
A Hardware Pipeline for Function Optimization using
Genetic Algorithms

Malay K. Pakhira
∗

Kalyani Government Engineering College
Kalyani - 741 235

West Bengal, INDIA

malay pakhira@yahoo.com

Rajat K. De
†

Indian Statistical Institute
Kolkata - 700 108

West Bengal, INDIA

rajat@isical.ac.in

ABSTRACT
Genetic Algorithms (GAs) are very commonly used as func-
tion optimizers, basically due to their search capability. A
number of different serial and parallel versions of GA exist.
In this paper, a pipelined version of the commonly used Ge-
netic Algorithms and a corresponding hardware platform is
described. The main idea of achieving pipelined execution
of different operations of GA is to use a stochastic selection
function which works with the fitness value of the candidate
chromosome only. The modified algorithm is termed PLGA
(Pipelined Genetic Algorithm). When executed in a CGA
(Classical Genetic Algorithm) framework, the stochastic se-
lection gives comparable performances with the roulette-
wheel selection. In the pipelined hardware environment,
PLGA will be much faster than the CGA. When executed on
similar hardware platforms, PLGA may attain a maximum
speedup of four over CGA. However, if CGA is executed in a
uniprocessor system the speedup is much more. A compar-
ison of PLGA against PGA (Parallel Genetic Algorithms)
shows that PLGA may be even more effective than PGAs.
A scheme for realizing the hardware pipeline is also pre-
sented. Since a general function evaluation unit is essential,
a detailed description of one such unit is presented.

Categories and Subject Descriptors
I.5 [Computing Methodologies]: Pattern Recognition;
I.5.5 [Implementation]: Special Architecture—Pipelining,
performance measures

∗M. K. Pakhira is associated to Department of Computer
Science and Engineering at Kalyani Government Engineer-
ing College.
†R. K. De is associated to Machine Intelligence Unit at In-
dian Statistical Institute.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

General Terms
Algorithms, Design

Keywords
Function optimization, Genetic algorithms, Hardware pipeline,
Pipelined GA, Stochastic selection.

1. INTRODUCTION
Genetic algorithm (GA), developed by Holland in 1975 [8],

is known to be an efficient search and optimization mecha-
nism which incorporates the principles of evolution and nat-
ural selection. Many different forms of the basic GA exist
[5]. Several attempts have been made to exploit the in-
herent parallelism of GA [7, 9, 6, 1, 11, 3]. Most of these
methods maintain the basic serial nature of the operations.
They simply divide the population into a number of sub-
populations and execute genetic operations for each of the
sub-populations separately. After parallel executions in all
the processing units, at certain intervals, the newly devel-
oped information regarding the best solution strings of these
units are exchanged through migration phase. This kind of
parallel execution is supported by distributed processing en-
vironments. Recently, pipelined execution schemes for GAs
are also being proposed [2, 10]. An attempt of designing a
systolic array pipeline of the genetic operators may be found
in [2].

In this paper, we describe the design of a pipelined genetic
algorithm (PLGA) which uses a stochastic selection scheme
that eliminates the dependency for a complete pool of candi-
date solutions required in conventional methods at the selec-
tion stage and hence allows us to develop a pipeline using the
basic operations of GA. Simulation experiments with various
functional optimization problems of varying complexity de-
termines the applicability and effectiveness of this selection
scheme in GAs. The performance of PLGA, in terms of rate
of convergence and speedup, are found to be superior or com-
parable with respect to CGA and PGA. Since the full benefit
of a pipelined GA can be realized only when it is executed on
a complete hardware platform, we have presented a scheme
for implementing the corresponding hardware pipeline. We
have considered only binary representation of chromosomes
in our design and for conducting simulation experiments.
However, the hardware is highly general and can be used
for optimization of any general function using PLGA.

949

2. BASICS OF GA
In genetic algorithms [8, 5], the parameters of an opti-

mization problem corresponding to a possible solution are
encoded to form a chromosome. A collection of such chromo-
somes is called a population or pool. The initial population
is generated randomly or using some domain specific knowl-
edge. Four different characteristic operations, viz., selection,
crossover, mutation and evaluation are normally performed
in GAs. The selection operator finds the fittest candidate so-
lutions (chromosomes) from the pool of current generation,
which are then represented in the next generation, based
on their figure of merit. Classical GAs (CGA) generally
use the roulette-wheel selection scheme. By crossover, fea-
tures of two selected strings (mates) from the parent popula-
tion are intermixed to generate newer chromosome patterns
called children. Mutation is used for fine tuning the solution.
Crossover and mutation are done with certain probabilities.
Mutation can take place in several different ways. In the
binary representation for chromosomes, it generally toggles
one or more bit position(s) depending upon mutation prob-
ability. Using these three operators, we can get a new pop-
ulation from the old one. Crossover and mutation strategies
used in this work are similar to those mentioned in [4]. By
evaluation operation the objective function of the concerned
optimization problem is evaluated. Since, in GAs, each of
the chromosomes represents a probable solution, they all
are evaluated during every generation to enumerate their
fitnesses.

Parallel versions of GAs (PGA) are executed on a network
of processors simultaneously. Difference among various par-
allel implementations are basically on the architecture of
processor network, population distribution policy, rate of
information exchange etc. We, however, have used a com-
pletely connected network in our experiments.

3. STOCHASTIC SELECTION AND PLGA
In this section, we shall describe a stochastic selection

method which allows us to develop a pipeline of GA oper-
ators. This selection method is a modified version of the
existing SA-selection [12]. The functional form of the selec-
tion method is described along with an example. Then we
shall provide the corresponding pipeline design of GA.

In stochastic selection method, a chromosome x is consid-
ered from a pool P (g) of the current generation g, and is
selected based on Boltzmann probability distribution func-
tion.

Let, fmax be the fitness value of the currently available
best string. If the next string is having fitness value fx such
that fx > fmax, then it is selected. Otherwise, it is selected
with Boltzmann probability

P = exp[−(fmax − fx)/T]

where, T = T0(1 − α)k

and k = 100 × g

G
.

G is the maximum value of g. Ranges of α and T0 are
[0, 1] and [5, 100] respectively. From the above expression,
it is clear that the value of T will decrease exponentially
or at logarithmic rate with increase in g, and hence the
value of the probability P . This is significant in terms of
convergence. As T → 0, the final state is approached.

In conventional selection schemes, before starting the se-

Table 1: Sample execution of stochastic selection
Input Fitness Chrom. Selected
chrom. of input fmax number P P1 chrom.
number chrom. with number

maximum
fitness

0 45.0 45.0 0 0.931 0.882 0

1 48.0 45.0 0 - - 1

2 35.0 48.0 1 0.810 0.853 1

3 43.0 48.0 1 0.616 0.447 3

4 55.0 48.0 1 - - 4

5 12.0 55.0 4 0.317 0.591 4

lection process, all the chromosomes in the earlier genera-
tions must be evaluated. But evaluation is the most time
consuming process and is a bottleneck in attaining a pipeline
of the operations of GAs. The new selection scheme elimi-
nates this bottleneck. We can express the new selection op-
erator as a function of the input chromosome (x). Let, xmax

be the chromosome corresponding to the currently available
maximum fitness. Then the selection operator, expressed
functionally, is

Sel(x) =

�� � x if (fx > fmax)
x if (fx ≤ fmax) ∧ (P > P1)
xmax if (fx ≤ fmax) ∧ (P ≤ P1)

where, P1 = random[0, 1).

Let us consider an example, for describing the operation
of the selection scheme, with a population of size 6. Let,
in the (g − 1)th generation, the maximum fitness value is
45.0. This value is stored in the variable fmax and is used
in generation g also. In any generation, the value of fmax

is altered whenever a chromosome with a greater fitness is
encountered (and selected). Note that, using elitist strategy,
we are storing the best chromosome, in a generation, along
with its fitness value in the very first location of the pool of
chromosomes. Table 1 shows how chromosomes are selected
for generation g.

A pair of selected chromosomes may be used for crossover,
mutation, and evaluation and then put into the population
pool for the next generation. When a chromosome is eval-
uated, it is put into population pool along with its fitness
value for the next generation. Thus the processes corre-
sponding to selection, crossover, mutation and evaluation
in a particular generation can work simultaneously, in an
overlapped fashion. Using the above mentioned selection
method, the concept of pipelining has been incorporated
within the genetic algorithm framework. It should be men-
tioned here that the SA-selection can as well be used for this
purpose. The algorithmic difference of PLGA with respect
to CGA is only due to the use of the stochastic selection
scheme. However, since each chromosome can be selected
(or rejected) as soon as it is evaluated, we can continue
looping through the steps of four characteristic operations,
whenever we have a pair of evaluated chromosomes in the
population pool. The basic pipelined algorithm is shown in
Algorithm 1. In this algorithm, the initial population is as-
sumed to be pre-evaluated, before the process loops through
the pipeline stages. However, other possibilities, like initial-
izing the fitnesses randomly or rearranging the stages of the
pipeline to perform evaluation before selection are possible.

950

Algorithm 1 : Basic steps of Pipelined genetic algorithm.

begin
initialize population
evaluate population for fitness
while (NOT termination condition) do

begin
select a pair of chromosomes
cross the pair of chromosomes
mutate the pair of chromosomes
evaluate children for fitness
put children into next generation pool

with fitness values
end

end

Here, the processes corresponding to selection, crossover,
mutation and evaluation in a particular generation can work
simultaneously, in an overlapped fashion. It is also interest-
ing to note that the generations are also overlapped. How-
ever, we maintained all the basic features of a generational
GA during pipelined execution. This leads to reduction of
appreciable amount of execution time as compared to con-
ventional GA. The pseudo code showing the streamlined
operations of selection, crossover, mutation and evaluation,
within a generation, is given in Algorithm 2 below.

Algorithm 2 : Outline of Pipelined genetic algorithm.

begin
g = 0;
create pre-evaluated initial pool P (g) and

initialize temperature T ;
repeat

for i = 1 to Population Size in steps of 2 do
begin

select a pair of chromosomes from pool P (g);
cross the selected pair;
mutate the crossed pair;
evaluate the mutated pair and put in next

generation pool P (g + 1);
end
g = g + 1;
lower temperature T ;

until convergence;
end

It is possible to implement the algorithm using appropriate
hardware, where, selection, crossover, mutation and evalua-
tion operations will be done in specially designed hardware
circuits forming a pipeline among them. Multiplicity of pro-
cessing units to be used at each of the stages may, in general,
be different and depends on the complexity of the problem
concerned.

4. DESIGN OF THE PIPELINE
In this section, we explore the structural parallelism of

GA that are hidden in its strictly serial use of its different
operations discussed in Section 3. For this purpose, we have

to streamline these operations so that their functioning be-
comes overlapped in nature. The motivations behind PLGA
are twofold. First, there is an advantage in terms of higher
speedup as a result of overlapped execution in a pipeline.
The second, possibly more important one, is the chance of
incorporating more population and thus increasing the di-
versity among them.

4.1 Pipeline Architecture
In order to solve functional optimization problems using

GA, we need to maintain a population of probable solutions
(chromosomes). The chromosomes are evaluated for the ob-
jective function. The fittest candidates are selected for the
next generation which then undergo the crossover and mu-
tation operations to generate offspring. The whole process
is repeated for a number of generations. Thus, we can iden-
tify four major functions : (i) selection (S), (ii) crossover
(C), (iii) mutation (M) and (iv) evaluation (E), and can
construct a four stage pipeline as shown in Figure 1. Stage
multiplicity requirements at mutation and evaluation stages
are dependent on the complexity of the concerned problem
and may be arranged by placing the corresponding units in
parallel as shown in Figure 2. We need to maintain a buffer
memory to reserve the chromosomes after evaluation. This
buffer is organized in a FIFO manner.

The selection operation requires two parallel units so that
it can provide two strings to the crossover unit in due time.
Mutation and fitness evaluation should be done in multiple
units that operate in parallel. The number of units for mu-
tation is determined by the length of a chromosome. It is
found that evaluation is the most time consuming process
compared to the other operations, and the number of units
for this stage is determined by the complexity of the function
considered.

Let, St, Ct, Mt and Et be the stage times for selection,
crossover, mutation and evaluation operations respectively.
Among them, Ct is normally found to be the minimum. We
call this minimum time as one T -cycle. Let,

St = sCt, Mt = mCt and Et = eCt.

Therefore, the ratio of St, Ct, Mt and Et becomes s : 1 :
m : e. That is, s, m and e number of T -cycles are required for
selection, mutation and evaluation operations respectively.
Thus for one crossover unit we need, for efficient utilization
of resources, dse, dme and dee pairs of units for selection,
mutation and evaluation respectively. For sake of simplicity,
let us consider, from now on,

s = dse, m = dme and e = dee.

Here the units are counted in pairs because one crossover
needs two selected strings. From the above ratio, it is clear
that, if the crossover unit takes 1 unit of time (T -cycle) to
perform one crossover, the selection, mutation and evalu-
ation units take s, m and e units of time to perform one
selection, mutation and evaluation operations respectively.
Thus for proper and efficient utilization of the resources,
we should use s, m and e pairs of respective units for one
crossover unit. Since, for complicated problems, the value
of e may be very large compared to values of s, m and e, it
is necessary to design a simple but fast evaluation unit. In
this paper, we have shown how such an evaluation unit can
be achieved.

951

S C M E

Population Pool

Figure 1: Pipeline stages for the GA. Here S, C, M
and E stand for selection, crossover, mutation and
evaluation respectively

Figure 2: Multiplicity of any particular unit in the
pipeline

S 1

C M 2 E 2

Population Pool

S 2

M 1

M 8

E 1

E12

Figure 3: An example pipeline using different mul-
tiplicity at selection, crossover, mutation and evalu-
ation stages

4.2 Speedup
Speedup of a general pipeline is defined as

S =
TNP

TP

where TNP (= nk, n = number of executions and k =
number of stages) and TP (= n+k−1) are the computation
times (in terms of number of T -cycles) required for non-
pipelined and pipelined systems respectively. In the pro-
posed clustering, if appropriate number of units are consid-
ered, the average time per chromosome in each stage be-
comes equal to one T -cycle. This is the ideal hardware con-
figuration. However, we can use less number of units at the
stages. Let, for any arbitrary configuration, mn and en be
the number of pairs of units used at mutation and evalua-
tion stages corresponding to one crossover unit and one pair
of selection units. In our case,

n = population size × number of generations.
Consider a pipeline where s = 1, m = 4 and e = 6.
Here we require s + 1 + m + e = 12 T -cycles to get the

first pair of children chromosomes.
Since n = population size × number of generations, we

may assume, without loss of generality, n to be equal to
the population size executed for one generation only. After
obtaining the first pair of children, the remaining children
will come out in pairs at each successive T -cycles. Therefore,
the number of T -cycles required for the remaining pairs is�

n
2
− 1 � . Thus, the total number of T -cycles required for

the pipeline is

TP = 11 +
n

2
.

For a non-pipelined system configured with the same mul-
tiplicity of stages (as that of the pipelined one), the number
of T-cycles considering all the four stages sequentially is

TNP =
n

2
+

n

2
+

n

2
+

n

2
=

4n

2
= 2n

So, the speedup attained is

S =
TNP

TP

=
2n

n
2

+ 11

when n >> 11, S ≈ 4. This is the ideal speedup.
We can use less number of units at mutation and evalua-

tion stages. Let, for any arbitrary configuration, m
′

and e
′

be the number of pairs of units used at mutation and eval-
uation stages corresponding to one crossover unit and one

pair of selection units. Here, m
′

< m and e
′

< e, i.e., the
number of units at the mutation and evaluation stages are
less than that needed for full multiplicity of these stages.

Let rm = d m

m
′ e and re = d e

e
′ e,

i.e., rm and re are the factors by which multiplicity is
reduced at the corresponding stages.

We define the reduction factor for a pipeline as the max-
imum of rm and re, i.e.,

reduction factor, r = max(rm, re).

When r = 1, the pipeline has full multiplicity and is
referred to as a full pipeline. For r > 1, it is called a
reduced pipeline.

952

Now, let us a consider a reduced pipeline where rm, re and
r represent reduction factors for mutation, evaluation stages
and that for the whole pipeline. By definition, at least one
of rm and re is equal to r and the other is less than or equal
to r. For such a reduced system we get

TP = 1+1+m+e+ � n

2
− 1 � ×r = 2+m+e+ � n

2
− 1 � ×r

and

TNP =
n

2
+

n

2
+

n

2
× d

m

m′
e +

n

2
× d

e

e′
e.

If the pipeline is a uniformly reduced one with rm = re =
r, we have,

TNP =
n

2
+

n

2
+

n

2
× r +

n

2
× r.

Now, in our example system, if the reduction factor be
r = 2, then we get,

TP = 12 + � n

2
− 1 � × 2 = 10 + n

and

TNP =
n

2
+

n

2
+

n

2
× 2 +

n

2
× 2 = 3n.

Therefore, speedup S ≈ 3 for n >> 10.
From the above discussion it is clear that a fixed hardware

setup is also possible. However, in the present work, we have
not performed experiments with a reduced pipeline.

5. HARDWARE IMPLEMENTATION
A scheme for executing commonly used GAs in a hard-

ware pipeline and the corresponding pipelined algorithm are
presented in the earlier section.

The presented schematic architecture is easy to realize
in a physical hardware. We need to implement each indi-
vidual units using appropriate digital components and es-
tablish communication paths among them to complete the
implementation. A possible configuration of the hardware
pipeline is shown in Figure 3. It is easy to understand that
implementation of crossover and mutation units are very
simple if we consider only binary chromosomes. We are as-
suming that a selection unit can be developed in hardware.
Then, we are left with the most important task of design-
ing a hardware evaluation unit. This unit should be general
enough, so that it can execute any general objective func-
tion. A possible design of such a general purpose evaluation
hardware is presented in the following subsection.

5.1 A possible hardware evaluation unit
As mentioned earlier, out of the four pipeline stages, the

evaluation stage is the most important and complicated part.
Hence, we put importance to designing a general purpose
evaluation unit. We use the concept of postfix function eval-
uation in a stack based hardware. We assume that any gen-
eral algebraic function can be converted to its postfix form
a priori.

A postfix expression can be evaluated in a simple stack
based machine. Stack based machine is a very simple arith-
metic execution unit where the expression to be evaluated is

Postfix string buffer + - * /

+ * /-

Operand

Arithmetic

Unit

Up

Up

Dn

Dn

Stack

Top pointer

d1

d2

X1

V1 V2

X2 Xn

Vn

Associative
mapper

Chromosome-value buffer

Up down counter

m

Figure 4: A sample hardwired evaluation unit

stored in a shift register in postfix form. Then following the
postfix evaluation algorithm we push operands, shifted out
of the postfix register, onto a stack; and when an operator
is encountered, we pop the two topmost operands from the
stack and put them into the arithmetic unit and the result is
pushed back onto the stack again. The design of a possible
hardware evaluation unit is shown in Figure 4.

Here, the postfix expression is inputted in a right-shift
register. Its contents are operands and operators only. A
comparator circuit, consisting of multi-input XOR gates and
OR gates, identifies the present input symbol from the post-
fix register. A stack is maintained as a combination of an
LR-shift register and an up-down counter. The top of the
stack is always at the leftmost position of the shift register.

Whenever an operand is detected by the comparator cir-
cuit, the up counter is incremented and the contents of
the shift register is shifted one location toward right. The
operand value is then pushed onto the stack (top).

When an operator is detected, the down counter is decre-
mented and pop operation is performed by left shifting the
shift register contents. The popped operands are passed to
the arithmetic unit. After the operation is complete, the re-
sult from the arithmetic unit is again pushed onto the stack.
It is to be remembered here that each time an operator is de-
tected, two pop operations are needed consecutively which
are needed for the operation. Thus the basic circuit pre-
sented here must be modified suitably. Also, it is assumed
that all parts of the circuit operates with perfect synchro-
nization. This may be achieved by use of delay elements at
appropriate locations.

In our design, we have used two such delay elements d1

and d2. The delay between the two pop operations is d1.
And after another delay of d2, within which computation is
done, the result is pushed back onto the stack by increment-
ing the up counter. Chromosomes are stored in a buffer
called the chromosome-value buffer. Here both the sym-
bolic chromosome and numeric values of its components are
maintained. Let, the symbolic chromosome be denoted by
X = x1, x2, · · · , xn and the numeric chromosome be denoted
by V = v1, v2, · · · , vn. An associative mapping unit is used
to substitute the numeric values for the chromosome sym-
bols appearing in the postfix expression. After this substitu-
tion phase, the postfix expression contains numeric operands
as well as operator symbols. To check whether an entry in
the expression is an operand or an operator we use a simple
logic circuit consisting of four multi-input XOR gates and
four OR gates only. All entries are encoded in m-bits. When
a match is found, one of the OR gate outputs will become
zero, and so will be the external AND gate output. Then the

953

pop operation is started by decrementing the down counter.
Otherwise a push operation would take place.

6. EXPERIMENTAL RESULTS
We have demonstrated effectiveness of PLGA on various

benchmark functions. The benchmarks include both uni-
modal and multi-modal functions. Experiments are per-
formed to compare the performance of the pipelined algo-
rithm (PLGA) with its serial (CGA) and parallel (PGA)
counterparts. The following subsections describe the bench-
mark functions and results of comparison respectively.

6.1 Benchmark Functions
The selected benchmark functions, which are unimodal

or multi-modal in nature, are available in literature. These
functions are mentioned below.

1. Sphere Model function:

f1(x) =
l�

i=1

xi
2.

The range of xi is −5.12 ≤ xi ≤ 5.12. This function has
its minimum value of 0 at xi = 0, ∀i.

2. Step function:

f2(x) =
l�

i=1

integer(xi).

The range of xi is −5.12 ≤ xi ≤ 5.12. This function has
its minimum value of 0 at xi = 0, ∀i.

3. Rastrigin′s function:

f3(x) =

l�
i=1

[x2
i − 10 cos(2πxi) + 10]

The range of xi is −5.12 ≤ xi ≤ 5.12. This multi-modal
function has its minimum value of 0 at xi = 0, ∀i.

4. Rosenbrock′s function:

f4(x) =
l�

i=1

�
100(xi+1 − x2

i)
2
+ (xi − 1)2 �

The range of xi is −5.12 ≤ xi ≤ 5.12. This function has
its minimum value of 0 at xi = 1, ∀i.

5. Ackley′s function:

f5(x) = −20 exp � −0.2 � 1

l � l

i=1
x2

i �
− exp � 1

l � l

i=1
cos 2πxi � + 20 + e

The range of xi is −5.12 ≤ xi ≤ 5.12. This function has
its minimum value of 0 at xi = 0, ∀i.

6. Schwefel′s function 1:

f6(x) =

l�
i=1

|xi| + Πl
i=1|xi|

The range of xi is −5.12 ≤ xi ≤ 5.12. This function has
its minimum value of 0 at xi = 0, ∀i.

7. Schwefel′s function 2:

f7(x) =

l�
i=1 � i�

j=1

xj � 2

The range of xi is −5.12 ≤ xi ≤ 5.12. This function has
its minimum value of 0 at xi = 0, ∀i.

8. Schwefel′s function 3:

f8(x) = max
i

{ |xi|, 1 ≤ i ≤ l}

The range of xi is −5.12 ≤ xi ≤ 5.12. This function has
its minimum value of 0 at xi = 0, ∀i.

For all these functions we have coded the variables using
25 bit binary code. However, larger binary codes may be
used to increase the accuracy of the numbers represented.

6.2 Results
Results of experiments are described in two phases. In

the first phase, we compared stochastic and roulette-wheel
selection schemes in CGA framework, in terms of quality of
solutions and rate of convergence and speedup. The speedup
obtained in the pipelined system over that obtained with
CGA executed on the same hardware platform and also for
uniprocessor based CGA are presented. In the second phase,
we demonstrate comparative performances of PLGA and a
particular version of PGA in terms of rate of convergence.

6.2.1 PLGA vs. CGA
For this part of investigations, with the stochastic and

roulette-wheel selection schemes in the CGA framework, we
have used the same values for the control parameters, viz.,
population size = 50, Pc = 0.6 and Pm = 0.05. The value
of α is taken to be 0.05. The initial temperature, T0, is set
to 50.

At first, we have compared the stochastic selection scheme
with the roulette wheel one when both of them are used
in a CGA framework. Then, we have executed the PLGA
and CGA using the stochastic selection function in both the
cases for computing speedup. Simulation experiments are
performed on the selected problems mentioned in Section
6.1. We have used, here, a dimension of 10 for all the prob-
lems. Table 2 provides the optimal values for the objective
functions which are reached by the CGA, using two selection
schemes, when executed for 2000 generations.

Speedup of PLGA compared to CGA is measured in two
different situations, viz., when a similar hardware platform
(like the pipeline) is used for CGA, and when a single unipro-
cessor is used only. For the first situation, results are pro-
vided in Table 3, and for the second, it is provided in Table
4. The stage times given in Table 3 are proportional to the
actual times. This is because, we have executed PLGA for a
number of generations, and measured sum-total of the cor-
responding stage times. The speedup is found to be less
than that obtained in Section 4.2. This is due to the fact
that in computation of TP in Section 4.2, we have assume
extra time to all the units in order to achieve perfectly syn-
chronous operation of all the pipeline stages. However, se-
lection and crossover could be done in less amount of time
than that allocated (50 units). If we allocate 25 units of
times, for example, as the pipeline stage time, then speedup
wouls also be improved.

954

Table 2: Comparison of stochastic and roulette
wheel selections. Results are averaged over 50 runs.
“Mean Best” and “Std Dev” indicate mean best
function values and standard deviations

Function Stochastic Roulette wheel
Mean Best Std Dev Mean Best Std Dev

f1 1.50 × E − 6 1.28 × E − 6 3.06 × E − 6 1.37 × E − 6

f2 0.00 0.00 0.00 0.00

f3 2.5626 1.3813 4.0030 2.0641

f4 8.6902 0.8009 34.7507 39.2635

f5 1.32 × E − 3 4.30 × E − 4 1.50 × E − 3 6.08 × E − 4

f6 2.90 × E − 3 6.50 × E − 4 3.15 × E − 3 9.42 × E − 4

f7 2.60 × E − 3 4.09 × E − 4 5.01 × E − 2 7.85 × E − 2

f8 5.55 × E − 3 1.68 × E − 3 5.67 × E − 3 1.27 × E − 3

Table 3: Stage times of PLGA and speedups ob-
tained for f1 − f8. Times (in units of 104 clock ticks)
shown are proportional to actual stage times. One
T -cycle = 50.

Func Dim Stage Times No. of T -Cycles Speedup
St Ct Mt Et s c m e

f1 3 17 13 150 599 1 1 3 12 2.60

f2 5 18 14 247 998 1 1 5 20 2.62

f3 10 15 46 472 2129 1 1 10 43 2.90

f4 3 14 19 134 539 1 1 3 11 2.53

f5 3 16 18 134 527 1 1 3 11 2.53

f6 3 16 10 137 481 1 1 3 10 2.40

f7 5 16 23 216 842 1 1 5 16 2.70

f8 3 14 15 138 482 1 1 3 10 2.46

Table 4: Speedup of PLGA over CGA executed in a
serial uniprocessor system with no special hardware
processing elements. The times (in units of 104 clock
ticks) shown are proportional to actual stage times.
One T -cycle = 50. k = n/2

Function Dimension Total Execution Time Speedup
Serial P ipelined

Uniprocessor System

f1 3 779k (16 + k)50 15.58

f2 5 1277k (26 + k)50 25.54

f3 10 2662k (54 + k)50 53.24

f4 3 706k (15 + k)50 14.12

f5 3 695k (15 + k)50 13.90

f6 3 644k (14 + k)50 12.88

f7 5 1097k (22 + k)50 21.94

f8 3 649k (14 + k)50 12.98

6.2.2 PLGA vs. PGA
We have executed both PLGA and PGA for a number of

selected benchmark problems. In this case, again we have set
the dimension of benchmark functions to 10. As a measure
of comparison, we have selected the number of generations
needed to converge to a near optimal solution. For all the
benchmark functions, a particular limiting value is selected
as the stopping criteria.

Here, the population size considered is 40. For the pur-
pose of executing PGA a four processors network is con-
sidered. The population of size 40 is distributed among
the four processors, each getting a subpopulation of size 10.
The processors are completely connected and they can com-
municate strings (chromosomes) after every 5 generations.
During communication, each processor selects four chromo-
somes, including the current best, from self, and two from
each of the other processors. The results of comparison are
shown in Table 5.

7. CONCLUSION
A function optimizer, using a pipelined version of the con-

ventional genetic algorithm, called PLGA, and a correspond-
ing hardware pipeline have been described in this paper. A
stochastic selection scheme is used for this purpose. The

Table 5: Comparison of PLGA and PGA in terms
of number of generations. “Mean” and “Stddev”
indicate the average number of generations and the
standard deviations respectively.

Function Dimension PLGA PGA Stopping
Mean Stddev Mean Stddev Value

f1 10 180.52 42.92 406.50 61.15 0.005

f2 10 33.72 13.71 54.52 15.49 0.005

f3 10 8.06 3.08 17.42 6.58 50.0

f4 10 11.18 2.94 20.76 5.93 500.0

f5 10 65.38 23.86 128.98 33.54 0.005

f6 10 134.18 32.72 284.26 36.71 0.5

f7 10 132.02 138.19 202.40 109.82 0.5

f8 10 236.00 58.62 383.56 64.01 0.5

unique feature of the stochastic selection scheme is that, it
does not depend on a complete pool of pre-evaluated chro-
mosomes. Hence, as soon as a chromosome is evaluated, it
can be passed to the selection unit for possible selection.

By use of proper hardware, one can develop an extremely
fast version of the GA based function optimizer. One scheme
of realizing the hardware evaluation unit for function op-
timization is presented along with a block diagram of the
complete pipeline. However, we have executed the PLGA
algorithm on a serial uniprocessor system, and have shown
that, in a hardware implementation, if proper multiplicity
of different stage units are used, a maximum speedup of 4
is attainable compared to conventional GAs executed seri-
ally using similar multiplicity of stage units. However, when
compared to CGA executed on a uniprocessor, speedup is
found to be much more. We have also compared PLGA and
PGA with a certain processor architecture. It is seen that
speedup obtained in PLGA is better than PGA.

Although PLGA is presented here only as a functional
optimizer, one may use it for any combinatorial optimization
problem also. The authors are currently working in that
direction.

8. ACKNOWLEDGMENTS
This research is partly supported by a sponsored project

titled Pipelined Genetic Algorithm and its Applications in
Satellite and Medical Image Segmentation : Number 8022/
RID/ NPROJ/ RPS-97/ 2003-04 funded by All India Coun-
cil for Technical Education (AICTE), Government of India.

9. REFERENCES
[1] S. Baluja. Structure and performance of fine-grain

parallelism in genetic search. In Proc. of the Fifth
International Conference on Genetic Algorithms,
pages 155–162, Morgan Kaufmann, San Mateo, CA,
1993.

[2] I. M. Bland and G. M. Megson. Efficient operator
pipelining in a bit serial genetic algorithm engine.
Electronic Letters, 33:1026–1028, 1997.

[3] E. Cantú-Paz. A survey of parallel genetic algorithms.
Technical report, University of Illinois, Illinois GA
Laboratory, Urbana Champaign, Urbana, IL, 1997.

[4] J. L. R. Filho, P. C. Treleaven, and C. Alippi. Genetic
algorithm programming environments. IEEE
Computer, pages 28–43, June, 1994.

[5] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley,
New York, 1989.

955

[6] V. S. Gordon and D. Whitley. Serial and parallel
genetic algorithms as function optimizers. In Proc. of
the Fifth International Conference on Genetic
Algorithms, pages 177–183, Morgan Kaufmann, San
Mateo, CA, 1993.

[7] J. J. Grefenstette. Parallel adaptive algorithms for
function optimization. Technical report, Vanderbilt
University, Computer Science Department, Nashville.
TN, 1981.

[8] J. Holland. Adaptation in Neural and Artificial
Systems. University of Michigan, Ann. Arbor, MI,
1975.

[9] H. Mühlenbein, M. Scomisch, and J. Born. The
parallel genetic algorithm as function optimizer. In
Proc. of Fourth Intl. Conf. on Genetic Algorithms,
pages 271–278. Morgan Kaufmann, San Mateo, Calif,
1991.

[10] M. K. Pakhira. A hybrid genetic algorithm using
probabilistic selection. Journal of the Institution of
Engineers (India), 84:23–30, 2003.

[11] R. Shonkwiler. Parallel genetic algorithms. In Proc. of
5th Intl. Conf. on Genetic Algorithms, pages 199–205.
Morgan Kaufmann, San Mateo, CA, 1993.

[12] B. T. Zhang and J. J. Kim. Comparison of selection
methods for evolutionary optimization. Evolutionary
Optimization, 2(1):55–70, 2000.

956

