
A hardware-independent fast logarithm approximation with adjustable accuracy

Oriol Vinyals, Gerald Friedland
International Computer Science Institute

1947 Center Street, Suite 600
Berkeley, CA 94707

[vinyals,fractor]@icsi.berkeley.edu

Abstract

Many multimedia applications rely on the computation
of logarithms, for example, when estimating log-likelihoods
for Gaussian Mixture Models. Knowing of the demand to
compute logarithms and other basic math functions rapidly,
many hardware manufacturers provide libraries to perform
calculations in hardware. Of course, these libraries are es-
pecially popular for the use in computer vision or audio
analysis algorithms where a large amounts of data have
to be processed. A downside of using specialized hard-
ware though is that it increases the investment cost and
the user is forced to use the same hardware, which is es-
pecially cumbersome when algorithms optimized for differ-
ent specialized hardware are to be combined. This article
presents the realization of a novel platform-independent,
fast C-language implementation of the logarithm function.
The idea behind the approach is to take advantage of the
large amount of cache available in current processors. The
logarithm implementation is compared to the current state
of the art and we demonstrate the practical use of the algo-
rithm in an actual speech analysis application.

1 Motivation

During our research on speeding up a machine learning
algorithm, namely the ICSI speaker diarization engine [7],
we found that a major bottleneck was the computation of
the natural logarithm. This comes to no surprise because
many machine learning systems, for example when using
Gaussian Mixture Models combined with Hidden Markov
Models, rely heavily on the computation of logarithms be-
cause they use log-likelihoods as a basic similarity measure.
Profiling the ICSI speaker diarization engine, we found that
computing the log-likelihood took about 80 % of the total
runtime.

Of course, two strategies can be followed to improve
the speed of such a bottleneck: One can either change the

structure of the algorithm and reduce the number of log-
likelihood calculations [4] or/and one can reduce the ex-
ecution time of the logarithm function itself. Usually the
second option seems rarely a good choice because one re-
lies on compilers and standard libraries to already have a
very optimized version of these basic functions. We found,
however, that many implementations of the logarithm func-
tion are either too slow, too inaccurate, or require special
hardware.

This article presents the realization of a platform inde-
pendent, fast C-language implementation of the logarithm
function. The proposed C-language function is a fast sin-
gle precision approximation of the natural logarithm with
adjustable accuracy. The core idea is to use a quantized ver-
sion of the mantissa of the input floating point number as a
pointer into a lookup table. The amount of quantization of
the mantissa determines the table size and therefore the ac-
curacy. Current processors are able to store relatively large
lookup tables in cache memory. Therefore an acceptable
accuracy can be reached without too many main memory
accesses. We measured a speed up of about factor 6 with re-
spect to the standard C-library implementation while keep-
ing the absolute error as low as 10−6. This article presents
and discusses our proposed implementation with respect to
other logarithm realizations on different platforms. Mea-
surements are performed using a dedicated benchmark and
by testing the performance of the function as part of a real
application.

Section 2 introduces the currently most common loga-
rithm implementations before Section 2 describes the idea
of our approach. Section 4 presents speed and accuracy
measurements on different platforms. We conclude with
Section 5 followed by the references. An Appendix con-
tains the source code of the current version of the ICSILog.

2 Related Work

Apart from the dependency on the IEEE 754 [6] float-
ing point standard we did not want to accept any hardware

Tenth IEEE International Symposium on Multimedia

978-0-7695-3454-1/08 $25.00 © 2008 IEEE

DOI 10.1109/ISM.2008.83

61

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 06,2010 at 17:00:13 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Concept of ICSILog algorithm. An IEEE 754 floating point number is decomposed into
mantissa and exponent. The mantissa is quantized and used as a pointer into a lookup table that
should fit into CPU cache. The result of the look up can be easily composed with the downscaled
exponent using one addition.

requirements, so our resulting code would be portable. A
search for different fast logarithm implementations results
in mostly special purpose solutions. Many of them require
additional hardware.

Many compilers offer an option to trade off floating point
accuracy for speed. The GNU Compiler Collection (GCC)
[3] for example offers a flag called -ffast-math. When this
compiler flag is on, the compiler uses speed optimizations
that can result in incorrect output for programs which de-
pend on an exact implementation of IEEE or ISO specifica-
tions for math functions. When applying this flag to com-
pile the algorithm described in Section 1, we achieve only
a little speed up but the performance of the overall system
noticeable decrease

The default math.h logarithm function computes a high-
order Taylor approximation to achieve floating point preci-
sion. This involves a large number of multiplications and
sums of floating point numbers. Throughout the article we
will refer to the standard GCC 3.4.6 implementation of the
logarithm as our baseline. A look at the GCC standard li-
brary’s source code reveals a modification date in 1992. In
other words, the function has been optimized for a proces-
sor architecture from 16 years ago.

Laurent de Soras published an algorithm called Fast-
Log [2] in 2001. His algorithm basically only computes an
order-3 Taylor approximation of any given IEEE 754 float-
ing point number. The algorithm is fast but also too inaccu-
rate (compare Table 1). We found that our approach using
a lookup table was as fast as his implementation with better
accuracy.

Advanced Micro Devices, Inc (AMD) offers the AMD
Core Math Library (ACML) [1]. ACML is a performance-

tuned math library relying on the current processors series
produced by AMD. These include AMD Opteron and AMD
Athlon 64. AMD claims that computing a natural logarithm
with floating point precision takes only 94 CPU cycles. Al-
though this library is dependent on the use of processors
by AMD we included it in our comparison. The results are
described in Section 4.2.

State-of-the-art 3D graphics cards are equipped with so-
called Graphic Processor Units (GPUs). They offer a sig-
nificant amount of processing power also for floating point
math operations. NVIDIA, Inc for example offers the so-
called Compute Unified Device Architecture (CUDA) [5]
on their recent models GeForce 8800 GTX and GTS. The
idea is to give computationally intensive applications ac-
cess to highly-parallelized processing through an easy-to-
use programming interface. NVIDIA claims the log func-
tion can be computed in only 4 GPU cycles. However, this
does not take into account that GPUs are usually clocked
at lower frequencies than current CPUs. Most importantly,
there is a rather large communication overhead when using
CUDA only for some basic computations. Therefore using
CUDA requires a complete re-design of any given algorithm
and in the end one relies on a proprietary hardware solution.

3 Idea of ICSILog

The core idea of the approach described here is to in-
crease the performance of the logarithm computation by re-
lying on a lookup table that can easily reside in CPU cache.
A pre-calculation of all logarithms for the entire floating
point number domain would take prohibitive amounts of

62

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 06,2010 at 17:00:13 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Speed-accuracy trade off of the ICSILog on different systems relative to the GCC standard
log implementation. Indicated is processor type, cache size, and operating system. The speed drops
at a point where there are too many cache misses.

memory (about 8 GB). Of course, a table of this size would
neither fit into the cache memory of current CPUs.

Fortunately, the size of the look up table can be reduced
by exploiting the way floating point numbers are repre-
sented in memory. Conceptually, a 32-bit IEEE 754 floating
point number is stored as follows. A value val of a number
is the product of a 23-bit mantissa man and an 8-bit ex-
ponent exp. One bit is reserved for the sign s. If s = 0
the sign is positive, otherwise it is negative. Since the real-
valued logarithm is only defined for positive numbers, the
sign bit can be ignored. We get:

val = 2exp · man

We can use the multiplicative property of the logarithm
function to decompose the logarithm computation as:

log2(val) = log2(2
exp · man) = exp + log2(man)

In order to calculate the natural logarithm, we can take
advantage of the property that all logarithms are propor-
tional to each other. This results in the following equation:

loge(val) = (exp + log2(man)) · loge(2) =

exp · loge(2) + log2(man) · loge(2)

Of course, loge(2) = 0.6931471805... is a constant.
Calculating the logarithm with respect to any other base
only requires multiplying with a different constant.

Extracting the exponent and the mantissa of a floating
point number can be performed quickly using bit shift op-
erations. Therefore, in order to calculate the left part of the
sum, only one multiplication is required. To calculate the
right part of the sum, we store the results of the computa-
tion

log2(man) · loge(2)

in a lookup table. Unfortunately, this still requires a ta-
ble with 223 entries with each entry needing 4 bytes, thus
32 MB. In our experiments (see Section 3), we found that
using a table of this size increases the performance of the
logarithm computation only very slightly since memory ac-
cesses take about the same time than the computation of the
Taylor approximation. In order for the look up table to fit
into cache, we quantize the mantissa, i.e. we ignore q least
significant bits of the mantissa.

The table is then indexed using the 23−q most significant
bits of the mantissa. The result is calculated by adding the
value looked up in the table and the downscaled exponent.
Figure 1 shows a diagram illustrating the steps explained in
this section.

Of course, accuracy is lost because of the quantization of
the mantissa, as will be discussed in the next section.

4 Performance of ICSILog

This section discusses the accuracy-performance trade-
off for ICSILog and compares our proposed implementation
with different state-of-the-art logarithm realizations, both

63

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 06,2010 at 17:00:13 UTC from IEEE Xplore. Restrictions apply.

Method Speed up Error
Standard Log 1.0 0.00
AMD ACML Log 1.7 1.10 10−7

-ffast-math Log 2.0 1.42 10−7

FastLog 6.0 − 7.0 4.26 10−3

ICSILog (q=0) 2.0 0.00
ICSILog (q=7) 6.0 3.27 10−6

ICSILog (q=8) 6.0 − 8.0 6.55 10−6

Table 1. Speed up table and error of several
logarithm implementations. q is the number
of least significant bits ignored from the man-
tissa.

using a simple benchmark application and in a real appli-
cation.

4.1 Speed-Accuracy Trade-Off

In order to find the best trade-off between quantization of
the mantissa (accuracy) and speed, we measured the time it
takes calculate the logarithm of 10, 000, 000 random num-
bers on different CPUs and operating systems. The speed is
compared to the execution time of the standard implemen-
tation of the logarithm.

Figure 2 shows the speed of the ICSILog relative to the
standard log on different CPUs and platform for different
table sizes. It can be observed that the execution speed starts
to decrease when we use about 16 bits from the mantissa (ie.
q = 7). This is the point where the look up table is too big
to be constantly held in cache memory.

Using no quantization of the mantissa, which results in
no loss of accuracy, the speed up on current Intel systems
is about 1.0 and still 2.0 on AMD systems. There are many
factors that could cause this behavior. A possible explana-
tion is that main memory access is more optimized on AMD
architecture mainboards.

4.2 Benchmark Results

Table 1 shows the performance of ICSILog compared to
other logarithm implementations. We measured the time it
takes to calculate the log using different implementations
for 10,000,000 random numbers. All the experiments were
performed on an AMD Opteron 875 (64 bits) 2.2 GHz dual
core with 1024 KB cache. This made possible to compare
the performance of the ICSILog against the logarithm im-
plementation of the ACML library (see Section 2). The op-
erating system is Red Hat Enterprise 4 and the benchmark
application was compiled using GCC 3.4.6. With q = 7,
ICSILog is faster than any other tested logarithm implemen-
tations while maintaining an accuracy of 6.55 10−6.

Standard Log FastLog ICSILog
Time needed 100% 49% 45%
Error Rate 11.74 12.14 11.74

Table 2. Speed up and error of ICSILog in a
real application: The ICSI Speaker Diarization
Engine. ICSIlog is tested with quantization
parameter q = 11. For more details refer to
the text.

4.3 ICSILog in a Multimedia Application

Since ICSILog is based on cache utilization, it is impor-
tant to measure the performance of the algorithm in a real
application where the CPU’s cache memory is also used for
other purposes. The objective of this experiment is to speed
up the ICSI speaker diarization engine [7]. The task of a
speaker diarization is to segment an audio recording into
speaker-homogeneous regions. That means, given a single-
source recording, the engine is to determine “who spoke
when”. For a five-minute audio file, the logarithm function
is called several million times because a core of the engine
is the calculation of log-likelihoods against Gaussian Mix-
ture Models. Table 2 shows the results of using different
logarithm implementations inside this engine. In a real ap-
plication, there are many factors to be taken into account
that influence speed and/or accuracy. However, the exam-
ple shows that our proposed ICSILog is able to increase the
performance of a real application significantly while main-
taining a better accuracy than FastLog.

5 Conclusion

We propose a new implementation of the logarithm func-
tion, called ICSIlog. This platform and hardware indepen-
dent realization of the logarithm function achieves a bet-
ter speed-accuracy trade-off than any other current imple-
mentation. The goal is achieved by taking advantage of the
large and fast cache memories of current CPUs. With cache
memories growing, ICSIlog can be used with increased ta-
ble sizes. Then the function will become even more ac-
curate without a loss in performance. The implementation
was benchmarked and compared against state-of-the-art ap-
proaches and also tested using a real-world multimedia ap-
plication. ICSILog also shows that it is worthwhile to revisit
how basic functionality is implemented in standard compil-
ers and libraries. Often, it is assumed that these functions
are already optimized perfectly. Over time, however, they
become obsolete. Instead of revising old implementations,
a first reaction is often to introduce new specialized hard-
ware. In the hope that ICSIlog would be useful to the multi-
media community, our implementation of the logarithm and

64

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 06,2010 at 17:00:13 UTC from IEEE Xplore. Restrictions apply.

the benchmarking programs as described here have been
released open source. The package can be accessed at:
http://freshmeat.net/projects/icsilog/.

Acknowledgements

We would like to thank Chuck Wooters and Marijn Hui-
jbregts for their advise on the Diarization Engine. Nikki
Mirghafori inspired the development of faster Speaker Di-
arization algorithms and gave helpful advise on many as-
pects of the project. We would like to thank Adam Janin,
Yan Huang, David Johnson, and Benoit Favre for their par-
ticipation in discussions around the ICSIlog. This work was
(partly) funded by IARPA VACE program. Gerald Fried-
land was supported by a fellowship within the postdoc pro-
gram of the German Academic Exchange Service (DAAD).
Oriol Vinyals was supported by the European Union 6th
FWP IST Integrated Project AMIDA (Augmented Multi-
party Interaction with Distant Access).

References

[1] I. AMD. AMD Core Math Library (ACML) (last visited: 06-
18-2007). http://developer.amd.com/acml.jsp.

[2] L. de Soras. Fast log() Function (last visited: 06-
18-2007). http://www.flipcode.com/cgi-bin/
fcarticles.cgi?show=63828.

[3] G. Foundation. GCC, the GNU Compiler Collection (last vis-
ited: 06-18-2007). http://gcc.gnu.org/.

[4] Y. Huang, O. Vinyals, G. Friedland, C. Müller, N. Mirghafori,
and C. Wooters. A fast-match approach for robust, faster than
real-time speaker diarization. Proceedings of IEEE ASRU,
pages 693–698, December 2007.

[5] NVidia. NVIDIA CUDA. Revolutionary GPU Comput-
ing (last visited: 06-18-2007). http://developer.
nvidia.com/cuda.

[6] I. of Electrical and E. Engineers. IEEE 754-1985: Stan-
dard for Binary Floating-Point Arithmetic, 1985. http:
//grouper.ieee.org/groups/754/.

[7] C. Wooters and M. Huijbregts. The ICSI RT07s Speaker Di-
arization System. Lecture Notes in Computer Science, 2007
(to appear).

65

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 06,2010 at 17:00:13 UTC from IEEE Xplore. Restrictions apply.

