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A HARDWARE iMPLEMENTATION OF C A P A B I L I T Y - B A S E D  ADDRESSING 

G. J. Myers and B. R. S. Buckingham 

IBM Systems Research Institute 

205 East 42nd Street 

New York, N. Y. 10017 

Abst rac t  

The SWARD architecture, an experimental higher-level architecture, contains 

the naming and protection concept of capability-based addressing. After dis- 

cussing the merits of capability-based addressing, its general representation 

in the SWARD architecture is discussed. The initial representation of 

capability-based addressing in the architecture led to a set of problems; these 

problems are described, as well as their solutions. Finally, the implementation 

of capabilities by the processor is discussed. 

I ntrod uction 

The concept of viewing a computing system as a set of objects, and address- 

ing the objects by a protected name known as a capability, has existed for 14 

years [I] but has been slow in influencing computer architectures. The idea is 

often discussed in the context of operating systems [2-5] and has been imple- 

mented, in software, in such experimental operating systems as Cal [6] and Hydra 

[7]. The idea is implemented in the computer architectures of the commercial 

Plessey 250 [8] and IBM System/38 [9], the experimental Cambridge CAP [I0-II] 

and IBM SWARD [12-14] systems, as well as a variety of other proposals [15-16]. 

The interest in capabilities is motivated by issues of protection, informa- 

tion sharing, and, in at least the SWARD architecture, program reliability. Con- 

sidering protection for the moment, the typical commercial computing system of 

today attempts to achieve protection through a plethora of policies and mech- 

anisms. The mechanisms might include privileged instructions, 

storage-protection keys, the execution of processes in separate virtual ma- 

chines or address spaces, sign-on passwords, file passwords, and so on. Such de- 

signs lead to at least four problems 

i. Difficulty of verification. Where the protection mechanisms exist in both 

hardware and software and are spread throughout the system, the act of es- 

tablishing confidence that the system is secure is a difficult task. 

. Locating the weak link. In such systems, the protection mechanisms do not 

usually reinforce each other; each is there to treat a different aspect of 

the problem. If one of them can be subverted, the system becomes totally 

unprotected. 

. Complexity. Because the designers are looking at the problem in a 

piece-meal fashion (e.g., How do I protect the privileged instructions? 

How do I protect the operating system from modification? How do I protect 
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one program from another? How do I protect against unauthorized use of 

files?), the system design is often complex, the user interface is often 

complex, and the designers are never sure that they posed all the pertinent 

questions. 

. Difficulty of sharing. One must also provide the means for controlled re- 

source and information sharing. For instance, process A might wish to 

share its procedure X, but no other procedures, with process B. Process A 

might wish to give process C read-only access to array Z, but no access to 

anything else. Fabry [17] does an able job of showing the difficulty of 

such sharing with conventional addressing mechanisms, such as relocation, 

paging, and segmentation. 

Capability-based addressing is a uniform mechanism oriented toward both the 

protection and sharing of information and resources. In most implementations, 

storage is viewed as a single set of objects, all being intrinsically address- 

able by all processes. Depending on the design, the objects' construction might 

be visible to programs (e.g., simply byte spaces) or they might be defined 

abstractly (i.e., their construction is not visible to programs; the objects are 

defined only by the operations that can be performed on them). The entities 

that are represented by objects typically might be procedures, files, dynam- 

ically allocated data storage, and message queues or ports. 

The concept is further generalized if each object is addressed by a unique 

name, rather than a linear storage address. The name is unique in that, when an 

object is created, it will be assigned a name that was never used in the past for 

a prior object. When an object is destroyed, its name is forgotten by the ma- 

chine and never reassigned. These names are system wide and are usually just an 

arbitrary pattern of bits, rather than a symbolic name. 

A capability is generally considered to be a data type containing a pro- 

tected, system-wide name of an object. In addition, a capability contains a de- 

finition of the access rights possessed to the object (e.g., read, write, 

destroy). The only way to make a reference from one object to another is by the 

possession of a capability to the latter object. The possession of a capability 

is the sole determinant of access rights; hence one controls access to any ob- 

ject by controlling the distribution of capabilities to the object. Also, ob- 

jects have no "owners" in the traditional sense; the operations that one can 

perform on an object are determined solely by the access rights in the capabili- 

ty possessed to the object. These rights can be transferred among objects or 

processes by simply transferring the capabilities. 

Physical Analogy 

~When analyzing protection mechanisms, it is often helpful to use physical 

analogies. For capability-based addressing, the physical analogy is that each 

object is contained within a box having several springed doors, and capabilities 
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are keys to these doors. I The object name in a capability is analogous to a pat- 

tern of notches on the key, and the access rights are a set of auxiliary "bumps" 

that permit access to particular doors of the box, for instance, to a door ex- 

posing a transparent shield (read-only access) or a door exposing a plunger (de- 

stroy access). When a box (object) is created, the machine gives the creating 

person (process) a key (capability) that will open all doors in the new box. 

What transpires after this is up to the person with the initial key. 

To make this world of locked boxes and keys a secure and useful one, one ar- 

rives at the following considerations 

I. 

. 

3. 

4. 

It must be impossible for a person to fabricate a key. Also, given a 

key, it must be impossible to alter the notches (e.g., file a new 

notch with the hope that the altered key will open a different box). 

Given a key, it should be possible to make a copy of the key, either 

for one's self or someone else. 

Given a key, it should be possible to remove (but not add) one or more 

of the auxiliary bumps to remove some of the key's access rights. 

For generality, one should be able to move and store keys in the same 

way as any other entity. For instance, one should be able to store 

keys, or a combination of keys and other treasures, in the boxes ....... 

The SWARD Archi tecture  

The SWARD architecture was developed with an unusual motivation - that of 

enhancing the reliability of programs executing upon the machine. The architec- 

ture approaches this from several angles, for instance, by containing functions 

to aid software testing and debugging tools, by containing functions to facili- 

tate the efficiency of highly modular and structured programs, and by installing 

barriers to minimize the effects of software errors, but the primary emphasis is 

on semantic checking during program execution. The current definition of the ar- 

chitecture has not been published, although an early version has been [13]. 

One basic attribute of the architecture is tagged or typed storage, although 

it is carried further than most implementations. The tags are variable in size, 

the size being dependent on the amount of information needed to express the at- 

tributes of particular data types, and the machine recognizes and processes such 

data types as strings, records, arrays, arrays of records, and so on. All data 

types have a specific values defined as the "undefined value," allowing the ma- 

chine to detect what our studies show to be the most common programming error - 

using a variable that has never been given a value. 

The architecture can be termed a domain architecture [18], since every pro- 

cedure is encapsulated within a private memory space. One of the object types in 

the architecture is the module. A module contains both a set of machine in- 

structions and a private address space, consisting of a series of tagged storage 

iSince there may be confusion over whether the term "capability" refers 

to the value or the storage cell holding the value, one might more cor- 

rectly say that the access-rights, object-name couple is the key and 

that the placeholder or data type is a single-key key chain. 
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cells (occurrences of data types). A machine instruction can refer to cells 

within only the private address space of the module in which the instruction re- 

sides. Any and all references to other objects must be done indirectly through 

capabilities stored in the private address space. 

Furthermore, the architecture contains a high-level generic instruction 

set, a send/receive mechanism for interprocess communication, synchronizing in- 

structions oriented toward the design concept of monitors, automatic subroutine 

management through the use of activation records in activation stacks, a hierar- 

chical error detection and handling mechanism, and the concept of a single-level 

storage. 

The Initial Capability Mechanism 

In this section, the initial definition of objects, capabilities, and ad- 

dressing in the architecture is discussed. Development of these concepts led to 

the discovery of a set of problems, most of which were solved by extensions to 

the mechanism. These problems and solutions are discussed in the next section. 

The SWARD architecture contains five types of objects: module, data-storage 

object, port, process machine, and activation record. The module was mentioned 

above. The data-storage object is an occurrence of one or more typed storage 

cells (including arrays and structures) that is dynamically allocated space 

under program control. A data-storage object might represent a file, an array 

dynamically allocated by a program, and so on. A port is an abstract device 

through which processes send and receive collectio~is of cell values. A process 

machine is the only active object; it is a virtual processor which executes mod- 

ules concurrently with other process machines. The activation record is an ob- 

ject that is implicitly created by the machine when a module is called 

(activated); its primary purpose is to hold that part of the module's address 

space that is to be allocated space whenever the module is called. It should be 

noted that the five objects are abstractions; their physical representation is 

unavailable to programs. 

One of the data or cell types provided is the pointer. A pointer is the type 

of cell in which a capability resides. A pointer cell occupies 88 bits of stor- 

age, consisting of a 4-bit tag (I001) and an 84-bit value. A pointer's value (a 

capability) consists of a 4-bit access or authority code and an 80-bit "logical 

address." The access code limits the types of operations that can be performed 

on the entity to which the capability refers. Initially, the access codes speci- 

fied read authority, write authority, destroy authority, and undefined (i.e., 

the pointer has no defined value). Rather than defining a large number of access 

types, their interpretation varies slightly depending on the entity addressed by 

the pointer, For instance, read authority to a port permits one to use the RE- 

CEIVE instruction to obtain a set of cell values from the port. 

At this point, a few major differences from other capability systems should 

be noted. For reasons of programming generality, pointers can be used in a man- 

ner similar to addresses in conventional systems. Hence, pointers are data types 

and are not constrained to be stored in separate "capability lists" (a scheme 

used to protect capabilities in machines without tagged storage). Pointers can 

be stored as variables in programs, can exist within user data structures, can 
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be passed as arguments, sent through ports, and so on. 

Another difference is that capabilities are not restricted to referring to 

only entire objects. For instance, if one possesses a capability to a 

data-storage object containing, perhaps, an array, one can ask the machine (via 

the COMPUTE-CAPABILITY instruction) for a capability to any addressable entity 

within the object, such as a particular array element. This gives one a selec- 

tive and finer granularity of protection. For instance, this second capability 

can then be passed on to someone else (e.g., a process or a module called as a 

subroutine). The recepient now has access to only this element, and not the en- 

tire array. In fact, the recepient has no knowledge that this represents an ar- 

ray element, or that it resides in a data-storage object. 

Returning to the definition of the capability, its principal part is the 

80-bit logical address. The architecture purposely does not define the repres- 

entation of a logical address; it is simply defined as information, meaningful 

to only the machine, that refers to a particular object or entity within a par- 

ticular object. Part of the logical address is the unique name of the object, 

called a SON (system object name). 

Capabilities, then, can refer to the following: 

Data-storage object 

Cell within a data-storage object I 

Module 

Cell within a module ("own" or "static" variable) I 

Entry point within a module 

Cell within an activation record I 

Port 

External 

(The latter refers to an input/output device.) 

The major instructions dealing with pointers are: 

ALLOCATE ................ given a description of the collection of cells to be al- 

located, creates a data-storage object and returns a 

capability to it (All instructions that create objects 

return a capability with full authority to the object.) 

CREATE MODULE ........... creates a module object. 

CREATE PORT ............. creates a port object. 

CREATE PROCESS MACHINE..creates a process machine object. 

DESTROY ................. given a capability, destroys the object (module, 

data-storage object, port, process machine) to which 

the capability refers. 

COMPUTE CAPABILITY ...... given an addressable operand, computes a capability to 

it. 

COMPUTE ENTRY CAP ....... computes a capability to a specified instruction in a 

iAs well as components and elements within cells (e.g., array elements, 

record components). 
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module object. 

CHANGE ACCESS ........... further restricts the access code to a specified level 

in a capability. 

LINK .................... used to bind modules together (e.g., initializing a 

pointer cell in module A to refer to an entry point in 

module B). 

In general, all of the remaining machine instructions can refer to pointers to 

refer to operands indirectly. One does this by associating one or more "relo- 

catable cells" with a pointer, and referring to the relocatable cell as an oper- 

and. Such a reference causes the machine to resolve the logical address and, if 

the type information in the relocatable cell matches the type of that to which 

the logical address refers, to use the latter storage as the actual operand. 

Other instructions refer to pointers directly as operands. For instance, 

the CALL instruction, in addition to referring to a set of cells as arguments, 

refers to a pointer cell which, in turn, refers to an entry point in a module. 

Returning to the "locked box" analogy, one sees that the mechanism above 

achieves the four considerations mentioned. It is impossible to fabricate or ma- 

nipulate a capability; this is enforced by the use of tagged storage. The only 

instructions that cause a pointer cell's value to change are (i) the MOVE in- 

struction, and this allows one to move, into a pointer cell, only another point- 

er value, (2) the three instructions that create objects, (3) CHANGE-ACCESS, and 

(4) the two instructions that compute a pointer value. I The CHANGE-ACCESS in- 

struction satisfies consideration 3 mentioned earlier, and treating the pointer 

as a data type achieves consideration 4. In addition, the COMPUTE-CAPABILITY in- 

struction goes beyond these considerations by allowing one to dynamically create 

additional doors in the box to a subset of the treasures in the box. 

Problems 

After development of the system began with the concepts above, a number of 

problems were encountered. Some of the problems surfaced during the design of an 

operating system for the machine; others were uncovered simply by further think- 

ing. Where feasible, the problems are discussed below in terms of the locked-box 

analogy. In fact, had we considered this analogy earlier, the problems would 

have been solved earlier, since the analogy makes them obvious. 

i. The "new lock" problem. 

An obvious act in the locked-box world is the replacement of a lock on a box, 

thus invalidating all existing keys. One might take this action, for instance, 

if (I) the box were sold to someone else, (2) one suspected that one or more of 

the current key holders were using the contents improperly, or (3) one became 

uneasy about not knowing how the keys had been distributed over time, and wishes 

ZAlthough the pointer can be used as an address, no address arithmetic 

is permitted (or needed), since the architecture directly supports the 

concepts of array elements and string processing, the areas normally re- 

quiring address arithmetic. 
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to start anew with a new lock. 

The original architecture provided no mechanism to change locks, other than the 

unwieldy and time-consuming process of creating a new copy of an object and de- 

stroying the old copy. The problem was solved by the addition of the 

CHANGE-LOGICAL-ADDRESS instruction. Given a pointer cell with a capability to 

an object as an operand, and providing that the capability contains destroy au- 

thority, the machine forgets the current logical address, assigns the object a 

new unique logical address, and stores it in the pointer cell. Any storage ref- 

erence using a capability with the forgotten logical address will result in an 

error. 

2. The "do not copy" problem. 

In the locked-box world, person A might wish to give person B a key to a door in 

a box, but might want to preclude B from copying the key (e.g., to give it to a 

third party). Hence, one needs a mechanism to stamp "do not copy" on a key. 

This was achieved by adding a fourth authority type to the access code of capa- 

bilities - "copy" authority. If a capability has no-copy access, the machine re- 

fuses to allow a process to copy the capability into another pointer cell (e.g., 

via the MOVE instruction, by sending the capability through a port). The four 

authorities - read, write, destroy, and copy - are independent and can exist in 

any combination. 

3. The "retraction" problem. 

One of the major problems with locks and keys (and capabilities) is the ability 

to withdraw authority after it has been given. For instance, one might have giv- 

en I0 people keys to a door, and then later decide that person D should no longer 

have a key. 

Although the physical analogy breaks down a bit here, a possible solution is in- 

direction, that is, rather than handing out keys to the box itself, one might 

hand out keys to a second box that contains a key to the first box. Hence one can 

withdraw the authority of a particular person or class of people by destroying, 

or changing the lock of, one of the secondary, "key-holding," boxes. 

This problem, and others discussed later, was solved by the addition of an "in- 

direct capability." An indirect capability is not an additional data type; it is 

the value of pointer cell whose value was created by a new instruction 

(COMPUTE-INDIRECT-CAPABILITY). The instruction has two operands, both of which 

must be capabilities. The logical address of the second operand is computed and 

stored in the first operand, marking it as an indirect capability. 

An indirect capability cannot be distinguished, by a program, from a normal ca- 

pability; thus a program is oblivious to whether it is using a normal (direct) 

or indirect capability. An indirect capability physically points to another ca- 

pability, but logically points to where the latter capability points. Any refer- 

ence through an indirect capability has the same effect as if the direct 

capability were used. Operations that can be performed on capabilities (e.g., 

copying them into other pointer cells, restricted their access) can be performed 
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on indirect capabilities. 

The indirect capability has many uses. One is security, or a solution to the 

retraction problem. Suppose A wishes to give process B access to some data, but 

wishes to retain the ability to withdraw this access at any time. By giving B an 

indirect capability to a capability (in A's space) to the data, A, at any time, 

can modify the latter pointer to withdraw B's access. 

Another problem solved by the indirect capability is 

4. The "Is he done?" problem. 

This problem arose in implementing a directory service in the operating system. 

The service, which is optional and need not be used by applications with unusu- 

ally strict security concerns, allows users to associate symbolic names with ca- 

pabilities. The service provides an object-control function to allow a process 

to ask for a capability under such qualifications as "I'm willing to share ac- 

cess to the object with any other processes that wish to use it in shared mode" 

and "I require exclusive access to the object." 

The problem was that the directory service could not guarantee that a process 

would not continue to use an object after it had reported back that it was "done" 

with the object. The directory service now accomplishes this by passing out in- 

direct capabilities. When a process reports that it is done with an object, the 

capability to which the indirect capability points is destroyed, thus blocking 

all future use of the indirect capability. 

The indirect capability has another use for which there is no straightforward 

physical analogy. It allows one to dynamically replace objects without having to 

rebind programs, or even stop them in some cases. As an illustration, consider 

the case of module M where its callers have been given indirect capabilities to 

capability P to the entry point of M. If one wishes to replace M dynamically, one 

simply creates the new version and moves its entry capability into P. All calls 

to M now enter the new version. The old version can be destroyed immediately, 

since the DESTROY instruction, when applied to a module, causes the module's SON 

to become invalid but does not destroy the module itself if it is active. (The 

machine remembers the pending destroy operation and frees the space when the ac- 

tivation count drops to zero.) 

5. The "lost key" problem. 

Another obvious problem in the world of the analogy is the loss of all keys to a 

box. In terms of capabilities, the problem is the loss of all capabilities to an 

object (e.g., one creates an object and then mistakenly stores into the only 

pointer to the object). A related problem is the loss of necessary authority to 

an object (e.g., none of the capabilities to object X have destroy authority, 

meaning that X will occupy system space forever). 

No solution was found that did not violate the security of the architecture, so 

the problem remains unsolved. Actually, security concerns are not the only im- 

pediment. The only thread tieing together the machine's knowledge of objects and 

the programs' understanding of objects is the SON in capabilities. If the capa- 
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bilities to an object disappear, the programs and machine have lost their only 

form of communication. 

Several steps were taken to lessen the severity of the problem. First, the in- 

structions that create objects allow one to specify whether the object should be 

automatically destroyed by the machine when the process terminates. This largely 

handles the problem of having a large number of supposedly temporary objects 

linger in the system because a process terminated abnormally. Second, programs 

that create permanent objects are encouraged (but not required) to deposit their 

capabilities in the operating system's directories. Third, the prototype imple- 

mentation contains a mechanism to allow service personnel to search for, and re- 

cover or destroy, lost objects. 

6. The "what is this key" problem. 

The closest physical analogy to this problem is having no information about the 

properties of a key on a key chain, or perhaps a key discovered on the ground. 

It represents a set of situations where the machine has useful information that 

is not available to programs. Some of these situations were 

- Although the capability has an architected access-code field, there was no way 

for a program to reference this information (e.g., to test a particular capa- 

bility to determine if it possesses write access). 

- Given a capability, there was no way to determine what type of entity it refer- 

ences (e.g., module, entry point in module, cell in data-storage object, port, 

and so on). 

- The machine possesses certain state information about objects that was una- 

vailable to programs. Examples of needed information were - Is this object 

designated to be automatically destroyed upon process termination? Is this 

module active? Are there any sets of cell values enqueued in this port? 

The problem was solved by the addition of a DESCRIBE-CAPABILITY instruction. 

Given a capability and an array as operands, the instruction returns information 

in the array describing the capability (e.g., the authority it possesses and the 

class of entity to which it refers) and, if the capability refers to an entire 

object, state information about the object. Some of the state information is in- 

dependent of the type of object, while some is dependent on the type of object. 

The instruction, however, does not return any information about the contents of 

an object (e.g., in the case of a data-storage object, it does not describe any- 

thing about the cell types or values in the object). 

The Second Level of Protection 

A further aspect of the architecture worth mentioning is the way that capa- 

bilities and tagged storage reinforce each other to enhance protection. Access 

to an object actually requires two things: its capability and exact knowledge of 

the nature of the object. If one does not possess the latter (and there is no way 

of obtaining it from the machine), the capability is quite useless. 

To obtain or store information in a data-storage object, one needs a capa- 

bility to it with the appropriate authority, and a set of relocatable cells that 

define the object. For instance, suppose one has created a data-storage object 
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that represents a record of four components: a character string of size 4, a 

floating-point cell of precision 17, a two-dimensional array of integers, and a 

character string of size 8. To reference this data-storage object from a mod- 

ule, the module must contain a set of relocatable cells that state "a record of 

four components, the first of which .... " Any discrepancy between the module's 

notion of the object and the tagged storage within the object itself will result 

in a machine-detected error. Hence, if one is interested in further protection, 

one can "hide" the sensitive information in a data-storage object of sufficient 

complexity. 

The same applies to other objects. For a port, one would need not only a ca- 

pability, but also knowledge of the exact number and types of cell values to be 

sent or received by the process(es) on the other side of the port. To success- 

fully call a module for which one surreptitiously obtained a pointer, one would 

have to know the number of parameters expected by the module and their exact da- 

ta types. 

Note that the DESCRIBE-CAPABILITY instruction mentioned above does not aid 

one in attempting to break through this second level of protection. 

The Implementation of the Capability Mechanism 

Capability-based addressing, when embodied in the machine architecture, al- 

so raises many interesting implementation questions. Although the traditional 

distinctions of processor power and cost have become blurred, the prototype im- 

plementation of the SWARD architecture could be canegorized as a "fast minicom- 

puter" implemented in TTL logic and relying heavily on bit-slice logic and 

programmable logic arrays. Because of a desire to use existing technology, a de- 

sire to avoid (initially) excessive hardware complexity, and because of the 

changing nature of the architecture, the architecture was embodied largely in a 

microprogram, rather than fixed logic, although the organization of the process- 

or is oriented toward the architecture. The microinstruction design is horizon ~ 

tal, with the architecture implemented in approximately 6000 52-bit 

control-storage words. 

The implementation of capabilities is quite straightforward. One needs a 

unique-name generator and a fast mechanism for the translation of object names 

(SONs) to physical storage locations. An obvious name generator is a counter. 

Since one must provide uniqueness across system outages, the counter must be im- 

plemented in nonvolatile storage or be battery powered. 

The obvious mechanism for translating names is an associative storage array. 

However, to lessen costs, the prototype uses a hash-addressed table in a RAM. To 

avoid the overhead associated with hashing (key transformations and 

collisions), the following is done. Recognizing that the creation of SONs is far 

less frequent than the translation of SONs, the strategy is to pay whatever pen- 

alty must be paid during creation rather than translation. When a unique SON is 

needed, the microprogram obtains the next value from the counter, but, rather 

than deciding immediately to use this value, looks at the corresponding table 

entry (SON modulo the table size). If this entry is in use (for another SON), 

the counter is incremented and the next value is tried, since the actual value 

of a SON is meaningless. This continues until an empty table slot is located. 
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To translate a SON, the microprogram simply references the corresponding ta- 

ble slot (again, the SON modulo the table size). If the SON matches the one in 

the slot, translation continues. If not, the program is using a pointer to a de- 

stroyed object, and an error is signalled. As a result, the translation time of 

a SON is constant and approximately two microseconds, but the creation time is 

variable and somewhat longer. 

As mentioned in an earlier section, the architecture purposely does not de- 

fine the representation of the 80-bit logical address. In the prototype imple- 

mentation, the logical address consists of a 32-bit unique SON, a bit to 

distinguish between a normal and indirect pointer, and two 23-bit values indi- 

cating the displacement of the addressed cell's tag and content within the ob- 

ject. (These two displacements are needed because logical addresses can refer 

to entities within objects, as well as entire objects.) 

This representation of a logical address seemingly provides a Sufficiently 

large addressing range (232 objects, each containing up to 223 tokens or 

half-bytes), but, since the processor must assign unique SONs, the supply of 

SONs can be depleted rather quickly. Since the object type most frequently cre- 

ated is the activation record, and since activation records, as a whole, are 

never addressed or referenced by programs, as a matter of course the processor 

does not assign a SON when an activation record is created. An activation record 

needs a SON only if and when one wants to compute the address of a cell that re- 

sides in the activation record (in PL/I parlance, when one executes P=ADDR(X), 

where X is in the AUTOMATIC storage class). Execution of the COMPUTE-CAPABILITY 

and COMPUTE-INDIRECT-CAPABILITY instructions, if specified with an operand that 

falls in an activation record and if the activation record does not already have 

a SON, causes the processor to assign a SON to the activation record. 

Hence, objects that require SONs are modules, ports, data-storage objects, 

process machines, and an occasional activation record. Given a typical load, the 

system should run for about i0 years before it has to begin assigning 

"second-hand" SONs to new objects. Given the second level of protection dis- 

cussed earlier, it is extremely unlikely, even if a program secreted a pointer 

to a destroyed object and tried to use it I0 years later, that the use would be 

successful. 

The system has an auxiliary maintenance processor and CRT console for system 

instrumentation and debugging. In deference to the lost-key problem, one can in- 

voke a diagnostic microprogram which, by scanning the SON memory and then exam- 

ining cells in all objects, can locate objects for which no capabilities exist 

in other objects. The microprogram can either destroy all such objects or dis- 

play a description of them (which is possible because of the use of tagged stor- 

age). Although the mechanism is unwieldy and requires physical security of the 

maintenance console, it is possible for someone to describe a lost object (e.g., 

"I lost a data-storage object containing a one-dimensional array of 50, 

16-character, strings") and have the service personnel manually find, and create 

a capability to, the lost object. 
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Closing 

Capability-based addressing was not embodied originally in the SWARD archi- 

tecture for reasons of protection. The motivations were enhancement of the 

software-development process in the following ways: 

i. Detection of the "dangling reference" programming error, where an ad- 

dress is used to refer to data after that data has disappeared. 

2. Incorporation of the one-level storage concept to simplify and unify 

the way programs address data. A prerequisite to this concept is a 

large addressing range. 

3. Isolation of each procedure within a private address space to lessen 

the effects of errors. This led to an object-oriented architecture. 

However, the capability mechanism in the architecture, particularly when cou- 

pled with the enhancements added to solve the problems discussed, has been found 

to achieve a high degree of data security. 
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