
Received 6 January 2021; accepted 10 January 2021. Date of publication 14 January 2021;
date of current version 11 February 2021. The review of this paper was arranged by Associate Editor Pedro Reviriego.

Digital Object Identifier 10.1109/OJCS.2021.3051643

A Hardware/Software Co-Design Methodology
for Adaptive Approximate Computing in

clustering and ANN Learning
PENGFEI HUANG 1, CHENGHUA WANG1, WEIQIANG LIU 1 (Senior Member, IEEE),

FEI QIAO 2 (Member, IEEE), AND FABRIZIO LOMBARDI 3 (Fellow, IEEE)

(Invited Paper)
1 College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2 Department of Electronic Engineering, Tsinghua University, Beijing, China
3 Department of Electrical Engineering, Northeastern University, Boston 40125 USA

CORRESPONDING AUTHOR: WEIQIANG LIU (e-mail: liuweiqiang@nuaa.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grants 62022041 and 61871217.

ABSTRACT As one of the most promising energy-efficient emerging paradigms for designing digital

systems, approximate computing has attracted a significant attention in recent years. Applications utilizing

approximate computing (AxC) can tolerate some loss of quality in the computed results for attaining high

performance. Approximate arithmetic circuits have been extensively studied; however, their application

at system level has not been extensively pursued. Furthermore, when approximate arithmetic circuits are

applied at system level, error-accumulation effects and a convergence problem may occur in computation.

Multiple approximate components can interact in a typical datapath, hence benefiting from each other. Many

applications require more complex datapaths than a single multiplication. In this paper, a hardware/software

co-design methodology for adaptive approximate computing is proposed. It makes use of feature constraints

to guide the approximate computation at various accuracy levels in each iteration of the learning process in

Artificial Neural Networks (ANNs). The proposed adaptive methodology also considers the input operand

distribution and the hybrid approximation. Compared with a baseline design, the proposed method signifi-

cantly reduces the power-delay product while incurring in only a small loss of accuracy. Simulation and a

case study of image segmentation validate the effectiveness of the proposed methodology.

INDEX TERMS Approximate computing, approximate multiplier, k-means clustering, semi-supervised

learning.

I. INTRODUCTION

As computer systems become pervasive, computing work-

loads have significantly increased due to new areas such as

big data and IoT, hence the computing landscape has become

more complex over the last decade. Although per-transistor

speed has continuously improved, energy and power still re-

main a significant hurdle for chip design. Moreover, schemes

such as the dark silicon limit the amount of usable sili-

con [1]. Significant efforts have already been made to im-

prove energy efficiency at various levels, from software, to

architecture all the way down to circuit and device levels.

Among these techniques, approximate computing relies that

a growing body of applications are inherently error resilient

and energy requirements can benefit from a slight or ac-

ceptable quality loss [2], [3]. Based on the observation that

inputs and outputs of some algorithms can tolerate impre-

cision, some exact operations may have only a small ef-

fect on the final quality. Approximate computing techniques

have been extensively studied at both hardware (such as cir-

cuit designs and computing architectures) and software lev-

els [4]–[6]. As key components in arithmetic circuits, several

approximate adders [7] and multipliers [8] have been pro-

posed; these circuits yield incorrect results for some input

combinations.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

38 VOLUME 2, 2021

https://orcid.org/0000-0003-3152-3245
https://orcid.org/0000-0001-8398-8648
https://orcid.org/0000-0002-5054-9590
https://orcid.org/0000-0003-3152-3245


Multiplication is one of the most common and complex

op-erations, critical in computation for many applications.

Multipliers are more complex than adders and therefore, they

incur in a higher energy consumption; moreover, they are

also slower than adders. Approximated multipliers have been

widely discussed in recent years [9]–[16]. Approximate Booth

multipliers have been proposed in [9], [10] by approximating

the partial product generation process. [11] has considered a

high-performance and low-power approximate partial product

accumulation tree for a multiplier using a newly designed

approximate adder. [12] has presented a design methodol-

ogy for implementing accurate and approximate signed array-

multipliers. In [16], efficient approximate redundant binary

multipliers for error-tolerant applications with high accuracy

have been proposed; however, most of these works only con-

sider approximate designs at circuit level, so error effects at

system or algorithm level are not fully addressed. [17] has

proposed an algorithm-level method that applies approximate

computing to an application. By applying approximation tech-

niques to the most computationally intensive blocks, energy

reduction can be obtained at a limited accuracy reduction. [18]

has provided a dynamic auto-tuning framework for self-aware

approximate computing at software level. In [19], an RnR

(reduce and rank) accelerator for approximate computing has

been proposed to reduce energy consumption. Three approx-

imation strategies have been presented for the RnR computa-

tion pattern at algorithm level.

Approximate computing cannot be fully exploited by only

considering hardware (circuits, architecture and memory) or

software (application, algorithms and compile stack); the fun-

damental nature of machine learning (ML) workloads requires

that the barriers between abstract layers to be clearly bro-

ken, so that an efficient ML system can be realized by AxC

including cross-layer collaborative design. Therefore, hard-

ware/software (HW/SW) co-design [5], [20], [21] must be

considered to change the abstractions and relationships be-

tween hardware and software for a trade-off between accuracy

and efficiency.

This paper is an extension of our previous work presented

in [22]; the main differences and novel contributions are sum-

marized as follows:
� Adaptive approximate computing for both supervised

and unsupervised learning is discussed and hybrid ap-

proximate computing modes are presented in detail.
� In unsupervised learning, we present a gradient-oriented

adaptive approximate k-means clustering; the semi-

supervised adaptive approximate k-means clustering al-

gorithm is also treated in more detail.
� In supervised learning, we propose an operand swap-

per and greedy approximate computing algorithms for

weight stationary in artificial neural networks (ANNs).
� By considering error propagation, a generalized strategy

is proposed for the accuracy in approximate computing.
� The advantages of the proposed method are theoretically

analyzed and experimentally demonstrated through sim-

ulation.

The remaining part of this paper is organized as follows:

In Section II, the preliminary is briefly reviewed. Section III

discusses the analysis for adaptive approximate computing.

Section IV presents the proposed HW/SW co-design method

for both unsupervised, semi-supervised and supervised learn-

ing. In Section V, the error analysis and the simulation results

are provided. The application of the proposed algorithm to

image processing is given in Section 6. Section 7 concludes

the paper.

II. PRELIMINARY AND REVIEW

A. SUPERVISED LEARNING AND UNSUPERVISED

LEARNING

1) SUPERVISED LEARNING

Supervised learning trains a data sample from the data source

with the correct classification already assigned. It infers a

function from the labeled training data; for input variables (X )

and output variables (Y ), the algorithm employs the mapping

function for the purpose of learning.

Y = f (X ) (1)

The goal is to approximate the mapping function, such that

when a new input data (X ) is provided, the output variable (Y )

can be predicted. These techniques are used in feedforward or

multilayer perceptron (MLP) models.

2) UNSUPERVISED LEARNING

Self-organizing neural networks use unsupervised learning

algorithms to identify hidden patterns in unlabeled input data.

This kind of unsupervised refers to the ability to learn and or-

ganize information to evaluate potential solutions [23]. When

there is only input data (X ) with no corresponding output

variables, the goal of unsupervised learning is to model the

underlying structure or distribution in data to further under-

stand such data. In unsupervised learning, the lack of direc-

tionality of the learning algorithm is sometimes advantageous

because it allows the algorithm to go back to patterns that have

not been previously considered. These techniques are used in

association and clustering models.

B. MULTILAYER PERCEPTRON (MLP) MODELS

The MLP is a type of feedforward ANN. The term MLP is

ambiguous; it is used for any feedforward neural network, but

it also strictly refers to a network composed of multilayer per-

ceptron (with threshold activation). A MLP consists of at least

three layers of nodes: input, hidden and output layers. Except

for the input nodes, each node is a neuron that uses a nonlinear

activation function. A MLP uses a supervised learning tech-

nique called backpropagation for training. Its multilayer and

non-linear activation features distinguish MLP from a linear

perceptron because it can distinguish non-linearly separable

data [24].

VOLUME 2, 2021 39



HUANG ET AL.: HARDWARE/SOFTWARE CO-DESIGN METHODOLOGY FOR ADAPTIVE APPROXIMATE COMPUTING

FIGURE 1. (a) The error characteristics and (b) hardware requirement of
the R4ABMs [10] with different approximate factors.

C. SEMI-SUPERVISED K-MEANS

Semi-supervised learning is a type of supervised learning that

uses unlabeled data to train a small amount of labeled data

and a large amount of unlabeled data; k-means clustering

divides n observations into k clusters, and each observation

belongs to the nearest mean cluster. Semi-supervised k-means

uses the paired constraints provided by the user to learn the

appropriate distance metric in the feature space, or guide the

clustering algorithm to develop the correct clustering direc-

tion. The semi-supervised k-means objective function Job j

using feature constraints is given as follows:

minJob j = D(�X , �C) + WϕD(�Xpw ) (2)

where, D is the distortion function, �X and �C are the samples

and cluster centroids, W is the set of weights of the penalty

for violating the feature constraints, and ϕD is an increasing

function of the distance between two samples and �Xpw is

the sample with pair-wise constraints. For convenience, W is

chosen as 1. In the k-means clustering algorithm, a 5% loss

in classification accuracy permits a 50 times energy saving

compared to the fully accurate classification [25]; therefore,

k-means is a typical application that trades accuracy for per-

formance.

D. RADIX-4 APPROXIMATE BOOTH MULTIPLIER

In this paper, 8-bit approximate Booth multipliers of [10]

are used and therefore, they are discussed for completeness.

In [10], the complexity of the approximate Booth encoder has

been reduced by at least an order of magnitude compared with

an exact design. Furthermore, the so-called approximation

factor p (p = 1, 2, . . ., 2 N ) is defined as the number of least

significant partial product columns that are generated by the

approximate Booth encoders as the approximate circuit (i.e.,

approximate radix-4 Booth encoding (R4ABM)) can be used

in all or only part of the partial product generation process.

Fig. 1 presents a plot of the power-delay product (PDP) and

the normalized mean error distance (NMED) under different

approximation factors (p). It shows that the NMED increases,

while the PDP of R4ABM decreases with an increase of p.

Therefore, the impact of p on the performance of an approxi-

mate multiplier is that the increase in inaccuracy can be traded

off for a higher energy efficiency by using an approximate

TABLE 1. Arithmetic Calculations of Error Propagation

FIGURE 2. General plot for error propagation.

multiplier at a higher value of p. A larger p leads to a sim-

pler logic hardware; this results in a less complex hardware

but more errors will be present. For a given data path in an

implementation, p establishes a design space in which every

multiplication can utilize a value of p such that this approxi-

mate multiplier ensures the desired computing accuracy while

also achieving the highest energy efficiency.

E. ERROR PROPAGATION

Usually, an error is quantified by the standard deviation of

the expected value. When a calculation has multiple variables

to solve, propagation of errors must be carefully considered.

Consider a calculation with 4 input variables, i.e. a, b, c and

x. The desired outcome is given by Q, so Q depends on

these variables. As examples, the exact expressions of some

calculations are given in Table 1. δa, δb, δc and δx are the stan-

dard deviations of these variables. Table 1 shows that addition

and subtraction result in absolute standard deviations, while

multiplication results in relative standard deviations. Fig. 2

shows that a small error in an independent input variable of

a function may result in a larger error at the output.

F. DYNAMICALLY CONFIGURABLE APPROXIMATE

COMPUTING

Approximate computing is application dependent; therefore,

different designs have different features. Ansari et al. [26] has

identified the statistically most relevant and critical features of

600 approximate multipliers to ensures the best selection. Few

approximate designs of arithmetic circuits have been proposed

to configure the approximation level [10], [11]. Most of these

40 VOLUME 2, 2021



works consider configuration only at hardware level. Imani

et al. [27] has proposed a multi-level configuration of approx-

imation during run time to better adjust each application error

tolerance but only in software. Many approximate designs

found in the technical literature rely on static data in the

approximation process [28]; however, workloads are often dy-

namic, so this type of approach has a very limited applicabil-

ity. Mazahir et al. [29] has proposed a scheme to bound errors

using detection and correction for specific workloads based

on selected approximate modules to completely or partially

cancel the generated error. Xu and Schafer [30] has presented

an adaptable architecture that enables or disables approxi-

mations. This architecture tunes itself at runtime based on

the workload for variable-to-constant or variable-to-variable

adaptive approximation in hardware. The R4ABMs [10] has

utilized the approximate factor p to select an approximate

multiplier. The adaptive approximate data path design can be

defined as an optimization problem:

max� = α
∑

datapath

�(ENp(�X , �Y )

+β

∥∥∥∥∥∥

∑

datapath

ψ (EDp(�X , �Y ))

∥∥∥∥∥∥

s.t .

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ENp =
PDA(�X , �Y ) − P̃DA(�X , �Y , p)

PDA(�X , �Y )

EDp =
M(�X , �Y ) − M̃(�X , �Y , p)

M(�X , �Y )

(3)

where � is the total benefit from the adaptive trade-off be-

tween the energy and accuracy. ENp is the hardware saving

with the factor p. EDp is the error incurred by using the

factor p. �X and �Y are the operands. α and β are the co-

efficient for the first and second parts respectively. � and

ψ are the application-aware mapping functions in order to

better measure the advantage for an approximate design in

terms of dynamic workloads. PDA(�X , �Y ) is the hardware for

an exact design (for different measures such as power, area

and delay), while P̃DA is for an approximate design. M(�X , �Y )

is the exact product, while M̃ is the approximate product.

ENp is normally greater than 0, EDp may be positive or

negative. Along all data paths, ED can be accumulated or

counterbalanced. Fig. 3 shows an approximate clustering with

factor p ∈ {2, 4, 6} achieves the same result as for the exact

case, and the results are similar when the factor is greater than

6. Larger p leads to simpler logic, and so it results in lower

hardware but not always more error.

G. FIXED-POINT QUANTIZATION

A higher precision in approximate computation usually incurs

in a larger penalty. Recently, [31]–[33] have proposed error-

tolerance at data level by utilizing fixed-point quantization.

Based on the assumption that the dynamic range of the preci-

sion of floating points from a data set is bounded, an approach

FIGURE 3. Clustering result with different multipliers: (a) original, (b)
exact multiplier, (c) and (d) the approximate multiplier of the R4ABMs [10]
with approximate factor p ∈ {2, 4, 6} and p ∈ {8, 10, 12, 14} respectively.

for fixed-point quantization is proposed. Floating-point num-

bers can be extended or compressed as fixed-point numbers

according to the desired function as follows:
{

k ∗ xmax + b = ymax

k ∗ xmin + b = ymin

(4)

where, xmax and xmin are the max and min values of the

floating-point inputs, ymax and ymin are the max and min of the

available fixed-point values. Consider an 8-bit width as exam-

ple; ymax and ymin are given by 127(27 − 1) and -128(−27).

For sake of efficiency, k is modulated as k′ is given by the

m − th power of 2:

k′ = 2m

s.t . 2m ≤ k < 2m+1
(5)

After the modulation of k, x can be mapped into the range

of (ymin, ymax ) and its fixed-point quantization is obtained by

shifting the bits of the fraction based on m and the exponent.

III. ADAPTIVE APPROXIMATE COMPUTING

A. INPUT OPERAND DISTRIBUTION

Most previous works utilize either the test-bench or a ran-

dom input operand distribution (IoD) for evaluation. Different

IoDs form different approximate circuits because approxima-

tions are data-dependent, where IDD ={random (Rand), pos-

itive skew (PSkew), negative skew (NSkew), normal random

distribution (NRD) and sorted normal random distribution

(SNRD)} distributions are employed in this paper.

As shown in Fig. 4, the dynamic power at a specific factor

p is function of the IoD; it is highest when both operands are

random in 9 IoDs. When only an operand is random, the IoD

incurs in more dynamic power dissipation than when both

VOLUME 2, 2021 41



HUANG ET AL.: HARDWARE/SOFTWARE CO-DESIGN METHODOLOGY FOR ADAPTIVE APPROXIMATE COMPUTING

FIGURE 4. Power consumption analysis of R4ABMs with different
approximate factor p from random (Rand), positive skew (PSkew),
negative skew (NSkew), normal random distribution (NRD) and sorted
normal random distribution (SNRD) operands: (a) total dynamic power and
(b) cell leakage power.

FIGURE 5. Hybrid approximate computing overview.

of them are not random. PSkew and NSkew IoDs have the

same dynamic power; SNRD has the least dynamic power

and is nearly constant of the approximate factor. Larger p

leads to simpler logic, but not always to less hardware; these

results show that the dynamic power is dependent on the input

operand distribution.

B. HYBRID APPROXIMATE COMPUTING

One of the key requirements in approximate computing is that

an approximation can be introduced only in non-critical data,

because the approximation of critical data (e.g., control opera-

tions) can lead to catastrophic events, such as program failure

or totally erroneous output. Hence, the level of approximate

computing should be dynamic configured ahead by taking

into consideration the load. However, a frequent change in

workload may incur in a large reconfiguration overhead (such

as in FPGA based circuits) for a single approximate circuit

(eg, a multiplier) so it must be carefully considered (for ASIC

configuration at run-time is not possible).

As not all possible workload distributions can be pre-

characterized and to improve existing approximate designs,

hybrid schemes are proposed as alternatives. Multiple approx-

imate units usually interact in a datapath; moreover, many

applications often require complex datapaths than just a single

operation (such as multiplication), so this aspect must be also

considered. Fig. 5 gives an overview of the four proposed

TABLE 2. Comparison of Hybrid Approximate Booth Multipliers

FIGURE 6. Overview of proposed HW/SW co-design framework for
adaptive approximate computing.

modes for hybrid approximate multipliers. HybridMode4 uti-

lizes a combination of 3 types of multipliers to fulfill the

requirement of an application while the other three modes use

one type. Table 2 shows that HybridMode4 achieves better

energy performance than HybridMode0, HybridMode1 and

HybridMode2; it also provides a better accuracy than Hy-

bridMode3 when the first two multipliers are used to process

critical data.

IV. HARDWARE/SOFTWARE CO-DESIGN

Next hybrid computing and IoD are proposed to improve

the performance of approximate computing; so we need to

establish the best relationship between these two techniques

using an adaptive scheme. Fig. 6 gives an overview of the

proposed adaptive approximate computing scheme. Although

ML applications have error resilience capabilities, it is best to

use AxC in a principled manner to ensure that the impact on

output quality is negligible (or acceptable). There is signifi-

cant research work for improving the efficiency of artificial

intelligence systems at every layer of the computing stack.

For better synergy between ML and AxC, the hardware needs

to be application-aware and the application must adaptively

restrain the noises introduced by the AxC hardware design

through the features of the application state.

Learning is usually classified as supervised, unsupervised

and reinforced. Learning depends on the hardware for the

interconnected neurons of the ANNs; these models address

learning in different ways; moreover, when approximate hard-

ware modules are used in these leaning processes, different

learning rules are applicable to them. Fig. 7 presents four

modes of approximate computing modules (AM) and exact

computing modules (EM). Hence, approximate computing for

supervised and unsupervised learning must be also consid-

ered.

42 VOLUME 2, 2021



FIGURE 7. Compound modes of approximate computing modules.

FIGURE 8. Error propagation pattern in the k-means learning process.

A. ADAPTIVE APPROXIMATE COMPUTING FOR

UNSUPERVISED LEARNING

The k-means is one of the most used unsupervised learning

algorithm. It searches for several clusters within an unlabeled

dataset. As approximate computing contributes to a loss of

convergence; hence, when the approximate hardware modules

are involved, the loss function of k-means is redefined as

follows:

minJob j = αD(�X , �C) + βD′
mp

(�X , �C) + θ (6)

where, D is the distortion function, mp is the multiplier with

the approximate factor p as defined for R4ABM, D′
mp

is the

counterpart of D with mp multiplier, α is the bonus factor

due to exact computing, β and θ is the healing and mit-

igation factors for approximate computing receptively. The

healing and mitigation factors must be determined by the

selected approximate level. In this paper, for convenience,

α is set to 1, θ is set to 0 and β is set to log2 p. More-

over, approximate computing can also be employed by several

inputs X .

Fig. 8 illustrates the clustering process and the propagation

of errors in the approximate computing modules in likely a

parallel mode. Although errors (δ) can be propagated to the

next iteration when centroids are updated, the error propaga-

tion chain may no longer exist.

1) GRADIENT-ORIENTED ADAPTIVE APPROXIMATE

CLUSTERING

For ML, the learning rate is a tuning parameter in an algorithm

to determine the step size at each iteration when moving

toward the minimum of a loss function. While the descent

direction is usually determined from the gradient of the loss

Algorithm 1: Gradient-Oriented Adaptive Approximate

K-Means Clustering Algorithm.

Require:

The dataset X ;

The number of clusters k;

A distance function D;

A big value of approximate factor p, likely the most

approximated level.

Ensure:

A partition of X in k groups.

1: Assign initial centroids C;

2: repeat

3: Iteration i increase;

4: Re-assign the labels of the samples using the

centroids ci to minimize Job j ;

5: if p > pmin then

6: p − −;

7: Update α, β if necessary;

8: end if

9: until Convergent or Pre-defined Max number of

iterations reaches

function, the learning rate determines the step in that direction.

To achieve faster convergence, prevent oscillations and getting

stuck in an undesirable local minimum, the learning rate is

often varied during the learning process. The simplest learning

rate schedule decreases the learning rate linearly, so from a

large initial value to a small value. This allows large weight

changes in the beginning of the learning process and small

changes or fine-tuning towards the end of the learning process

because the early phases are more resilient to error. To match

the reduction in learning rate, the approximate computing

factor must also decrease. Moreover, since error propagation

is not continued, the error generated by a higher approximate

level has a very limited impact on the next iteration. The

gradient-oriented adaptive approximate k-means clustering is

given in Algorithm 1.

Density-based spatial clustering of applications with noise

(DBSCAN) is a data clustering algorithm for density-based

clustering. It can find clusters of different shapes and sizes

from a large amount of data, which has noise and outliers. The

gradient-oriented adaptive approximate DBSCAN clustering

algorithm is given in Algorithm 2.

2) SEMI-SUPERVISED ADAPTIVE APPROXIMATE K-MEANS

CLUSTERING ALGORITHM

The approximate factor in Algorithm 1 is established a-priori

and only reducing with iterations; the feature constrains of the

supervising information are not as common as for the entire

samples; so, it is possible to control the error tolerance using

an approximate circuit. Therefore, a co-design framework for

semi-supervised approximate k-means clustering is proposed

by using feature constraints. Its objective function can be

VOLUME 2, 2021 43



HUANG ET AL.: HARDWARE/SOFTWARE CO-DESIGN METHODOLOGY FOR ADAPTIVE APPROXIMATE COMPUTING

Algorithm 2: Gradient-Oriented Adaptive Approximate

DBSCAN Clustering Algorithm.

Require:

The dataset X ;

The radius of neighborhood ε;

The minimum number of neighbors M;

A distance function D;

A big value of approximate factor p, likely the most

approximated level.

Ensure:

A partition of X in certain groups.

1: Initialize the first cluster label C = 0;

2: repeat

3: Assign the cluster label C = C + 1;

4: if the label of point x is undefined then

5: Assign an empty neighbor set N , i = index(x)

and p = pmax;

6: repeat

7: Set i = i + 1, find the next xi;

8: if D(x, xi ) < ε then

9: Add the xi into the neighbor set N of x;

10: end if

11: if (i Mod M == 0) and (p > pmin) then

12: p − −;

13: end if

14: until All points in X are scaned;

15: if sizeof(N) < M then

16: Label the point x as noise;

17: else

18: Label the point x as cluster C;

19: repeat

20: if The label of point x′ in N is noise or

undefined then

21: Label the point x′ as cluster C;

22: Assign the x as x′, goto 5;

23: end if

24: until All the points of neighbor set N is

scaned;

25: end if

26: end if

27: until Until all points in X are labeled

extended from semi-supervised k-means as follows:

minJob j = αD(�X , �C) + βD′
mp

(�X , �C) + γ ϕDmp
(�X ) + θ

s.t .

⎧
⎪⎨
⎪⎩

ϕDmp
(�X ) ≤ ϕ′

D
m′

p

(�X ) && p < pmax, p + +

ϕDmp
(�X ) > ϕ′

D
m′

p

(�X ) && p > pmin, p − −
(7)

where ϕDmp
(�X ) is the penalty value of the violations of the

constraints at the current stage based on the multiplier mp

and ϕ′
Dmp

(�X ) is at the previous stage based on the previous

Algorithm 3: Semi-Supervised Adaptive Approximate K-

Means Clustering.

Require:

The dataset X ;

The number of clusters k;

A set of must and cannot links;

A distance function D;

A set of weights for violating the feature constrains;

A default value of approximate factor p.

Ensure:

A partition of X in k groups.

1: Assign initial centroids C;

2: repeat

3: Iteration i increase;

4: Re-assign the labels of the examples using the

centroids ci to minimize Job j ;

5: Check the penalty ϕ of the violation of the feature

constraints;

6: if ϕi > ϕi−1 and p > pmin then

7: p − −;

8: Update α, β, γ if necessary;

9: else

10: if p < pmax then

11: p + +;

12: Update α, β, γ if necessary;

13: end if

14: end if

15: until Convergent or Pre-defined Max number of

iterations reaches

multiplier m′
p with an approximate factor p′. When the new

penalty value ϕDmp
(�X ) is higher than the previous value, the

approximate level must be reduced, and the approximate fac-

tor p decreases if p is greater than pmin. Equivalently, the

approximate factor p increases if p is less than pmax .

The procedures for semi-supervised approximate k-means

clustering are summarized in Algorithm 3. The entire ap-

proximate clustering process is supervised using the semi-

supervised feature constraints for different approximation lev-

els, so reducing the accumulated errors and exploiting more

aggressively approximate computing at algorithm level with

a small amount of supervised information. This can adap-

tively find the best approximate factor not only for the su-

pervised data, but also for most unlabeled data. The approx-

imate factor is gradually improved to reduce the large accu-

racy loss introduced by the approximation operations. The

approximation level is controlled by the approximation fac-

tor p and can be adjusted according to the violations of the

supervising information. The procedures for semi-supervised

approximate k-means clustering are given in Algorithm 3. The

entire approximate clustering process is supervised using the

semi-supervised feature constraints for different approxima-

tion levels, so reducing the accumulated errors at algorithm

44 VOLUME 2, 2021



level with a small amount of supervised information. After

each iteration or computation of supervised data (in every

iteration), the approximate factor can be adaptively adjusted.

The approximate factor can be updated through the multipli-

cation of the supervised data as minority. Then the (majority)

unlabeled data can also benefit from the better approximate

multiplier for the current phase. The approximate factor can

be updated not only according to the penalty value after each

iteration, but also at each multiplication of the supervised

process. In this work, we only update the approximate level

through the factor after each iteration in the next evaluation.

Hence, the cost of the adaptive transformation is very small

within the entire hybrid process.

B. ADAPTIVE APPROXIMATE COMPUTING FOR

SUPERVISED LEARNING

MLP processes a type of supervised learning. The MLP sys-

tem is provided with a large amount of input data during

the training phase; such data guides the system to obtain the

output from each specific input value. The trained model is

then used to infer the actual data. For ANNs, many works

have been proposed for approximate computing in the train-

ing process to have a better model for errors. As result of

back propagation in each iteration, every weight is affected

by the error generated by approximate computing; this error

may accumulate and change the descent direction of the loss

function. An approximate training process requires time and

often suffers from a loss of convergence. The model trained

by approximate computing is highly dependent on the specific

approximate modules and the training data set. In Fig. 9, the

dots are the training data; the green or red backgrounds are the

inference results after traversing all data in the specific range.

Fig. 9(a) shows that the loss function of an approximate train-

ing process still oscillates after 4,000 iterations; moreover,

the inference result of exact computing with the approximate

trained model remains unacceptable. Existing approximate

computing techniques mainly focus on pre-trained artificial

neural networks, which may lead to the generation of sub-

optimal solutions. Even after training with exact computing,

a high accuracy is not necessarily a good indicator, because

it may also imply that the model is suffering from overfitting.

Such a data set may perform well in the test scenario, but it

may fail in specific applications. Fig. 9(b) shows that after 23

iterations of approximate training, a learning model satisfying

all training data is found. However, inference with approxi-

mate training overfits more than the exact approach. Hence,

a more accurate and generalized model is required for a high

quality inference. ANN algorithms are improved for accuracy

under the assumption of ideal hardware implementation with-

out considering error tolerance.

The focus of this paper is on flexible approximate hardware

modules for inference an exact training model. In Table 1, the

multiplication equations lead to relative standard deviations; it

is quite like the error metric of the mean absolute percentage

error (MAPE). To better illustrate the relative standard devi-

ations of noises caused by the approximate computing, the

FIGURE 9. Comparison of approximate and exact inference: (a) with
approximate training and (b) with approximate and exact training
respectively.

enhanced MAPE (EMAPA) is defined as follows:

EMAPE =

⎧
⎨
⎩

|
E − A

E
|, E �= 0

1, E = 0

(8)

where E and A refer to the exact and approximate computing

results, respectively. From the Eq. (9) depicted in Table 1,

if the relative errors δa

a
,

δb

b
and δc

c
are random and independent,

the largest dominates the last relative deviation
δQ

Q
. Therefore,

it is critical to limit the largest relative deviation from the

VOLUME 2, 2021 45



HUANG ET AL.: HARDWARE/SOFTWARE CO-DESIGN METHODOLOGY FOR ADAPTIVE APPROXIMATE COMPUTING

approximate computing within an acceptable range.

δQ

Q
=

√(
δa

a

)2

+

(
δb

b

)2

+

(
δc

c

)2

(9)

Eq. (10) presents the best strategy for a target accuracy where

δ is the largest allowed EMAPE, θ is the largest acceptable

tolerance, and Probability is the percentage as EMAPE > δ.

Therefore, a design using an adaptive approximate modules

can be attained by adjusting δ and θ .

Probability(EMAPE > δ) < θ (10)

In many ANNs, the computation of the score is actually

the dot product of the feature (�x) and the weight (�w) (i.e.,∑
i wixi). Therefore, research has focused on reducing the

overhead of multiplying and accumulating (MAC) [35]. In the

inference process, the MAC operations of the feature extrac-

tion (convolutional layer) and the classification can be easily

parallelized. Sze et al. [34] has reported an ANN acceleration

scheme that considers fixed weights, as stored in the register

file of the processing element (PE). For a more aggressive

and adaptive approximation strategy, we further discuss the

characteristics of fixed weight, and present two approximation

strategies for ANNs. These two methods can be used simulta-

neously.

1) OPERAND SWAPPER ALGORITHM (OSA)

In most approximate multipliers, the upper right corner of the

irregular partial product array is considered less significant

and so an approximate design is implemented. In R4ABM,

when an approximate factor p = 2 is employed, there are

over half non-zero multiplication results while the multiplier

is 0. Multiplication is commutative, thus the designation of

multiplier and multiplicand does not affect the result of mul-

tiplication. Still in R4ABM with p = 2, if the multiplicand is

0, all multiplication results are 0. Since the weight in ANNs is

pre-determined, we can distinguish the multipliers needed to

be swapped. The overall operand swapper algorithm is sum-

marized in Algorithm 4. Fig. 11(a) is the original result and

(b) is the result after swapping; after swapping, the EMAPE is

reduced; hence, some operand swapper PEs can be designed

as in Fig. 10(b) with no impact for inference.

2) GREEDY APPROXIMATE COMPUTING ALGORITHM FOR

ANNS

To fully exploit approximate computing, a greedy approxi-

mate computing algorithm (GACA) is proposed for ANNs

using adaptive PEs. GACA is summarized in Algorithm 5.

GACA can be employed over all approximate arithmetic tech-

niques when one of the operands is fixed. GACA is im-

plemented when designing the PEs for the inference phase.

Multiple PEs are designed for the specific weights; hence, the

workload for the different PEs should be further considered.

FIGURE 10. Parallel compute paradigm for ANNs [34]: (a) processing
elements (PEs) for multiple arithmetic logic units (ALU) and (b)
characteristic of weight stationary.

FIGURE 11. Count of EMAPE > 0.1: (a) fixed multiplier and (b) swapped
multiplier.

FIGURE 12. Simplified hardware resource evaluation model.

FIGURE 13. Loss function of each iteration on (a) Iris dataset and
(b) Seeds dataset.

46 VOLUME 2, 2021



Algorithm 4: Operand Swapper Algorithm for ANNs.

Require:

The set of weight W ;

The EMAPE of each wi in W ;

The maximum allowed EMAPE δ;

The approximate operator Ap with pre-determined

approximate factor p;

The overall potential operand set of X ;

Ensure:

Choices of the first or second operand for each wi

1: Set i = 0;

2: repeat

3: Set w ← wi, i ← i + 1;

4: if Probability(EMAPE (A(wi, X )) > δ) >

Probability(EMAPE (Ap(X,wi )) > δ) then

5: Define the weight wi as the second operand for

the approxiamte computing

6: end if

7: until Swapping strategy for all weights are found

Algorithm 5: Greedy Approximate Computing Algo-

rithm for ANNs.

Require:

The set of weight W ;

The EMAPE of each wi in W ;

The largest allowed EMAPE δ;

The largest acceptable tolerance θ ;

The largest value of approximate factor p;

Ensure:

A greedy approximate factor for each wi

1: Set i = 0;

2: repeat

3: Set w ← wi, i ← i + 1;

4: repeat

5: if Probability(EMAPE > δ) > θ and p > pmin

then

6: p − −;

7: end if

8: until p does not decrease or p = pmin

9: until Greedy approximate factor for all weights are

found

V. EVALUATION AND ANALYSIS

Hardware metrics, such as power consumption, area, critical

path delay, and PDP, are considered in this section.

A. SIMULATION SETUP

Although the proposed method is applicable to most re-

configurable multipliers and adders, the method of [10] is

considered because multipliers are more complex and with a

higher energy consumption than adders. To evaluate the ef-

fectiveness of the proposed method and the energy reduction,

the classical k-means algorithm is selected using the standard

UCI datasets [36] and the approximate ANNs by embedding

FIGURE 14. Clustering result of DBSCAN: (a) original, (b) the exact,
adaptive and fixed AxC (p = 2), (c) fixed AxC (p = 4, 6) and (d) fixed AxC
(other p).

fixed weights. Logic synthesis and simulation tools from the

Synopsys Design Compiler and VCS are utilized; the target

synthesis technology is given by the Nangate 45-nm open cell

library. Moreover, an approximate multiplier of each iteration

is considered as an individual module because the IoD of each

iteration is different. The operations of each iteration are kept

the same and defined by the number of samples. Therefore,

as depicted in Fig. 12, a simplified evaluation model is pre-

sented. For performance comparison, different combinations

of approximate multipliers (AMs) are used in the application

as corresponding to diverse hybrid modes. The AMs are kept

same for each iteration when a specific approximate factor is

employed.

B. SIMULATION RESULTS

1) UNSUPERVISED AND SEMI-SUPERVISED LEARNING

The clustering results using 32-bit full-precision, 8-bit fixed-

point quantized, for various (p ∈ {2, 4, 6, 8, 10, 12, 14}) and

adaptive p 8-bit approximate multipliers are presented in Ta-

ble 3.

The metric of the F-value is used and is defined as follows:

F =
(1 + β2) ∗ p ∗ r

β2 ∗ p + r
(11)

where, p is the precision, r is the recall and β is used to

balance the precision and the recall. It is usually set to be 1.

As Fig. 14 shows, the adaptive AxC scheme achieves the

same accuracy as the exact computing but with a more ag-

gressively approximation than a fixed AxC. Since there are

many approaches for hardware acceleration for k-means, in

order to better measure the ability of our proposed method,

the energy consumption of the multiplication operations for

different AxCs is summarized in Fig. 15. The data-set is the

VOLUME 2, 2021 47



HUANG ET AL.: HARDWARE/SOFTWARE CO-DESIGN METHODOLOGY FOR ADAPTIVE APPROXIMATE COMPUTING

TABLE 3. F-Value of K-Means Clustering

FIGURE 15. Energy consumption of k-means multiplication operations for
different AxCs.

OCR digits in UCI. The energy values are normalized with

respect to the exact value. The methods of [10] and [19]

effectively reduce energy consumption by circuit design and

algorithm acceleration respectively. Our proposed method is

more application-aware than [10] and more error tolerant to

hardware noises than [19]. As shown in Fig. 15, the bars indi-

cate the exact computing value (blue) as well as AxC (p = 2)

in [10], AxC (n = 6) and AxC (n = 2) in [19] respectively;

the green bars are for the corresponding approximate method

with no significant accuracy loss. In [19], when n is signifi-

cantly less than the number of clusters (k), the accuracy quite

depends on the initial status. However, the proposed adaptive

approximate method can always maintain nearly the same

accuracy with a considerable energy reduction. These results

further validate our co-design method for synergy between

AxC in hardware and software.

The results of Table 3 accomplishes good results with

a small loss of accuracy; an adaptive approximate method

achieves a very good and fixed accuracy. It can even achieve

a better accuracy (for example for the Seeds data set with

an adaptive p) than exact computing, because the error intro-

duced by approximate computing avoids overfitting the initial

centroids (to which k-means clustering is sensitive). Perfor-

mance of the fixed approximate factor becomes worse when

the factor is very large. The adaptive approximate factor can

achieve a good energy reduction and a small accuracy loss

despite the initial value of the approximate factor even when

the initial approximate level is high. The highest accuracy

(such as p8 and p10 for the Iris and Seeds dataset respectively),

can be attained, however, the results are not reliable. The

algorithm ends when the loss function is convergent, or a

pre-defined maximum number of iterations is reached. Fig. 13

shows that, even though the results of the fixed approximate

computing are acceptable, several of them lose convergence

and exceed the largest number of iterations.

The total energy consumption of the multipliers can be

obtained using the simplified evaluation model of Fig. 12.

The results on the Iris dataset are presented in Table 3. The

best initial factor is 12; also it is assumed that the error at

the beginning is not as large as the errors accumulated along

the data path. For fast convergence, larger steps are always

utilized and therefore, the early stage of computation of an

algorithm should be resilient to errors.

Many machine learning algorithms, as based on the gradi-

ent descent method, can easy fall into a local point; therefore,

the error introduced by approximate computing, causes the

loss function to fluctuate but not gradually decrease. The PDP

can be very large if an unsuitable approximate factor (such

as p ∈ {10, 12, 14}) is utilized, thus contributing to a loss of

convergence in the algorithm. The calibration of the loss func-

tion may also solve this problem because approximate com-

puting can achieve a higher accuracy with a lower hardware.

However, calibration of the loss function cannot be easily es-

tablished, because there are many algorithms with a complex

loss function. The proposed adaptive method achieves a small

accuracy loss at a lower energy consumption despite an initial

approximate factor and it overcomes the loss of convergence.

2) EVALUATIONS OF SUPERVISED LEARNING

Most supervised learning models are based on artificial neural

net-works (ANNs). For generality of the models, in this paper,

we focus on approximate inference (i.e., by only applying

approximate techniques to the inference process). Fig. 16

shows the hardware noise cancellation of OSA under different

approximate factors. OSA takes the advantage of the feature

that the bottom left partial array is less approximate than the

upper right. As the approximate factor increases, its benefit

is reduced, but it is still affecting the result because there are

still few less approximate (bottom left) partial arrays, so more

significant. Fig. 17 shows the original and operand swapped

approximate computing results with different EMAPE δ are

presented. Different values of δ may lead to a different hard-

ware noise cancellation; the best value of δ is determined by

the accuracy requirement of the application, moreover it is

dependent on the specific approximate technique.

The δ and θ will confine noise at an acceptable level. N PEs

are utilized where N is the number of all possible weights (i.e.,

256 for 8 bits). Each PE consists of an approximate module.

Table 4 summarizes the power, delay, area and power-delay

product. Overall adaptive approximate computing of GACA

achieves a better energy performance than the fixed AMs

(p=2,6), and certainly more accuracy than fixed AM (p = 10).

VI. CASE STUDY: IMAGE SEGMENTATION

In this section, the proposed method is applied to image seg-

mentation. The semi-supervised feature constraints are chosen

48 VOLUME 2, 2021



FIGURE 16. Error count of original and operand swapped approximate computing results with different approximate factor under a specific EMAPE δ >

0.1 : (a), (b), (c) and (d) are original approximate computing with p = 4, 6, 8 and 10 receptively; (e), (f), (g) and (h) are operand swapped approximate
computing with p = 4, 6, 8 and 10 receptively.

FIGURE 17. Error count of original and operand swapped approximate computing results with different EMAPE δ for an approximate factor (p = 4): (a),
(b), (c) and (d) are original approximate computing with δ = 0.1, 0.2, 0.3 and 0.4 receptively; (e), (f), (g) and (h) are operand swapped approximate
computing with δ = 0.1, 0.2, 0.3 and 0.4 receptively.

TABLE 4. Energy Evaluation of Greedy Approximate Computing Algorithm as more than 10 must-links and 10 cannot-links. The semi-

supervised k-means uses this information to segment the im-

age, but it also dynamically calibrates the approximate levels

for energy reduction and accuracy.

As shown in Fig. 18, the quality of the processed im-

age deteriorates with an increase of p as factor during the

segmentation process from (f) to (h). When the fixed approx-

imate factor is larger than 8, the segmentation results are

unacceptable. The results from (i) to (o) are based on dif-

ferent initial factors, all achieve an acceptable segmentation

result.

VOLUME 2, 2021 49



HUANG ET AL.: HARDWARE/SOFTWARE CO-DESIGN METHODOLOGY FOR ADAPTIVE APPROXIMATE COMPUTING

FIGURE 18. Image segmentation: (a) original image with feature constrains, approximate segmentation with fixed approximate factor (b) p = 2, (c) p = 4,
(d) p = 6, (e) p = 8, (f) p = 10, (g) p = 12, (h) p = 14 and adaptive approximate segmentation using the proposed method with initial approximate factor
(i) p = 2, (j) p = 4, (k) p = 6, (l) p = 8, (m) p = 10, (n) p = 12, (o) p = 14.

TABLE 5. Energy Consumption of Approximate Multiplication

FIGURE 19. Loss function of the segmentation.

Since the segmentation involves many multiplications, the

accumulated error has a large impact; however the loss

function of exact computing is convex and decreases

smoothly. The proposed adaptive approximate computing pre-

vents divergence while reducing the loss function. As per the

evaluation model in Fig. 12, Table 5 shows the simplified en-

ergy consumption of multiplication for image segmentation.

The peak signal-to-noise ratio (PSNR) is used to assess the

quality of the output image. The signal in this case is the

approximate segmentation with a fixed approximate factor

p = 2; this confirms that the adaptive approximate computing

utilizes less energy and resolves the non-convergence prob-

lem.

50 VOLUME 2, 2021



VII. CONCLUSION

A HW/SW co-design method for adaptive approximate com-

puting has been investigated using multi-precision approxi-

mate multipliers with various approximate factors. A fixed-

point quantization for floating point data has been proposed

to extend or compress the number range, thus resulting in

resilience to the so-called approximate factor. We have pre-

sented a novel approach by considering hybrid approximate

modes for dynamic workloads. The proposed approximate

technique is adaptive and has been utilized for both unsu-

pervised and supervised learning. A gradient-oriented adap-

tive approximate algorithm has considered noise with re-

spect to different gradient descent phases of the clustering

application (i.e., more error tolerant in the initial epochs).

The proposed semi-supervised adaptive approximate algo-

rithm employs supervised information (a very small por-

tion of the entire data set) to better utilize the provided

hardware. Algorithms such as the operand swapper algo-

rithm (OSA) and the greedy approximate computing algo-

rithm (GACA) have been used to take advantage of a fixed

operand in the learning model. It has been shown that OSA

achieves a significant accuracy improvement with no en-

ergy trade-off, while GACA adaptively reduces the hardware

noise to reduce the side effects of approximate computing

in an application, such as image processing. The proposed

HW/SW co-design for adaptive approximate computing has

been used in several machine learning and pattern recognition

applications.

REFERENCES

[1] H. Esmaeilzadeh, E. R. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Proc.

38th Annu. Int. Symp Comput. Architecture, 2011, pp. 365–376.
[2] W. Liu, F. Lombardi, and M. Shulte, “A retrospective and prospec-

tive view of approximate computing,” Proc. IEEE, vol. 108, no. 3,
pp. 394–399, Mar. 2020.

[3] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in Proc. 50th Annu. Des. Automat. Conf., 2013, pp. 113: 1–
113:9.

[4] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Computing approximately, and efficiently,” in Proc. Des., Automat.

Test Europe Conf. Exhib., 2015, pp. 748–751.
[5] A. Sampson, “Hardware and Software for Approximate Computing,”

2015.
[6] S. He, S. K. Lahiri, and Z. Rakamaric, “Verifying relative safety, accu-

racy, and termination for program approximations,” J. Autom. Reason-

ing, vol. 60, no. 1, pp. 23–42, 2018.
[7] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approx-

imate arithmetic designs,” in Proc. 49th Annu. Des. Automat. Conf.,
2012, pp. 820–825.

[8] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and
analysis of approximate compressors for multiplication,” IEEE Trans.

Comput., vol. 64, no. 4, pp. 984–994, Apr. 2015.
[9] S. Venkatachalam, E. Adams, H. J. Lee, and S. Ko, “Design and analysis

of area and power efficient approximate booth multipliers,” IEEE Trans.

Comput., vol. 68, no. 11, pp. 1697–1703, Nov. 2019.
[10] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi, “Design

of approximate radix-4 booth multipliers for error-tolerant computing,”
IEEE Trans. Comput., vol. 66, no. 8, pp. 1435–1441, Aug. 2017.

[11] H. Jiang, C. Liu, F. Lombardi, and J. Han, “Low-power approxi-
mate unsigned multipliers with configurable error recovery,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 1, pp. 189–202,
Jan. 2019.

[12] S. Ullah, H. Schmidl, S. S. Sahoo, S. Rehman, and A. Kumar, “Area-
optimized accurate and approximate softcore signed multiplier archi-
tectures,” IEEE Trans. Comput., pp. 1–1, 2020.

[13] M. S. Ansari, B. F. Cockburn, and J. Han, “A hardware-efficient log-
arithmic multiplier with improved accuracy,” in Proc. Des., Automat.

Test Europe Conf. Exhib., 2019, pp. 928–931.
[14] F. Sabetzadeh, M. H. Moaiyeri, and M. Ahmadinejad, “A majority-

based imprecise multiplier for ultra-efficient approximate image mul-
tiplication,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 11,
pp. 4200–4208, Nov. 2019.

[15] K. Manikantta Reddy, M. H. Vasantha, Y. B. Nithin Kumar, and
D. Dwivedi, “Design of approximate booth squarer for error-tolerant
computing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28,
no. 5, pp. 1230–1241, May 2020.

[16] W. Liu et al., “Design and analysis of approximate redundant bi-
nary multipliers,” IEEE Trans. Comput., vol. 68, no. 6, pp. 804–819,
Jun. 2019.

[17] E. Nogues, D. Menard, and M. Pelcat, “Algorithmic-level approximate
computing applied to energy efficient hevc decoding,” IEEE Trans.

Emerg. Topics Comput., vol. 7, no. 1, pp. 5–17, Jan.–Mar. 2019.
[18] D. Gadioli, E. Vitali, G. Palermo, and C. Silvano, “mARGOT: A. dy-

namic autotuning framework for self-aware approximate computing,”
IEEE Trans. Comput., vol. 68, no. 5, pp. 713–728, May 2019.

[19] A. Raha, S. Venkataramani, V. Raghunathan, and A. Raghunathan,
“Energy-efficient reduce-and-rank using input-adaptive approxima-
tions,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2,
pp. 462–475, Feb. 2017.

[20] A. Sampson, J. Bornholt, and L. Ceze, “Hardware-software co-design:
Not just a cliché,” in Proc. 1st Summit Adv. Program. Languages, 2015,
pp. 262–273.

[21] K. Guo, S. Han, S. Yao, Y. Wang, Y. Xie, and H. Yang, “Software-
hardware codesign for efficient neural network acceleration,” IEEE

Micro, vol. 37, no. 2, pp. 18–25, Mar./Apr. 2017.
[22] P. Huang, C. Wang, R. Ma, W. Liu, and F. Lombardi, “A hard-

ware/software co-design method for approximate semi-supervised k-
means clustering,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI,
2018, pp. 575–580.

[23] R. Sathya and A. Abraham, “Comparison of supervised and unsuper-
vised learning algorithms for pattern classification,” Int. J. Adv. Res.

Artif. Intell., vol. 2, no. 2, pp. 34–38, 2013.
[24] G. Cybenko, “Approximation by superpositions of a sigmoidal func-

tion,” Math. Control, Signals, Syst., vol. 2, no. 4, pp. 303–314,
Dec. 1989.

[25] S. Mittal, “A survey of techniques for approximate computing,” ACM

Comput. Surv., vol. 48, no. 4, pp. 62:1–62: 33, 2016.
[26] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,

and J. Han, “Improving the accuracy and hardware efficiency of neural
networks using approximate multipliers,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 28, no. 2, pp. 317–328, Feb. 2020.
[27] M. Imani, R. Garcia, A. Huang, and T. Rosing, “Cade: Configurable

approximate divider for energy efficiency,” in Proc. Des., Automat. Test

Europe Conf. Exhib., 2019, pp. 586–589.
[28] Z. Liu, K. Jia, W. Liu, Q. Wei, F. Qiao, and H. Yang, “Ina: Incremen-

tal network approximation algorithm for limited precision deep neural
networks,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2019,
pp. 1–7.

[29] S. Mazahir, O. Hasan, and M. Shafique, “Adaptive approximate comput-
ing in arithmetic datapaths,” IEEE Des. Test, vol. 35, no. 4, pp. 65–74,
Aug. 2018.

[30] S. Xu and B. C. Schafer, “Toward self-tunable approximate comput-
ing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 4,
pp. 778–789, Apr. 2019.

[31] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” Com-

put. Res. Repository, 2017, vol. abs/1702.03044. [Online]. Available:
https://arxiv.org/abs/1702.03044

[32] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “Dorefa-Net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” Comput. Res. Repository, 2016, vol. abs/1606.06160. [On-
line]. Available: https://arxiv.org/abs/1606.06160

[33] P. Merolla, R. Appuswamy, J. V. Arthur, S. K. Esser, and D. S.
Modha, “Deep neural networks are robust to weight binarization
and other non-linear distortions,” Comput. Res. Repository, 2016,
vol. abs/1606.01981. [Online]. Available: https://arxiv.org/abs/1606.
01981

VOLUME 2, 2021 51

https://arxiv.org/abs/1702.03044
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1606.01981


HUANG ET AL.: HARDWARE/SOFTWARE CO-DESIGN METHODOLOGY FOR ADAPTIVE APPROXIMATE COMPUTING

[34] V. Sze, Y. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for
machine learning: Challenges and opportunities,” in Proc. IEEE Custom

Integr. Circuits Conf., 2017, pp. 1–8.
[35] A. Raha and V. Raghunathan, “qLUT: Input-aware quantized table

lookup for energy-efficient approximate accelerators,” ACM Trans. Em-

bed. Comput. Syst., vol. 16, no. 5 s, p. 130, Sep. 2017.
[36] M. Lichman, “UCI machine learning repository,” 2013. Accessed: Nov.

6, 2020. [Online]. Available: http://archive.ics.uci.edu/ml

PENGFEI HUANG received the B.Sc. degree in in-
formation engineering from Jilin University, Jilin,
China, in 2006 and the M.Sc. degree in computer
application technology from the Nanjing Univer-
sity of Aeronautics and Astronautics (NUAA),
Nanjing, China, in 2009. Since September 2016, he
has been working toward the Ph.D. degree with the
College of Electronic and Information Engineer-
ing, NUAA. His research interests include com-
puter arithmetic, machine learning, fault tolerance
systems, and low-power technologies in approxi-

mate computing.

CHENGHUA WANG received the B.Sc. and
M.Sc. degrees from Southeast University, Nanjing,
China, in 1984 and 1987, respectively. In 1987,
he joined the College of Electronic and Informa-
tion Engineering, Nanjing University of Aeronau-
tics and Astronautics, Nanjing, China, where he
became a Full Professor in 2001. He has authored
or coauthored six books and more than 100 tech-
nical papers in journals and conference proceed-
ings. His current research interests include testing
of integrated circuits, and circuits and systems for

communications. He was the recipient of more than ten teaching and research
awards at the provincial and ministerial level.

WEIQIANG LIU (Senior Member, IEEE) received
the B.Sc. degree in information engineering from
the Nanjing University of Aeronautics and As-
tronautics (NUAA), Nanjing, China, in 2006 and
the Ph.D. degree in electronic engineering from
Queen’s University Belfast, Belfast, U.K., in 2012.
In December 2013, he joined the College of Elec-
tronic and Information Engineering, NUAA, where
he is currently a Professor and the Vice Dean. He
has authored or coauthored one research book by
Artech House and more than 100 leading journal

and conference papers. His research interests include approximate comput-
ing, hardware security and VLSI design for digital signal processing, and
cryptography. His paper was selected as the Feature Paper of IEEE TC in
the 2017 December issue. He has two Best Paper Candidates in the IEEE
ISCAS 2011 and the ACM GLSVLSI 2015. He was the recipient of the pres-
tigious Outstanding Young Scholar Award by the National Natural Science
Foundation of China in 2020. He is currently the Associate Editor for the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEM I: REGULAR PAPERS from
January to December 2020 , the IEEE TRANSACTIONS ON EMERGING TOPICS

IN COMPUTING from May 2019 to April 2021, and the IEEE TRANSACTIONS

ON COMPUTERS from May 2015 to April 2019, a Steering Committee Member
of the IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS from
January 2018 to December 2019. He is the program Co-Chair of the IEEE
ARITH 2020, and also a Technical Program Committee Members for ARITH,
DATE, ASAP, ISCAS, ASP-DAC, ISVLSI, GLSVLSI, SiPS, NANOARCH,
AICAS, and ICONIP. He is a Member of the CASCOM and VSA Technical
Committee of the IEEE Circuits and Systems Society.

FEI QIAO (Member, IEEE) received the B.Sc. de-
gree from Lanzhou University, Lanzhou, China, in
2000 and the Ph.D. degree from Tsinghua Univer-
sity, Beijing, China, in 2006. He is currently an
Associate Professor with the Department of Elec-
tronic Engineering, Tsinghua University. He has
authored or coauthored around 90 papers and holds
more than 30 invented patents. His research inter-
ests include low-power circuits design, and energy
efficient integrated perception circuits and systems
for intelligent robots, wearables, and IoT devices.

FABRIZIO LOMBARDI (Fellow, IEEE) received
the B.Sc. (Hons.) degree in electronic engineering
from the University of Essex, Colchester, U.K., in
1977, the master’s degree in microwaves and mod-
ern optics from Microwave Research Unit, Uni-
versity College London, London, U.K., in 1978,
and the diploma in microwave engineering and
the Ph.D. degree from the University of London,
London, U.K., in 1978 and 1982, respectively. He
has extensively authored or coauthored papers in
his research fields and coauthored or edited seven

books. His research interests include bio-inspired and nano manufacturing
or computing, VLSI design, testing, and fault or defect tolerance of digital
systems. He is currently the Endowed Chair Professor of the International
Test Conference, Northeastern University, Boston, MA, USA. He was the
Editor-in-Chief of the IEEE TRANSACTIONS ON COMPUTERS and the inau-
gural Editor-in-Chief of the IEEE TRANSACTIONS ON EMERGING TOPICS IN

COMPUTING. He is currently the Editor-in-Chief of the IEEE TRANSACTIONS

ON NANOTECHNOLOGY. Since 2019, he has been the Vice President for Pub-
lications of the IEEE Computer Society.

52 VOLUME 2, 2021

http://archive.ics.uci.edu/ml

