
TVLSI-00330-2009 1

Abstract—New generation embedded systems demand high

performance, efficiency and flexibility. Reconfigurable hardware

can provide all these features. However the costly reconfiguration

process and the lack of management support have prevented a

broader use of these resources. To solve these issues we have

developed a scheduler that deals with task-graphs at run-time,

steering its execution in the reconfigurable resources while

carrying out both prefetch and replacement techniques that

cooperate to hide most of the reconfiguration delays. In our

scheduling environment task-graphs are analyzed at design-time

to extract useful information. This information is used at run-time

to obtain near-optimal schedules, escaping from local-optimum

decisions, while only carrying out simple computations.

Moreover, we have developed a hardware implementation of the

scheduler that applies all the optimization techniques while

introducing a delay of only a few clock cycles. In the experiments

our scheduler clearly outperforms conventional run-time

schedulers based on As-Soon-As-Possible techniques. In addition,

our replacement policy, specially designed for reconfigurable

systems, achieves almost optimal results both regarding reuse and

performance.

Index Terms— Field Programmable Gate Arrays,

Reconfigurable Architectures, Task scheduling.

I. INTRODUCTION

n the last few years embedded devices have become more
and more complex, including functionality initially

developed for general purpose platforms such as multimedia
support (sound processing, texture rendering, image and video
displaying…). In fact the new generation of portable devices
has inherited the area and energy constraints of embedded
systems, and at the same time they must achieve the
performance required by multimedia applications. The best
way to meet these constraints is to include some HW support
that can speed up the execution, and even reduce the energy

Manuscript received August 25, 2009. This work was supported by the

Spanish Department of Science and Innovation under grants TIN2009-09806
and AYA2009-13300.

J. A. Clemente is with Computer Architecture Department, Universidad
Complutense de Madrid, Madrid, Spain (phone: +34 620390713; fax: +34
913947510; e-mail: ja.clemente@fdi.ucm.es).

J. Resano was with Computer Architecture Department, Universidad de
Complutense de Madrid, Madrid, Spain. He is now with the Computer Eng.
Department, Universidad de Zaragoza, Zaragoza, Spain (e-mail:
jresano@unizar.es).

C. González and D. Mozos are with Universidad Complutense de Madrid,
Madrid, Spain (e-mails: carlosgonzalez@fdi.ucm.es; mozos@fis.ucm.es).

consumption. Traditionally this migration was carried out
developing application-specific integrated circuits (ASICs),
which are silicon circuits customized for a particular use.
However, although using ASICs is a very efficient option three
important drawbacks prevent their use as a general solution.
Firstly, the HW area in embedded/portable devices is very
constrained. Hence only very critical functionality can be
migrated to HW. Secondly, developing a new ASIC involves
an increase in time-to-market, which is frequently a key factor
for the success of a platform. Finally, their functionality is
fixed, and cannot be updated in order to fix some detected
bugs, or improve the efficiency of the system.

One interesting option to overcome these three limitations is
to include reconfigurable HW resources: run-time
reconfiguration allows reusing the same HW for different
functionalities in order to meet the area constraints; the time-
to-market is considerably shorter for reconfigurable HW than
for ASICs, because the physical platform has been already
tested, and the new functionality can be tested in the target
board since the beginning of the design-cycle; finally, it offers
an interesting trade-off between both performance and
flexibility. Thus, this technology is especially suitable for
applications that have dynamic and/or unpredictable behavior.
In fact Sony™ has developed its own reconfigurable
architecture, and has included it in some portable devices [1].

In embedded systems, applications are often represented as
one or several Direct Acyclic Graphs (DAGs), where the
nodes specify computational tasks and the edges represent
precedence constraints. Managing efficiently the execution of
these graphs is critical for embedded systems. Therefore, it is
essential to optimize it. When dealing with reconfigurable
systems several issues must be taken into account in order to
deal with DAGs efficiently:

• The system must manage the task-graph information
and must guarantee that the execution meets the
precedence constraints.

• It must schedule the task execution attempting to
achieve the required performance.

• It must also efficiently schedule the run-time
reconfigurations. Most of current reconfigurable
devices only include one reconfiguration circuitry and
the reconfiguration latencies are frequently very
significant (of de order of milliseconds), hence if many
reconfigurations are demanded in a short period of
time, the performance of the system can be seriously
affected. When this happens the reconfiguration of the

A Hardware Implementation of a Run-Time
Scheduler for Reconfigurable Systems

Juan Antonio Clemente, Javier Resano, Carlos González and Daniel Mozos

I

TVLSI-00330-2009 2

most critical tasks must be scheduled in the first place
in order to minimize the reconfiguration overhead.

• Finally, it must attempt to optimize the use of the
reconfigurable resources. On the one hand, the system
must assign to each task a suitable resource. On the
other hand, since the system usually deals with
recurring tasks the scheduler must promote the reuse of
the most important tasks, avoiding their delay due to
the reconfiguration latency. This can be done applying
the proper replacement policy.

Moreover, all these problems must be addressed in such a

way that the run-time delay generated by all the
management/scheduling techniques is as low as possible, in
order to prevent performance degradations.

In this regard, we have developed a complete scheduling
flow targeting DAGs in a HW multi-tasking system, as well as
an efficient implementation of a scheduler that includes all
these optimization techniques. We have also tested our
implementation in a Virtex-II PRO FPGA.

The rest of the paper is organised as follows: next section
describes the contributions of this article. Section III shows a
motivational example and Section IV overviews the related
work. Section V describes in detail the proposed scheduling
flow. Section VI presents the implementation details of the
proposed scheduler and Section VII presents the experimental
results. Finally, Section VIII explains our conclusions and
indicates some lines for future work.

II. CONTRIBUTIONS OF THIS WORK

Our target system comprises a fixed number of
reconfigurable units (RUs) with similar area (as it is shown in
Fig. 1), where tasks can be reconfigured and executed. These
RUs are connected among them by means of an
interconnection network as it was initially proposed in [2].
Our scheduler receives as input a task graph (represented as a
DAG) and steers its execution in our HW multi-tasking system
taking into account its internal data dependencies. A task is the
basic scheduling unit (i.e. a node of a task graph). Other
processing elements may be present in the platform, as
processors, DSPs, GPUs… We assume that the OS or
middleware assigns the task graphs to the processing elements.

The proposed algorithm is a mixed design-time/run-time
approach, since we are looking for a good-quality schedule but
without carrying out too many computations at run-time. At
design-time, graphs are analyzed in order to extract some
useful information that will be used at run-time. Basically we
characterize each task with three parameters: weight,
criticality, and mobility. At run-time the scheduler uses the
weight parameter to decide the reconfiguration order. The idea
is to reconfigure first those tasks that have a greater impact in
the critical path of the graph. The criticality identifies the
delays that the reconfiguration of each task may generate, and
it is used to assign greater priority to the tasks that generate
greater delays. Finally, the mobility is used to escape from

local-optimum scheduling decisions delaying at run-time some
reconfigurations.

The scheduler steers the execution of the task graphs
sequentially in the RUs taking into account both the
precedence constraints and the available resources. In addition
it applies a prefetch approach in order to carry out the
reconfigurations in advance. The configuration that is fetched
in advance is selected according to the weight of the
candidates. Since several important scheduling decisions must
be taken at run-time, we initially selected an As Soon As

Possible (ASAP) scheduling strategy since it provides a good
trade-off between the run-time complexity and the quality of
the schedules. However, it is well-known that greedy ASAP
strategies often fall into locally optimum decisions that can
reduce the performance of the system. To attempt to escape
from these local-optimum solutions, while increasing the run-
time complexity as little as possible, we have developed an
extended ASAP approach that sometimes delays the
reconfiguration of a task taking into account its mobility and
the state of the system.

In addition the scheduler also applies a replacement policy
designed not only to maximize the task reuse when dealing
with recurring applications, but also to improve the overall
system performance collaborating with the prefetch technique.
In fact, the replacement policy is the key factor to decide
whether to delay the reconfiguration of a task or not.

We have evaluated our scheduler by executing task graphs
extracted from actual multimedia applications. We have
compared the results obtained by our scheduler with several
reference systems that apply an ASAP scheduling approach
combined with well-known replacement policies, such as LRU
(Last Recently Used) or LFD (Longest Forward Distance).
The latter case is especially interesting since LFD is the
replacement policy that guarantees the optimal reuse
percentage as it was demonstrated in [3]. However, LFD

Interconnection
network

DSPProc. 2

RU1 RU2

RU3 RU4

Rec. HW Proc. 1

OS/Middleware:
Assigns tasks to the
different resources

DAG

Scheduler

Running Applications

t=2 t=8t=5 t=12

…

Target platform I/O

SRAM SDRAM

Fig. 1. Target architecture and execution scheme.

TVLSI-00330-2009 3

cannot be applied in dynamic scenarios, because it can only be
used in static systems where the future events are known.
Nevertheless, LFD can be used as a reference to obtain an
upper-bound of the reuse percentage for a given experiment.
The experiments demonstrate that our replacement heuristic
achieves almost as good results regarding reuse as LFD, and
that our scheduler always obtains better results regarding
performance than an ASAP approach, even when it applies the
LFD replacement heuristic.

We have also evaluated the run-time overheads generated
by our approach. For this purpose, we have developed two
different versions of the system. The first one is a SW module
that is executed in an embedded processor. However, for some
benchmarks this version generates significant overheads,
mostly due to the management of the complex data-structures
and the HW/SW communications. To reduce these overheads,
we have also developed an efficient implementation of the run-
time scheduler using some of the reconfigurable resources.
This implementation delays the execution only a few clock
cycles. These two versions offer different trade-offs between
the run-time management overhead and the cost needed to
implement the scheduler.

There are many other areas of interest regarding HW multi-
tasking systems. One of them is task placement. This may be
sometimes a major problem, since a sub-optimal placement
can lead to infeasible schedules that do not meet the system
constraints, as it is proved in [4]. Frequently the reason is that
the communication topology is not compatible with the
selected mapping. In our target architecture we assume that the
communication infrastructure is contention-aware and provides
enough bandwidth so that even the worst-case communication
is performed correctly and efficiently. This can be achieved by
means of a bus with enough bandwidth or a contention-aware
Network on Chip that implements a wormhole routing
algorithm or any similar technique that guarantees that the
latency of a transmitted message between 2 whatever nodes is
almost constant, no matter the distance between them. Hence,
under these assumptions we can safely assume that any task
can be safely implemented on any of the RUs.

Other areas of interest regarding HW multi-tasking systems
are inter-task communications, HW/SW partitioning, area
fragmentation, low power concerns… However, these issues
are orthogonal to the problem that we are targeting. Hence, we
will also assume that the system OS or the middleware will
take care of these decisions and we will just focus on what
happens once a task graph has been assigned to the
reconfigurable resources. To test our scheduler we have
developed a simplified simulation environment and
implemented it in a FPGA. This environment simulates the
reconfiguration and the execution of task-graphs using
programmable timers to simulate the behaviour of the RUs,
and provides clock-cycle precision to measure the overheads
generated by the scheduler.

III. MOTIVATIONAL EXAMPLE

Fig. 2 shows a motivational example that illustrates how our
scheduler can escape from local-optimum solutions delaying
some reconfigurations. In this example the task graph is
executed twice in a system with 3 RUs, applying prefetch with
an ASAP approach (a) and delaying some reconfigurations (b).

In both approaches it can be seen that the prefetch technique
is very powerful when dealing with DAGs since it hides the
latency of most reconfigurations. The simplest way to apply
prefetch is using an ASAP approach, since it is very simple to
implement and it generally will lead to good schedules. When
more than one task can be reconfigured we select the one with
greater weight (as we will describe later). In this example, both
tasks 2 and 3 are ready for reconfiguration simultaneously, and
task 3 is selected since it is part of the critical path. With this
approach the latency of three of the four tasks is hidden. Task
1 is the only one that generates delays due to its
reconfigurations. In our scheduling environment we will say
that task 1 is critical whereas the others are non-critical.

However, although our replacement policy assigns greater
priority to Task 1, in Fig. 2 (a) this task is replaced by Task 4,
because in that instant it was the only available candidate. For
this reason in the second iteration the reconfiguration of Task
1 introduces again a delay in the execution.

This delay will disappear if we delay the reconfiguration of
task 4 (Fig. 2 (b)). In this case, our scheduler knows that the
reconfiguration of Task 4 can be delayed without any
performance degradation (in Section V we will explain how
this information is obtained). Hence, when Task 1 is selected
as the replacement victim, the scheduler decides to delay this
reconfiguration waiting for the following event (i.e. the end of

Reconfiguration

Reconfigured but idle

N Execution of task N

RU1
RU2
RU3

1
2

3

4

1

2 3

4

1
2

3

4

(a) ASAP execution

time t1

1st execution 2nd execution

TASK GRAPH

RU1
RU2
RU3

1
2

3
4

1
2

3
4

(b) Optimal execution

time

1st execution 2nd execution

t2 t1

Fig. 2. Execution of a task graph in a platform with three RUs applying an
ASAP approach (a) and using our scheduling technique that achieves the
optimal solution delaying one of the reconfigurations (b).

TVLSI-00330-2009 4

the execution of Task 2). Thus, when Task 2 finishes its
execution the replacement policy can select between two
replacement victims (tasks 1 and 2), and it will select Task 2
since it is non critical. As a consequence, when the task graph
is executed again, Task 1 will be directly reused and no
reconfiguration will generate any delay in the execution.

IV. RELATED WORK

During recent years many research groups have developed
techniques that attempt to reduce the reconfiguration overhead.
And interesting survey of most of them can be found in [5].

Many authors, such as [2, 6, 7, 8, 9] have proposed to build
a HW multi-tasking platform by dividing the entire
reconfigurable area into smaller RUs, The first implementation
of such a system in a commercial FPGA was presented by
Marescaux et al. in [2]. In this work, the authors propose to
divide the entire reconfigurable area into identical tiles,
connected among them by an interconnection network (ICN).
Recently Nollet et al. [10] have proposed to extend this
approach applying the idea of configuration hierarchy to build
a reconfigurable Multi-Processor System-on-a-Chip (MP-
SoC). Basically, instead of executing dedicated HW tasks in
the reconfigurable resources, they use these resources to
implement programmable softcores that will execute SW tasks.
They have developed task mapping heuristics to assign tasks to
the different processors (both hard- and soft-processors),
taking into account the communication topology. We believe
that the ideas of this work are compatible with our approach,
although we are not focusing on soft-cores.

In [6], Walder et al. present a run-time environment to
execute HW tasks by partially reconfiguring a Xilinx™ Virtex
II PRO. This work does not deal with task-graphs, but with
independent tasks, and the main objective is to develop a
partition technique to decide the optimal size of the RUs. In
our work we assume that this has already been decided, hence
this work is again orthogonal to our work.

In [7], Qu et al. propose adding more reconfiguration
controllers to carry out several reconfigurations in parallel.
This could improve the efficiency of a reconfigurable multi-
tasking system, but currently the commercial platforms only
include one reconfiguration controller.

In [11] and [12] the authors present two interesting
approaches for HW multi-tasking. In this case the objective is
to take full advantage of the data-parallelism for a given
application by replicating the same task several times. This is
again compatible with our work. Several versions of the same
task with different level of data parallelism can be identified at
design-time, and at run-time the OS or the middleware could
select the appropriated one and then send it to our DAG
scheduler. In fact this is what we have done in order to
generate one of the benchmarks that we will use in the
experimental section (Parallel-JPEG).

Other interesting contributions for HW multi-tasking
systems are the research efforts to develop OS support to

simplify the use of the reconfigurable HW. Some relevant
examples are the works developed by Kosciuszkiewicz et al.
[13] and H. Kwok-Hay So et al. [14]. They propose to extend
an Embedded Linux OS to support HW tasks. The idea is to
provide support to let the user transparently deal with HW
tasks at run-time as they were regular threads. A related topic
is how to decide, again transparently to the user, which tasks
must be executed in the reconfigurable resources. HW/SW
partitioning has been a very active research field during the
last decade: in [15], Fu and Compton deal with a HW/SW
multitasking system, which includes reconfigurable resources
and a UltraSparc processor. In order to improve the
performance some tasks are assigned to the reconfigurable
HW. They have developed several algorithms to select these
tasks taking into account the needs of each application, the
available resources, and the reconfiguration overheads.

Previously some research groups have proposed to include
HW scheduling support for reconfigurable systems. In [8], the
authors propose a HW micro-architecture to deal with task
management at run-time efficiently applying a list-scheduling
heuristic. However, the authors did not implement their design,
but they only included it in their specific simulation
environment. In [9] the authors have extended [8] in order to
support control dependencies in the task graph. However,
again they do not implement their approach. Moreover, they
assume that all the reconfigurations can be carried out in
parallel; hence they do not need to schedule the
reconfigurations. This simplifies considerably their scheduler.
However, as it was explained before, currently this is not a
realistic assumption. In addition, they do not provide
replacement support, and they follow a greedy list-scheduling
approach that cannot escape from local-optimum decisions. In
[16] the authors propose a scheduling methodology for a real-
time system based on reconfigurable HW and implement it in a
FPGA. They use an earliest-deadline first approach but
grouping several tasks in order to apply efficiently full
reconfigurations. Since they do not support partial
reconfiguration, they do not have to apply any prefetch
approach or a replacement policy because they only have one
RU. In addition they deal with independent periodic tasks;
hence the scheduling support that they have developed is
completely different from our approach. Hence our work
clearly provides important novel contributions. First, we not
only provide a prefetch approach, which was initially proposed
in [17], but also a replacement technique designed to
collaborate with our scheduler and improve the overall results.
Second, we have found a simple way to escape from local
optimum decisions. In this regard, many researchers have
proposed off-line scheduling techniques that can escape from
local optimum solutions. However, when dealing with on-line
systems this is much more complex and only simple (and
mostly greedy) algorithms are used as list-scheduling or
earliest-deadline first. Third, we have implemented our
scheduler and tested it in a FPGA using graphs extracted from
actual multimedia applications. Fourth, we have implemented

TVLSI-00330-2009 5

an equivalent SW version and analyzed the design trade-offs.
 Our research group has been already active in this field for

many years. We already presented a scheduling environment
for reconfigurable systems in [18] and [19]. In these works we
proposed several techniques that also deal with task-graphs at
run-time. However, in a recent work [20] we identified that
even our simple techniques generate important overheads
when dealing at run-time with complex data structures, such as
task-graphs, especially if they were executed in an embedded
processor. Hence we decided to develop a generic HW task-
graph execution manager for reconfigurable systems [21]. This
module receives as inputs a task-graph and its schedule and
steers the execution of that task-graph following the
instructions given in the schedule. The main achievement
presented here was a HW implementation of that manager,
which significantly speeds up this management process with
respect to an equivalent SW version.

The next step has been to add a scheduling layer to this
management module, thereby developing a task-graph
scheduler for reconfigurable systems. Of course, we have tried
to keep those ideas that proved to be useful in our previous
work, such as a replacement policy that collaborates with the
scheduler, and trying to extract useful information at design-
time. However, we have developed new techniques that can be
efficiently implemented in HW, and we have extracted some
extra information at design-time. A preliminary version of this
work has been published in [22]. At that time our scheduler
applied a simple ASAP approach, and our HW implementation
was very area-hungry. Since then, we have developed a new
scheduler that delays some reconfigurations in order to escape
from local-optimum decisions, we have drastically improved
the area scalability of our design, we have improved the
replacement strategy, and we have carried out new
experiments in order to better test our approach.

V. THE SCHEDULING FLOW

In this section we will explain the proposed scheduling flow.
In the following, we will refer to a node of a task graph as a
task.

Our scheduler flow includes two phases: design-time and
run-time. At design-time, the task graphs are analyzed in order
to extract some information that the scheduler will use to
optimize its decisions. At run-time the scheduler steers the
execution of the graph in the set of RUs) of the proposed
architecture, applying a prefetch technique and a replacement
policy and taking into account the mobility of the tasks.

The next sub-sections describe the design-time and the run-

time phases, respectively.

A. Design-time phase

This phase is basically a compilation phase, which is
necessary in order to extract useful information that will be
used at run-time. Each task is characterized with three
parameters: weight, criticality and mobility.

1) Weight calculation

Initially the scheduler assigns a weight to each task
according to this simple algorithm: the weight of a leaf task
(those tasks that have no successors) is just its execution time.
For the rest of the tasks, their weight is the addition of their
execution time and the maximum of the weights of all their
successors. An example of this process is shown in Fig. 3 (a).
Thus, according to the figure, W(task4)=6; W(task2)=8+6=14;
W(task3)=16+6=22 and W(task1)= 12+max(14, 22)=34.

We assume that we have reliable estimations of the
execution time of each task. Nevertheless, if the execution time
of the tasks was variable (for instance, depending on the input
data), the scheduler could adopt a solution similar to the one
proposed in [23], where the authors suggest creating several
graphs for the same task (called scenarios) and then choosing
the one that best fits to the current conditions. These scenarios
are identified at design-time; hence if it was necessary to apply
this technique, the scheduling flow that we propose would
continue being valid.

The weights represent the impact of the tasks in the critical
path of the task graph. Thus, if Weight(A) > Weight(B), it
means that A must be loaded before B. Hence, once this
process is performed, all the tasks are sorted decreasingly
according to their weights to determine the sequence of

reconfigurations that the scheduler will follow at run-time.
Thus, in Fig. 3 (a), this sequence is 1-3-2-4.

2) Critical tasks identification

The second step identifies which tasks are especially critical

for the system. The goal of the algorithm is to obtain the
minimum set of tasks that fulfill the following condition: if
they are reused (and therefore they do not generate any delay
due to the reconfiguration latency), the scheduler will be able
to hide the reconfiguration overhead of the remaining (i.e. non-
critical) tasks. It is important to point out that at design-time

1

e.t.: Execution time

n: Non critical task
n: Critical task

Reconfiguration that
generates overhead
Reconfiguration that does
not generate overhead

(m): Criticality

RU1
RU2
RU3

1
2

3

4

e.t. 12
W 34

e.t. 8
W 14

e.t. 16
W 22

e.t. 6
W 6

time

1st iteration 2nd iteration

TASK GRAPH

1(4)
2

3

4

2

4

3

(a) Sequence of reconfigurations: 1-3-2-4

W: Weight

(b) Critical task identification process:

Fig. 3. Example of the algorithms for the weight calculation (a) and the
critical -task identification (b). The reconfiguration latency is always 4 ms.

TVLSI-00330-2009 6

we know how our scheduler will work at run-time; hence we
can identify the critical tasks at design-time, saving runtime
computations. These tasks will be labeled as “critical tasks”,
and the scheduler will assign them a value of criticality that
represents the delay that they will generate when they are not
reused. At run-time, the replacement policy will take into
account this information assigning greater priority to the
critical tasks.

Fig. 4 shows the pseudo-code of this algorithm. Firstly, the
set of critical tasks (CT) is initialized to the whole set of tasks
in the task-graph (line 1). Then, the function schedule

(task_graph, CT) (line 2) is called. This function schedules the
task-graph assuming that all the tasks in the CT set are reused
and returns a reference schedule (ref_sch). Any scheduling
algorithm can be used in this step. Since these computations
are carried out at design-time, in this case we use a
branch&bound-based scheduler that guarantees the optimal
solution. Hence, as initially all the tasks have been assigned to
CT, in this step we obtain an ideal schedule with no
reconfiguration overhead. This ideal schedule is used as a
reference during the critical-task identification process.

The objective of this process is to find a schedule that
provides the same performance than ref_sch, but with the
minimum number of tasks assigned to CT. We initialize CT as
empty (line 3) and we start an iterative process (lines 5-12).
The while loop starts computing a new schedule (current_sch,
line 6) and compares its execution time with the execution
time of ref_sch (line 7). If both schedules have the same
execution time, the iterative process finishes. Otherwise the
function compare identifies which tasks have been delayed in
current_sch (line 10). In the next step (line 11) the function
max_weight identifies the delayed task with the greatest
weight, and finally this task is added to the CT set (line 12).

Fig. 3 (b) depicts an example of this process. As it can be
seen in the figure, all the tasks in the graph are initially labeled
as non critical. Then, the algorithm performs the first iteration
of the loop and identifies a 4 ms delay (reconfiguration of
Task 1) compared to the ideal execution. Hence, this task is
labeled as critical, with a criticality of 4. In the following
iteration of the loop, Task 1 is reused, and in this case the

configurations of Tasks 2, 3 and 4 do not generate any
execution time overhead. Hence the algorithm stops and tasks
2, 3 and 4 remain labeled as non critical.

3) Mobility calculation

Finally, the scheduler assigns a value of mobility to each

task. This parameter identifies how many times a
reconfiguration can be delayed without generating any
overhead in the task-graph execution. More precisely, this
value represents how many events can be skipped before
reconfiguring a given task without generating any delay. This
means that the reconfiguration circuitry is ready, and that at
least one of the RUs is available, but for some reason our
scheduler decides to delay the reconfiguration. In fact the
reason is always the same: the replacement policy has selected
as a victim a task that the scheduler prefers not to replace.
Hence the scheduler will check the mobility, and if there is still
margin for delaying the reconfiguration, it will wait until the
following scheduling event hoping that by that time the
replacement policy will find a less important victim.

Fig. 5 shows the pseudo-code of this algorithm. Initially all
the mobility of each task is initialized to 0. Then the process
starts identifying the critical and the non-critical tasks of the
task graph and storing them in CT and NCT, respectively (1-2).
(Note that by definition the critical tasks have no mobility
because even if their reconfiguration is scheduled ASAP they
will generate a delay). In the main loop (3-15) the algorithm
sequentially extracts a task t from NCT (4), and the function
schedule () obtains a first schedule (ref_sch) assuming that t
has mobility 0. Then, the do-while loop (6-13) tentatively
assigns a greater mobility value (7) to t and calculates a new
schedule (new_sch), but this time delaying the reconfiguration
of t as many times as the value of t.mobility. This is again done
in the function schedule () (8). Then, the algorithm checks if it
is feasible to assign that new mobility to t without degrading
the performance of the system (9). Thus, if diff>0 (10), an
extra overhead has been generated; hence the algorithm

Mobility assignment:
1. CT := obtain_critical_tasks (task_graph);
2. NCT := obtain_non_critical_tasks (task_graph);
3. WHILE (NCT ≠ Ø){

/* Get a task from NCT */
4. t := get_task(NCT);

/* Schedule with previous t.mobility */
5. ref_sch := schedule (task_graph, CT);
6. DO{
7. t.mobility++;

/* Schedule with new t.mobility */
8. new_sch := schedule (task_graph, CT);
9. diff := ex_time (new_sch) – ex_time (ref_sch);
10. IF (diff > 0){
11. t.mobility--;
12. }
13. }WHILE (diff == 0);
14. remove (t, NCT);
15.}

Fig. 5. Algorithm to assign the mobility to the non-critical tasks.

Critical tasks (CT) identification:
1. CT := whole_set_of_tasks (task_graph);
2. ref_sch := schedule (task_graph, CT);
3. CT := Ø;
4. end := 0;
5. WHILE (not end){
6. current_sch := schedule (task_graph, CT);
7. IF (ex_time (current_sch) == ex_time (ref_sch)){
8. end := 1;
9. }ELSE{
10. delayed_tasks := compare (current_sch, ref_sch);
11. t := max_weight (delayed_tasks);
12. add_critical_task (t, CT);
13. }
14.}
15.RETURN CT;

Fig. 4. Algorithm to identify the critical tasks.

TVLSI-00330-2009 7

restores the former mobility value to t (11) and exits from the
do-while loop (13). Finally, the task is removed from NCT.
The while loop continues until NCT is empty.

Fig. 6 illustrates this process with an example. Firstly, the
algorithm selects the non-critical tasks of the graph: 2, 3 and 4.
For Task 3, it attempts to assign a mobility of 1. However,
when the scheduler delays its reconfiguration it generates a
delay in the execution of 4 ms. Hence, the mobility of Task 3
is set to 0. On the contrary, Task 2 and 4 can be delayed
without any performance degradation. Hence the scheduler
assigns them a mobility of 1 in the first iteration. Afterwards it
attempts to assign a value of 2, but in both cases new
overheads are generated. Hence, the mobility of Task 2 and 4
are set to 1.

B. Run-time phase

At run-time, the scheduler steers the execution of the task
graph taking into account the information obtained at design-
time and the available resources. To take all these run-time
decisions as quickly as possible the scheduler only considers
some discretized time values following an event-triggered
approach. When certain events happen the scheduler will look
for reconfigurations or tasks that are ready to be scheduled.
Three different events trigger the execution of the scheduler:
new_graph, which is generated when the information of a new

task graph is received; end_of_reconfiguration, which is
generated by a RU when a new configuration has been loaded
or when the RU has identified that a configuration can be
reused since it was already loaded in a previous execution; and
end_of _execution, which is generated by a RU when a task
finishes its execution. This approach greatly reduces the
complexity of the run-time scheduling process, but at the same
time it provides enough flexibility to optimize the execution.
Basically, the scheduler processes these events sequentially
and carries out the proper actions. Fig. 7 depicts this process.

When a new task graph arrives and the reconfiguration
circuitry is free (1-3), the system attempts to schedule the
reconfiguration of the first task in the reconfiguration sequence
of the received graph.

For the end_of_reconfiguration and reused_task events, the
system checks the dependencies of the task that has been
loaded or reused in order to identify if it can start its execution.
To this end, the scheduler will check if all its predecessors
have already finished their execution (5). In that case, the task
is ready to be executed (6) and the system starts its execution
(7). Then, it attempts to schedule a new reconfiguration (8).

Finally, for the end_of_execution event, the scheduler
checks again if the reconfiguration circuitry is idle. If so, it
looks for a new reconfiguration (10-11). After that, it updates
the task-graph dependencies, decreasing the number of
predecessors of each successor of the finished task (12).
Finally, the system checks if any of the tasks that are currently
loaded in any RU can start its execution (13-15).

The following subsections describe the replacement policy
and the run-time mobility management, respectively. Both
techniques are applied inside the look_for_reconfiguration
function.

1) Replacement policy

Transparently to the event management, the scheduler also

RU1
RU2
RU3

Delaying Task 2

1
2
3

4

t=38

RU1
RU2
RU3

Delaying Task 3

1
2
3

4

t=42

RU1
RU2
RU3

Delaying Task 4

2
3

4

t=42

1
2

3

4

t=38

1st iteration 2nd iteration

1st iteration

1st iteration

1
2

3

4

2nd iteration

t=50

1

1

e.t.: Execution time

n: Non critical task
n: Critical task

Reconfiguration that
generates overhead
Reconfiguration that does
not generate overhead

e.t. 12

e.t. 8 e.t. 16

e.t. 6

TASK GRAPH

2

4

3

Fig. 6. Example of the mobility calculation. The reconfiguration latency is
always 4 ms.

/* task = task that triggered the event
* RC = Reconfiguration Circuitry */
CASE event IS:

1. new_graph:
2. IF (RC == idle){

3. look_for_reconfiguration (&rec_sequence);
4. }
5. end_of_reconfiguration or reused_task:
6. check_dependencies (&task);
7. IF (is_ready (&task)){
8. start_execution (task);
9. }
10. look_for_reconfiguration (rec_sequence);
11. end_of_execution:
12. IF (RC == idle){
13. look_for_reconfiguration (rec_sequence);
14. }
15. update_task_dependencies (&task)
16. FOR (i := 0 TO NUMBER_OF_RUS){
17. IF (RU_state == IDLE) AND (is_ready (&task)){
18. start_execution ();
19. }
20. }

Fig. 7. Pseudo-code of the run-time phase.

TVLSI-00330-2009 8

applies a replacement policy especially designed for this
system. We have called it Look Forward + Critical (LF+C)
because it takes into account the criticality of the tasks and
whether they are going to be loaded in the near future or not.
We assume that the “near future” means “in the context of the
graph currently in execution” because this is the only region of
the future that the scheduler can analyze. According to this
information, the scheduler classifies the RUs into 6 categories:

• Busy: RUs with a task in execution, or with a
configuration that has recently been prefetched
and that is waiting for execution. These RUs are
never selected for replacement.

• Free candidates (FC): These RUs do not have
any task loaded. When the system is initialized, all
the RUs are free.

• Non-critical candidates (NC): RUs with non-
critical tasks that are not going to be executed in
the near future.

• Non-critical reusable candidates (NRC): RUs
with non-critical tasks that are going to be
executed in the near future.

• Critical candidates (CC): RUs with critical tasks
that are not going to be executed in the near future.

• Reusable critical candidates (RCC): RUs with
critical tasks that are going to be executed in the
near future.

The replacement technique assigns the maximum priority to
the RCCs and the minimum to the FCs. Hence, it attempts to
replace those tasks that are not critical and/or are not going to
be executed soon. If all the possible victims of the replacement
policy are critical and belong to the same category (CC or

RCC), the scheduler use the criticality value to select the
victim. If all of them had the same criticality, the victim is
selected randomly.

It may be unclear whether is better to assign more priority to
the NRC candidates or to the CC candidates. On the one hand,
assigning more priority to the NRC can be a good strategy,
since if those tasks are replaced the scheduler will have to load
them again soon. On the other hand, according to our
definition of critical tasks, replacing a critical task will
generate delays in the execution if that task is needed in the
future, whereas replacing a non-critical task will not generate
any delay. In [22] we propose to assign more priority to the
NRC category to reduce the number of replacements needed.
However, after extensive simulations we have identified that
assigning more priority to the CCs always provides better
performance, and that the percentage of reused tasks were very
similar. Hence we have modified our previous replacement
module and currently we assign more priority to the CCs than
to the NRCs. Hence RCCs have the maximum priority, then
CCs, then NRCs, then NCs and finally FCs.

We have designed a new replacement policy for three
reasons. Firstly, conventional replacement policies, such as
LRU, can easily fall into a configuration trashing problem
when the number of active tasks is greater than the number of
RUs. Secondly, since the scheduler deals with task graphs, it
has some information about the tasks that are going to be
executed in the near future, and it can take advantage of that.
Finally, the objective of conventional replacement policies is
to improve the reuse. This is a good objective, but in our
replacement policy it is only a secondary goal. In this case, the

e.t. 8
W 14

e.t. 6
W 6

e.t. 6
W 6

Reconfiguration that
generates overhead
Reconfiguration that does
not generate overhead

N Execution of a task
N: execution time

N Execution of a reused
task

e.t.: execution time
W: weight
C: critical candidate
NC: non-critical candidate

e.t. 6
W 8

e.t. 2
W 2

Task 2 Task 3Task 1

RU1
RU2
RU3
RU4

8

RU5

6
6

6
2

5
5

8
6
6

6
2

5
5

8
6
6

6
2 5

5

8
6
6

6
2

5
5

8
6
6

6
2

5
8

6
2

5
5 6

6

5

LRU

LFD

LF+C

C

C

NC
NC

NC

NC
C
NC

NC
C
NC

CC

C
NC

C C

C

C
NCNC

NC

First iteration Second iteration

time
44 76 80 88

NC

C

e.t. 5
W 10

e.t. 5
W 5

RU1
RU2
RU3
RU4
RU5

RU1
RU2
RU3
RU4
RU5

Fig. 8. Execution of three graphs in a system with 5 RUs and 4 ms of reconfiguration latency.

TVLSI-00330-2009 9

main objective is to improve the performance by attempting to
reuse as many critical tasks as possible.

Fig. 8 depicts an example that illustrates the benefits of our
replacement policy. To simplify the figure we have mixed
categories 3 and 4 (non-critical candidates in the figure) and
categories 5 and 6 (critical candidates in the figure). The figure
presents a system that executes twice three task graphs using
three different replacement policies: LRU, LFD and LF+C.

The figure shows that the well-known LRU policy does not
reuse any task, since there are 7 tasks competing for 5 RUs.
Hence, it provides the worst execution: 88 ms. This is an
example of configuration trashing. The second replacement
policy (LFD) is the optimal one regarding reuse, as it was
proved in [3]. Basically, this strategy replaces the task that will
be requested farthest into the future. LFD cannot be applied in
dynamic systems, since in order to apply LFD the system
needs to know all the future events, but it can be used as a
reference. In this case the system reuses 5 tasks and the
execution time is 80 ms.The figure shows that the LRU policy
does not reuse any task, since there are 7 tasks competing for 5
RUs. Hence, it provides the worst execution: 88 ms. The LFD
replacement policy is the optimal one regarding reuse, and
used here as a reference; as we explained in Section II. In this
case the system reuses 5 tasks and the execution time is 80 ms.

Finally, the figure also shows what happens when the system
uses LF+C. For the first two graphs, the replacement policy
simply selects a Free Candidate (FC). When Graph 3 starts
RU1 and RU4 are critical candidates, whereas RU2, RU3 and
RU5 are non-critical candidates. For this graph the scheduler
selects the first two non-critical candidates (RU2 and RU3)
because critical candidates have a greater priority. When
Graph 1 is executed again, the first task is reused, and the
scheduler loads the two remaining nodes in RU3 and RU5
respectively, since they are the only non-critical candidates
available. Although only one task has been reused, no delays
have been generated due to the reconfigurations, since this was
the only critical task. When graph 2 starts again its first task,
which is the only critical task of the graph, is reused. For the
other task the replacement policy selects the first non-critical
RU (in this case RU3). Finally, when Graph 3 is executed, the
system reuses its first task (which again is critical) and loads
its second task in RU3, again a NC candidate. As it can be

seen in the figure, LF+C does not achieve the optimal result
regarding reuse. Whereas LFD reused 5 tasks, LF+C only
reused 3. However, as it was explained before, reuse is only a
secondary objective for our heuristic. The main objective is
performance, and in this example it achieves the optimal
performance, hiding the latency of all the reconfigurations in
the second execution of the graphs. Using LF+C the 6 graphs
are executed in 76 ms, 4 ms less than using LFD and 12 ms
less than using LRU. As a conclusion the objective of LF+C is
not only to reuse more, but also to reuse better.

2) Mobility management

In Fig. 7 there were three calls to the function

look_for_reconfiguration(). In this function, the scheduler
must decide whether to schedule the reconfiguration of the
following task in the reconfiguration sequence or not. To this
end it takes into account the mobility of the task and the victim
selected by the replacement policy.

Fig. 9 shows the pseudo-code of this function. Firstly, the
function extracts the first task in the reconfiguration sequence
(1). Then, the scheduler selects a victim applying our
replacement policy (2). If all the RUs are busy, this would not
be possible (3). Otherwise, the function checks if the victim is
critical (4). In this case the scheduler will try to delay the
reconfiguration. To this end it checks if the mobility of the task
is greater than the number of total skipped events at that
moment (5). In that case, the system will just increase the
number of skipped events (6). Otherwise, the function triggers
the reconfiguration of the new_task (9) replacing the selected
victim and removing new_task from the reconfiguration
sequence (10).

As it was shown in the motivational example of Fig. 2, this
approach allows reusing more critical tasks, leading to an
improvement on the system performance.

VI. IMPLEMENTATION DETAILS

In this section we will explain in detail the proposed
architecture. As mentioned before, we have implemented two
different versions of our scheduler: a SW version and a HW
one. In both cases, we have used a Xilinx™ Virtex II PRO
FPGA and the EDK development tool to carry out our
experiments. We have not implemented a complete HW multi-
tasking system, but just a simulation platform where the
execution of the tasks in the RUs and the reconfigurations are
simulated using programmable timers. The system includes an
additional timer that is used to measure the execution time of a
given simulation with clock-cycle accuracy.

In the SW version (Fig. 10 (a)) the scheduler is a program
that runs in a PowerPC™, and that communicates with a set of
timers representing the RUs. This program is a C-code
compiled for the PowerPC architecture. The assembly code is
stored in an internal memory in the FPGA. During the run-time
scheduling phase the timers communicate with the processor
generating interrupts and the processor can directly access to
the timer interfaces using the system bus. When a task is

void look_for_reconfiguration (){
1. new_task := next_task_in_rec_sequence();
2. apply_replacement (victim);
3. IF (victim ≠ Ø){
4. IF (critical_candidate (victim) == TRUE){
5. IF (new_task.mobility > skipped_events){
6. skipped_events++; /* initially 0 */
7. }
8. }ELSE{
9. load (&new_task);
10. delete_task_in_rec_sequence (&new_task);
11. }
12.}
}

Fig. 9. Pseudo-code of the function look_for_reconfiguration().

TVLSI-00330-2009 10

assigned to a RU the processor loads its information (the
reconfiguration latency or the execution time) in the timer and
activates it when the reconfiguration or the execution must be
simulated. When the timer finishes the countdown, it generates
an interrupt that will trigger the corresponding event
(end_of_reconfiguration or end_of_execution). The PowerPC
can then carry out the proper scheduling actions.

In the HW version (Fig. 10 (b)) the scheduler is a HW
module implemented using some of the available
reconfigurable resources in the device. This module only
provides support for the run-time phase of our scheduling
flow, since the design-time phase must be carried out at
compile time. The information regarding the different task-
graphs is stored in an internal memory, and when the execution
of a task-graph must be simulated in this platform, the
PowerPC transfers all the task graph information to the HW
scheduler. When the simulation finishes, the scheduler
generates an interrupt.

In this implementation the RUs interact directly with the
HW scheduler using point to point communication lines. This
approach reduces the penalties due to HW/SW
communications from one to two orders of magnitude in our
experiments. A block diagram of the HW scheduler is depicted
in Fig. 11. Next we will describe these blocks in detail.

A. Reconfiguration queue and task-graph table

These modules are initially used to store the reconfiguration
sequence and the task-graph information. During the task-
graph execution this information is updated according to the
run-time events.

The Task-graph table stores the information of the current
task graph including all the precedence constraints. This table
is used to guarantee the proper task execution. For this
purpose, the table supports the following operations:

Insertion: used to store the information of a new task graph.
The latency of this operation is NT clock cycles, where NT is
the number of tasks.

Check: This operation enquires about whether a task is
ready to be executed or not, which happens when all its
precedence constraints have already been met. This operation
just requires one clock cycle.

Hit: This operation enquires about whether a task is

currently waiting for execution. This information will be used
by the replacement module. This operation just requires one
clock cycle.

Update: This operation updates the task graph information
when a task finishes its execution. It updates the state of the
task and its precedence constraints. To this end the successors
of that task are extracted and sequentially updated,
decrementing the value stored in Nº predec. This value
represents the number of predecessors that have not finished
their execution. The table includes some specific HW support
for this operation that is not included in the figure for
simplicity. The latency of this operation in 2*NS+1 clock
cycles, where NS is the number of successors of the task.

Initially, we implemented an associative version of this
table, which allowed having a table with a relatively small
number of entries, since the particular position of a task in the
table was not relevant. In addition it provided very high
performance for small graphs. However, as the complexity of
the tested task graphs grew, it was also necessary to use a
larger table, which consumed an unacceptable amount of
resources for large task-graphs (in some cases this grew up to
99% of the scheduler). Furthermore, its operation frequency
greatly decreased, which limited the performance of the
system. In order to solve these problems, we implemented a
non-associative version of the table using one of the SRAM
blocks (BRAMs) available in the FPGA and some additional
HW support. In this second version, each task is stored in the
table according to its ID, where the ID is its unique identifier.
For instance, the information of Task N is stored in the
Table[N] entry. The main drawback is that the non-associative
table needs as many memory positions as different tasks can be
executed in the system. However, this is not a big problem,
since in our experiments just one BRAM was enough to deal
with all of our tested task graphs. With this approach, the HW
area required for the task-graph table has been drastically
reduced. Moreover its operation frequency is more than four
times faster than the associative version (up to 400 MHz),
even for a large number of entries.

B. Replacement module

This module implements the replacement technique. It
demands a very affordable HW support as it can be seen in
Fig. 12. The RUs are analyzed sequentially, extracting the task

Rec. queue

task k
task j
task i

task k
task j
task i

Task info

unit state

Task info

unit state

RU 1 info RU n info

Control unit

Task-graph table Event queue

end execution
task_loaded
task reused

end execution
task_loaded
task reused

Task info

unit state

Task info

unit state
…

Replacement
module

Task ID Nº predec. Nº succ. Succ’s IDs
0
1
...
n

Fig. 11. Block diagram of the HW scheduler.

System bus

RU 1 RU N...

INT_REQ
Power PC Power PC

System bus

RU 1 RU N...

INT_REQ

Scheduler
...

Virtex-II Pro Virtex-II Pro

(a) (b)

Fig. 10. Simulation platform. (a) SW implementation of the scheduler. (b)
HW implementation of the scheduler.

TVLSI-00330-2009 11

information using a counter and some multiplexers. This
information includes whether the task is critical or not. In
order to check if the task is going to be executed in the near
future, the replacement module uses the hit operation of the
task-graph table. With this information, it is straight forward to
identify the category of the task. The replacement module also
includes a simple state machine and a register that stores the
information of the best candidate found. Finally, it includes a
comparator that identifies whether a given task can be reused
(in this case the reconfiguration is cancelled and the system
generates a reused_task event). The comparator and the
implementation of the state machine are not included in the
figure for simplicity.

C. Control unit and event management

As mentioned before, we have integrated our scheduler in a
simulation platform that allows simulating the reconfiguration
and execution of the RUs using programmable timers.

In this platform two registers are associated with each timer.
These registers store the state of the RU (idle, reconfiguring,
ready to execute and executing) and the information of the
loaded task. The RUs also include HW support to generate
some run-time events whenever the corresponding timer
indicates that a task has finished its reconfiguration or
execution. These events are stored in an event queue. Since it
is possible that several RU modules generate events
simultaneously, the queue includes an arbiter with a fixed
priority scheme that prevents access conflicts.

The control unit is basically a state machine that extracts the
events from the queue and carries out the actions described
previously in Fig. 7. This unit also takes into account the
mobility of the tasks to decide whether to delay a given
reconfiguration or not. Fig. 13 depicts the HW support needed
to make this decision. Basically a counter stores the number of
events skipped so far and a comparator identifies if the
reconfiguration can be delayed without introducing overheads
(i.e. if the mobility of the task is greater then the number of
skipped events). In that case, if the replacement module has
selected a critical task as victim, the reconfiguration is delayed
and the skipped events counter is incremented.

D. Synthesis results

Fig. 14 shows the resources used for the HW
implementation of our scheduler in the Xilinx™ Virtex II PRO
XC2VP30 FPGA for both versions of the task-graph table.
The resources needed by the scheduler with the associative
table grow linearly with the number of table entries. This limits
the scalability of the scheduler, since for large systems it
consumes an important percentage of the FPGA resources. Our
current implementation has solved this problem and consumes
less than 5% of the available resources even for large tables.
Moreover, in both cases, the implementation of the scheduler
demands only 1% of the BRAMs (this is not presented in the
figure for simplicity). An additional 4% of the FPGA slices
has also been used to implement a DMA controller in order to
optimize the transactions in the system bus. This controller is
not part of our scheduler and can be used by any other
component of the system.

Regarding the supported clock frequency, the current
scheduler supports frequencies up to 100 MHz even for tables
with a large number of entries. Our previous implementation
also supported a 100 MHz clock frequency, but only for small
tables. For larger tables the clock frequency was significantly
reduced. For instance, the maximum frequency for the
associative table with 128 was 65 MHz. Hence the new design
of the task-graph table reduces the area cost and improves the
performance of the scheduler.

VII. PERFORMANCE EVALUATION

In this section we will evaluate the performance of our
scheduler. For that purpose, we have tested it using a set of

Task mobility

COMP
>

Skipped Events

Replacement
module

Critical task
selected

Delay_reconfiguration

increment

Fig. 13. HW support to implement the skip-event feature.

0
5

10
15
20

8 16 32 64 128

Flip Flops (%) Assoc. LUTs (%) Assoc.

Flip Flops (%) non Assoc. LUTs (%) non Assoc.

Number of entries

Scheduler: % resources used

Fig. 14. Resources consumption of the scheduler both for the associative
table (AT) and the non-associative one.

 RU 0

Task_id0 C0 Free0

RU n…

Task
graph
Table hit

Counter

NC

NRC

task_id

… … … …
Busy0

Busy
Free

CC

RCC

Fig. 12. HW to label the candidates.

TVLSI-00330-2009 12

task graphs extracted from actual multimedia applications. The
applications used to extract the task graphs are: two versions
of a JPEG decoder (JPEG and Parallel-JPEG), a MPEG-1
encoder, a Pattern recognition application (that applies the
Hough transform), and a 3D rendering application based on
the open source Pocket-GL library (Pocket GL). In the latter
case the application includes 20 different task graphs. Table 1
presents the number of nodes, and the initial execution time of
each graph. This initial execution time represents an ideal
scenario with no delays due to the run-time management or
due to the reconfigurations. We have tested our system
separately for two groups of graphs. In the first group we have
included the first four applications, and in the second group we
have used the graphs from the Pocket-GL application. For
simplicity, in Table 1 these graphs have been grouped in four
categories (from A to D) taking into account the number of
nodes. The table presents the average execution time for each
category. It also includes the delays due to the reconfiguration
overheads when using an on-demand approach, assuming a
reconfiguration latency of 4 ms, which is the time needed to
reconfigure the larger task used. As it can be seen in the table
the original reconfiguration overheads are very important,
especially for the Pocket GL application, where it can even be
greater than the task-graph execution time.

As a first experiment we have tested the efficiency of our
replacement policy (LF+C). To this end we have compared it
with two well-known replacement policies: Least Recently

Used (LRU) and Longest Forward Distance (LFD). As it was
already explained in Section II, LFD is the optimal policy
regarding reuse, but it can only be applied when all the future
events are known, hence it cannot be applied in dynamic
systems. However, it can be used to obtain an upper-bound
value for the reuse. This is done recording all the events
generated during the execution of a given experiment and
afterwards, repeating the experiment but using LFD.

For the task graphs of the first group we have evaluated our
system when executing all the possible combinations of two of
these task graphs. For each combination, we execute the two

graphs alternatively simulating an execution pattern (e.g. JPEG
– Parallel-JPEG – JPEG – Parallel-JPEG...). Each
combination has been executed several iterations, and we have
measured the average results without taking into account the
first iteration, because during the first execution it is not
possible to reuse anything. On average, 10.5 tasks were
executed in each of these experiments; hence there were
always significantly more active tasks than RUs. We are
particularly interested in analyzing these situations since these
experiments are so demanding that the only way to obtain a
good performance is to apply an efficient replacement policy.

Fig. 15 (a) and (b) show the average results regarding the
reconfiguration overhead and task reuse for a system with a
variable number of RUs. The Remaining Reconfiguration
Overhead percentage is defined as the percentage of the
original reconfiguration overhead that remains after applying
the scheduling techniques. The Reuse percentage is defined as
the number of reused tasks divided by the total number of
executed tasks.The system applies the same ASAP prefetch
approach in the three cases. As it can be seen in Fig. 15 (a) and
(b), the prefetch technique is a powerful way to reduce the
reconfiguration overheads, because it can remove most of the
original overhead even when no significant reuse is achieved
(for instance, for three RUs using LRU no task is reused).
However, the remaining overhead is still important (35% of
the original overhead). Hence, a good replacement technique

0
10
20
30
40

3 4 5 6 7 8

LF +C
LFD
LRU

Number of RUs

0
20
40
60
80

3 4 5 6 7 8

LF +C
LFD
LRU

Number of RUs

Reuse (%)

Remaining Rec.
Overhead (%)

(a)

0

20

40

60

3 4 5 6 7 8

LF +C
LFD
LRU

0

50

100

3 4 5 6 7 8

LF +C
LFD
LRU

Number of RUs

Reuse (%)

Remaining Rec.
Overhead (%)

Number of RUs

(b)

0

50

100

3 4 5 6 7 8

LF+C Skip Events

LF+C ASAP

0
10
20
30
40

3 4 5 6 7 8

LF+C Skip Events

LF+C ASAP

0
10
20
30
40

3 4 5 6 7 8

LF+C Skip Events

LF+C ASAP

0
20
40
60
80

3 4 5 6 7 8

LF+C Skip Events

LF+C ASAP

Number of RUs

Number of RUs

Reuse (%)

Remaining Rec.
Overhead (%)

(c)

Number of RUs

Number of RUs

Reuse (%)

Remaining Rec.
Overhead (%)

(d)
Fig. 15. Evaluation of the execution the task-graphs in groups 1 (a) and 2 (b) with different replacement policies; and comparison between an ASAP scheduler
and our scheduler (Skip Event) applying in both cases the LF+C replacement policy for tasks in group 1 (c) and 2 (d).

TABLE I
DETAILS OF THE TASK-GRAPHS USED AS BENCHMARKS IN THE PERFORMANCE

EVALUATION

Task graph Group
Number
of tasks

Initial
execution
time (ms)

On-demand
reconfiguration
overhead (ms)

JPEG 1 4 79 16
Parallel-JPEG 1 8 54 20
MPEG-1 1 5 37 20
HOUGH 1 6 94 16
POCKET GL (A) 2 2 4 8
POCKET GL (B) 2 4 16 16
POCKET GL (C) 2 5 27 20
POCKET GL (D) 2 6 49 24

TVLSI-00330-2009 13

may have a very positive impact in the execution of these
applications. Of course as more RUs are included in the
system, the reuse percentage increases and this helps to reduce
the overhead for the three replacement policies. Nevertheless,
the results obtained when using a LRU approach are clearly
suboptimal. LFD greatly increases the reuse percentage, and
reduces the overheads. Finally LF+C obtains almost as good
results regarding reuse as LFD, and in some cases even better
performance. The reason is that although LF+C reuses a
slightly smaller percentage of tasks than LFD, most of these
tasks are critical, since LF+C assigns them more priority, and
reusing critical tasks has a direct impact in the performance of
the system.

For the Pocket GL (Fig. 15 (b)) we have simulated 500
iterations. In each iteration one of the 20 task graphs was
randomly selected from the Pocket-GL library. Although there
are a lot of different task graphs, reusing tasks was possible
because all of them include some common tasks (in total there
are 10 different tasks). The results for this experiment confirm
that our replacement policy achieves almost optimal results
regarding reuse (just 3% worse than LFD). In this case the
prefetch approach hides 55% of the reconfiguration overheads.
However, if the system includes enough RUs and it applies our
efficient replacement policy the overhead disappears, whereas
if it uses the LRU approach, a significant percentage (almost
10%) will penalize the system performance.

All these results have been obtained combining the
replacement policies with an ASAP scheduling approach.
These techniques are broadly used at-run time because they
provide good results and they do not generate an excessive
penalty due to the run-time computations. However, they often
lead to local-optimum decisions. Hence we have included in
our scheduler some simple support to delay certain
reconfigurations in order to find better schedules as explained
in Section V.a.2. Figures 15 (c) and 15 (d) present the benefits
of this approach both regarding reuse and performance.

The results demonstrate that delaying some
reconfigurations can improve significantly the performance of
the system, and even increase the percentage of reused tasks.

The results of Fig. 15 (d) are especially good, since our
scheduler clearly outperforms the purely ASAP approach.

Finally, Fig. 16 shows the results of our experiments
regarding execution time. Fig. 16 (a) and (b) show the average
execution times for the task graphs of group 1 and 2,
respectively In both cases, we compare our results with the
optimal execution times that have been obtained assuming that
there is not any reconfiguration overhead, and using a
branch&bound scheduler. Of course these optimal schedules
cannot be obtained at run-time, since the branch&bound
scheduler needs from hundred of milliseconds to seconds to
find the optimal schedules even for these relatively small
graphs. In any case, these results demonstrate that our
scheduler provides near-optimal results as long as enough RUs
are available to take advantage of our replacement policy. The
average number of tasks executed in the experiment with the
first group of tasks is 11.5, whereas in the second group is 10.
Hence we are obtaining near-optimal results even when the
number of task doubles the number of RUs.

We have also evaluated the delays that the run-time
scheduler generates in the task-graph executions due to the
run-time computations. The SW implementation of our
scheduler generates on average an execution-time overhead of
only 1% for the graphs in the group 1. However, it generates
almost a 10% overhead in the execution of the Pocket GL
graphs. On average 36% of these overheads are due to the
HW/SW communications and the remaining ones are due to
the run-time scheduling computations that must deal with
complex data structures such as graphs and lists. If the
overheads generated by our SW scheduler are not acceptable
for a given system, the best solution is to include the HW
implementation that can almost completely eliminate them. In
this case the scheduling computations are carried out at run-
time in just a few clock cycles, and the average delay
generated in the execution of a graph is 0.02 ms including the
time needed to send the information of the graph from the
PowerPC to our scheduler.

VIII. CONCLUSIONS

An efficient HW multitasking system based on
reconfigurable HW needs some specific support to reduce the
reconfiguration overheads. We have developed a scheduler
that provides this support applying a prefetch scheduling
technique, in order to load most configurations in advance, and
a replacement technique, which reduces the number of
reconfigurations needed and even improves the results
obtained by the prefetch technique assigning more priority to
the most critical tasks.

As the experimental results have shown, the cooperation
between the prefetch and the replacement techniques provides
very good results hiding most of the reconfiguration delays.
Moreover, the possibility of delaying some reconfigurations in
order to escape from local-optimum decisions can greatly
improve the results for some run-time conditions (as in Fig. 15
(d)). Finally, with the developed HW support, and using the
information extracted at design-time, all these techniques can
be applied at run-time while generating a negligible delay due

20
22
24
26
28

3 4 5 6 7 8

Optimal Ex. time

LF+C + Skip Events

60

65
70

75

3 4 5 6 7 8

Optimal Ex. Time

LF+C + Skip Events
Average e.t. (ms)
Tasks Group 1

Average e.t. (ms)
Tasks Group 2

Number of RUs

Number of RUs

(a)

(b)

Fig. 16. Comparison of the average execution times (e.t.) in our experiments
with the optimal execution times.

TVLSI-00330-2009 14

to their computations. Hence our scheduler provides a
transparent and efficient management of the execution of task-
graphs for reconfigurable multi-tasking systems. This
management can significantly improve the performance of the
system, and even reduce the energy consumption, because the
replacement technique can largely reduce the number of
reconfigurations needed.

IX. REFERENCES

[1] www.sony.net/Products/SC-HP/cx_news/vol42/pdf/sideview42.pdf
[2] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde and R. Lauwereins,

“Interconnection networks enable fine-grain dynamic multi-tasking on
FPGAs”, in International Conference on Field Programmable Logic

and Applications (FPL), Montpellier, France, 2002, pp. 795-805.
[3] L.A. Belady, “A study of replacement algorithms for virtual storage

computers”, IBM Systems Journal, vol. 5, pp. 78-101, no. 2, 1966.
[4] S. Banerjee, E. Bozorgzadeh and N. Dutt, “Integrating physical

constraints in HW-SW partitioning for architectures with partial
dynamic reconfiguration”, IEEE Trans on VLSI Systems, vol. 14, pp.
1189-1202, November 2006.

[5] E. Pérez-Ramo, J. Resano, D. Mozos and F. Catthoor, “Reducing the
reconfiguration overhead: a survey of techniques”, in International

Conference on Engineering of Reconfigurable Systems and Algorithms

(ERSA), Las Vegas, NV, USA, 2007, pp. 191- 194.
[6] H. Walder and M. Platzner, “Online scheduling for block-partitioned

reconfigurable devices”, in Design, Automation & Test in Europe

(DATE), Munich, Germany, 2003, pp. 290-295.
[7] Y. Qu, J.-P. Soininen and J. Nurmi, “A parallel configuration model for

reducing the run-time reconfiguration overhead”, in Design, Automation

& Test in Europe (DATE), Munich, Germany, 2006, pp. 1-6
[8] J. Noguera and R. M. Badia, “Multitasking on reconfigurable

architectures: microarchitecture support and dynamic scheduling”, ACM

Trans. on Embedded Computing Systems, vol. 3, pp. 385 – 406, May
2004.

[9] Z. Pan and B. E. Wells, “Hardware supported task scheduling on
dynamically reconfigurable SoC architectures”, IEEE Trans. on VLSI

Systems, vol. 16, pp. 1465 – 1474, November 2008.
[10] V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest and H. Corporaal, “Run-

time management of a MPSoC containing FPGA fabric tiles”, IEEE

Trans. on VLSI Systems, vol. 16, pp. 24 – 33, January 2008.
[11] K. N. Vikram and V. Vasudevan, “Mapping data-parallel tasks onto

partially reconfigurable hybrid processor architectures”, IEEE Trans. on

VLSI Systems, vol. 14, pp. 1010-1023, September 2006.
[12] S. Banerjee, E. Bozorgzadeh and N. Dutt, “Exploiting application data-

parallelism on dynamically reconfigurable architectures: placement and
architectural considerations”, IEEE Trans. on VLSI Systems, vol. 17, pp.
234 – 247, issue 2, 2009.

[13] K. Kosciuszkiewicz, F. Morgan and K. Kepa, “Run-time management of
reconfigurable hardware tasks using embedded Linux”, in International

Conference on Field Programmable Technology (ICFPT), Kitakyushu,
Japan, 2007. pp. 209 – 215.

[14] H. Kwok-Hay So and R. W. Brodersen, “A unified hardware/software
runtime environment for FPGA-based reconfigurable computers using
BORPH”, ACM Transactions in Embedded Computing Systems, vol. 7,
pp. 259-264, 2008.

[15] W. Fu and K. Compton, “Scheduling intervals for reconfigurable
computing”, in IEEE Symposium on field-programmable custom

computing machines (FCCM), Palo Alto, CA, USA, 2008, pp. 87 – 96.
[16] K. Danne, R. Miihlenbernd and M. Platzner, “Executing hardware tasks

on dynamically reconfigurable devices under real-time conditions”, in
International Conference on Field Programmable Logic and

Applications (FPL), Madrid, Spain, 2006, pp. 1 – 6.
[17] Z. Li and S. Hauck, “Configuration prefetching techniques for partial

reconfigurable coprocessor with relocation and defragmentation”, in
Proceedings of the ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (FPGA), Monterey, CA, USA, pp. 187-195
[18] J. Resano, D. Mozos, D Verkest and F Catthoor, “A reconfiguration

manager for dynamically reconfigurable hardware”, IEEE Design&Test,
vol. 22, pp. 452-460, September 2005.

[19] J. Resano, D. Mozos and F. Catthoor, “A hybrid prefetch scheduling
heuristic to minimize at run-time the reconfiguration overhead of
dynamically reconfigurable hardware”, in Design, Automation & Test in

Europe (DATE), Munich, Germany, 2005, pp. 106-111.
[20] J. Resano, J.A. Clemente, C. González, D. Mozos, and F. Catthoor.

“Efficiently scheduling runtime reconfigurations”, ACM Trans. Design

Automation of Electronic Systems, Vol. 13, pp. 58-70, September 2008.
[21] J. A. Clemente, C. González, J. Resano and D. Mozos. “A task graph

execution manager for reconfigurable multi-tasking systems”,
Microprocessors & Microsystems, vol. 34, pp. 73 – 83, June 2010.

[22] J. A. Clemente, C. González, J. Resano and D. Mozos, “A hardware
task-graph scheduler for reconfigurable multi-tasking systems”, in
International Conference on ReConFigurable Computing and FPGAs

(ReConFig), Cancun, Mexico, 2008, pp.79-84.
[23] C. Wong, P. Marchal and P. Yang, “Task concurrency management

methodology to schedule the MPEG4 IM1 player on a highly parallel
processor platform”, in International Conf. on HW/SW Codesign and

System Synthesis (CODES), Copenhagen, Denmark, 2001, pp. 170-175.

Juan A. Clemente was born in 1984. He started
studying a Computer Science Degree at
Universidad Complutense de Madrid (UCM),
Spain, in 2002 and finished in 2007.

Since then he is a PhD student and works there
as a teaching assistant and also as a researcher in
the GHADIR group. He has also an active
collaboration with the Embedded Systems
Laboratory in the École Polytechnique Fédérale de
Lausanne (EPFL), Lausanne, Switzerland. In his
work he mainly focuses on developing scheduling

techniques to hide reconfiguration latencies in dynamically reconfigurable
systems.

Javier Resano received the Bachelor Degree in
Physics in 1997, a Master Degree in Computer
Science in 1999, and the PhD degree in 2005 at
the Universidad Complutense of Madrid, Spain.

Currently he is Associate Professor at the
Computer Eng. Department of the Universidad of
Zaragoza, and he is a member of the GHADIR
research group, from Universidad Complutense,
and the GAZ research group, from Universidad de
Zaragoza. He also collaborates with the Digital
Design Technology Group from IMEC-laboratory

since 2002. His research has been focused in hardware/software co-design,
task scheduling techniques, Dynamically Reconfigurable Hardware and
FPGA design.

Carlos González was born in 1984. He started
studying a Computer Science Degree at
Universidad Complutense de Madrid (UCM) in
2002 and finished in 2007.

Since then he is a PhD student and since 2008
works there as a teaching assistant. In his work he
mainly focuses on applying run-time
reconfiguration in aerospace applications. He has
recently started with this topic, working with
algorithms that deal with hyperspectral images. He
is also currently collaborating with Juan Antonio

Clemente on developing techniques to hide reconfiguration latencies in
dinamically reconfigurable systems.

Daniel Mozos obtained a B.S. in physics and a
Ph.D. in computer science from the Universidad
Complutense de Madrid.

He is a permanent professor in the Computer
Architecture and Automation Department of the
Universidad Complutense de Madrid, where he
leads the GHADIR research group on dynamically
reconfigurable architectures. His research interests
include design automation, computer architecture,
and reconfigurable computing.

