applications scale well (Fig. 1a): six
benchmarks scale up over 4×, four benchmarks between 3–
4×, and just three show more modest scaling factors (2–3×).
For the majority of these applications, we can see that per-
formance keeps growing at a similar rate up to at least 8
threads. The DaCapo applications in Fig. 1b are largely
less scalable than the PARSEC applications. Only two ap-
plications show speedups over 4×, with two others between
2–3×, and ten between 1–2.3×. Furthermore, the perfor-
mance of all the low-scalability applications saturates after
4 or 6 threads. The intrinsic parallelism available in some of
the DaCapo benchmarks together with the scalability bot-
tlenecks for garbage collectors explain this behavior [15]. Fi-
nally, the scalability results for the additional parallel appli-
cations and microbenchmarks are presented in Figure 1c.
The microbenchmarks are single-threaded, while the par-
allel applications are all memory-bandwidth-bound on this
platform (we have observed parallel speedups on other plat-
forms), explaining the limited scalability measured.

We now classify applications according to their thread
scalability. Table 1 groups applications in each suite into
three categories: applications with low scalability, applica-
tions that scale up to a reduced number of threads, and

0 1 2 3 4 5 6
Cache Space (MB)

0

50

100

150

200

250

300

350

E
xe

cu
tio

n
Ti

m
e

(s
)

Low utility: swaptions
1 thread
2 threads

4 threads
8 threads

0 1 2 3 4 5 6
Cache Space (MB)

0

50

100

150

200

250

300

350

400

E
xe

cu
tio

n
Ti

m
e

(s
)

Saturated utility: tomcat
1 thread
2 threads

4 threads
8 threads

0 1 2 3 4 5 6
Cache Space (MB)

0

100

200

300

400

500

600

E
xe

cu
tio

n
Ti

m
e

(s
)

High utility: 471.omnetpp
1 thread

Figure 2: Applications representative of different LLC allocation sensitivities.

applications that continue to scale up with the number of
threads. There are noticeable differences between suites,
with PARSEC clearly being the most scalable.

3.2 Last-Level Cache Sensitivity
We next evaluate how sensitive the benchmarks are to

amount of LLC capacity allocated to them. Taking advan-
tage of the partitioning mechanism in the LLC, we change
the LLC space allocated to a given application from 0.5MB
to 6MB. In the interests of space, we show only the behavior
of three representative applications in Figure 2.

Unsurprisingly, the first conclusion that we can draw is
that running an application inside a 0.5MB direct-mapped
LLC is always detrimental. In addition to conflict misses
from the direct mapping, inclusivity issues for inner cache
levels lead to significant increases in execution time. The
second observation is that the LLC is clearly overprovisioned
for these applications. We found 44% of the applications
only require 1MB to reach their maximum performance,
while 78% require less than 3MB. Others have observed
similar behavior for cloud computing applications [14].

Finally, we do not observe clear knees in execution time
as we increase allocated LLC capacity. Previous simulation-
based studies took advantage of these knees to propose dy-
namic cache partitioning techniques [26,29,33]. In contrast,
performance improves smoothly with the allocated LLC ca-
pacity for all applications. The combination of memory-
mapping functions, randomized LLC-indexing functions,
pre-fetchers, pseudo-LRU eviction policies, as well as having
multiple threads simultaneously accessing the LLC, serve to
remove clear working-set knees in the real system.

Next, we classify applications into 3 categories according
to their LLC sensitivity, ignoring the pathological direct-
mapped 0.5MB case. Low utility applications (e.g., swap-
tions) yield the same performance despite increased avail-
able LLC space. Saturated utility applications (e.g., tomcat)
benefit from extra LLC space up to a saturation point. Fi-
nally, high utility applications (e.g., 471.omnetpp) always
benefit from more LLC space. Figure 2 shows a represen-
tative application for each category. We observe that in-
creasing the number of threads assigned to an application
decreases LLC sensitivity. Additional cores result in larger
aggregate private cache (L1 and L2) and a greater overlap
of memory accesses, thereby reducing pressure on the LLC.

Table 2 categorizes the benchmarks in each suite accord-
ing to their LLC utility. We highlight applications with more
than 10 LLC accesses per kilo-instruction in bold, because
these applications may cause bandwidth contention and pol-

Table 2: Summary of LLC allocation sensitivity.

Suite Low Saturated High

PARSEC

blackscholes, bodytrack,
dedup, ferret, fluidani-
mate, freqmine, raytrace,
vips, streamcluster,
swaptions,

canneal, facesim x264

DaCapo avrora, sunflow
batik, h2, jython,
luindex, tomcat,
tradesoap

eclipse, fop,
lusearch, pmd,
tradebeans,
xalan

SPEC

436.cactusADM, 437.les-
lie3d, 450.soplex,
453.povray, 454.calculix,
459.GemsFDTD,
462.libquantum,
470.lbm

429.mcf, 473.as-
tar, 482.sphinx3

471.omnetpp

Parallel
applica-
tions

−
paradecoder,
stencilprobe

browser ani-
mation, g500

µbench-
marks

−
ccbench, stream

uncached
−

lute the LLC for other applications even if they do not ben-
efit (in terms of execution time) from the allocated space.
Overall, we find PARSEC applications have much more re-
laxed LLC requirements than the other suites. SPEC appli-
cations rarely require a large LLC despite having a signifi-
cant number of LLC accesses.

3.3 Prefetcher Sensitivity
We now characterize the sensitivity of applications to

hardware prefetching configurations, because some prefetch-
ers are a shared resource that cannot be partitioned (unlike
hyperthreads and LLC). In a multi-programmed environ-
ment, access streams from different applications could im-
pact sensitive applications if they degrade prefetcher efficacy.
There are four distinct hardware prefetchers on Sandy

Bridge platforms: 1) Per-core Data Cache Unit (DCU) IP-
prefetchers look for sequential load history to determine
whether to prefetch the data to the L1 caches; 2) DCU
streamer prefetchers detect multiple reads to a single cache
line in a certain period of time and choose to load the fol-
lowing cache lines to the L1 data caches; 3) Mid-Level cache
(MLC) spatial prefetchers detect requests to two successive
cache lines and are triggered if the adjacent cache lines are
accessed; 4) MLC streaming-prefetchers work similarly to
the DCU streamer-prefetchers, which predict future access
patterns based on the current cache line reads. We can acti-
vate or deactivate each prefetcher by setting the correspond-
ing machine state register (MSR) bits [19].

Figure 3 shows the execution time of the applications

bl
ac
ks
ch
ol
es

bo
dy

tr
ac
k

ca
nn

ea
l

de
du

p
fa
ce
si
m

fe
rr
et

flu
id
an

im
at
e

fre
qm

in
e

ra
yt
ra
ce

st
re
am

cl
us
te
r

sw
ap

tio
ns

vi
ps

x2
64

av
ro
ra

ba
tik

ec
lip
se fo
p h2

jy
th
on

lu
in
de

x
lu
se
ar
ch

pm
d

su
nf
lo
w

to
m
ca
t

tr
ad

eb
ea

ns
tr
ad

es
oa

p
xa
la
n

42
9.
m
cf

43
6.
ca
ct
us
AD

M
43

7.
le
sl
ie
3d

45
0.
so
pl
ex

45
3.
po

vr
ay

45
4.
ca
lc
ul
ix

45
9.
Ge

m
sF
DT

D
46

2.
lib
qu

an
tu
m

47
0.
lb
m

47
1.
om

ne
tp
p

47
3.
as
ta
r

48
2.
sp
hi
nx

3
br
ow

se
r_
an

im
e

g5
00

_c
sr

Pa
ra
De

co
de

r
st
en

ci
lp
ro
be

cc
be

nc
h

st
r_
un

ca
ch
ed

0.0

0.2

0.4

0.6

0.8

1.0

1.2

PARSEC DACAPO SPEC PAR µ

Figure 3: Normalized execution time when enabling all
prefetchers enabled w.r.t. all prefetchers disabled.

bl
ac
ks
ch
ol
es

bo
dy

tr
ac
k

ca
nn

ea
l

de
du

p
fa
ce
si
m

fe
rr
et

flu
id
an

im
at
e

fre
qm

in
e

ra
yt
ra
ce

st
re
am

cl
us
te
r

sw
ap

tio
ns

vi
ps

x2
64

av
ro
ra

ba
tik

ec
lip
se fo
p h2

jy
th
on

lu
in
de

x
lu
se
ar
ch

pm
d

su
nf
lo
w

to
m
ca
t

tr
ad

eb
ea

ns
tr
ad

es
oa

p
xa
la
n

42
9.
m
cf

43
6.
ca
ct
us
AD

M
43

7.
le
sl
ie
3d

45
0.
so
pl
ex

45
3.
po

vr
ay

45
4.
ca
lc
ul
ix

45
9.
Ge

m
sF
DT

D
46

2.
lib
qu

an
tu
m

47
0.
lb
m

47
1.
om

ne
tp
p

47
3.
as
ta
r

48
2.
sp
hi
nx

3
br
ow

se
r_
an

im
e

g5
00

_c
sr

Pa
ra
De

co
de

r
st
en

ci
lp
ro
be

cc
be

nc
h

st
r_
un

ca
ch
ed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

PARSEC DACAPO SPEC PAR µ

3.
8

Figure 4: Increase in execution time when running with a
bandwidth hog microbenchmark.

when all prefetchers are active normalized to the configu-
ration with all prefetchers disabled. In general, the applica-
tions are more sensitive to the DCU spatial prefetcher, but
the MLC prefetcher is also important for some applications.
Nearly all applications are insensitive to the prefetcher con-
figuration (36 out of 46). In PARSEC, only facesim and
streamcluster benefit from the prefetchers. No DaCapo
applications benefit significantly from the prefetchers, and
lusearch performance even degrades when the prefetchers
are active. In contrast, SPEC benchmarks are more sensi-
tive to prefetching, particularly 450.soplex, 459.GemsFDTD,
462.libquantum and 470.lbm. The majority of the addi-
tional applications also benefit from the prefetchers. How-
ever, we also observed that increasing the number of threads
in the system reduces overall prefetcher effectiveness.

3.4 LLC and DRAM Bandwidth Sensitivity
We also characterize how sensitive applications are to

any memory bandwidth contention, because bandwidth is
a shared resource that cannot be partitioned. Access

47
3.

as
ta

r
42

9.
m

cf
43

7.
le

sl
ie

3d
45

3.
p
ov

ra
y

45
4.

ca
lc

u
li
x

43
6.

ca
ct

u
sA

D
M h
2

P
ar

aD
ec

od
er

47
1.

om
n
et

p
p

48
2.

sp
h
in

x
3

46
2.

li
b
q
u
an

tu
m

45
0.

so
p
le

x
45

9.
G

em
sF

D
T

D
47

0.
lb

m
cc

b
en

ch
st

r
u
n
ca

ch
ed

fl
u
id

an
im

at
e

fa
ce

si
m

st
re

am
cl

u
st

er
fr

eq
m

in
e

sw
ap

ti
on

s
v
ip

s
fe

rr
et

to
m

ca
t

b
od

y
tr

ac
k

su
n
fl
ow

p
m

d
x
26

4
x
al

an
g5

00
˙c

sr
b
ro

w
se

r
an

im fo
p

ec
li
p
se

ra
y
tr

ac
e

b
la

ck
sc

h
ol

es
av

ro
ra

d
ed

u
p

ca
n
n
ea

l
st

en
ci

lp
ro

b
e

tr
ad

eb
ea

n
s

lu
se

ar
ch

tr
ad

es
oa

p
jy

th
on

lu
in

d
ex

b
at

ik

0.0

0.5

1.0

1.5

2.0

2.5

L
in

k
ag

e
D

is
ta

n
ce

Figure 5: Clustering based on execution time, LLC space,
memory bandwidth, and prefetcher sensitivity. All applica-
tions with the same color belong to the same cluster.

streams from concurrent applications could cause perfor-
mance degradation of sensitive applications if they oversub-
scribe particular network links, memory channels, or Miss
Status Handling Registers (MSHRs).

We characterize applications according to their perfor-
mance when running together with a bandwidth-hogging
microbenchmark (stream_uncached), which uses specially
tagged load and store instructions to stream through mem-
ory without caching data in the LLC. Bandwidth-sensitive
applications will suffer from being run concurrently with this
benchmark. Figure 4 shows the increase in execution time
of all applications when running with stream_uncached.
Only two PARSEC applications suffer (fluidanimante and
streamcluster), while DaCapo applications are not affected
much by bandwidth contention. In the case of SPEC,
some benchmarks are not affected at all (436.cactusADM,
453.povray, 454.calculix, 473.astar) and others are
heavily affected (450.soplex, 459.gemsFDTD, 462.libquan-
tum, 470.lbm). In contrast, all the added parallel appli-
cations are bandwidth sensitive. In general, the applica-
tions are more sensitive to bandwidth contention than to
prefetcher configuration.

3.5 Clustering Analysis
To reduce our study to a feasible size, we use the applica-

tion characterization studies described above to select a sub-
set of the benchmarks representative of different application
resource behaviors. Following in the footsteps of [28], we use
machine learning to select representative benchmarks. We
use a hierarchical clustering algorithm [28] with the single-

linkage method from the Python library scipy-cluster .
We create a feature vector of 19 values for each applica-

tion using the measurements from the previous subsections:
1) execution time as we increase the number of threads (7
features); 2) execution time as we increase the LLC size (10
features); 3) prefetcher sensitivity (1 feature); and 4) band-
width sensitivity(1 feature). All metrics are normalized to
the interval [0, 1]. The clustering algorithm finds the small-

Table 3: Cluster representatives

Suite Cluster 1 Cluster 2 Cluster
3

Cluster
4

Cluster
5

Cluster
6

PARSEC − − ferret x264 dedup −
DaCapo h2 − sunflow fop avrora batik

SPEC 429.mcf 459.gems-

FDTD

− − − −

Parallel
Applica-
tions

Para-
Decoder

− − browser
anima-
tion

stencil-
probe

−

µbench-
marks

− ccbench − − − −

est Euclidean distance of a pair of feature vectors and forms
a cluster containing that pair. It continues selecting the next
smallest distance between a pair and forms another cluster.
Linkage criteria can be used to adjust cluster formation.
The single-linkage we selected uses the minimum distance
between a pair of objects in different clusters to determine
the distance between them.

Figure 5 shows the dendogram for the studied applica-
tions. The Y-axis represents the linkage-distance between
applications. Applications within a distance of 0.9 are as-
signed the same cluster and colored to match. The first
two clusters contain applications with low thread scalabil-
ity. The first cluster is more sensitive to LLC space, but
less sensitive to bandwidth and the prefetcher. Applications
in the third cluster present high thread scalability and low
cache utility and are insensitive to the prefetcher. The last
three clusters are comprised of applications with saturated
thread scalability, but different cache utility. The fourth
cluster is more sensitive to cache space than the rest, the

fifth is insensitive to cache space, and the sixth is insensi-
tive to bandwidth contention. There is also a cluster with
only one application (fluidanimate), which stands apart
as it only runs correctly when allocated a power-of-2 num-
ber of threads. Due to this irregularity, we do not consider
this cluster any further in our analysis. Table 3 lists repre-
sentative applications by cluster for each benchmark suite.
Applications highlighted in bold are closest to the centroid
of the cluster. We select these applications to represent the
cluster in our consolidation studies.

4. ENERGY VERSUS PERFORMANCE
Our next experiments explore the power, energy, and per-

formance tradeoffs available in our system.
Controlling the number of cores assigned to an applica-

tion, and the frequency at which those cores run, is the most
well-studied technique to control energy consumption. How-
ever, it is worth noting that making energy-efficient opti-
mizations sometimes involves counter-intuitive choices. For
example, activating additional cores or raising frequency in-
creases power consumption, but can often result in lower
overall energy consumption per task, since the task may fin-
ish earlier allowing the system go into a much lower energy
sleep state. This operating scenario is often described as
race-to-halt, where the best energy efficiency is obtained by
optimizing for the highest performance to more quickly com-
plete a task and then move to a sleep state to save energy.
However, allocating cores that do not improve performance
can decrease energy efficiency. A memory-bound application
is unlikely to see any performance benefit if run at a higher

400 420 440 460 480
35

40

45

50

55

60

65

M
is

se
s

p
e
r

K
ilo

 I
n
st

rs
. 429.mcf

1 HT 2 HT 3 HT 4 HT 5 HT 6 HT 7 HT 8 HT

30.5 31.0 31.5 32.0 32.5 33.0 33.5
6.2

6.4

6.6

6.8

7.0

7.2

7.4
459.GemsFDTD

80 160 240 320 400
1.0

1.5

2.0

2.5

3.0

3.5

4.0
ferret

2.4 3.2 4.0 4.8 5.6 6.4
0

1

2

3

4

5

6

7

8
fop

15 20 25 30 35 40 45
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
dedup

5.6 6.4 7.2 8.0 8.8 9.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
batik

400 420 440 460 480
11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

S
o
ck

e
t

E
n
e
rg

y
 (

K
J)

30.5 31.0 31.5 32.0 32.5 33.0 33.5
0.98

1.00

1.02

1.04

1.06

1.08

1.10

80 160 240 320 400
2

4

6

8

10

12

14

2.4 3.2 4.0 4.8 5.6 6.4
0.08

0.10

0.12

0.14

0.16

0.18

0.20

15 20 25 30 35 40 45
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

5.6 6.4 7.2 8.0 8.8 9.6
0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

400 420 440 460 480
80

85

90

95

100

W
a
ll

E
n
e
rg

y
 (

K
J)

30.5 31.0 31.5 32.0 32.5 33.0 33.5
6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.0

80 160 240 320 400
10

20

30

40

50

60

70

80

90

2.4 3.2 4.0 4.8 5.6 6.4
0.4

0.6

0.8

1.0

1.2

1.4

15 20 25 30 35 40 45
3

4

5

6

7

8

9

5.6 6.4 7.2 8.0 8.8 9.6
1.0

1.2

1.4

1.6

1.8

2.0

2.2

1 2 3 4 5 6

LLC Allocation (MB)

Execution Time (s)

Figure 6: Example performance, energy and miss rate of resource allocations. Configurations with different numbers of hyper-
threads are represented with different shapes. Shade represents cache allocation: darker configurations have a smaller cache
allocation. All of the applications have multiple configurations that are optimal, indicating the potential for consolidation.
The results also illustrate that race-to-halt is the optimal energy strategy.

frequency or allocated additional cores, but would consume
more energy while waiting for data to be provided by the
memory system.

Cache capacity allocation decisions are usually more
straightforward, and typically only impact energy by chang-
ing the number of LLC misses an application incurs. LLC
misses can increase energy consumption both by requiring
additional data to be fetched from DRAM, and by the in-
creased program runtime this might cause. Socket power
does not change as a function of the cache allocated, since
current hardware cannot turn off power to a portion of the
cache. This limitation makes it desireable to try to reassign
underutilized capacity to another application instead.

To better understand the space of possible performance
and energy tradeoffs, we execute each representative with
every possible thread and way allocation and measure the
performance and energy. Each benchmark is tested with
1–8 threads and 1–12 cache ways (96 different allocations).
Figure 6 shows plots of the runtime, LLC misses per kilo
instruction (MPKI), and total socket and wall energy con-
sumption of all possible resource allocations for the six clus-
ter representatives. When considering execution time versus
miss rate, we can see that some applications have runtimes
that are tightly correlated with miss rate (429.mcf and fop),
while others are insensitive (ferret and dedup), or see di-
minishing returns (459.GemsFDTD and batik).

When considering energy, our measurements strongly sug-
gest that race-to-halt is the right optimization strategy for
nearly all of our benchmarks. This is specially significant
in the case of the wall energy, since the energy consumed in
other parts of the system adds to total energy consumption.
While there are a spread of points to consider when picking
an allocation that minimizes LLC miss rate at a particular
execution time, for nearly all benchmarks this curve nar-
rows significantly when energy is factored in. We see this
effect because in general miss rates are correlated with both
increased energy and increased execution time, limiting the
possibilities for a high-miss-rate allocation to have lower en-
ergy via a faster runtime, or a faster-runtime allocation to
expend more energy than it saves.

We also can see many resource allocations achieve near op-
timal execution time, indicating that there should be spare
resources available for background work to use when the
application is running. Figure 7 illustrates this point by
showing the contour plots of the wall energy for each bench-
mark. We obtained very similar figures when considering
runtime and socket energy. Significantly, many applica-
tions have one or more energy-optimal configurations that
are not the largest allocation, indicating that most appli-
cations do not require the whole system to achieve peak
performance. Some applications do not benefit from more
than one thread (429.mcf and 459.GemsFDTD), others re-
quire all threads to minimize energy consumption (dedup
and ferret), and some applications have a range of possible
thread counts that maximize energy-efficiency (batik and
fop). More importantly, all of them can yield some space in
the LLC without affecting their performance, ranging from
0.5MB (429.mcf) to 4MB (batik and ferret). This re-
source gap between equally optimal allocations presents us
with an opportunity: we could run additional work concur-
rently on the remaining LLC and core resources, assuming
we can prevent destructive interference.

1 2 3 4 5 6 7 8
Number of threads

1

2

3

4

5

6

L
L
C

 a
ll
oc

at
io

n
 (

M
B

)

429.mcf

1.000

1.025

1.050

1.100

1.200

1.350

1.500

1.750

2.000

W
al

l
E
n
er

gy
 I

n
cr

ea
se

1 2 3 4 5 6 7 8
Number of threads

1

2

3

4

5

6

L
L
C

 a
ll
oc

at
io

n
 (

M
B

)

459.GemsFDTD

1.000

1.025

1.050

1.100

1.200

1.350

1.500

1.750

2.000

W
al

l
E
n
er

gy
 I

n
cr

ea
se

1 2 3 4 5 6 7 8
Number of threads

1

2

3

4

5

6

L
L
C

 a
ll
oc

at
io

n
 (

M
B

)

ferret

1.000

1.025

1.050

1.100

1.200

1.350

1.500

1.750

2.000

W
al

l
E
n
er

gy
 I

n
cr

ea
se

1 2 3 4 5 6 7 8
Number of threads

1

2

3

4

5

6

L
L
C

 a
ll
oc

at
io

n
 (

M
B

)

fop

1.000

1.025

1.050

1.100

1.200

1.350

1.500

1.750

2.000

W
al

l
E
n
er

gy
 I

n
cr

ea
se

1 2 3 4 5 6 7 8
Number of threads

1

2

3

4

5

6

L
L
C

 a
ll
oc

at
io

n
 (

M
B

)

dedup

1.000

1.025

1.050

1.100

1.200

1.350

1.500

1.750

2.000

W
al

l
E
n
er

gy
 I

n
cr

ea
se

1 2 3 4 5 6 7 8
Number of threads

1

2

3

4

5

6

L
L
C

 a
ll
oc

at
io

n
 (

M
B

)

batik

1.000

1.025

1.050

1.100

1.200

1.350

1.500

1.750

2.000

W
al

l
E
n
er

gy
 I

n
cr

ea
se

Figure 7: Wall energy contour plots for the cluster repre-
sentatives. Darker colors represent higher energy consump-
tions.

5. MULTIPROGRAM ANALYSES
In this section, we show it is often possible to take advan-

tage of the excess resources to save energy and improve sys-
tem throughput, without impacting foreground application
performance, by reducing the foreground application’s al-
location and running a concurrent background application.
For some combinations of applications, we can effectively
consolidate applications without partitioning the LLC. How-
ever, other combinations require LLC partitioning to protect
the foreground application’s performance. We examine the
relative effectiveness of uneven, even and no cache partition-
ing in terms of energy, background throughput, and average
and worst-case foreground performance degradation.

We run each multithreaded application with 4 threads on
2 cores with 2 active HTs. Some applications did exhibit
slightly different cache scalability for 2, 4, 6, or 8 cores, so
we used the 4-core values in our clustering analysis, ensuring
a representative set of pairing scenarios for this study. We
found that cases where applications were assigned odd num-
bers of hyperthreads (meaning that two applications were
sharing a core) had many performance anomalies due to
sharing of the L1 resources and thus chose to study split-
ting the cores evenly to more clearly observe the effects of
consolidating applications in the LLC. Exploring alternative
core allocations is the subject of future work [5].

5.1 Shared Cache Performance Degradation
To begin, we execute all possible pairs of applications

together with no cache partitioning. In addition to LLC
capacity, both applications are sharing the on-chip inter-
connection network to access the LLC and off-chip memory
bandwidth. Figure 8 shows a heat map of the relative ex-

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

im
at

e
fre

qm
in

e
ra

yt
ra

ce
st

re
am

cl
us

te
r

sw
ap

tio
ns

vi
ps

x2
64

av
ro

ra
ba

tik
ec

lip
se fo
p h2

jy
th

on
lu

in
de

x
lu

se
ar

ch
pm

d
su

nf
lo

w
to

m
ca

t
tr

ad
eb

ea
ns

tr
ad

es
oa

p
xa

la
n

42
9.

m
cf

43
6.

ca
ct

us
AD

M
43

7.
le

sl
ie

3d
45

0.
so

pl
ex

45
3.

po
vr

ay
45

4.
ca

lc
ul

ix
45

9.
Ge

m
sF

DT
D

46
2.

lib
qu

an
tu

m
47

0.
lb

m
47

1.
om

ne
tp

p
47

3.
as

ta
r

48
2.

sp
hi

nx
3

br
ow

se
r_

an
im

e
g5

00
_c

sr
Pa

ra
De

co
de

r
st

en
ci

lp
ro

be
cc

be
nc

h
st

r_
un

ca
ch

ed

blackscholes
bodytrackcanneal

dedupfacesim
ferret

fluidanimate
freqmine
raytracestreamcluster

swaptions
vipsx264

avrorabatik
eclipse

foph2
jythonluindex

lusearch
pmdsunflow

tomcat
tradebeans

tradesoapxalan
429.mcf

436.cactusADM
437.leslie3d
450.soplex
453.povray454.calculix

459.GemsFDTD
462.libquantum470.lbm

471.omnetpp473.astar
482.sphinx3

browser_anime
g500_csrParaDecoder

stencilprobeccbench
str_uncached

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

1.20

Re
la

tiv
e

Ex
ec

ut
io

n
Ti

m
e

PA
RS

EC
DA

CA
PO

SP
EC

PA
R

µ

PARSEC DACAPO SPEC PAR µ

Figure 8: Normalized execution time of the foreground ap-
plication (X-axis), when run concurrently with a background
application (Y-axis). Spaces represented as a 20% slowdown
may be greater than 20%

ecution time of the foreground application for all possible
pairs of applications. The values are normalized to the ex-
ecution time of the application when running alone on the
system with 2 cores with 2 active HTs each. For example,
canneal’s execution time when running with streamcluster

in the background increases 29% (dark red), while the exe-
cution time of streamcluster is affected much less (8.3%,
bright red) when running with canneal in the background.

It is important to note that these relationships can
be asymmetric. Some applications are sensitive to con-
tention for the shared hardware resources (represented by
a darker average vertical column). These benchmarks
are more affected when running together with a back-
ground application. There is one sensitive application in
PARSEC (stream-cluster), none in DaCapo, and 5 in
SPEC CPU 2006 (437.leslie, 450.soplex, 459.GemsFDTD,
462.libquantum, and 470.lbm). All the new applications
except ccbench are also sensitive. The average slowdown
for these benchmarks is over 10%.

Independent of sensitivity, applications can also be aggres-
sive and affect the performance of foreground applications if
run in the background (presented by a darker average hor-
izontal row). In our results, we find SPEC CPU 2006 and
the additional parallel applications tend to be more aggres-
sive. DaCapo benchmarks, on the other hand, only slightly
affect other foreground applications. The applications that
are the most significant aggressors (causing an average slow-
down over 10%) are canneal, lusearch, 471.omnetpp, Pa-
raDecoder, browser_animation and stream_uncached.

Some applications are not affected when sharing the ma-
chine with a background application. Twenty-two of the 45
applications slow down less than 2.5% on average.

5.2 Mitigating Degradation with Partitioning
We consider three cache partitioning policies in this sec-

tion. As the baseline, we use data from the previous subsec-
tion, where both applications share the entire cache without
partitioning (shared). The other two approaches are to stati-
cally partition the cache between the two applications, in one
case splitting the LLC evenly (fair), and in the second case
giving each application some uneven allocation (biased). We

C1
+

C1
C1

+
C2

C1
+

C3
C1

+
C4

C1
+

C5
C1

+
C6

C2
+

C1
C2

+
C2

C2
+

C3
C2

+
C4

C2
+

C5
C2

+
C6

C3
+

C1
C3

+
C2

C3
+

C3
C3

+
C4

C3
+

C5
C3

+
C6

C4
+

C1
C4

+
C2

C4
+

C3
C4

+
C4

C4
+

C5
C4

+
C6

C5
+

C1
C5

+
C2

C5
+

C3
C5

+
C4

C5
+

C5
C5

+
C6

C6
+

C1
C6

+
C2

C6
+

C3
C6

+
C4

C6
+

C5
C6

+
C6

Av
er

ag
e0.9

1.0

1.1

1.2

1.3

Re
l.

Ex
ec

ut
io

n
Ti

m
e

Shared Fair Biased

Figure 9: Effect of different consolidation approaches on
the foreground application in the presence of different,
continuously-running background applications. Normalized
to the foreground application running alone.

evaluate all possible biased allocations and report results for
the one that is the best (i.e., among allocations with min-
imum foreground performance degradation, select the one
that maximizes background performance).

Figure 9 presents the effectiveness of these three policies
at preserving the performance of the representative appli-
cations. We run two applications simultaneously, each with
4 hyperthreads on two cores. All values are normalized to
the execution time of the foreground application alone. For
some foreground applications (C3, C5, C6), less than 5%
degradation is present for the shared case, indicating their
limited sensitivity. Thus, the improvement provided by par-
titioning is minor. For some applications pairs, degradation
is somewhat or completely mitigated by biased partitioning,
but not mitigated by fair partitioning. Overall, we find that
biased partitioning results in lower average (2.3%) and worst
case (7.4%) slowdown than shared (5.9% and 34.5% respec-
tively). Half of the applications have effectively no slowdown
with the biased partitioning as compared with only a quar-
ter for shared. Fair is close to shared in terms of average
slowdown (6.1%), but with a better worse case (16.3%).

The fact that degradation remains present in some cases,
even though we have sequestered the applications on dis-
joint sets of cores and (in the biased case) provided them
with optimally-sized cache allocations, implies that either
the cache is just not large enough to accommodate both
applications or bandwidth contention on the on-chip ring
interconnect or off-chip DRAM interface is to blame. Prior
work [23] has proposed mechanisms to partition such band-
width resources, but unfortunately they are not available on
extant hardware. While there is little we can do to miti-
gate the contention that exists on our platform, there are
a number of points where energy optimization through con-
solidation is still possible.

We also examined more extreme cases with one foreground
application and two or more copies of the background appli-
cations continuously running. However, adding additional
applications only further increased contention for cache ca-
pacity and DRAM bandwidth. As expected the benchmarks
already experiencing degradation with one background ap-
plication, slowed down further when more were added.

C1
+

C1
C1

+
C2

C1
+

C3
C1

+
C4

C1
+

C5
C1

+
C6

C2
+

C2
C2

+
C3

C2
+

C4
C2

+
C5

C2
+

C6
C3

+
C3

C3
+

C4
C3

+
C5

C3
+

C6
C4

+
C4

C4
+

C5
C4

+
C6

C5
+

C5
C5

+
C6

C6
+

C6
Av

er
ag

e0.0

0.2

0.4

0.6

0.8

1.0

1.2
Re

la
tiv

e
So

ck
et

 E
ne

rg
y

Shared Fair Biased

Figure 10: Socket energy values when running with a shared,
evenly and optimally partitioned LLC normalized to the ap-
plications running sequentially on the whole machine. Con-
solidating applications results in an average energy improve-
ment of 12% over running alone.

C1
+

C1
C1

+
C2

C1
+

C3
C1

+
C4

C1
+

C5
C1

+
C6

C2
+

C2
C2

+
C3

C2
+

C4
C2

+
C5

C2
+

C6
C3

+
C3

C3
+

C4
C3

+
C5

C3
+

C6
C4

+
C4

C4
+

C5
C4

+
C6

C5
+

C5
C5

+
C6

C6
+

C6
Av

er
ag

e0.0

0.5

1.0

1.5

2.0

W
ei

gh
te

d
Sp

ee
du

p

Shared Fair Biased

Figure 11: Relative performance of different partitioning
strategies normalized to applications running sequentially
on the whole machine. Consolidating applications results in
an average speedup of 60% over running alone.

5.3 Energy Efficiency of Consolidation
Figure 10 compares running each application once, one

after another, on the whole machine, with the different par-
titioning policies that run both applications once, concur-
rently, on the machine. The theoretical upper bound in
energy savings is 50% and decreases as the applications
have more disparate execution lengths. We measure an
average energy improvement of 12% and a maximum of
37% for biased. The two other policies have similar but
slightly lower improvements. The results differ mainly when
459.GemsFDTD is running with fop, dedup or batik.

Figure 11 shows the weighted speedup of the application
pairs running together as compared to each running alone.
The results show an average speedup of 60% using biased
partitioning and slightly lower for shared and fair. In 16% of
the cases (mainly involving 459.GemsFDTD), biased provides
significant improvements over shared (20% on average).

0 50 100 150 200 250 300 350
Retired Instructions (Billions)

0

20

40

60

80

100

120

140

160

LL
C

 M
is

se
s

P
e
r

K
ilo

 I
n
st

ru
ct

io
n

2 ways
3 ways
4 ways
5 ways

6 ways
7 ways
8 ways
9 ways

10 ways
11 ways
12 ways
Dynamic

Figure 12: 429.mcf LLC MPKI phase changes with different
static and dynamic LLC allocations.

6. DYNAMIC CACHE PARTITIONING
In the previous section, we saw the potential for consolida-

tion and found that for a static partition, biased partition-
ing provides the lowest average and worst-case foreground
degradation, and the highest average performance and en-
ergy improvements. However, choosing the best partition
would require testing all possible allocations, which is infea-
sible in practice, and such an optimal static allocation still
cannot take into account phase-based behavior of the appli-
cations. In this section, we present our implementation of a
dynamic cache-capacity allocation framework controlled by
a utility-based policy to maximize background throughput
and mitigate performance penalties without an oracle.

6.1 Opportunity
Applications often have phases with very different re-

source requirements. For example, Figure 12 shows the num-
ber of LLC misses per kilo-instruction (MPKI) for different
cache allocations for 429.mcf. This application transitions 5
times between low LLC MPKI and high LLC MPKI phases.
In the phases with high MPKI, 429.mcf requires 4.5MB (9
ways) to reach 95% of its maximum performance, while in
the other phases, only 1.5MB (3 ways) are required. The
phases with low MPKI represent opportunities to reduce the
amount of LLC allocated to the application without nega-
tively impacting its performance.

6.2 Phase-Detection Framework
We have created a software framework to monitor behav-

ior and respond to phase changes by reallocating cache re-
sources. We use libpfm to monitor the application’s perfor-
mance. The framework runs on the hyperthreads assigned
to the application, and has negligible impact on applica-
tion performance when passively monitoring behavior. The
framework detects phase changes by looking for changes in
LLC misses per kilo-instruction over a 100millisecond inter-
val. Algorithm 6.1 shows the phase-detection pseudocode.

6.3 Dynamic Partitioning Algorithm
When a phase change is detected, a dynamic reallocation

algorithm is activated to determine the LLC capacity re-
quired by the new phase. Specifically, when the foreground

Algorithm 6.1: Phase Detection Algorithm()

if not new phase {
if (|avg MPKI-current MPKI| >MPKI THR1) {
new phase=1; /* static variable with initial value 0 */
return 2; /* new phase just started */

}
}
else if (|avg MPKI-current MPKI| <MPKI THR2)
new phase = 0; /* phase change just finished */

return new phase;

Algorithm 6.2: Dynamic Cache Partitioning Algorithm()

if (phase det()==2) {
phase starts=1;
set cache to 6MB(fg)

}
else if (phase det()==0 and phase starts==1) {
if (|last MPKI-current MPKI | < MPKI THR3) {
if (cache allocated > 1MB)
allocate less cache(fg);

else phase starts=0; /* Keep 1MB */
}
else {
if (cache allocated < 6MB)
allocate more cache(fg); /* Keep previous allocation */

phase starts=0;
}

}
last MPKI = current MPKI;

application starts or changes phase, the framework gives the
application as much cache as possible (11 ways on our ma-
chine). The framework then gradually reduces the appli-
cation’s LLC allocation until negative performance effect is
observed (MPKI goes up). The background application(s)
are given the remaining LLC resources. On a reallocation,
the data is not flushed since the partitioning mechanism only
affects the replacement algorithm, which limits the perfor-
mance overhead of reallocating. Algorithm 6.2 shows the
pseudocode for our reallocation algorithm.

This algorithm uses several hysteresis effects in order to
preserve the foreground application’s performance. When
dealing with applications with rapidly fluctuating MPKI
rate, the framework will assign a LLC allocation that might
be unnecessarily large. Additionally, data remaining in deal-
located ways can hide the performance effects of the reallo-
cation, allowing too much shrinkage. However, as soon as
another application evicts the leftover data, a phase change
will be detected and reallocation will return the foreground
application to a suitable capacity.

A sensitivity study to set the MPKI derivative thresholds
for phase detection and allocation size found selected pa-
rameters: MPKI THR1 = 0.02, MPKI THR2 = 0.02,
and MPKI THR3 = 0.05. We’ve found the results largely
insensitive to small parameter changes.

The algorithm is applicable in cases where there are mul-
tiple background applications, as long as they can all be
treated as peers. By pinning the background peers to cer-
tain cores, their accesses to the cache all become routed to
the same partition, within which they contend for capacity.
This extension does not affect the performance monitoring
and cache reallocation performed on behalf of the foreground
application. Supporting multiple latency-sensitive applica-
tions would require a more complex algorithm, as it is en-
tirely possible for them to oversubscribe the cache, and in
this case some component of the system would have to judge
their relative utility [5]. We do believe that the performance

C1
+

C1
C1

+
C2

C1
+

C3
C1

+
C4

C1
+

C5
C1

+
C6

C2
+

C1
C2

+
C2

C2
+

C3
C2

+
C4

C2
+

C5
C2

+
C6

C3
+

C1
C3

+
C2

C3
+

C3
C3

+
C4

C3
+

C5
C3

+
C6

C4
+

C1
C4

+
C2

C4
+

C3
C4

+
C4

C4
+

C5
C4

+
C6

C5
+

C1
C5

+
C2

C5
+

C3
C5

+
C4

C5
+

C5
C5

+
C6

C6
+

C1
C6

+
C2

C6
+

C3
C6

+
C4

C6
+

C5
C6

+
C6

Av
er

ag
e0.5

1.0

1.5

2.0

2.5

3.0

Re
l.

Ba
ck

gr
ou

nd
 T

hr
ou

gh
pu

t Shared Dynamic

Figure 13: Summary of background rate improvement com-
pared to the best static cache allocation for the foreground
application. Our dynamic cache-partitioning approach im-
proves background throughput an average of 19%. Sharing
the cache improves throughput an average of 53%, but pro-
vides no performance isolation.

monitoring aspect of our algorithm would be important to
making such a judgement.

6.4 Efficacy
Across our benchmarks, we find that the framework is

able to achieve foreground performance within 2% of the
best static allocation. Figure 13 shows the improved back-
ground throughput as a result of the dynamic adaptation.
In some cases we see significant throughput increases (up
to 2.5x), resulting in a 19% throughput on average across
all the pairs. For many cases, the limited number of phases
in the foreground application or its high sensitivity to LLC
allocation size does not allow for additional improvements
over the best static policy. However, even in those cases the
dynamic partitioning provides value, because it is a realiz-
able way to achieve the performance of the optimal static
allocation without application profiling. For comparison,
using a shared LLC without partitioning results in a 53%
improvement over the best static allocation. However, as
shown before, this scenario can often result in significant
performance loss (up to 35%) for the foreground applica-
tion. As we saw in Section 4, performance improvements
translate directly to energy improvements in our system, so
we do not show the energy results.

While the dynamic partitioning mechanism does not al-
ways select the best cache capacity allocation for any one
phase, overall it is still able to mitigate foreground degra-
dation and increase background throughput. A suboptimal
selection during some phases has minimal impact on fore-
ground application latency, and overall the capacity allo-
cated to the foreground application is smaller than when it
is given its optimal static allocation for the entire runtime.

7. RELATED WORK
Several authors have evaluated way-partitioned caches

with multiprogrammed workloads [16, 20, 29, 33] including

using partitioning to provide a minimum performance to
applications [20,26]. However, these proposals were all eval-
uated on a simulator, and all but [20] used sequential appli-
cations — leading to different conclusions.

The 6MB LLC in our system is often large enough for
two applications to share without degradation, irrespective
of cache partitioning policy. This behavior was not observed
in previous studies based on simulators because the studies
limited their cache sizes to 1–2MB, which is closer to the
working-set size of many of the studied applications.

Even in cases where degradation is present, LLC parti-
tioning algorithms provide performance improvements for
only a minority of our workloads. Consequently, relative to
prior work, we measure reduced average performance im-
provements of LLC partitioning algorithms over naive shar-
ing strategies (less than 3%). Simulation-based studies have
reported much larger performance improvements [20,29,30],
likely due to the reduced LLC capacity in their simulations,
or possibly because they do not consider randomized LLC-
indexing functions, memory-mapping functions, prefetchers,
or memory-bandwidth contention.

Several groups have studied the impact of workload con-
solidation in shared caches [36,37,39] for datacenter applica-
tions. They do not explore hardware solutions such as cache
partitioning, or client-side workloads.

Other authors make use of page coloring to partition the
LLC by sets [9, 24, 34]. Cho and Lin [9] experiment with
page coloring on a simulator to reduce access latency in
distributed caches. Tam et al. [34] map pages into each
core’s private color using static decisions with Linux on a
POWER5. Lin et al. [24] evaluate a dynamic scheme us-
ing page coloring on an Intel Xeon 5160 processor. How-
ever, there is a significant performance overhead inherent
to changing the color of a page. Another challenge is that
the number of available partitions is a function of page size,
so increasing page size can make page coloring ineffective
or impossible [9, 24, 34]. The experiments on real machines
use only 2 running threads and make decisions only every
several seconds. In contrast, our approach can change LLC
partitions much more quickly and with minimal overhead.

Others have proposed hardware support to obtain the
cache miss rate, IPC curves or hardware utilization infor-
mation [7, 26, 29] to provide QoS. These approaches require
hardware modifications and will not work on current pro-
cessors. Chanda et al. [8] explored on-line methods to ex-
trapolate these curves, but their approach has significant
complexity and overhead. Tam et al. [35] use performance
counters on POWER5 to predict miss curves for different
page coloring assignments. They use a stack simulator and
an LLC address trace to obtain the miss curve and stati-
cally assign colors. Others have measured LLC misses to
identify thrashing applications [38] or predict contention [13]
enabling the scheduler to pick co-running applications with
more affinity. Xie and Loh [38] further use the LLC measure-
ments to partition the cache according to their classification
of applications as thrashing or non-thrashing. LLC misses
can also be used to change the replacement policy of the
LLC to partition the cache at finer granularity [30].

8. DISCUSSION AND CONCLUSIONS
This paper measures the energy and performance of an

LLC-partitioning scheme on real x86 hardware using a di-
verse set of full-sized serial and parallel applications. These

measurements show that optimizing for performance is still
also the optimal strategy for energy optimization, but that
a significant number of applications do not need to run on
all the available cores or with all the LLC capacity to reach
an energy-optimal execution point. Based on this charac-
terization, we evaluated the potential to co-schedule dif-
ferent applications using LLC partitioning and CPU bind-
ing techniques. We succeed in significantly reducing energy
consumption (12% on average) and increasing performance
(60% on average), while minimizing the performance degra-
dation of the foreground applications (2% on average and
7% worst case) using LLC partitioning.

We found that for around half of our workloads, cache par-
titioning is unnecessary: most parallel applications do not
need more than 1MB LLC to reach their maximum perfor-
mance. Consequently, the 6MB LLC in our system (and
other current systems) is typically enough for two applica-
tions to share without degradation irrespective of cache par-
titioning policy. Simulation studies using cache sizes closer
to working set sizes (1–2MB), show excessive interference
and hence greater potential improvement from cache parti-
tioning (>10%).
We have also frequently been told by industry partners

that cache partitioning will be less effective than shared
caching because shared caching naturally adjusts the allo-
cation for each application dynamically, whereas cache par-
titioning does not let other applications reclaim unused re-
sources. Overall, while we find that naive LLC sharing can
often be effective, there can be a significant downside in
foreground performance degradation (35% worst case). Al-
though responsiveness may not matter in some domains,
it has become an increasingly crucial factor in the user-
experience for both mobile and warehouse-scale comput-
ing [1,2,17,31]. Additionally, we found that cache partition-
ing was actually more effective than shared caching on av-
erage: across the entire suite of applications, it provided in-
creased performance (60%) and energy (12%) improvements
versus shared caching (54% performance improvement and
10% energy) without the potential performance degradation.
The worst case was only 7%, and average foreground degra-
dation was just 2%. Furthermore, LLC partitioning algo-
rithms present significant performance improvements (20%
on average) in 16% of workloads (workloads comprised of
sensitive and aggressive LLC applications).

Static partitioning is impractical, as it would require pro-
filing of all applications before deployment and cannot re-
act to application phases or input-dependent behavior. We
found that a simple dynamic adjustment algorithm provided
an effective consolidation solution. Our lightweight online
dynamic partitioning algorithm maintained foreground per-
formance to within 2% of the best static partitioning, while
further increasing the background computation throughput
19% on average and by as much as 2.5× in some cases.
Finally, we determined that partitioning or other quality-

of-service mechanisms for memory bandwidth could poten-
tially be a further effective hardware addition to consider on
future systems. All of the worst-case foreground slowdowns
with cache partitioning (and without) were from the applica-
tions shown to be the most sensitive to memory bandwidth.
The slowdowns occurred even when the background applica-
tion did not have high bandwidth demands — implying that
in order to to achieve robust performance isolation, latency
quality-of-service in particular would need to improve.

9. ACKNOWLEDGEMENTS
We would especially like to thank everyone at Intel who

made it possible for us to use the cache-partitioning ma-
chine in this paper, including Opher Kahn, Andrew Her-
drich, Ravi Iyer, Gans Srinivasa, Mark Rowland, Ian Steiner
and Henry Gabb. We would also like to Scott Beamer, Chris
Celio, Shoaib Kamil, Leo Meyerovich, and David Sheffield
for allowing us to study their applications. Additionally,
we would like to thank our colleagues in the Par Lab for
their continual advice, support, and, feedback. Research
supported by Microsoft (Award 024263) and Intel (Award
024894) funding and by matching funding by U.C. Discovery
(Award DIG07-10227). Additional support comes from Par
Lab affiliates Nokia, NVIDIA, Oracle, and Samsung. M.
Moreto was supported by the Spanish Ministry of Science
under contract TIN2012-34557, a MEC/Fulbright Fellow-
ship, and by an AGAUR award (BE-DGR 2010).

10. REFERENCES
[1] Apple Inc. iOS App Programming Guide. http://developer.

apple.com/library/ios/DOCUMENTATION/iPhone/Conceptual/
iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf.

[2] L. A. Barroso and U. Hölzle. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines.
Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2009.

[3] S. Beamer, K. Asanovic, and D. A. Patterson. Searching for a
parent instead of fighting over children: A fast breadth-first
search implementation for graph500. Technical Report
UCB/EECS-2011-117, EECS Department, University of
California, Berkeley, Nov 2011.

[4] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[5] S. Bird, B. Smith, K. Asanović, and D. A. Patterson.
PACORA: Dynamically Optimizing Resource Allocations for
Interactive Applications. Technical report, University of
California, Berkeley, April 2013.

[6] S. M. Blackburn et al. The DaCapo benchmarks: Java
benchmarking development and analysis. In OOPSLA, pages
169–190, 2006.

[7] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou,
E. Fernandez, A. Ramirez, and M. Valero. Predictable
Performance in SMT Processors: Synergy between the OS and
SMTs. IEEE Trans. Computers, 55(7):785–799, 2006.

[8] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting
inter-thread cache contention on a chip multi-processor
architecture. In HPCA, pages 340 – 351, 2005.

[9] S. Cho and L. Jin. Managing distributed, shared l2 caches
through os-level page allocation. In MICRO, pages 455–468,
2006.

[10] J. Chong, G. Friedland, A. Janin, N. Morgan, and C. Oei.
Opportunities and challenges of parallelizing speech
recognition. In HotPar, 2010.

[11] S. Eranian. Perfmon2: a flexible performance monitoring
interface for linux. In Ottawa Linux Symposium, pages
269–288, 2006.

[12] H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and K. S.
McKinley. Looking back and looking forward: power,
performance, and upheaval. Commun. ACM, 55(7):105–114,
July 2012.

[13] A. Fedorova, S. Blagodurov, and S. Zhuravlev. Managing
contention for shared resources on multicore processors.
Commun. ACM, 53(2):49–57, 2010.

[14] M. Ferdman, A. Adileh, Y. O. Koçberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, and B. Falsafi. Clearing the clouds: a study of
emerging scale-out workloads on modern hardware. In
ASPLOS, pages 37–48, 2012.

[15] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. Assessing the
scalability of garbage collectors on many cores. In PLOS, pages
1–5, 2011.

[16] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for
providing quality of service in chip multi-processors. In
MICRO, 2007.

[17] J. L. Hennessy and D. A. Patterson. Computer Architecture -
A Quantitative Approach (5. ed.). Morgan Kaufmann, 2012.

[18] Intel Corp. Intel 64 and ia-32 architectures optimization
reference manual, June 2011.

[19] Intel Corp. Intel 64 and ia-32 architectures software developer’s
manual, March 2012.

[20] R. R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell,
Y. Solihin, L. R. Hsu, and S. K. Reinhardt. QoS policies and
architecture for cache/memory in CMP platforms. In
SIGMETRICS, pages 25–36, 2007.

[21] A. Jaleel. Memory characterization of workloads using
instrumentation-driven simulation – a pin-based memory
characterization of the spec cpu2000 and spec cpu2006
benchmark suites. Technical report, VSSAD, Intel Corporation,
2007.

[22] S. Kamil. Stencil probe, 2012.
http://www.cs.berkeley.edu/~skamil/projects/stencilprobe/.

[23] J. W. Lee, M. C. Ng, and K. Asanovic. Globally-synchronized
frames for guaranteed quality-of-service in on-chip networks. In
ISCA, pages 89–100, 2008.

[24] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Gaining insights into multicore cache
partitioning: Bridging the gap between simulation and real
systems. In HPCA, pages 367 –378, feb. 2008.

[25] L. A. Meyerovich, M. E. Torok, E. Atkinson, and R. Bodik.
Parallel schedule synthesis for attribute grammars. In PPoPP,
2013.

[26] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, and
M. Valero. FlexDCP: a QoS framework for CMP architectures.
SIGOPS Oper. Syst. Rev., 43(2):86–96, 2009.

[27] Perfmon2 webpage. perfmon2.sourceforge.net/.

[28] A. Phansalkar, A. Joshi, and L. K. John. Analysis of
redundancy and application balance in the spec cpu2006
benchmark suite. In ISCA, pages 412–423, 2007.

[29] M. K. Qureshi and Y. N. Patt. Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance, Runtime
Mechanism to Partition Shared Caches. In MICRO, pages
423–432, 2006.

[30] D. Sanchez and C. Kozyrakis. Vantage: Scalable and Efficient
Fine-Grain Cache Partitioning. In ISCA), June 2011.

[31] E. Schurman and J. Brutlag. The user and business impact of
server delays, additional bytes, and http chunking in web
search. In Velocity, 2009.

[32] Standard Performance Evaluation Corporation. SPEC CPU
2006 benchmark suite. http://www.spec.org.

[33] G. E. Suh, S. Devadas, and L. Rudolph. A New Memory
Monitoring Scheme for Memory-Aware Scheduling and
Partitioning. In HPCA, pages 117–128, 2002.

[34] D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing shared
l2 caches on multicore systems in software. In WIOSCA, 2007.

[35] D. K. Tam, R. Azimi, L. Soares, and M. Stumm. Rapidmrc:
approximating l2 miss rate curves on commodity systems for
online optimizations. In ASPLOS, pages 121–132, 2009.

[36] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa.
The impact of memory subsystem resource sharing on
datacenter applications. In ISCA, pages 283–294, 2011.

[37] C.-J. Wu and M. Martonosi. Characterization and dynamic
mitigation of intra-application cache interference. In ISPASS,
pages 2–11, 2011.

[38] Y. Xie and G. H. Loh. Scalable shared-cache management by
containing thrashing workloads. In HiPEAC, pages 262–276,
2010.

[39] E. Z. Zhang, Y. Jiang, and X. Shen. Does cache sharing on
modern CMP matter to the performance of contemporary
multithreaded programs? In PPoPP, pages 203–212, 2010.

