
 Open access Journal Article DOI:10.1145/850708.850709

A hardware implementation of capability-based addressing — Source link

Glenford J. Myers, B. R. S. Buckingham

Institutions: Systems Research Institute

Published on: 01 Oct 1980 - Operating Systems Review (ACM)

Topics: Applications architecture, Space-based architecture, Capability-based addressing, Architecture and
Representation (systemics)

Related papers:

 Capability-based addressing

 On The Advantages of Tagged Architecture

 A Password-Capability System

 Programming semantics for multiprogrammed computations

 Capability-Based Computer Systems

Share this paper:

View more about this paper here: https://typeset.io/papers/a-hardware-implementation-of-capability-based-addressing-
2gmg87yg6y

https://typeset.io/
https://www.doi.org/10.1145/850708.850709
https://typeset.io/papers/a-hardware-implementation-of-capability-based-addressing-2gmg87yg6y
https://typeset.io/authors/glenford-j-myers-3b01kmccdu
https://typeset.io/authors/b-r-s-buckingham-1ajtrwhh4w
https://typeset.io/institutions/systems-research-institute-1s4jz6jc
https://typeset.io/journals/operating-systems-review-1nnnahz5
https://typeset.io/topics/applications-architecture-1ur7ursm
https://typeset.io/topics/space-based-architecture-32z9iiwc
https://typeset.io/topics/capability-based-addressing-1mf4s14y
https://typeset.io/topics/architecture-ez6uiyr7
https://typeset.io/topics/representation-systemics-1ruvf2i7
https://typeset.io/papers/capability-based-addressing-5barm0ojcm
https://typeset.io/papers/on-the-advantages-of-tagged-architecture-1c07pn0tto
https://typeset.io/papers/a-password-capability-system-4w4dyy9oxz
https://typeset.io/papers/programming-semantics-for-multiprogrammed-computations-3l8edlsc1t
https://typeset.io/papers/capability-based-computer-systems-49euzihuwa
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-hardware-implementation-of-capability-based-addressing-2gmg87yg6y
https://twitter.com/intent/tweet?text=A%20hardware%20implementation%20of%20capability-based%20addressing&url=https://typeset.io/papers/a-hardware-implementation-of-capability-based-addressing-2gmg87yg6y
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-hardware-implementation-of-capability-based-addressing-2gmg87yg6y
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-hardware-implementation-of-capability-based-addressing-2gmg87yg6y
https://typeset.io/papers/a-hardware-implementation-of-capability-based-addressing-2gmg87yg6y

A HARDWARE iMPLEMENTATION OF C A P A B I L I T Y - B A S E D ADDRESSING

G. J. Myers and B. R. S. Buckingham

IBM Systems Research Institute

205 East 42nd Street

New York, N. Y. 10017

Abst rac t

The SWARD architecture, an experimental higher-level architecture, contains

the naming and protection concept of capability-based addressing. After dis-

cussing the merits of capability-based addressing, its general representation

in the SWARD architecture is discussed. The initial representation of

capability-based addressing in the architecture led to a set of problems; these

problems are described, as well as their solutions. Finally, the implementation

of capabilities by the processor is discussed.

I ntrod uction

The concept of viewing a computing system as a set of objects, and address-

ing the objects by a protected name known as a capability, has existed for 14

years [I] but has been slow in influencing computer architectures. The idea is

often discussed in the context of operating systems [2-5] and has been imple-

mented, in software, in such experimental operating systems as Cal [6] and Hydra

[7]. The idea is implemented in the computer architectures of the commercial

Plessey 250 [8] and IBM System/38 [9], the experimental Cambridge CAP [I0-II]

and IBM SWARD [12-14] systems, as well as a variety of other proposals [15-16].

The interest in capabilities is motivated by issues of protection, informa-

tion sharing, and, in at least the SWARD architecture, program reliability. Con-

sidering protection for the moment, the typical commercial computing system of

today attempts to achieve protection through a plethora of policies and mech-

anisms. The mechanisms might include privileged instructions,

storage-protection keys, the execution of processes in separate virtual ma-

chines or address spaces, sign-on passwords, file passwords, and so on. Such de-

signs lead to at least four problems

i. Difficulty of verification. Where the protection mechanisms exist in both

hardware and software and are spread throughout the system, the act of es-

tablishing confidence that the system is secure is a difficult task.

. Locating the weak link. In such systems, the protection mechanisms do not

usually reinforce each other; each is there to treat a different aspect of

the problem. If one of them can be subverted, the system becomes totally

unprotected.

. Complexity. Because the designers are looking at the problem in a

piece-meal fashion (e.g., How do I protect the privileged instructions?

How do I protect the operating system from modification? How do I protect

13

one program from another? How do I protect against unauthorized use of

files?), the system design is often complex, the user interface is often

complex, and the designers are never sure that they posed all the pertinent

questions.

. Difficulty of sharing. One must also provide the means for controlled re-

source and information sharing. For instance, process A might wish to

share its procedure X, but no other procedures, with process B. Process A

might wish to give process C read-only access to array Z, but no access to

anything else. Fabry [17] does an able job of showing the difficulty of

such sharing with conventional addressing mechanisms, such as relocation,

paging, and segmentation.

Capability-based addressing is a uniform mechanism oriented toward both the

protection and sharing of information and resources. In most implementations,

storage is viewed as a single set of objects, all being intrinsically address-

able by all processes. Depending on the design, the objects' construction might

be visible to programs (e.g., simply byte spaces) or they might be defined

abstractly (i.e., their construction is not visible to programs; the objects are

defined only by the operations that can be performed on them). The entities

that are represented by objects typically might be procedures, files, dynam-

ically allocated data storage, and message queues or ports.

The concept is further generalized if each object is addressed by a unique

name, rather than a linear storage address. The name is unique in that, when an

object is created, it will be assigned a name that was never used in the past for

a prior object. When an object is destroyed, its name is forgotten by the ma-

chine and never reassigned. These names are system wide and are usually just an

arbitrary pattern of bits, rather than a symbolic name.

A capability is generally considered to be a data type containing a pro-

tected, system-wide name of an object. In addition, a capability contains a de-

finition of the access rights possessed to the object (e.g., read, write,

destroy). The only way to make a reference from one object to another is by the

possession of a capability to the latter object. The possession of a capability

is the sole determinant of access rights; hence one controls access to any ob-

ject by controlling the distribution of capabilities to the object. Also, ob-

jects have no "owners" in the traditional sense; the operations that one can

perform on an object are determined solely by the access rights in the capabili-

ty possessed to the object. These rights can be transferred among objects or

processes by simply transferring the capabilities.

Physical Analogy

~When analyzing protection mechanisms, it is often helpful to use physical

analogies. For capability-based addressing, the physical analogy is that each

object is contained within a box having several springed doors, and capabilities

14

are keys to these doors. I The object name in a capability is analogous to a pat-

tern of notches on the key, and the access rights are a set of auxiliary "bumps"

that permit access to particular doors of the box, for instance, to a door ex-

posing a transparent shield (read-only access) or a door exposing a plunger (de-

stroy access). When a box (object) is created, the machine gives the creating

person (process) a key (capability) that will open all doors in the new box.

What transpires after this is up to the person with the initial key.

To make this world of locked boxes and keys a secure and useful one, one ar-

rives at the following considerations

I.

.

3.

4.

It must be impossible for a person to fabricate a key. Also, given a

key, it must be impossible to alter the notches (e.g., file a new

notch with the hope that the altered key will open a different box).

Given a key, it should be possible to make a copy of the key, either

for one's self or someone else.

Given a key, it should be possible to remove (but not add) one or more

of the auxiliary bumps to remove some of the key's access rights.

For generality, one should be able to move and store keys in the same

way as any other entity. For instance, one should be able to store

keys, or a combination of keys and other treasures, in the boxes

The SWARD Archi tecture

The SWARD architecture was developed with an unusual motivation - that of

enhancing the reliability of programs executing upon the machine. The architec-

ture approaches this from several angles, for instance, by containing functions

to aid software testing and debugging tools, by containing functions to facili-

tate the efficiency of highly modular and structured programs, and by installing

barriers to minimize the effects of software errors, but the primary emphasis is

on semantic checking during program execution. The current definition of the ar-

chitecture has not been published, although an early version has been [13].

One basic attribute of the architecture is tagged or typed storage, although

it is carried further than most implementations. The tags are variable in size,

the size being dependent on the amount of information needed to express the at-

tributes of particular data types, and the machine recognizes and processes such

data types as strings, records, arrays, arrays of records, and so on. All data

types have a specific values defined as the "undefined value," allowing the ma-

chine to detect what our studies show to be the most common programming error -

using a variable that has never been given a value.

The architecture can be termed a domain architecture [18], since every pro-

cedure is encapsulated within a private memory space. One of the object types in

the architecture is the module. A module contains both a set of machine in-

structions and a private address space, consisting of a series of tagged storage

iSince there may be confusion over whether the term "capability" refers

to the value or the storage cell holding the value, one might more cor-

rectly say that the access-rights, object-name couple is the key and

that the placeholder or data type is a single-key key chain.

15

cells (occurrences of data types). A machine instruction can refer to cells

within only the private address space of the module in which the instruction re-

sides. Any and all references to other objects must be done indirectly through

capabilities stored in the private address space.

Furthermore, the architecture contains a high-level generic instruction

set, a send/receive mechanism for interprocess communication, synchronizing in-

structions oriented toward the design concept of monitors, automatic subroutine

management through the use of activation records in activation stacks, a hierar-

chical error detection and handling mechanism, and the concept of a single-level

storage.

The Initial Capability Mechanism

In this section, the initial definition of objects, capabilities, and ad-

dressing in the architecture is discussed. Development of these concepts led to

the discovery of a set of problems, most of which were solved by extensions to

the mechanism. These problems and solutions are discussed in the next section.

The SWARD architecture contains five types of objects: module, data-storage

object, port, process machine, and activation record. The module was mentioned

above. The data-storage object is an occurrence of one or more typed storage

cells (including arrays and structures) that is dynamically allocated space

under program control. A data-storage object might represent a file, an array

dynamically allocated by a program, and so on. A port is an abstract device

through which processes send and receive collectio~is of cell values. A process

machine is the only active object; it is a virtual processor which executes mod-

ules concurrently with other process machines. The activation record is an ob-

ject that is implicitly created by the machine when a module is called

(activated); its primary purpose is to hold that part of the module's address

space that is to be allocated space whenever the module is called. It should be

noted that the five objects are abstractions; their physical representation is

unavailable to programs.

One of the data or cell types provided is the pointer. A pointer is the type

of cell in which a capability resides. A pointer cell occupies 88 bits of stor-

age, consisting of a 4-bit tag (I001) and an 84-bit value. A pointer's value (a

capability) consists of a 4-bit access or authority code and an 80-bit "logical

address." The access code limits the types of operations that can be performed

on the entity to which the capability refers. Initially, the access codes speci-

fied read authority, write authority, destroy authority, and undefined (i.e.,

the pointer has no defined value). Rather than defining a large number of access

types, their interpretation varies slightly depending on the entity addressed by

the pointer, For instance, read authority to a port permits one to use the RE-

CEIVE instruction to obtain a set of cell values from the port.

At this point, a few major differences from other capability systems should

be noted. For reasons of programming generality, pointers can be used in a man-

ner similar to addresses in conventional systems. Hence, pointers are data types

and are not constrained to be stored in separate "capability lists" (a scheme

used to protect capabilities in machines without tagged storage). Pointers can

be stored as variables in programs, can exist within user data structures, can

16

be passed as arguments, sent through ports, and so on.

Another difference is that capabilities are not restricted to referring to

only entire objects. For instance, if one possesses a capability to a

data-storage object containing, perhaps, an array, one can ask the machine (via

the COMPUTE-CAPABILITY instruction) for a capability to any addressable entity

within the object, such as a particular array element. This gives one a selec-

tive and finer granularity of protection. For instance, this second capability

can then be passed on to someone else (e.g., a process or a module called as a

subroutine). The recepient now has access to only this element, and not the en-

tire array. In fact, the recepient has no knowledge that this represents an ar-

ray element, or that it resides in a data-storage object.

Returning to the definition of the capability, its principal part is the

80-bit logical address. The architecture purposely does not define the repres-

entation of a logical address; it is simply defined as information, meaningful

to only the machine, that refers to a particular object or entity within a par-

ticular object. Part of the logical address is the unique name of the object,

called a SON (system object name).

Capabilities, then, can refer to the following:

Data-storage object

Cell within a data-storage object I

Module

Cell within a module ("own" or "static" variable) I

Entry point within a module

Cell within an activation record I

Port

External

(The latter refers to an input/output device.)

The major instructions dealing with pointers are:

ALLOCATE given a description of the collection of cells to be al-

located, creates a data-storage object and returns a

capability to it (All instructions that create objects

return a capability with full authority to the object.)

CREATE MODULE creates a module object.

CREATE PORT creates a port object.

CREATE PROCESS MACHINE..creates a process machine object.

DESTROY given a capability, destroys the object (module,

data-storage object, port, process machine) to which

the capability refers.

COMPUTE CAPABILITY given an addressable operand, computes a capability to

it.

COMPUTE ENTRY CAP computes a capability to a specified instruction in a

iAs well as components and elements within cells (e.g., array elements,

record components).

17

module object.

CHANGE ACCESS further restricts the access code to a specified level

in a capability.

LINK used to bind modules together (e.g., initializing a

pointer cell in module A to refer to an entry point in

module B).

In general, all of the remaining machine instructions can refer to pointers to

refer to operands indirectly. One does this by associating one or more "relo-

catable cells" with a pointer, and referring to the relocatable cell as an oper-

and. Such a reference causes the machine to resolve the logical address and, if

the type information in the relocatable cell matches the type of that to which

the logical address refers, to use the latter storage as the actual operand.

Other instructions refer to pointers directly as operands. For instance,

the CALL instruction, in addition to referring to a set of cells as arguments,

refers to a pointer cell which, in turn, refers to an entry point in a module.

Returning to the "locked box" analogy, one sees that the mechanism above

achieves the four considerations mentioned. It is impossible to fabricate or ma-

nipulate a capability; this is enforced by the use of tagged storage. The only

instructions that cause a pointer cell's value to change are (i) the MOVE in-

struction, and this allows one to move, into a pointer cell, only another point-

er value, (2) the three instructions that create objects, (3) CHANGE-ACCESS, and

(4) the two instructions that compute a pointer value. I The CHANGE-ACCESS in-

struction satisfies consideration 3 mentioned earlier, and treating the pointer

as a data type achieves consideration 4. In addition, the COMPUTE-CAPABILITY in-

struction goes beyond these considerations by allowing one to dynamically create

additional doors in the box to a subset of the treasures in the box.

Problems

After development of the system began with the concepts above, a number of

problems were encountered. Some of the problems surfaced during the design of an

operating system for the machine; others were uncovered simply by further think-

ing. Where feasible, the problems are discussed below in terms of the locked-box

analogy. In fact, had we considered this analogy earlier, the problems would

have been solved earlier, since the analogy makes them obvious.

i. The "new lock" problem.

An obvious act in the locked-box world is the replacement of a lock on a box,

thus invalidating all existing keys. One might take this action, for instance,

if (I) the box were sold to someone else, (2) one suspected that one or more of

the current key holders were using the contents improperly, or (3) one became

uneasy about not knowing how the keys had been distributed over time, and wishes

ZAlthough the pointer can be used as an address, no address arithmetic

is permitted (or needed), since the architecture directly supports the

concepts of array elements and string processing, the areas normally re-

quiring address arithmetic.

18

to start anew with a new lock.

The original architecture provided no mechanism to change locks, other than the

unwieldy and time-consuming process of creating a new copy of an object and de-

stroying the old copy. The problem was solved by the addition of the

CHANGE-LOGICAL-ADDRESS instruction. Given a pointer cell with a capability to

an object as an operand, and providing that the capability contains destroy au-

thority, the machine forgets the current logical address, assigns the object a

new unique logical address, and stores it in the pointer cell. Any storage ref-

erence using a capability with the forgotten logical address will result in an

error.

2. The "do not copy" problem.

In the locked-box world, person A might wish to give person B a key to a door in

a box, but might want to preclude B from copying the key (e.g., to give it to a

third party). Hence, one needs a mechanism to stamp "do not copy" on a key.

This was achieved by adding a fourth authority type to the access code of capa-

bilities - "copy" authority. If a capability has no-copy access, the machine re-

fuses to allow a process to copy the capability into another pointer cell (e.g.,

via the MOVE instruction, by sending the capability through a port). The four

authorities - read, write, destroy, and copy - are independent and can exist in

any combination.

3. The "retraction" problem.

One of the major problems with locks and keys (and capabilities) is the ability

to withdraw authority after it has been given. For instance, one might have giv-

en I0 people keys to a door, and then later decide that person D should no longer

have a key.

Although the physical analogy breaks down a bit here, a possible solution is in-

direction, that is, rather than handing out keys to the box itself, one might

hand out keys to a second box that contains a key to the first box. Hence one can

withdraw the authority of a particular person or class of people by destroying,

or changing the lock of, one of the secondary, "key-holding," boxes.

This problem, and others discussed later, was solved by the addition of an "in-

direct capability." An indirect capability is not an additional data type; it is

the value of pointer cell whose value was created by a new instruction

(COMPUTE-INDIRECT-CAPABILITY). The instruction has two operands, both of which

must be capabilities. The logical address of the second operand is computed and

stored in the first operand, marking it as an indirect capability.

An indirect capability cannot be distinguished, by a program, from a normal ca-

pability; thus a program is oblivious to whether it is using a normal (direct)

or indirect capability. An indirect capability physically points to another ca-

pability, but logically points to where the latter capability points. Any refer-

ence through an indirect capability has the same effect as if the direct

capability were used. Operations that can be performed on capabilities (e.g.,

copying them into other pointer cells, restricted their access) can be performed

19

on indirect capabilities.

The indirect capability has many uses. One is security, or a solution to the

retraction problem. Suppose A wishes to give process B access to some data, but

wishes to retain the ability to withdraw this access at any time. By giving B an

indirect capability to a capability (in A's space) to the data, A, at any time,

can modify the latter pointer to withdraw B's access.

Another problem solved by the indirect capability is

4. The "Is he done?" problem.

This problem arose in implementing a directory service in the operating system.

The service, which is optional and need not be used by applications with unusu-

ally strict security concerns, allows users to associate symbolic names with ca-

pabilities. The service provides an object-control function to allow a process

to ask for a capability under such qualifications as "I'm willing to share ac-

cess to the object with any other processes that wish to use it in shared mode"

and "I require exclusive access to the object."

The problem was that the directory service could not guarantee that a process

would not continue to use an object after it had reported back that it was "done"

with the object. The directory service now accomplishes this by passing out in-

direct capabilities. When a process reports that it is done with an object, the

capability to which the indirect capability points is destroyed, thus blocking

all future use of the indirect capability.

The indirect capability has another use for which there is no straightforward

physical analogy. It allows one to dynamically replace objects without having to

rebind programs, or even stop them in some cases. As an illustration, consider

the case of module M where its callers have been given indirect capabilities to

capability P to the entry point of M. If one wishes to replace M dynamically, one

simply creates the new version and moves its entry capability into P. All calls

to M now enter the new version. The old version can be destroyed immediately,

since the DESTROY instruction, when applied to a module, causes the module's SON

to become invalid but does not destroy the module itself if it is active. (The

machine remembers the pending destroy operation and frees the space when the ac-

tivation count drops to zero.)

5. The "lost key" problem.

Another obvious problem in the world of the analogy is the loss of all keys to a

box. In terms of capabilities, the problem is the loss of all capabilities to an

object (e.g., one creates an object and then mistakenly stores into the only

pointer to the object). A related problem is the loss of necessary authority to

an object (e.g., none of the capabilities to object X have destroy authority,

meaning that X will occupy system space forever).

No solution was found that did not violate the security of the architecture, so

the problem remains unsolved. Actually, security concerns are not the only im-

pediment. The only thread tieing together the machine's knowledge of objects and

the programs' understanding of objects is the SON in capabilities. If the capa-

20

bilities to an object disappear, the programs and machine have lost their only

form of communication.

Several steps were taken to lessen the severity of the problem. First, the in-

structions that create objects allow one to specify whether the object should be

automatically destroyed by the machine when the process terminates. This largely

handles the problem of having a large number of supposedly temporary objects

linger in the system because a process terminated abnormally. Second, programs

that create permanent objects are encouraged (but not required) to deposit their

capabilities in the operating system's directories. Third, the prototype imple-

mentation contains a mechanism to allow service personnel to search for, and re-

cover or destroy, lost objects.

6. The "what is this key" problem.

The closest physical analogy to this problem is having no information about the

properties of a key on a key chain, or perhaps a key discovered on the ground.

It represents a set of situations where the machine has useful information that

is not available to programs. Some of these situations were

- Although the capability has an architected access-code field, there was no way

for a program to reference this information (e.g., to test a particular capa-

bility to determine if it possesses write access).

- Given a capability, there was no way to determine what type of entity it refer-

ences (e.g., module, entry point in module, cell in data-storage object, port,

and so on).

- The machine possesses certain state information about objects that was una-

vailable to programs. Examples of needed information were - Is this object

designated to be automatically destroyed upon process termination? Is this

module active? Are there any sets of cell values enqueued in this port?

The problem was solved by the addition of a DESCRIBE-CAPABILITY instruction.

Given a capability and an array as operands, the instruction returns information

in the array describing the capability (e.g., the authority it possesses and the

class of entity to which it refers) and, if the capability refers to an entire

object, state information about the object. Some of the state information is in-

dependent of the type of object, while some is dependent on the type of object.

The instruction, however, does not return any information about the contents of

an object (e.g., in the case of a data-storage object, it does not describe any-

thing about the cell types or values in the object).

The Second Level of Protection

A further aspect of the architecture worth mentioning is the way that capa-

bilities and tagged storage reinforce each other to enhance protection. Access

to an object actually requires two things: its capability and exact knowledge of

the nature of the object. If one does not possess the latter (and there is no way

of obtaining it from the machine), the capability is quite useless.

To obtain or store information in a data-storage object, one needs a capa-

bility to it with the appropriate authority, and a set of relocatable cells that

define the object. For instance, suppose one has created a data-storage object

21

that represents a record of four components: a character string of size 4, a

floating-point cell of precision 17, a two-dimensional array of integers, and a

character string of size 8. To reference this data-storage object from a mod-

ule, the module must contain a set of relocatable cells that state "a record of

four components, the first of which " Any discrepancy between the module's

notion of the object and the tagged storage within the object itself will result

in a machine-detected error. Hence, if one is interested in further protection,

one can "hide" the sensitive information in a data-storage object of sufficient

complexity.

The same applies to other objects. For a port, one would need not only a ca-

pability, but also knowledge of the exact number and types of cell values to be

sent or received by the process(es) on the other side of the port. To success-

fully call a module for which one surreptitiously obtained a pointer, one would

have to know the number of parameters expected by the module and their exact da-

ta types.

Note that the DESCRIBE-CAPABILITY instruction mentioned above does not aid

one in attempting to break through this second level of protection.

The Implementation of the Capability Mechanism

Capability-based addressing, when embodied in the machine architecture, al-

so raises many interesting implementation questions. Although the traditional

distinctions of processor power and cost have become blurred, the prototype im-

plementation of the SWARD architecture could be canegorized as a "fast minicom-

puter" implemented in TTL logic and relying heavily on bit-slice logic and

programmable logic arrays. Because of a desire to use existing technology, a de-

sire to avoid (initially) excessive hardware complexity, and because of the

changing nature of the architecture, the architecture was embodied largely in a

microprogram, rather than fixed logic, although the organization of the process-

or is oriented toward the architecture. The microinstruction design is horizon ~

tal, with the architecture implemented in approximately 6000 52-bit

control-storage words.

The implementation of capabilities is quite straightforward. One needs a

unique-name generator and a fast mechanism for the translation of object names

(SONs) to physical storage locations. An obvious name generator is a counter.

Since one must provide uniqueness across system outages, the counter must be im-

plemented in nonvolatile storage or be battery powered.

The obvious mechanism for translating names is an associative storage array.

However, to lessen costs, the prototype uses a hash-addressed table in a RAM. To

avoid the overhead associated with hashing (key transformations and

collisions), the following is done. Recognizing that the creation of SONs is far

less frequent than the translation of SONs, the strategy is to pay whatever pen-

alty must be paid during creation rather than translation. When a unique SON is

needed, the microprogram obtains the next value from the counter, but, rather

than deciding immediately to use this value, looks at the corresponding table

entry (SON modulo the table size). If this entry is in use (for another SON),

the counter is incremented and the next value is tried, since the actual value

of a SON is meaningless. This continues until an empty table slot is located.

22

To translate a SON, the microprogram simply references the corresponding ta-

ble slot (again, the SON modulo the table size). If the SON matches the one in

the slot, translation continues. If not, the program is using a pointer to a de-

stroyed object, and an error is signalled. As a result, the translation time of

a SON is constant and approximately two microseconds, but the creation time is

variable and somewhat longer.

As mentioned in an earlier section, the architecture purposely does not de-

fine the representation of the 80-bit logical address. In the prototype imple-

mentation, the logical address consists of a 32-bit unique SON, a bit to

distinguish between a normal and indirect pointer, and two 23-bit values indi-

cating the displacement of the addressed cell's tag and content within the ob-

ject. (These two displacements are needed because logical addresses can refer

to entities within objects, as well as entire objects.)

This representation of a logical address seemingly provides a Sufficiently

large addressing range (232 objects, each containing up to 223 tokens or

half-bytes), but, since the processor must assign unique SONs, the supply of

SONs can be depleted rather quickly. Since the object type most frequently cre-

ated is the activation record, and since activation records, as a whole, are

never addressed or referenced by programs, as a matter of course the processor

does not assign a SON when an activation record is created. An activation record

needs a SON only if and when one wants to compute the address of a cell that re-

sides in the activation record (in PL/I parlance, when one executes P=ADDR(X),

where X is in the AUTOMATIC storage class). Execution of the COMPUTE-CAPABILITY

and COMPUTE-INDIRECT-CAPABILITY instructions, if specified with an operand that

falls in an activation record and if the activation record does not already have

a SON, causes the processor to assign a SON to the activation record.

Hence, objects that require SONs are modules, ports, data-storage objects,

process machines, and an occasional activation record. Given a typical load, the

system should run for about i0 years before it has to begin assigning

"second-hand" SONs to new objects. Given the second level of protection dis-

cussed earlier, it is extremely unlikely, even if a program secreted a pointer

to a destroyed object and tried to use it I0 years later, that the use would be

successful.

The system has an auxiliary maintenance processor and CRT console for system

instrumentation and debugging. In deference to the lost-key problem, one can in-

voke a diagnostic microprogram which, by scanning the SON memory and then exam-

ining cells in all objects, can locate objects for which no capabilities exist

in other objects. The microprogram can either destroy all such objects or dis-

play a description of them (which is possible because of the use of tagged stor-

age). Although the mechanism is unwieldy and requires physical security of the

maintenance console, it is possible for someone to describe a lost object (e.g.,

"I lost a data-storage object containing a one-dimensional array of 50,

16-character, strings") and have the service personnel manually find, and create

a capability to, the lost object.

23

Closing

Capability-based addressing was not embodied originally in the SWARD archi-

tecture for reasons of protection. The motivations were enhancement of the

software-development process in the following ways:

i. Detection of the "dangling reference" programming error, where an ad-

dress is used to refer to data after that data has disappeared.

2. Incorporation of the one-level storage concept to simplify and unify

the way programs address data. A prerequisite to this concept is a

large addressing range.

3. Isolation of each procedure within a private address space to lessen

the effects of errors. This led to an object-oriented architecture.

However, the capability mechanism in the architecture, particularly when cou-

pled with the enhancements added to solve the problems discussed, has been found

to achieve a high degree of data security.

References

i. J.B. Dennis and E. C. Van Horn, "Programming Semantics for Multiprogrammed

Computation," CACM, 9(3), 143-155 (1966).

2. P.J. Denning, "-VF-aault-Tolerant Operating Systems," Computing Surveys, 8(4),

359-390 (1976).

3. T.A. Linden, "Operating System Structures to Support Security and Reliable

Software," Computing Surveys, 8(4), 409-445 (1976).

4. B.W. Lampson, "Dynamic Protection Structures," Proc. 1969 FJCC. Montvale,

N. J.: AFIPS Press, 1969, pp. 27-38.

5. B. W. Lampson, "Protection," Proc. Fifth Princeton Symp. on Information

Sciences and Systems. Princeton, N.J.: Princeton University, 1971, pp.

437-443, reprinted in Operating System Review, 8(i), 18-24 (1974).

6. B. W. Lampson and H. E. Sturgis, "Reflections on an Operating System

Design," CACM, 19(5), 251-265 (1976).

7. E. Cohen and D. Jefferson, "Protection in the Hydra Operating System,"

Proc. Fifth Symp. on Operating System Principles. New York: ACM, 1975, pp.

141-160.

8. D. M. England, "Architectural Features of System 250," Infotech State of

the Art Report 14: Operating Systems. Berkshire, England: Infotech, 1972,

pp. 395-428.

9. IBM System/38 Technical Developments. Atlanta: IBM, 1978.

i0. R. M. Needham and R. D. H. Walker, "The Cambridge CAP Computer and its Pro-

tection System," Proc. Sixth Symp. on Operating System Principles. New

York: ACM, 1977, pp. i-i0.

ii. A. J. Herbert, "A New Protection Architecture for the Cambridge Capability

Computer," Operating System Review, 12(1), 24-28 (1978).

12. G. J. Myers, "Storage Concepts in a Software-Reliability-Directed Computer

Architecture," Proc. Fifth Annual Symp. on Computer Architecture. New

York: ACM, 1978, pp. 107-113.

13. G. J. Myers, Advances in Computer Architecture. New York:

Wiley-lnterscience, 1978.

14. G. J. Myers, "SWARD - A Software-Oriented Architecture," Proc. Interna-

tional Workshop on High-Level Language Computer Architecture. University

24

of Maryland, 1980, pp. 163-168.

15. G. J. Battarel and R. J. Chevance, "Design of a High Level Language

Machine," Computer Architecture News, 6(9), 5-17 (1978).

16. H. J. Saal and I. Gat, "A Hardware Architecture for Controlling Information

Flow," Proc. Fifth Annual Symp. on Computer Architecture. New York: ACM,

1978, pp. 73-77.

17. R. S. Fabry, "Capability-Based Addressing," CACM, 17(7), 403-412 (1974).

18. M. J. Spier, T. N. Hastings, and D. N. Cutler, "An Experimental Implementa-

tion of the Kernal/Domain Architecture," Proc. Fourth Symp. on Operating

System Principles. New York: ACM, 1973, pp. 8-21.

25

