
U
N

IV
E

R
S

ID
A

D
E

 D
E

 S
Ã

O
 P

A
U

L
O

In
st

it
u

to
 d

e
 C

iê
n

ci
a

s 
M

a
te

m
á

ti
ca

s 
e

 d
e

 C
o

m
p

u
ta

çã
o

A hardware/software codesign for the chemical reactivity of
BRAMS

Carlos Alberto Oliveira de Souza Junior
Dissertação de Mestrado do Programa de Pós-Graduação em Ciências
de Computação e Matemática Computacional (PPG-CCMC)





SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Carlos Alberto Oliveira de Souza Junior

A hardware/software codesign for the chemical reactivity of
BRAMS

Master dissertation submitted to the Instituto de
Ciências Matemáticas e de Computação – ICMC-
USP, in partial fulfillment of the requirements for the
degree of the Master Program in Computer Science
and Computational Mathematics. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Eduardo Marques

USP – São Carlos

August 2017



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi 
e Seção Técnica de Informática, ICMC/USP, 

com os dados fornecidos pelo(a) autor(a)

S684h
Souza Junior, Carlos Alberto Oliveira de
   A hardware/software codesign for the chemical
reactivity of BRAMS / Carlos Alberto Oliveira de
Souza Junior; orientador Eduardo Marques. -- São
Carlos, 2017.
   109 p.

   Dissertação (Mestrado - Programa de Pós-Graduação
em Ciências de Computação e Matemática
Computacional) -- Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, 2017.

   1. Hardware. 2. FPGA. 3. OpenCL. 4. Codesign. 5.
Heterogeneous-computing. I. Marques, Eduardo,
orient. II. Título. 



Carlos Alberto Oliveira de Souza Junior

Um coprojeto de hardware/software para a reatividade
química do BRAMS

Dissertação apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Mestre em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Eduardo Marques

USP – São Carlos

Agosto de 2017





ACKNOWLEDGEMENTS

Firstly, I thank God for being able to fulfill a dream, for giving me health and introducing

me wonderful people who supported me to walk through this path. One of them is my advisor,

Prof. Eduardo Marques, who is not only wise and patient but also a great friend who has always

been available to help me to overcome the obstacles in the way.

My sincere gratitude to all my undergraduate professors, in special, I thank Professors

Evanise Caldas, Fábio Hernandes, and Mauro Mulati. My friends Lucas Lorenzetti and Paulo

Urio for sharing the dull and funny moments. To my new friends from LCR (Erinaldo, Mar-

cilyanne, and Rafael), who were very welcoming to me. I would also like to thank CNPq for

their financial support.

Finally, I am deeply thankful to my family. In particular my parents, my grandparents

and my sister Kelly, even with the distance they were always close to me in my thoughts. I love

you all, and without your support, this dream would not come true.





“I love deadlines. I like the whooshing sound they make as they fly by.”

Douglas Adams





ABSTRACT

OLIVEIRA DE SOUZA JUNIOR, C. A. A hardware/software codesign for the chemical
reactivity of BRAMS . 2017. 109 f. Master dissertation (Master student Program in Computer
Science and Computational Mathematics) – Instituto de Ciências Matemáticas e de Computação
(ICMC/USP), São Carlos – SP.

Several critical human activities depend on the weather forecasting. Some of them are transporta-

tion, health, work, safety, and agriculture. Such activities require computational solutions for

weather forecasting through numerical models. These numerical models must be accurate and

allow the computers to process them quickly. In this project, we aim at migrating a small part of

the software of the weather forecasting model of Brazil, BRAMS — Brazilian developments

on the Regional Atmospheric Modelling System — to a heterogeneous system composed of

Xeon (Intel) processors coupled to a reprogrammable circuit (FPGA) via PCIe bus. According

to the studies in the literature, the chemical equation from the mass continuity equation is

the most computationally demanding part. This term calculates several linear systems Ax = b.

Thus, we implemented such equations in hardware and provided a portable and highly parallel

design in OpenCL language. The OpenCL framework also allowed us to couple our circuit to

BRAMS legacy code in Fortran90. Although the development tools present several problems, the

designed solution has shown to be viable with the exploration of parallel techniques. However,

the performance was below of what we expected.

Keywords: Hardware, FPGA, OpenCL, codesign, heterogeneous-computing.





RESUMO

OLIVEIRA DE SOUZA JUNIOR, C. A. A hardware/software codesign for the chemical
reactivity of BRAMS . 2017. 109 f. Dissertação (Mestrado em Ciências – Ciências de Com-
putação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação
(ICMC/USP), São Carlos – SP.

Várias atividades humanas dependem da previsão do tempo. Algumas delas são transporte, saúde,

trabalho, segurança e agricultura. Tais atividades exigem solucões computacionais para previsão

do tempo através de modelos numéricos. Estes modelos numéricos devem ser precisos e ágeis

para serem processados no computador.Este projeto visa portar uma pequena parte do software

do modelo de previsão de tempo do Brasil, o BRAMS — Brazilian developments on the Regional

Atmospheric Modelling System — para uma arquitetura heterogênea composta por processadores

Xeon (Intel) acoplados a um circuito reprogramável em FPGA via barramento PCIe. De acordo

com os estudos, o termo da química da equação de continuidade da massa é o termo mais

caro computacionalmente. Este termo calcula várias equações lineares do tipo Ax = b. Deste

modo, este trabalho implementou estas equações em hardware, provendo um ćodigo portável e

paralelo na linguagem OpenCL. O framework OpenCL também nos permitiu acoplar o código

legado do BRAMS em Fortran90 junto com o hardware desenvolvido. Embora as ferramentas

de desenvolvimento tenham apresentado vários problemas, a solução implementada mostrou-se

viável com a exploração de técnicas de paralelismo. Entretando sua perfomance ficou muito

aquém do desejado.

Palavras-chave: Hardware, FPGA, OpenCL, coprojeto, computação-heterogênea.





LIST OF FIGURES

Figure 1 – Simulation of CCATT-BRAMS system, figure from (LONGO et al., 2013). . 31

Figure 2 – Rosenbrock Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3 – Jacobi Method algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4 – Clock rate and power increase of eight generations of Intel microprocessors,

figure from (PATTERSON; HENNESSY, 2012). . . . . . . . . . . . . . . . 38

Figure 5 – OpenCL Data Structures – Consider Program as a single data structure; we

replicated it to make the understanding easier. . . . . . . . . . . . . . . . . 40

Figure 6 – An example of how the global IDs, local IDs, and work-group indices are re-

lated for a two-dimensional NDRange. For this figure, we have the following

indices: the shaded block has a global ID of (gx,gy) = (6,5), a work-group ID

of (wx,wy) = (1,1) plus a local ID of (lx, ly) = (2,1), figure from (MUNSHI,

2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 7 – Components from OpenCL system on Intel FPGAs, figure from (ALTERA,

2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 8 – Partitioning of the FPGA. PCIe, DDR3 controller and IPs are every project

of OpenCL, so only the remaining is available for the kernels, figure granted

by André Perina. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 9 – Implementation of local memory with three M20K blocks, figure from (IN-

TEL, 2016a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 10 – Design flow with OpenCL, figure from (CZAJKOWSKI et al., 2012b). . . . 44

Figure 11 – Xilinx field-programmable gate array (FPGA) progression. (Price and power

are per logic cell.), figure from (AHMAD et al., 2016). . . . . . . . . . . . 45

Figure 12 – Top-Level Component Implementation Block Diagram, figure from (BITTWARE,

2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 13 – Driving factors in hardware/software codesign, figure from (SCHAUMONT,

2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 14 – Speedup compared to CPU versions. The x dimension stands for matrix size,

and y dimension speedup in FPGA. . . . . . . . . . . . . . . . . . . . . . . 50

Figure 15 – Generic representation of BRAMS system with a single process. In this

figure, we present BRAMS over the South America with a single grid, yellow

square represents Sparse1.3 running for all the points over the grid. . . . . . 56



Figure 16 – Generic representation of BRAMS system with MPI processes. In this figure,

we present BRAMS over the South America with a single grid distributed

over N processes, each process executes Sparse 1.3 for its set of points of the

grid. The shaded areas are the ghost zones, i.e. the shared data area. . . . . 56

Figure 17 – Generic representation of BRAMS coupled to the Jacobi method in Hardware.

In this figure, we present BRAMS over the South America with a single grid,

red square represents Jacobi hardware circuit. Such circuit computes all the

points over the grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 18 – Schematic of Jacobi method with multiple threads with dense representation. 59

Figure 19 – Each color represents one work-group, each work-group has 47 work-items.

According to the verilog, two work-groups are executing at the same time. . 60

Figure 20 – Interoperability of BRAMS and OpenCL. Fortran calls a function from the C

host, which in turn is responsible to manage the device. . . . . . . . . . . . 61

Figure 21 – Schematic of Jacobi method with multiple threads with sparse representation. 63

Figure 22 – Each color represents one work-group, each work-group has one work-item.

In this manner, the number of work-items is equal to the number of work-groups. 64

Figure 23 – Schematic of Sparse Jacobi method with single thread. . . . . . . . . . . . . 66

Figure 24 – How pageable and pinned memory data transfer work, based on Harris (2012). 67

Figure 25 – Call Graph for BRAMS with chemical module disabled. . . . . . . . . . . . 70

Figure 26 – Call Graph for BRAMS with chemical module enabled. . . . . . . . . . . . 71

Figure 27 – Each MPI process accesses a copy of the kernel (an FPGA circuit). . . . . . 72

Figure 28 – OpenCL data structures – Program, Device and Memory buffers are shared

among MPI processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 29 – Pipeline report for Jacobi multi-threaded dense. . . . . . . . . . . . . . . . 74

Figure 30 – CPU communicates with FPGA for every iteration. CPU sends to the FPGA

the initial data, after FPGA processing it, the FPGA returns the result to the

CPU, which in turn computes the vector norm and decides if it sends another

data or computes another iteration. . . . . . . . . . . . . . . . . . . . . . . 76

Figure 31 – Communication and execution time with Intel FPGA SDK profiling for

kernels. Note that there is much more communication than computation. . . 77

Figure 32 – Efficiency of Jacobi multi-threaded dense with Intel FPGA SDK profiling for

kernels. The red line points that the global memory reads (line 22) are the

bottleneck of the application. . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 33 – Statistics of Jacobi multi-threaded dense with Intel FPGA SDK profiling for

kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 34 – Efficiency of Jacobi multi-threaded sparse with Intel FPGA SDK profiling

for kernels. Sparse format causes a severe drop of performance when saving

the results back to the global memory. . . . . . . . . . . . . . . . . . . . . 78



Figure 35 – Execution and memory transfer time of Jacobi multi-threaded sparse with

Intel FPGA SDK profiling for kernels. Note that transfer time did not improve

due to variable sparsity of the matrices. . . . . . . . . . . . . . . . . . . . . 79

Figure 36 – Statistics of Jacobi multi-threaded sparse with Intel FPGA SDK profiling for

kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 37 – Pipeline report for Jacobi single-threaded sparse. . . . . . . . . . . . . . . . 81

Figure 38 – Optimum pipeline with II of 1, figure from Intel (2016a). . . . . . . . . . . 82

Figure 39 – Matrix-vector pipeline with II of 11, based on Intel (2016a). . . . . . . . . . 82

Figure 40 – Pipeline report for Jacobi single-threaded sparse optimized. . . . . . . . . . 83

Figure 41 – Efficiency for Jacobi single-threaded sparse. After the modifications, all the

pipelines shows 100% of efficiency and almost zero stall. . . . . . . . . . . 84

Figure 42 – Execution and memory transfers time for Jacobi single-threaded sparse. Each

bar in spjacobi_method1 means a complete execution over a matrix. . . . . 85

Figure 43 – Statistics for Jacobi single-threaded sparse. . . . . . . . . . . . . . . . . . . 85





LIST OF TABLES

Table 1 – Results from CLOC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 2 – S5PH-Q Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 4 – Table of comparison among related works . . . . . . . . . . . . . . . . . . . 53

Table 6 – Results from Arch 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 7 – Timing results from Arch 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table 8 – Results from Arch 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 9 – Timing results from Arch 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 10 – Results from Arch 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 11 – Tmining results from Arch 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 12 – Timing results from Arch 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Table 13 – Table of comparison among implementations. . . . . . . . . . . . . . . . . . 87

Table 15 – Comparison among architectures . . . . . . . . . . . . . . . . . . . . . . . . 88





19

ACRONYMS

AOCL Altera OpenCL.

API Application Programming Interface.

ARM Advanced RISC Machines.

ATMET ATmospheric, Meteorological, and Environmental Technologies.

BRAMS Brazilian developments on the Regional Atmospheric Modelling System.

CB Carbon Bond.

CBEA Cell Broadband Engine Architecture.

CCATT Coupled Chemistry Aerosol–Tracer Transport.

CDFG Control-Data Flow Graph.

CPTEC Center for Weather Forecasts and Climate Studies.

CPU Central Processing Unit.

CSR Compressed Row Storage.

FINEP Financier of Studies and Projects.

FPGA Field-Programmable Gate Array.

GPU Graphics Processing Unit.

HDF5 Hierarchical Data Format.

HDL Hardware Description Language.

HIPAcc Heterogeneous Image Processing Acceleration Framework.

IAG Institute of Astronomy, Geophysics and Atmospheric Sciences.

II Initiation Interval.

IME Institute of Mathematics and Statistics.



20 Acronyms

INPE National Institute for Space Research.

IP Intellectual Property.

IR Intermediate Representation.

JULES Joint UK Land Environment Simulator.

KPP Kinetic PreProcessor.

LCR Reconfigurable Computing Laboratory.

LE Logic Elements.

LU Lower Upper.

LUT Look-Up Table.

MPI Message Passing Interface.

MPICH Message Passing Interface CHameleon.

MRA Multiresolution Analysis.

NDRange N-Dimensional Range.

NetCDF Network Common Data Form.

OpenCL Open Computing Language.

PBL planetary Boundary Layer.

PCIe Peripheral Component Interconnect Express.

PDE Partial Differential Equations.

RACM Regional Atmospheric Chemistry Mechanism.

RAMS Regional Atmospheric Modeling System.

RELACS Regional Lumped Atmospheric Chemical Scheme.

RTL Register-Transfer Level.

SDK Software Development Kit.

SIMD Single Instruction, Multiple Data.



Acronyms 21

SOC System-On-Chip.

SOPC System-On-a-Programmable-Chip.

SpMV Sparse Matrix-Vector multiplication.

SRAM Static Random Access Memory.

SVD Singular Value Decomposition.

USP University of São Paulo.



CONTENTS

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Document organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 FUNDAMENTAL CONCEPTS . . . . . . . . . . . . . . . . . . . . . 29

2.1 Brazilian developments on the Regional Atmospheric Modelling Sys-

tem – BRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 CCATT-BRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.2 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.3 NetCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.4 HDF5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.5 Zlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.6 Szip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.7 Mpich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.7.1 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Linear Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Linear Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Direct Method - LU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Iterative Method - Jacobi . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Data structures for OpenCL . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.2 Data Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.3 Task Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Intel FPGA SDK for OpenCL . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Development Environment for OpenCL . . . . . . . . . . . . . . . . . 45

2.7.1 BittWare Board S5PH-Q . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8 Hardware/Software Codesign . . . . . . . . . . . . . . . . . . . . . . . 46

2.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



Contents 23

3 DEVELOPMENT OF THE CODESIGN FOR THE CHEMICAL RE-

ACTIVITY OF BRAMS . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 CCATT–BRAMS software . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Interoperability with Sparse1.3a . . . . . . . . . . . . . . . . . . . . . 57

3.2 CCATT–BRAMS Codesign . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Jacobi Multi-threaded Dense . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Interoperability with Jacobi Multi-Threaded Dense . . . . . . . . . . 60

3.2.3 Jacobi Multi-threaded Sparse . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.4 Interoperability with Jacobi Multi-Threaded Sparse . . . . . . . . . . 63

3.2.5 Jacobi Single-threaded Sparse . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.6 Interoperability with Jacobi Single-threaded Sparse . . . . . . . . . . 67

4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Result analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Results from Jacobi Multi-threaded Dense . . . . . . . . . . . . . . . 73

4.4 Results from Jacobi Multi-threaded Sparse . . . . . . . . . . . . . . . 78

4.5 Results from Jacobi Single-threaded Sparse . . . . . . . . . . . . . . 80

4.6 Results from Jacobi Single-threaded Dense . . . . . . . . . . . . . . . 86

4.7 Results from Sparse1.3a . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

APPENDIX A INSTALLATION . . . . . . . . . . . . . . . . . . . . . 103

APPENDIX B OBSERVING THE RESULTS . . . . . . . . . . . . . . 107

ANNEX A USEFUL LINKS . . . . . . . . . . . . . . . . . . . . . . . . 109





25

CHAPTER

1

INTRODUCTION

Weather forecasting is the utilization of science and technology to predict the state

of the atmosphere at a provided location. The predictions require quantitative data from the

current situation of the atmosphere at a given place, and scientific understanding of atmospheric

processes to predict how the atmosphere will change (HENKEL, 2015).

According to Society (2015) the meteorological profession is responsible for two crucial

services: weather forecasts and warnings. The government and industry use forecasts to protect

life and property and to improve the efficiency of operations.

Several critical human activities depend on the weather forecasting. Some of them are

transportation, health, work, and safety. Imagine an air travel where passengers do not know

what are the risks ahead; a forest fire where firefighters have no clue where the fire will move

(LABORATORY, 2015).

Forecasts based on temperature and precipitation are important to agriculture and so the

traders of commodity markets. Weather forecasting is also critical to estimate the crop-disease

spread (WARNER, 2010). Trying to predict the weather is not a new science.

Ancient civilizations started to forecast the weather at the very early ages. They used

astronomical and meteorological events to keep track of seasonal changes in the weather. By the

year 650 B.C., Babylonians tried to predict weather (short-term) through clouds patterns and

optical phenomena, such as halos (GRAHAM; PARKINSON; CHAHINE, 2002).

By the end of Renaissance period, it had become clear to philosophers that forecasting

based only on observations and assumptions was not an adequate method. They needed to

improve their understanding of the atmosphere — the development of new tools was necessary

to measure properties of the atmosphere, such as moisture, temperature, and pressure. The first

tool dates back to 14th century, the hygrometer.

On the 16th century, Galileo Galilei invented the thermometer. Later in the 17th century,



26 Chapter 1. Introduction

Evangelista Torricelli created the barometer. Other tools came later on recently centuries (for

example radiosonde and weather satellite). These instruments allowed us to create weather

observation stations and the dissemination of them around the globe. Besides the tools, it was

also necessary a better understanding of the atmosphere.

In the 19th century, the development of thermodynamics allowed meteorologists to set

the fundamental physical principles that govern the flow of the atmosphere (LYNCH, 2008). In

1890, Cleveland Abbe acknowledged that meteorology is the application of hydrodynamics and

thermodynamics to the atmosphere (WILLIS; HOOKE, 2006).

In 1904, Vilhelm Bjerknes published a paper in german (The Problem of Weather

Forecasting from the Standpoint of Mechanics and Physics). In this paper, he introduces the hydro-

and thermodynamics into meteorology. Vilhelm included the second law of thermodynamics in

his set of equations; this error was corrected by Lewis Fry Richardson (GRØNØS, 2005). The

latter made an estimate method for solving numerical equations — According to Richardson, it

would be required 64 thousand people to predict the weather in time. It is clear that predicting

the weather was impossible before computational era (LYNCH, 2008).

Predicting the weather became possible in the 20th century, with Von Neumann’s ENIAC.

Charney realized that could overcome Richardson’s methods impracticability with new com-

puters, and a revised set of equations where scientists could solve complex equations through

numerical methods. In April 1950, Charney’s research group succeed to predict the weather for

24 hours in the North America.

With the computer availability increasing in the 20th century, universities started offering

courses on atmospheric modeling. At the time, people shared their time as both modelers and

developers; the generated code had many errors, so it was necessary more human effort to correct

it. The development in the field allowed the modelers to have available, for free, well-tested

community, global and limited-area models, and access to full documentation, regular tutorials,

and technical support (WARNER, 2010).

Last century was responsible for many scientific advances that allowed us to predict the

weather phenomena. This prediction uses numerical models; we can classify such models accord-

ing to their domain operation: Global (the entire Earth planet) and regional (e.g. Country, State,

and City). The global models cannot represent accurately the regional weather phenomena due

to limited computing power. On the other hand, regional models are more accurate (OSTHOFF

et al., 2012; LABORATORY, 2015). In this project, we are using Brazilian developments on the

Regional Atmospheric Modelling System (BRAMS)1, a Brazilian regional model.

Currently, BRAMS is the largest high-performance application in Brazil according to

Panetta (2015). We used a PERL script to count the lines of BRAMS, with CLOC2 we discovered

1 http://brams.cptec.inpe.br/
2 http://cloc.sourceforge.net/



1.1. Objective 27

that BRAMS has over 400 thousands lines of code in Fortran. We can see the results in Table 1.

Since the application is huge, we used some tools available on the Internet to detect bottlenecks

and generate graphical data, they are Gprof, and Gprof2dot, respectively.

Table 1 – Results from CLOC.

Language Files Blank Comment Code

Fortran 90 748 67905 126111 454676

C 14 2154 5102 6062

Bourne Shell 4 694 857 5081

C/C++ Header 39 390 1129 1496

make 18 186 173 891

Sum 823 71329 133372 468206

1.1 Objective

The main objective of this work is to show that is viable to migrate segments of code

of BRAMS to a heterogeneous architecture, particularly hardware platforms that use Xeon

Intel processor coupled to a programmable circuit (FPGA) via PCIe. Thus, we can provide

a hardware/software solution for a snippet of BRAMS that will be functionally integrated to

BRAMS.

According to the studies in the literature, the chemical equation from the mass continuity

equation is the most computationally demanding part. This term calculates several linear systems

Ax = b. Thus, we implemented such equations in hardware and provided a portable and highly

parallel design in OpenCL language. The OpenCL framework also allowed us to couple our

circuit to BRAMS legacy code in Fortran90. Although the development tools present several

problems, the designed solution has shown to be viable with the exploration of parallel techniques.

However, the performance was below of what we expected.

1.2 Motivation

The weather prediction is considered a super application or a supercomputing application.

They demand high computing power with increasing inclination for growth (KIRK; WEN-MEI,

2012).

In the last 20 years, processors have increased in 1000 times their performance. Increasing

the performance of current processors require changes in the architecture. Due to energy limits, it

is not viable to boost the frequency on current state-of-art processors. This limitation has forced



28 Chapter 1. Introduction

designers to use large-scale parallelism, heterogeneous cores, and accelerators for demanding

applications (BORKAR; CHIEN, 2011).

The applications will depend on customized accelerators, especially in hardware, to gain

performance. In many cases, the acceleration also improves computational efficiency regarding

the energy consumption compared to a solution based on software (CONG; ZOU, 2009).

Accelerators are special-purpose processors used to accelerate CPU-bound applications.

The development of them is usually in Graphics Processing Unit (GPU) or Field-Programmable

Gate Array (FPGA); both can achieve substantial performance for certain workloads when

compared to Central Processing Unit (CPU). FPGAs are highly customizable and, in general,

offer the best performance (CHE et al., 2008).

1.3 Document organization

In Chapter 2, we present the fundamental concepts for this project and the literature

review. In Chapter 3, we describe our three architectures for Jacobi method. We also describe

how we managed the interoperability with CPU for each architecture. In Chapter 4, we present

the profiling that supports that the chem term is the most expensive in the mass continuity

equation. Then we show the results for each architecture and its problems. Lastly, we compare

our hardware solution with the current software solution in BRAMS. In Chapter 5, we conclude

our project and present the main limitations and future work. In Appendix A, we depict the

installation of BRAMS. In Appendix B, we show how to visualize the results from BRAMS. In

Annex A, there are useful links to libraries, additional software, and BRAMS source code.



29

CHAPTER

2

FUNDAMENTAL CONCEPTS

2.1 Brazilian developments on the Regional Atmospheric

Modelling System – BRAMS

BRAMS is an project originally developed by ATmospheric, Meteorological, and Envi-

ronmental Technologies (ATMET), IME/USP (Institute of Mathematics and Statistics/University

of São Paulo), IAG/USP (Institute of Astronomy, Geophysics and Atmospheric Sciences) and

CPTEC/INPE (Center for Weather Forecasts and Climate Studies/National Institute for Space

Research), and funded by Financier of Studies and Projects (FINEP) (Brazilian Funding Agency)

(INPE/CPTEC, 2015).

They aimed at producing an adapted version of Regional Atmospheric Modeling System

(RAMS) for the tropics (FREITAS et al., 2009), which provided a single model to Brazilian

Regional Weather Centers. One of the purposes of BRAMS/RAMs is to simulate atmospheric

circulations through a numerical prediction model. The simulation can range from hemispheric

scales down to large eddy simulations (LES) of the planetary boundary layer (LONGO et al.,

2013).

Since version 4.2, the CPTEC/INPE team is responsible for the entire software develop-

ment. BRAMS uses the cathedral model. Software built in a cathedral model must provide the

source-code every release, and only the software developers can access the source-code between

releases (RAYMOND, 2001). The software license is under CC-GNU-GPL, and some parts may

receive other restricted licenses.

Three main models represent BRAMS. The tracer transport model, chemical model

(Coupled Chemistry Aerosol–Tracer Transport (CCATT)) and a surface model. BRAMS in-

corporate the tracer transport model and chemical model, and Joint UK Land Environment

Simulator (JULES) is the name of the surface model. In this dissertation, we focus on CCATT,

more specifically the numerical solution of the chemical reactivity.



30 Chapter 2. Fundamental Concepts

2.1.1 CCATT-BRAMS

CATT-BRAMS is a Eulerian atmospheric chemistry transport model fully coupled to

BRAMS. Its design allows us to study transport processes associated with the emission of tracers

and aerosols (FREITAS et al., 2010). CATT-BRAMS solves the mass continuity equation for

tracers; we present it in Equation (2.1).

∂ s

∂ t
=

(

∂ s

∂ t

)

adv

+

(

∂ s

∂ t

)

PBL di f f

+

(

∂ s

∂ t

)

deep conv

+

(

∂ s

∂ t

)

shallow conv

+

(

∂ s

∂ t

)

chem

+W +R+Q

(2.1)

“Where s is the grid box mean tracer mixing ratio” (LONGO et al., 2013); a prognostic variable,

this variable is governed by the prognostic equation, which means that involve derivatives

(RANDALL, 2013). “The term adv represents the 3-D resolved transport (advection by the mean

wind); and the terms PBL diff, deep conv, and shallow conv stand for the sub-grid scale turbulence

in the Planetary Boundary Layer (PBL), and deep and shallow convection, respectively”.

Advection and convection stand for the transfer of energy generated by the movement of

particles of liquid like water in the atmosphere. Advection transfer horizontally, and convection

transfer energy vertically (ACKERMAN; ACKERMAN; KNOX, 2013). Deep convection is

the thermally driven turbulent mixing that lifts the air from the lower to the upper atmosphere.

“Shallow convection: thermally driven turbulent mixing, where vertical lifting is capped below

500hPa” (DAVISON, 1999; VAUGHAN, 2009).

“The chem term refers simply to the passive tracers’ lifetime, the W is the term for wet

removal applied only to aerosols, and R is the term for the dry deposition applied to both gasses

and aerosol particles” (LONGO et al., 2013).

CATT-BRAMS evolved to CCATT-BRAMS (Chemistry CATT-BRAMS). This new

model includes a gas phase chemical module, which solves chem term in Equation (2.1). We

show this module in Equation (2.2).

(

∂ρk

∂ t

)

chem

=

(

dρk

dt

)

= Pk(ρ)−Lk(ρ), (2.2)

Where ρ stands for the number density for each of the N species, and Pk and Lk are the net

production and loss of species k, respectively. P and L terms include photochemistry, gas phase,

and aqueous chemistry. The solution of this equation is the most expensive term of Equation (2.1).

The development of CCATT required advanced numerical tools to provide a flexible

multi-purpose model, i.e. the model can run for both operational forecasts and research simula-

tions. Figure 1 illustrates the simulation of CCATT-BRAMS system. The illustration represents

the primary sub-grid scale processes involved in the trace gas and aerosol distributions.



2.1. Brazilian developments on the Regional Atmospheric Modelling System – BRAMS 31

Figure 1 – Simulation of CCATT-BRAMS system, figure from (LONGO et al., 2013).

Moreover, the model system allows the user to provide any chemical mechanism. Cur-

rently, there are three widely used chemistry mechanisms; they are as follows: Regional Atmo-

spheric Chemistry Mechanism (RACM) with 77 species (STOCKWELL et al., 1997), Carbon

Bond (CB) with 36 species (YARWOOD et al., 2005), and the Regional Lumped Atmospheric

Chemical Scheme (RELACS) with 37 species (CRASSIER et al., 2000).

Scientific projects frequently use RACM mechanism due to its number of species it

covers; RELACS is a reduced version of RACM. CPTEC uses RELACS for operational air

quality prediction. According to Gácita (2011), RELACS can replicate RACM results reasonably

well.

To solve the Equation (2.2) with k species Longo et al. (2013) uses Rosenbrock method

(WANNER; HAIRER, 1991; VERWER et al., 1999) to change from nonlinear differential

equation system to a linear algebraic increment in terms of Ki. In this method, the integration

step is adjusted as a function of the calculated error (FERNANDES, 2014).

The solution of this linear algebraic increment, which corresponds to P and L, is in

Equation (2.3).

ρ(t0 + τ) = ρ(t0)+
s

∑
i=1

biKi, (2.3)

Where t0 stands for initial concentration, τ is the timestep. The product sum approximates the

integral, where i is the Rosenbrock stage. Each timestep and stage require the update of Ki



32 Chapter 2. Fundamental Concepts

increment according to the linear system in Equation (2.4a).



































Ki = τF(ρi)+ τJ(ρ(t0)).
i

∑
j=1

γi jK j

ρi = ρ(t0)+
i−1

∑
j=1

ai jK j

F(ρi) = P(ρi)−L(ρi),

(2.4a)

(2.4b)

(2.4c)

Where ai j and γi j are constants that depend on s, ρi stands for the intermediate solution used for

recalculating the net production on stage i given by the term F(ρi), and J is the Jacobian matrix

of the net production at time t0. Solving the Equation (2.5) is the most computing intensive.

Ax = b (2.5)

Where A is a N ×N matrix, N is the number of species. The vector x is the solution, and b is

the right-hand side or vector of the independent terms. BRAMS solves the Equation (2.4b) by

using Sparse1.3a (KUNDERT; SANGIOVANNI-VINCENTELLI, 1988). In Figure 2 we show

the pseudo-algorithm for the Rosenbrock method with Sparse1.3a to solve each stage.

CCATT-BRAMS runs operationally at CPTEC/INPE since 2003; it covers the entire

South America with a spatial resolution of 25 km. It is possible to predict the emission of Gases

and Aerosols in real time1, as well as meteorological variables2 (MOREIRA et al., 2013).

2.1.2 Libraries

In this subsection, we will briefly explain each library necessary for BRAMS.

2.1.3 NetCDF

According to Rew (2015) Network Common Data Form (NetCDF) “is a set of interfaces

for array-oriented data access and a freely-distributed collection of data access libraries for C,

Fortran, C++, Java, and other languages. The netCDF libraries support a machine-independent

format for representing scientific data. Together, the interfaces, libraries, and format support the

creation, access, and sharing of scientific data".

This library creates an abstraction level for machine-dependent data representation.

Such abstraction allows the application to share those files across the networks on different

workstations. Programs with NetCDF interface can read and write data without the restriction of

machine-dependent binary data files (REW; DAVIS, 1990).

1 http://meioambiente.cptec.inpe.br/
2 http://previsaonumerica.cptec.inpe.br/golMapWeb/DadosPages?id=CCattBrams



2.1. Brazilian developments on the Regional Atmospheric Modelling System – BRAMS 33

Input: Sparse1.3 data structure

1 begin

2 foreach block do

3 foreach grad_point do

4 Read variables from BRAMS;

5 Update photolysis rate;

6 Compute initial kinetic reactions;

7 while Timestep < threshold do

8 Compute Jacobian of the matrix of concentrations;

9 Compute Equation (2.2);

10 foreach chemical_specie do

11 foreach grad_point do

12 Update F (ρ) on the data structure;

13 while error > tolerance do

14 foreach chemical_specie do

15 foreach grad_point do

16 Update matrix A;

17 Update bi;

18 foreach grad_point do

19 Compute 1st Rosenbrock method;

20 Update bi;

21 foreach grad_point do

22 Compute 2nd Rosenbrock method;

23 Update matrix of concentrations ρ;

24 Update production term F (ρ);

25 Update bi;

26 foreach grad_point do

27 Compute 3rd Rosenbrock method;

28 Update matrix of concentrations ρ;

29 Update production term F (ρ);

30 Update bi;

31 foreach grad_point do

32 Compute 4th Rosenbrock method;

33 Update matrix of concentrations ρ;

34 Compute error and rounding;

35 if tolerance - rounding > 1.0 then

36 Accept solution;

37 else

38 Compute the new integration step;

39 Update the integration step;

40 Update variables from BRAMS;

Algorithm: Rosenbrock Method

Figure 2 – Rosenbrock Method.



34 Chapter 2. Fundamental Concepts

The NetCDF software was developed by Glenn Davis, Russ Rew, Ed Hartnett, John

Caron, Dennis Heimbigner, Steve Emmerson, Harvey Davies, and Ward Fisher at the Unidata

Program Center in Boulder, Colorado, and many users also contributed to software development.

2.1.4 HDF5

With the Hierarchical Data Format (HDF5) technology suite is possible to organize, store,

discover, access, analyze, share, and preserve diverse, complex data in heterogeneous computing

and storage environments (GROUP, 2011).

HDF5 supports all types of digital data from any origin or size. This suite is useful for

data collected from satellites, nuclear testing models, high-resolution MRI brain scans. Besides

the data, HDF5 files also contain the metadata necessary for efficient data sharing, processing,

visualization, and archiving.

According to Fazenda et al. (2012), BRAMS uses HDF5 to overcome data writing phase

that was preventing scalability of BRAMS to 9,600 cores; in this work, they used a technique

called disk-direct. Such technique was essential to perform I/O collective operations; these

operations interpolate the sub-domains in a single file in an external memory.

2.1.5 Zlib

Zlib is a library for lossless data-compression for use virtually on any computer hardware

and operating system. The data format from zlib is portable across platforms. Jean-loup Gailly

and Mark Adler are responsible for Zlib creation (GAILLY; ADLER, 2015).

2.1.6 Szip

Szip is a data compressor for data from the sphere. For energy compression, it uses a

Haar wavelet transform on the sphere. This transformation reduces the entropy of the data. After

this transformation, it encodes with Huffman and run-length. Both compression algorithms are

lossless and lossy (MCEWEN; EYERS, 2011).

2.1.7 Mpich

Message Passing Interface CHameleon (MPICH) is a portable implementation of the Mes-

sage Passing Interface (MPI). Of the goals of MPICH is to provide efficient MPI implementation

for different computation and communication platforms (MPICH, 2015).

MPICH is open source. It works on several platforms, including Linux (on IA32 and

x86-64), Mac OS/X (PowerPC and Intel), Solaris (32- and 64-bit), and Windows.



2.2. Linear Equation 35

2.1.7.1 MPI

Programming and debugging for parallel algorithms are much more complicated than

programming for sequential algorithms. There are several models of parallel programming; they

are as follows (NIELSEN, 2016):

∙ Vector supercomputers, which relies on Single Instruction, Multiple Data (SIMD);

∙ Multi-core machines with shared memory, which uses multi-threading;

∙ Clusters of computer machines with distributed memory.

The latter can include the first and the second parallel programming; this is the parallel

programming paradigm suitable for MPI. Each node can execute a program using its local

memory, and cooperation among nodes depends on sending and receiving messages (GROPP et

al., 2014).

Message Passing Interface is an Application Programming Interface (API). This API

hides the fine details of implementation from the programmer, and it also provides portability

and efficiency with a wide acceptance from academy and industry. This API works with most

common sequential languages, i.e. C, C++, Java, Fortran and so on (KARNIADAKIS; KIRBY,

2003).

2.2 Linear Equation

According to Anton and Rorres (2013), Larson (2016), a linear equation in n variables

x1,x2,x3 . . .xn = b can be represented in the form of the Equation (2.6).

a1x1 +a2x2 + . . .+anxn = b (2.6)

A system with m equations in n variables is called linear system. In Equation (2.7) we

present a general linear system of this form.

a11x1 +a12x2 + . . .+a1nxn = b1

a21x1 +a22x2 + . . .+a2nxn = b2

...
...

am1x1 +am2x2 + . . .+amnxn = bm

(2.7)

A solution whose x1,x2,x3 . . .xn satisfies every equation is called consistent. Otherwise,

it is inconsistent.



36 Chapter 2. Fundamental Concepts

2.3 Linear Solver

According to Golub and Loan (2013) and Peng (2013), there are two fundamental

categories to solve linear systems: direct and iterative methods.

2.3.1 Direct Method - LU

In theory, direct methods return the exact solution after a finite number of operations; in

practice, this is not possible due to rounding errors. Lower Upper (LU) decomposition, Cholesky,

Gaussian elimination are the main algorithms from this category.

Currently, BRAMS uses LU decomposition to solve the linear systems. Such method

is computationally expensive, since LU decomposition requires O(n3) and solving through

backward and forward substitution requires O(n2) (BINDEL; GOODMAN, 2006). The library

responsible for decomposition and substitution is Sparse1.3a.

Sparse 1.3 is a package of subroutines in C for solving large sparse systems of linear

equations. This library manages the necessary memory for the sparse matrix by using linked-list

representation; it also offers an interface for Fortran, which turned the integration to BRAMS

much simpler. Its original purpose was for use in circuit simulators; it is also able to handle node

and modified-node admittance matrices (KUNDERT; SANGIOVANNI-VINCENTELLI, 1988).

2.3.2 Iterative Method - Jacobi

Regarding the iterative solvers, they offer an approximate solution after an infinite

convergence process. Those algorithms convergences to x = A−1b. Although simple, Jacobi has

a highly parallel nature. Equation (2.8) shows an instance of Jacobi for a 3×3 matrix (GOLUB;

LOAN, 2013; MORRIS; PRASANNA, 2005).

x1 = (b1 −a12x2 −a13x3)/a11,

x2 = (b2 −a21x1 −a23x3)/a22,

x3 = (b3 −a31x1 −a32x2)/a33.

(2.8)

The current solution of this method requires the solution of the previous iteration. In

the first iteration, it is common to suppose that all variables from the linear system are zero. In

Equation (2.9) we show this computation, assume that x(k−1) is the previous solution and x(k) is

the new approximation; from this equation, it is clear that the main diagonal is nonzero.

x
(k)
1 = (b1 −a12x

(k−1)
2 −a13x

(k−1)
3 )/a11,

x
(k)
2 = (b2 −a21x

(k−1)
1 −a23x

(k−1)
3 )/a22,

x
(k)
3 = (b3 −a31x

(k−1)
1 −a32x

(k−1)
2 )/a33.

(2.9)



2.4. OpenCL 37

The general algorithm for Jacobi is in Figure 3.

Input: Matrix A, Vector x, Vector b

Output: Vector x

1 begin

2 for i < n do

3 for j < n do

4 if i ≠ j then

5 sum= sum+Ai j ×xk−1
j ;

6 xk
i =(bi−sum)/ aii;

7 return x

Algorithm: Jacobi Method

Figure 3 – Jacobi Method algorithm.

From this algorithm, it is possible to infer a parallel computation of each row i since

there is no dependence among rows. Iterative methods require stopping criteria that can identify

when the error is small enough; this is essential for time execution as well. In our algorithm we

used vector norm as the stopping criteria, we present vector norm in Equation (2.10).

‖x‖p =
(∣

∣x
p
1

∣

∣+ . . .+ |xp
n |
)1/p

(2.10)

In this case, we consider p = 2, which is the Euclidian norm (standard vector length). As

we want to measure the Euclidian distance between two vectors, the current solution and the

previous solution, we use Equation (2.11). This distance must be close to zero, which means that

the solution converged.

ξabs = ‖x(k)− x(k−1)‖ (2.11)

We implemented Figure 3 and the stopping criteria in Equation (2.11) in hardware using

Open Computing Language (OpenCL). Intel FPGA SDK (Software Development Kit) allowed

us to implement hardware in FPGA by using the OpenCL framework.

2.4 OpenCL

Until 2004, programmers could improve software time execution by just changing to a

processor with a higher clock frequency. When Intel CPUs reached 3.6Ghz (TSUCHIYAMA et

al., 2012; MUNSHI et al., 2011), cooling commodity microprocessors became impractical; in

Figure 4, we show the increase of clock rate and power (PATTERSON; HENNESSY, 2012).

From this point on, it was evident to the vendor that increasing clock rate was not

possible anymore. That forced the vendors to invest their money and efforts to change the



38 Chapter 2. Fundamental Concepts

2667

12.5 16

2000

200

66

25

3600

75.3

95

29.1
10.1

4.94.13.3

103

1

10

100

1000

10000

8
0
2
8
6

(1
9
8
2
)

8
0
3
8
6

(1
9
8
5
)

8
0
4
8
6

(1
9
8
9
)

P
e
n
ti
u
m

(1
9
9
3
)

P
e
n
ti
u
m

P
ro

 (
1
9
9
7
)

P
e
n
ti
u
m

 4
W

ill
a
m

e
tt
e

(2
0
0
1
)

P
e
n
ti
u
m

 4
P

re
s
c
o
tt

(2
0
0
4
)

C
o
re

 2
K

e
n
ts

fi
e
ld

(2
0
0
7
)

C
lo

c
k
 R

a
te

 (
M

H
z
)

0

20

40

60

80

100

120

P
o
w

e
r 

(W
a
tt
s
)

Clock Rate

Power

Figure 4 – Clock rate and power increase of eight generations of Intel microprocessors, figure from (PATTERSON;
HENNESSY, 2012).

design of the processors; from 2006 until now, all desktop and server companies decided to ship

multiprocessors per chip.

Current processors allow the programmer to improve throughput rather than response

time. Most of the processors require parallel processing to take full advantage of them.

Although the most intuitive parallel programming is in CPU, it is possible to use parallel

programming for accelerators; in this dissertation, we consider accelerator every non-CPU

hardware. Shifting towards to multicore technologies imposes a severe change in software

development, especially if there is heterogeneity of hardware (BUCHTY et al., 2012).

Heterogeneous systems became critical for scientific and industrial applications, and

OpenCL is the first industry standard for programming such systems. OpenCL supports a very

wide range of systems, from smartphones to supercomputers; this framework delivers much

more portability than any other parallel programming standard (MUNSHI et al., 2011).

2.4.1 Data structures for OpenCL

Programming for heterogeneous platform demands the programmer to execute the

following steps:

∙ Discovers the components in the heterogeneous system (CPU, FPGA, GPU);

∙ Retrieve the characteristics of these components; this allows the software to use specific

features for each hardware component;

∙ Create the logic responsible for computing the problem on the platform;



2.4. OpenCL 39

∙ Establish the memory objects necessary for the computation;

∙ Define order execution of the kernels on the specific components of system;

∙ Gather the final results from the component.

We can accomplish such steps by using OpenCL API and its data structures. Every

OpenCL application requires five data structures; they are as follows: device, kernel, program,

command queue, memory object, and context.

The device, as the name says, is the set of accelerators available to perform some

computation; the host is responsible for sending the data for computation. The kernel is the

OpenCL function that performs the calculation on the device. The program is the source code or

executable location responsible for implementing the kernels.

The API guarantee the order of memory transfers and kernel execution through the

command queue. Memory objects maintain the necessary data (on the device) used by the

kernels. Regarding the last data structure, we have the context; this structure conducts the

interaction between the host and the kernels by managing all the previous data structures.

In Figure 5, it is possible to see how data structures interact with each other. This picture

represents OpenCL mapped to an FPGA device (green box), in this manner, program resides

inside the FPGA.

These data structures are essential to guarantee OpenCL portability and programming

model. OpenCL standard defines two different programming models: data-parallel and task-

parallel programming model. Programmers must know both models when designing and ap-

plication in OpenCL; defining which is better depends on the algorithm and the underlying

hardware.

2.4.2 Data Parallelism

Data parallelism is suitable for SIMD, this kind of parallelism is the basis for GPU.

Usually, this kind of model is perfect for matrix problems.

OpenCL API defines this programming model through N-Dimensional Range (NDRange).

N ranges from one to three; each dimension must specify the index space extent. This index

space range allows the programmer to divide the problem into work-groups and work-items.

In this author’s opinion, programming using NDRange leads to a confusing index subdi-

vision. Usually, the programmer learns that i stands for rows and j for columns. In this messy sea

of indexes, we associate i to x and j to y; which is the opposite of how OpenCL maps the index

space. The first dimension, x, defines the width of the matrix, i.e. the dimension in columns. The

second dimension, y, defines the size in rows.



40 Chapter 2. Fundamental Concepts

OpenCL
Context

             

Queue

Device –
Bittware (FPGA)

Program

K1

Kn

K2

Program

K1 KnK2

Memory

Buffer 1

Buffer 2

Buffer n

...

...

Figure 5 – OpenCL Data Structures – Consider Program as a single data structure; we replicated it to make the
understanding easier.

This index space subdivision is the same for work-groups and work-items. A global

problem can break into work-groups, and each work-group can have one or more work-items;

we better explain this subdivision in Figure 6.

By using work-groups, OpenCL API imposes some restrictions to the programmer. Only

work-items that belong to the same work-groups can share data, which can impose dependencies

on them. These dependencies require a work-group barrier synchronization. In OpenCL 1.0,

synchronization is not possible between work-groups.

2.4.3 Task Parallelism

Although the OpenCL execution model aims at data parallelism as the primary target

(MUNSHI et al., 2011), the model also allows the programmer to use task parallelism. This

parallelism uses a single work-item, this equivalent to NDRange defined as 1 for each dimension.

According to Tsuchiyama et al. (2012), Munshi (2009) task parallelism is suitable when there

are different commands; this application is common when using CPUs.

This kind of parallelism requires a method to balance the work between the processing

units since a task can perform its work before the others. This parallelism is useful for pipelining,

where multiple instructions execute at the same time in different stages of the pipeline; it is a



2.5. Intel FPGA SDK for OpenCL 41

(0,0) Ly= 4

Lx= 4

Gx= 12

G
y

=
12

W
y

=
3

Wx= 3

NDRange index space

Figure 6 – An example of how the global IDs, local IDs, and work-group indices are related for a two-dimensional
NDRange. For this figure, we have the following indices: the shaded block has a global ID of (gx,gy) =
(6,5), a work-group ID of (wx,wy) = (1,1) plus a local ID of (lx, ly) = (2,1), figure from (MUNSHI,
2009).

crucial feature considering FPGA devices. Note that we did not mention GPUs; these devices, as

we mentioned earlier, are suitable for data parallelism due to the number of cores available.

2.5 Intel FPGA SDK for OpenCL

Programming in OpenCL for CPU, GPU, ARM or FPGA requires the vendor to imple-

ment and provide for the programmer. In the scope of this dissertation we used Intel implementa-

tion for OpenCL in FPGAs.

By using OpenCL standard, we could abstract away the FPGA design. Debugging is also

another important leading factor, it is possible to guarantee correct functioning of the kernel by

emulating in the CPU. In this section, we present key features of this standard applied to FPGAs

from Intel. In Figure 7 we show OpenCL system implementation on the FPGA.

In this figure, we present multiple kernel pipelines; a kernel represents a high-performance

implementation of a hardware circuit (CZAJKOWSKI et al., 2012a). Each of these pipelines

connects to internal and external interfaces to memory (Figure 8 shows the partitioning of the

FPGA). The external interface is necessary for accessing the Global Memory, which in turn

requires a global interconnect to manage the request from different pipelines; this global inter-

connect is also needed for Peripheral Component Interconnect Express (PCIe) interface with the



42 Chapter 2. Fundamental Concepts

x86/External
Processor

PCle

External Memory

Controller and PHY

Global Memory Interconnect

FPGA

Memory

Memory

Memory

Memory

Memory

Memory

Kernel
Pipeline

Kernel
Pipeline

Kernel
Pipeline

Local Memory
Interconnect

Local Memory
Interconnect

Local Memory
Interconnect

External Memory

Controller and PHY

D
D

R
x

Figure 7 – Components from OpenCL system on Intel FPGAs, figure from (ALTERA, 2013).

host. the internal interface is critical to local memory (ALTERA, 2013; INTEL, 2016b).

Figure 8 – Partitioning of the FPGA. PCIe, DDR3 controller and IPs are every project of OpenCL, so only the
remaining is available for the kernels, figure granted by André Perina.

.

Unlike the GPU, where there are multiple cache levels, in FPGA local memory requires

M20K blocks spread over the board (INTEL, 2016a). In Figure 9, we show a local memory with

a single bank and three M20K blocks.

Regarding private memory, Intel uses FPGA register to implement them. That is the

fastest memory in the hierarchy, and there is a generous number of them in the FPGA. The

device can access these register in parallel, which allows a much higher bandwidth than any other



2.5. Intel FPGA SDK for OpenCL 43

Figure 9 – Implementation of local memory with three M20K blocks, figure from (INTEL, 2016a).

memory in OpenCL. According to our experiments, Intel infers registers for single variables or

small arrays; a relative big array requires a local memory.

Intel performs several optimizations before generating the hardware, and Figure 10 shows

the flow of the compilation of OpenCL based on LLVM compiler infrastructure. The input is an

OpenCL application (.cl) that contains a set of kernels and a host program (.c) (CZAJKOWSKI

et al., 2012b).

Compilation of the host source code uses a standard C compiler. The compiled file links

with Altera OpenCL (AOCL) Host Library. Regarding the kernel source code, it uses an offline

kernel compiler (JANIK; TANG; KHALID, 2015), i.e. the programmer must compile the kernel

separate from the host; this process may take hours to compile.

Compilation of the hardware is not as simple as it seems. A C-language parser outputs

an LLVM Intermediate Representation (IR) for each kernel (in essence, kernel is a C code); this

intermediate representation is in the form of instructions and dependencies between them.

From this IR, the compiler optimizes it (live-value analysis) for an FPGA target. After

optimizing, a Control-Data Flow Graph (CDFG) conversion takes place. The conversion is

necessary to improve performance, reduce area and energy consumption before RTL generation

(RTL generator) in Verilog for a kernel.

A system with interfaces to host and off-chip memory instantiates the compiled kernels.

The host interface allows the host to access each kernel and specify workspace parameters and

kernel arguments. Off-chip memory represents the global memory for a kernel in OpenCL, in

our case, it is a DDR3 memory. Finally, we can synthesize the complete system in Figure 7 on

an FPGA.

At last, the compiled host program has two elements. The first is the ACL Host Library;



44 Chapter 2. Fundamental Concepts

it calls the functions that allow the host application to exchange information with the FPGA

kernels. The second is the auto-discovery that allows the host program to detect the kernels types

on an FPGA.

kernel.cl
host.c

ACL
C-Language 

front end

Auto

Discovery C compiler

ACL

Host
Library

program.exe

CDFG

Live-Value 

Analysis

C
o
m

p
ile

r

CDFG

Generation

Scheduling

K
e
rn

e
l 

RTL generator
Verilog

HDL

System Integration

 (Quartus II) 

Figure 10 – Design flow with OpenCL, figure from (CZAJKOWSKI et al., 2012b).

The main advantage of OpenCL over the traditional Hardware Description Language

(HDL) is to produce designs with proper functionality without the FPGA design effort (consider-

ing the kernel is working correctly). Once the user has created a functional model, the focus is

on the optimization. It is different from the HDL designs, where only in the design process we

can assure the correct functionality (JANIK; TANG; KHALID, 2015).

We present further implementation details in Chapter 3; we explain the pipelines of our

architectures, memory hierarchy, interoperability between the host and the device.

2.6 FPGA

In 1985, Xilinx introduced the FPGA (BOBDA, 2007). An FPGA is a semiconductor

device, which contains a two-dimension array of generic logic cells and programmable switches

(CHU, 2011; MOORE ANDREW; WILSON, 2017). Over the years, the FPGAs has shown that

capacity (number of gates) and speed are inversely proportional to price and power consumption,

see Figure 11.



2.7. Development Environment for OpenCL 45

10,000x more logic

–Plus embedded IP

•  Memory

•  Microprocessor

•  DSP

•  Gigabit
 serial I/O

100x faster

5,000x lower power 

10,000x lower cost

10,000

1,000

100

10

1985 1990 1995 2000 2005 2010 2015

Capacity
Speed

Price
Power

1

Figure 11 – Xilinx field-programmable gate array (FPGA) progression. (Price and power are per logic cell.), figure
from (AHMAD et al., 2016).

With an FPGA the programmer can define the behavior of the hardware after the manu-

facturing, that is why the name field programmable. That is possible due to the logic cells that

can perform the behavior of different functions; once defined the logic and synthesized, the

programmer can download the design through a bus to the FPGA; this bus can be a simple USB

cable (BOUT, 2011).

Modern FPGAs contain a set of configurable Static Random Access Memory (SRAM),

high-speed input/output pins (I/Os), logic blocks, and routing. They also have many Logic

Elements (LE), which are the smallest unit of logic; usually, they are a Look-Up Table (LUT).

Each LE can perform complex functions or simple basic logic as AND/OR. FPGAs also have

configurable memory blocks; these memory blocks allows the programmer to provide a higher

throughput since they are over the board.

Although FPGAs are reconfigurable, they also provide hard logic or hard Intellectual

Property (IP), i.e. that does not change. Those circuits implement specific logic considered

commodity, which allows the programmer to reduce cost and power of the design. These features

allowed the programmers to build complex systems called System-On-a-Programmable-Chip

(SOPC).

In general, SOPC or System-On-Chip (SOC) focus on lower-power electronics or high-

performance applications. According to Silva (2014), SOPC is a suitable option for high-

performance computing.

2.7 Development Environment for OpenCL

We used Bittware S5PH-Q-A7 board available at the Reconfigurable Computing Lab-

oratory (LCR) at USP. In the next subsection, we further detail the main resources in this



46 Chapter 2. Fundamental Concepts

device.

2.7.1 BittWare Board S5PH-Q

S5PH-Q is a half-length x8 card based on the high-bandwidth and the power-efficient

Altera Stratix V GX A7. Stratix V FPGA is suitable for high-end applications; according to

(DINIGROUP, 2017), this board guarantees 5,410 millions of gates for use.

The S5PH-Q is a versatile and efficient solution for high-performance network processing,

signal processing, and data acquisition (BITTWARE, 2015). LCR purchased this board for the

projects involving BRAMS and heterogeneous computing. Figure 12 shows the block diagram

for this device, in Table 2 we detail the features.

Figure 12 – Top-Level Component Implementation Block Diagram, figure from (BITTWARE, 2015).

2.8 Hardware/Software Codesign

Hardware/software codesign emerged in the 90’s as a discipline, however this task was al-

ready common among the microprocessor companies. At the time, they were not conscious of the

term codesign. Currently, a successful electronic system design requires the of hardware/software

codesign techniques (TEICH, 2012).

The current technology allows the programmers to deal with multiple processor cores,

memory arrays, application specific hardware on a single chip (GALLERY, 2015). A more recent

approach is from Intel on the HARP (Heterogeneous Architecture Research Platform) program,

which included a Intel microprocessor and a Stratix V FPGA (GUPTA, 2015).

Such evolution in the technology requires the programmers to have knowledge in hard-

ware and software, thus they can define the design trade-offs. In this manner, hardware/software

codesign is becoming and ordinary task. In the literature we have some definition for hardware/-

software codesign.



2.8. Hardware/Software Codesign 47

Table 2 – S5PH-Q Features

Device Features
Altera R○ Stratix R○ V GX
FPGA

∙ 20 full-duplex, high-performance, multi-gigabit SerDes
transceivers @ up to 14.1GHz

∙ 952,000 logic elements (LEs) available

∙ Up to 52 Mb of embedded memory

∙ 1.4 Gbps LVDS performance

∙ Up to 1,963 variable-precision DSP blocks

∙ Embedded HardCopy Blocks

Memory

∙ Two banks of 4 GBytes DDR3 SDRAM (1Gx64)

∙ Four banks of up to 18 MBytes QDRII/QDRII+(8M x 18)

∙ 128 MBytes of Flash memory for booting FPGA

PCIe Interface x8 Gen1, Gen2, Gen3 direct to FPGA
USB USB 2.0 interface for debug and programming
Debug Utility Header

∙ RS-232 port to Stratix V

∙ JTAG debug interface to Stratix V

QSFP+ Cages (optional) 2 QSFP+ cages on front panel connected to FPGA via 8 SerDes
Size Half-length, standard-height PCIe slot card

According to Schaumont (2012), “Hardware/Software codesign is the design of cooperat-

ing hardware components and software components in a single design effort.". Another definition

in the book is: “the activity of partitioning, where one partition holds the flexible part (software),

and the other the fixed part (hardware)".

Gallery (2015) defines as a “concurrent design of both hardware and software of the

system by taking into consideration the cost, energy, performance, speed and other parameters of

the system".

Figure 13 shows the pros and cons of Hardware and Software. In Hardware, it is possible

to have a better performance, less energy consumption (more work done per unit of energy),

power density (processors can no longer increase clock). In Software, design complexity is much

harder in hardware, design cost, shrinking design schedules (time-to-market is reducing over the

years, but software development can start even without a hardware platform).



48 Chapter 2. Fundamental Concepts

Figure 13 – Driving factors in hardware/software codesign, figure from (SCHAUMONT, 2012).

Partitioning or balancing is a hard task, and there is no magical solution. This work

requires experience; another important factor is the cost, many times it is better a cheaper product

than a fast product. Blickle, Teich and Thiele (1998) shows a theorem proving that determining a

feasible allocation is a NP-Complete problem. In this work they consider the problem of mapping

a set of tasks to resources.

There are some developed works on the literature that consider the hardware/software

partitioning. Gupta and Micheli (1993) automates the design space exploration; initially, the

algorithm of this work considers that all functionalities are in hardware and gradually moves to

some of them to software based on the communication overhead. The problem is that much of

the initial problem requires many resources from the hardware, because the initial guess starts

from the problem entirely in hardware.

Ernst, Henkel and Benner (1993) follows an opposite approach, they start with an

initial partition in software and gradually moves the software part into hardware. They used a

partitioning heuristic, where the algorithm minimizes the amount of hardware resources. They

show good results for the partitioning of the digital control of a turbocharged diesel engine and a

filter algorithm for a digital image compared to software.

2.9 Related Work

Sparse matrices are necessary for several scientific and engineering applications. For ex-

ample, least squares problems, eigenvalue problems, and image reconstruction. When compared

to dense matrices, sparse matrices tend do be slower. The irregularity of memory access causes

many cache misses, and there is the fact that memories are still much slower than processors.

Another source for this slowness, is the high ratio of load and store operations, stressing the

load/store units (ZHUO; PRASANNA, 2005).

FPGAs can effectively compute sparse matrix. The modern FPGAs provide multiple

spatial floating-point operators, a significant of high-bandwidth on-chip memory, and abundant

I/O pins (KAPRE; DEHON, 2009).

Kapre and DeHon (2009) parallelizes a Sparse Matrix Solver for SPICE (Simulation

Program with Integrated Circuit Emphasis); the results range from 300 to 1300 MFlop/s on a

Xilinx Virtex-5, while the processor (Intel Core i7 965) achieved 6 to 500 MFlops/s. According



2.9. Related Work 49

to the authors, the former library (Sparse 1.3a) was not suitable for parallelization on FPGAs

due to the frequent change of the non-zero pattern of the matrix.

They used the KLU solver. Circuit simulations are suitable problems for this solver.

According to Eller, Singh and Sandu (2010), LU decomposition is not easily parallelizable. Later,

they integrated the solver to SPICE (KAPRE; DEHON, 2012). In this new version, they also

studied the energy savings of their work, which ranges from 8.9× up to 40.9× compared to

CPU. They provide a codesign between the MicroBlaze and their hardware; MicroBlaze has

poor support for double precision.

LU direct method emerged at the beginning of 2000 with Daga et al. (2004), Zhuo and

Prasanna (2006). However, none of the works consider sparse matrices; which is the problem

of BRAMS. In Wu et al. (2011), they compute the preprocessing in CPU and the numeric

factorization in FPGA of the LU algorithm; they use sparse representation.

In Foertsch, Johnson and Nagvajara (2005), they consider the problem of Full-AC load

flow, an important task in power system analysis. In their work, they compare Jacobi method

to Newton-Raphson methods and conclude that Jacobi could outperform Newton method by

exploring pipeline parallelism in FPGA. They do not consider any coupling to the load flow

problem, i.e. there is not codesign.

Morris and Prasanna (2005), Prasanna and Morris (2007) study a related problem to

BRAMS, they solve Partial Differential Equations (PDE) discretized in a linear system (sparse

and dense) in FPGA. They also consider a highly pipelined Jacobi; the algorithm represented in

floating point with 64 bits. However, they fail to consider a better approach to fit bigger matrices,

each column of the row requires a multiplier. In this manner, hardware resources are proportional

to matrix size.

When they need bigger matrices, they multiplex the entries to the underlying hardware.

They also have problems with reduction, which required the implementation of an efficient one.

The authors do not provide any circuit to test the convergence of the algorithm; they test their

hardware with a predefined number of iterations.

Kasbah and Damaj (2007) implements Jacobi method in Handel-C. According to them,

the hardware of the method can outperform the same algorithm in Software. They validate their

tests by using the Handel-C simulator, i.e. they do not perform any test on the hardware. The

authors also had to consider the algorithm in integer representation since Handel-C does not

support floating point, and the library from Celoxica had some bugs to handle more than four

floating point operations. In this dissertation, we do not simulate the results; all the computations

are in FPGA, which provides much more accurate results.

Bravo et al. (2006) proposes the use of Jacobi method to solve the Eigenvalue and

Eigenvector problems; a similar work is in Wang and Wei (2010). In the proposed architecture,

they improve FPGA area by implementing the whole system in VHDL. They compare their



50 Chapter 2. Fundamental Concepts

results, represented in floating point with 18 bits, with the results of the CPU, represented in

floating point with 64 bits, and conclude that their design is faster and provides accurate results.

In this work there is no codesign, the entire execution is in hardware with pre-fixed values stored

in ROM memory.

Ruan et al. (2013) presents a similar approach that we used in BRAMS; they use a high-

level synthesis from Maxeller, where the programmer defines the kernel in Java and MaxCompiler

is responsible for creating a bitstream file. They also provide a codesign between CPU and

FPGA; in their project, they provide a modification for Jacobi method called pipeline-friendly

Jacobi.

According to their results, MaxCompiler generated a hardware that is capable of running

at 175Mhz on Virtex-6. They compared their results with three different configurations: FPGA

v.s single-thread CPU, FPGA v.s multi-thread CPU, and FPGA v.s MPI CPU. We show their

speedup results in Figure 14, as we can see FPGA is superior even with MPI parallelism. Matrix

size is a problem in their design, they cannot fit matrices bigger than 200×200 in the memory.

0

50

100

150

200

250

300

350

2 4 8 16 32 64 128 200

FPGA v.s single-thread CPU version
FPGA v.s multi-thread CPU version

FPGA v.s MPI CPU version

Figure 14 – Speedup compared to CPU versions. The x dimension stands for matrix size, and y dimension speedup
in FPGA.

Schmid et al. (2014) proposes the use of the Heterogeneous Image Processing Acceler-

ation Framework (HIPAcc) for Multiresolution Analysis (MRA). They use this framework to

generate code for the FPGA target; one of the case studies proposes Jacobi method as a smoother

for PDE. They achieved 154Mhz on a mid-range FPGA (Xilinx Zynq 7045).

Although the success regarding the results, their design suffers from the number of block



2.9. Related Work 51

RAMS. They cannot control the underlying hardware to reuse block RAM more efficiently. The

pragmas in the framework have a severe impact over the Initiation Interval (II) (SCHMID et al.,

2014); however the framework does not offer any tool to help the programmer improve II.

An and Wang (2016) uses OpenCL for programming Singular Value Decomposition

(SVD) in the AMD GPU. For computing SVD they used an adapted version of Jacobi method

called one-sided Jacobi method. According to Lambers (2010), one-sided Jacobi implicitly

applies the Jacobi method for the symmetric eigenvalue problem.

In their work, they used a W9100 graphics card from AMD, and according to the authors,

it was the best and fastest graphics card. They performed the same tests we did, i.e. they use

single and multi-thread to program the kernel. For small matrices, they had a better execution

time single thread, for matrices with the order of 16 they had an improvement by using multiple

threads. In this work, they do not perform any study related to power consumption, according to

AMD vendor, this board can consume up to 275W.

In Gomes (2009), they use Jacobi for fluid simulation by implementing the algorithm

in CUDA. According to them, the algorithm suffers from global memory latency. In FPGA we

could improve this problem by using more local memory during computation since we can define

our local memory size (as long as it does not exceed the hardware capacity). We avoided such

problem due to the small memory footprint of our problem.

Fernandes (2014) decided to solve the linear systems from chemical reactivity of BRAMS

by using optimum linear estimation. The author implemented the algorithm in OpenMP and

OpenACC, although they achieve good results in time execution and precision, they do not

couple their algorithm to BRAMS. According to Fazenda et al. (2006), coupling the chemical

reactivity to CCATT-BRAMS is a complex task.

Michalakes and Vachhrajani (2008) developed Kinetic PreProcessor (KPP) Rosenbrock

chemical integrator for GPUs in CUDA. They converted WRF Single Moment 5-tracer (WSM5)

to CUDA, a model that represent the microphysics of clouds and precipitation. Their GPU did

not provide double precision, so they needed to use single precision. Their implementation also

requires a CPU per GPU. Their results show a speed-up of 1.23×, but they do not mention if

this is due to the lower precision of the results.

Linford and Sandu (2009) used a Cell Broadband Engine Architecture (CBEA) to solve

mass balance equations of Chemical transport model. They implemented a 3D chemical transport

module for FIXED-GRID, this model also uses Rosenbrock method. Their work presents a

superlinear speed-up. However, their vector stream processing requires the kernel to process the

double of computing that it needs.

According to the authors these useless arithmetic operations is crucial to sustaining a

higher throughput; otherwise branching conditions would be prohibitively expensive. Branching

is not a problem on FPGA since all code-paths are established in hardware (ACCELEWARE,



52 Chapter 2. Fundamental Concepts

2014).

Eller, Singh and Sandu (2010) also use Rosenbrock method to solve the chemical system.

In their experiments, they use Rodas-3 and Rodas-4 methods. Although the names suggest the

number of stages, Rodas-3 uses four stages and three function calls. Rodas-4 has six stages and

five function calls. They had to make significant changes in Rosenbrock data structure to fit the

data in a 16KB of local memory. Memory transfer is responsible for one-third of the overall

running time.

According to the authors, Rosenbrock does not provide any speed-up for each iteration;

in some cases, the results in GPU was slower. Their results point to the fact that local memory is

the main problem.

In Fu et al. (2017), they implement Shallow Water Equations solver in three different

architectures. One of them is CPU-FPGA, they had to decompose the solver in three FPGAs to

fit the double precision version; this solution resulted in a low bandwidth among the FPGAs. A

second approach involved the use of mixed precision, which resulted in a relative error of less

than 2% and 80% of the resources of a single FPGA; they implemented their design by using

Java from MaxCompiler. This version had a speedup of 75× compared to CPU.

In Yang et al. (2016), they present an ultra scalable solution — in the order of 10M-

core — for Fully-Implicit Solver for Nonhydrostatic Atmospheric Dynamics. They implement a

highly parallel incomplete LU method that does not sacrifice convergence rate in their SW26010

processor.

In Table 4, we provide the main features of each work compared to our third architecture

Arch 3.



2.9. Related Work 53

Table 4 – Table of comparison among related works

Features A B C D E Advantages Disadvantage
Arch 3 X X X X X 100% in hardware. Performance loss due to

data representation.
Kapre X X X X Direct Method. Floating point division im-

pacts on the performance.
Nagvajara X O X Compare Jacobi to other it-

erative methods.
It does not test in hardware.

Prasana X X X X Division latency hidden. Hardware scale according
to matrix size.

Kasbah X X Fast prototype with Handel-
C.

Integer representation.

Bravo X X X It requires less FPGA area. VHDL.
Ruan X O X X X High-level synthesis with

Java.
Java is not a parallel pro-
gramming language.

Schmid X X X Optimized code for differ-
ent architectures.

Block are not reused.

An X X X Portable code. Intense communication
CPU-GPU.

Gomes X O X X First CUDA implementa-
tion. Comparison between
different iterative solvers.

Nvidia GPU-only.

Fernandes X X Optimum linear estimation
has faster conversion.

Not coupled to BRAMS.

Michalakes X X WSM5 is 100% in GPU. GPU board without double
precision support.

Linford X X X Superlinear speed-up Half of the computation is
not necessary.

Eller X X X Comparison with CPU
and GPU with parallel
paradigm.

Memory transfer is respon-
sible for one-third of the
overall running time.

Features:

∙ A: Parallel;

∙ B: Double Precision;

∙ C: Iterative Method;

∙ D: Codesign;

∙ E: Hardware;

∙ O: No information about it.





55

CHAPTER

3

DEVELOPMENT OF THE CODESIGN FOR

THE CHEMICAL REACTIVITY OF BRAMS

Currently, BRAMS bases on software and MPI parallelism. This project focus on the

chemical reactivity term included in BRAMS (CCATT). According to Zhang et al. (2011) and

Linford et al. (2009), chemical reactivity can represent 90% of the computational time. On Tupã

(Cray XE6) CPTEC/INPE this term is responsible for 80% of computational time (FERNANDES,

2014). In this chapter, we compare our approach with the implementation of BRAMS for solving

the linear systems from the chemical reactivity.

3.1 CCATT–BRAMS software

BRAMS solves the mass equation of the chemical reactivity term using Sparse1.3a.

This library in C decomposes Equation (2.5) into LU form. Figure 15 represents BRAMS (gray

square) and Sparse1.3a (yellow square); it is important to point out that we used BRAMS with a

single grid.

We divided Figure 15 into three regions for a better explanation of how chemical BRAMS

couples with the reactivity. The blue outermost region represents the South America, according

to Alisson (2016) the Brazilian model can apply the chemical reactivity to the South America

with a 20km resolution and 3.5 days of anticipation. The grayish middlemost region exemplifies

BRAMS over the South America with only a single process, i.e. one process is responsible for

computing the entire grid. The following yellowish inner region represents Sparse1.3a library

inside the process. In Figure 16, we represent BRAMS with multiple processes, note that we still

have a single grid.

Each MPI process computes its slice of the domain decomposition. The shaded areas

are the ghost zones; these regions are necessary for solving the fluid dynamical equations, as

a consequence, the nearest neighbors generate communications among them. The strongest



56 Chapter 3. Development of the Codesign for the Chemical Reactivity of BRAMS

South America

Single Grid

Software

Figure 15 – Generic representation of BRAMS system with a single process. In this figure, we present BRAMS
over the South America with a single grid, yellow square represents Sparse1.3 running for all the points
over the grid.

South America

... Pn

P4P1 P2 P3

P8P5 P6 P7

P12P9 P10 P11

P9 P10

Figure 16 – Generic representation of BRAMS system with MPI processes. In this figure, we present BRAMS over
the South America with a single grid distributed over N processes, each process executes Sparse 1.3 for
its set of points of the grid. The shaded areas are the ghost zones, i.e. the shared data area.



3.2. CCATT–BRAMS Codesign 57

communications happen between horizontal and vertical neighbors; diagonal neighbors have

less intensive communication (RODRIGUES et al., 2009).

MPI assigns each domain to only one process, the only shared areas are the ghost

zones.The less shared area, the less the external communication among MPI processes. The set

of processes is distributed over the processors of the nodes, on our environment set we have a

single node with four core processors.

Although BRAMS is in Fortran 90, it is possible to call C functions. However, the

programmer must take some extra care with interoperability of both languages, in the next

section we describe the main problems raised from this coupling.

3.1.1 Interoperability with Sparse1.3a

Sometimes it is necessary to mix different languages for a single executable; this usually

happens when the programmer couples a library to its program. BRAMS coupled sparse1.3a, a

C library with Fortran-ready interface. So no extra effort was necessary to adapt the C library.

To use this library with BRAMS, the programmer must enable Fortran interface. By

enabling this option, Fortran programmers do not have to worry about interoperability problems,

such as data type representation, arguments type (passed by reference or by value), and array

representation (Row- or column-major order).

3.2 CCATT–BRAMS Codesign

Jacobi iterative solver has a parallel nature, which makes it suitable for FPGA paral-

lelization (MORRIS; PRASANNA, 2005). The chemical kinetic process has diagonal matrices

(ZHANG et al., 2011), for our set of tests we guarantee they are strict diagonally dominant,

this is necessary for Jacobi method convergence. Figure 17 shows a generic representation of

BRAMS coupled to the hardware designed in OpenCL.

We implemented three versions of Jacobi method: Multi-threaded dense, Multi-threaded

sparse, and single thread sparse. We describe them over the next subsections.

3.2.1 Jacobi Multi-threaded Dense

In our first attempt with Intel FPGA SDK, we programmed the FPGA using similar

approaches used for GPU OpenCL. In other words, we used the concept of several computing

units working in parallel to solve a problem in an SIMD mode. Although the source code is

portable, performance is not, with this approach we support this affirmation.

We followed some of Intel best practices (INTEL, 2016a) for our first version, we avoided

the divide operation for floating-point and used aligned memory in 64 bytes. This implementation



58 Chapter 3. Development of the Codesign for the Chemical Reactivity of BRAMS

South America

Single Grid

Hardware

Figure 17 – Generic representation of BRAMS coupled to the Jacobi method in Hardware. In this figure, we present
BRAMS over the South America with a single grid, red square represents Jacobi hardware circuit. Such
circuit computes all the points over the grid.

uses a dense representation of matrix A. Figure 18 shows the schematic of the first version of

Jacobi Method.

Here we present m pipelines. Each pipeline can process different work-items from

various work-groups. During kernel compilation, we can choose two options for work group size:

max_work_group_size and reqd_work_group_size. The first option is a hint of the maximum

number of work items; the compiler must not exceed this number.

The second option is much more strict, and it does not let the compiler optimize the

work-group size for the problem. Work-group size is the number of work items for each work-

group. We tested both options, and the first generated the best hardware. Figure 19 depicts how

work-groups and work-items map to our linear system.

According to the Verilog generated by Altera compiler, the compiler issues two work

groups in hardware for a single compute unit, and all the remaining work groups are scheduled,

i.e. two work-groups are executing at the same time. The option num_compute_units allows us

to increase the number of hardware available, although Intel does not recommend to do so due to

the concurrent access to global memory. Each hardware group has three stats:



3.2. CCATT–BRAMS Codesign 59

Load xj
(k)Load Sum

Am,⏺

Workgroup m

×

Load Aij Load xj
(k)Load Sum

+

Acc Sum

j ← 1

j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

A1,⏺

Pool of processing elements

A2,⏺A3,⏺⋯ A4,⏺Am,⏺

A1,⏺

Workgroup 1

. . .

×

Load Aij

+

Acc Sum

j ← 1

j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

Compute Unit

if i ≠ j if i ≠ j

Figure 18 – Schematic of Jacobi method with multiple threads with dense representation.

1. NEW — Prepare to issue new work-group;

2. ISSUE — work items in a work-group;

3. WAIT — Check if ready to accept new work-group or if all done.

A better approach uses SIMD work item, which uses a single compute unit for performing

in parallel an amount of work. The latter is only possible for work group size, whose number

is a power of two. Our design comprises 47 work groups (processing element) with 47 work

items each, i.e. our problems uses a prime number. We did not pad matrices with zeros to avoid

transferring additional data.

After each work-group finishes, it stores the final result in the DDR3 memory (the global

memory). The host can fetch data from the global memory of the device through PCIe interface.

The orange block represents the condition of Jacobi Method, where all non-diagonal

elements of the matrix line must perform a multiply-accumulate (MAC) operation. Only then



60 Chapter 3. Development of the Codesign for the Chemical Reactivity of BRAMS

47×47

. . .

Work-group 1

Work-group 47

...

...

...

...

...

Work-items

47×1 47×1

A x = b

=

...

...

Figure 19 – Each color represents one work-group, each work-group has 47 work-items. According to the verilog,
two work-groups are executing at the same time.

it is possible to load the Matrix A and xth element from global memory for multiplication. We

accumulate each result of the multiplication in a local memory.

Once traversed the entire line (green square), the hardware loads b vector element and

performed a subtraction afterward. Then we perform a multiplication from this result with a load

of 1/aii; this is the final solution for an item of the result vector. As we have 47 work-groups and

only two real work-groups, the final result is only available after the runtime schedules all the

work-groups.

Each work group requires its memory space; this restriction does not allow OpenCL to

synchronize the work-groups (MUNSHI, 2009, p. 27). That becomes visible in Jacobi hardware;

not all work-groups are processing at the same time. This asynchronism forced us to calculate

the vector norm in software.

To calculate the vector norm, the programmer must enqueue a read from the result buffer

and execute it in software. Another possible solution is to have a specific kernel to calculate

it, but this would require two kernel enqueues. For a huge vector, this is not a problem, since

the execution time is higher than API delay time, which it is not our case. Jacobi method in

Hardware and norm in software take turns until result converges to the desired solution with

minor or no error.

3.2.2 Interoperability with Jacobi Multi-Threaded Dense

In this subsection, we explain how interoperability works between Fortran 90 and Jacobi

method in FPGA, for such approach we used OpenCL. Each OpenCL application requires a host

and a device code. The host is in C/C++, we design the FPGA circuit in OpenCL language, also



3.2. CCATT–BRAMS Codesign 61

called OpenCL C programming language (MUNSHI et al., 2011).

As we saw in Subsection 3.1.1, it is possible to call a C function from Fortran. However,

now we had to take care with data type representation (double or Real*8); arguments from

Fortran are passed by reference, in C they are passed by value; array representation in Fortran is

column-major, in C they are row-major. Indices in Fortran start from 1, not 0.

In this version, we solved one linear system at a time. That is the same approach used by

Sparse1.3a. In fact, we replaced the previous sparse function to ours.

For using our solver, we first needed to reprogram the FPGA on the system. We guarantee

that with two similar approaches. The first requires the programmer to load the FPGA binary

(AOCX) in advance through Intel SDK command, and set a variable:

1 $ a o c l program < dev ice > < f i l e > . aocx

2 $ export CL_CONTEXT_COMPILER_MODE_ALTERA=3

The second reprograms the FPGA during runtime on the creation of program structure.

It is user’s decision to choose what is the best approach. Usually, the delay of reprogramming is

about one or two seconds. Because of this overhead, we put all the kernel definitions in a single

cl file.

After reprogramming, BRAMS execution starts and when it gets to chemical reactivity it

starts solving the matrices through FPGA circuit designed in OpenCL. Apart from creating the

necessary OpenCL structures, we use C language as a bridge between Fortran and FPGA circuit.

Figure 20 shows how BRAMS calls the circuit. Different from the GPU, our cl file represents a

physical circuit in FPGA not software.

Fortran 90 File C file

SUBROUTINE Solve_linear

CALL solver_jacobi_fpga
EnqueueNDRange(jacobi_method)

Load xj
(k)Load Sum

Am,⏺

Workgroup m

×

Load Aij Load xj
(k)Load Sum

+

Acc Sum

j ← 1

j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

A1,⏺

Pool of processing elements

A2,⏺A3,⏺⋯ A4,⏺Am,⏺

A1,⏺

Workgroup 1

. . .

×

Load Aij

+

Acc Sum

j ← 1

j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

Compute Unit

Skip if i = j Skip if i = j

Figure 20 – Interoperability of BRAMS and OpenCL. Fortran calls a function from the C host, which in turn is
responsible to manage the device.

As we can see, software and hardware have a strong communication. The C file is on the

host processor, and it is responsible for calculating the vector norm for each iteration of Jacobi.

If the result did not converge, we send all the necessary data and NDRange. A host that uses

NDRange bigger than 1 expects a circuit with data parallelism.



62 Chapter 3. Development of the Codesign for the Chemical Reactivity of BRAMS

Any communication between FPGA and host requires 64 bytes aligned memory; not

doing so degrades transfer time. In Fortran, we could not align spack2d struct, because the

directives for aligning memory in Fortran does not work for derived types (KRISHNAIYER,

2015).

For avoiding transfer time penalty, we had to copy the matrix into an aligned vector in C.

We considered the modification of spack2d struct, but that would require a significant adjustment

on BRAMS source code, which could lead to undefined behavior and results.

The numbers of communications equal the number of Jacobi iterations; We set 150 as a

maximum number of iterations. We used previous experience to define this threshold.

3.2.3 Jacobi Multi-threaded Sparse

During the first approach, we realized that much of the execution time was in I/O. For

each iteration we send an enormous amount of zeros, to improve the I/O time we changed the

matrix representation from dense to Compressed Row Storage (CSR).

According to Fernandes (2014), around 10% of the matrix elements are non-zeros. So in

our first attempt, we defined the NNZ to be 10% of 47×47. During execution time, we received

segmentation fault due to the lack of memory to accommodate the NNZ.

By analyzing the NNZ of matrices, we noticed that this number ranges from 8% up to

25%. Allocating and freeing device buffer during runtime is very expensive; we must choose

a fixed size. At this point, we reached a trade-off: a small NNZ is risky, and a big NNZ sends

additional data to the device. We chose the later by defining the buffer size according to the

Equation (3.1), CSR format saves memory, whose NNZ is not bigger than this equation.

N(M−1)−1
2

−1, (3.1)

where: N = Number of rows

M = Number of columns.

Choosing NNZ size according to Equation (3.1) does not improve I/O because we are not

saving any space; we just avoid filling the pipeline with zeros. This new architecture in Figure 21

is very similar to Figure 18, but now we avoid additional calculation by using CSR format. In

this version, we still must perform vector norm computation on the host, because of the same

reasons of the dense version.

The main difference in this architecture is the internal loop (dotted square); we only read

the NNZ values from the ith row. In loads we use CSR representation, note that we use lower

case for all the loads, this is because CSR representation uses three vectors. Since each line has



3.2. CCATT–BRAMS Codesign 63

Load xjaj

(k)Load Sum

Am,⏺

Workgroup m

×

Load aj Load xjaj

(k)Load Sum

+

Acc Sum

j ← start

j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

A1,⏺

Pool of processing elements

A2,⏺A3,⏺⋯ A4,⏺Am,⏺

A1,⏺

Workgroup 1

. . .

×

Load aj

+

Acc Sum

j ← start

j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

Compute Unit

if i ≠ j if i ≠ j

Figure 21 – Schematic of Jacobi method with multiple threads with sparse representation.

its NNZ size, we defined each group to have one work item to process each line; we show this

scheme in Figure 22.

3.2.4 Interoperability with Jacobi Multi-Threaded Sparse

Changing the matrix representation required few modifications on host code. We added a

C algorithm for converting from dense representation to CSR; we called dnscsr_c,this function

relies on the dnscsr algorithm from Sparsekit 1.

Sparsekit dnscsr function is in Fortran 90, using this library does not require any modi-

fication to BRAMS source code. We decided to rewrite this function in C to avoid managing

different source codes.

Refactoring the algorithm added the burden of managing row- and column-major order

1 <https://people.sc.fsu.edu/~jburkardt/f_src/sparsekit/sparsekit.html>

https://people.sc.fsu.edu/~jburkardt/f_src/sparsekit/sparsekit.html


64 Chapter 3. Development of the Codesign for the Chemical Reactivity of BRAMS

...

Work-group 0 Work-group 1 Work-group n

Work-item 0 Work-item 1 Work-item n

47×1 47×1

x = b

=
.
.
.

.
.
.

1×NNZa

Figure 22 – Each color represents one work-group, each work-group has one work-item. In this manner, the number
of work-items is equal to the number of work-groups.

of matrix A. So in Fortran we passed the transposed matrix of A to dnscsr_c; we used transpose

for simplicity of the algorithm in C, and avoid undefined behavior. This is not a problem, since

we are not using dense representation.

As we told in Subsection 3.2.3, the NNZ varies from one matrix to another. So it is

not possible to determine a single size of the vectors Value and JA. Allocating and freeing

memory for each matrix is not a good option either, since this increases execution time. So, in

our approach, we declare three vectors Value, IA, and JA, where Value and JA have fixed size

according to Equation (3.1).

The host code of OpenCL uses these vectors that come from Fortran. Thus, we avoid

creating them for each matrix during execution. Fortran is also responsible for calling dnscsr_c

before any call to Jacobi Multi-threaded Sparse solver.

3.2.5 Jacobi Single-threaded Sparse

According to Intel (2016a), sharing fine-grained data is not suitable for data parallel

programming model. In these cases, using a single thread kernel can offer a higher throughput.

In the two previous architectures we could not compute vector norm, due to the restriction

of different memory space for each work group; and consequently, we are not able to share

memory.

In a single thread; we can compute vector norm because in this case, OpenCL works

like a C to Hardware. We can also avoid dispatching multiple times the same data from CPU to



3.2. CCATT–BRAMS Codesign 65

FPGA since we can define in our kernel to execute Jacobi until the matrix converges.

For using single thread kernel, we must set reqd_work_group_size (1,1,1) and not use

get_global_id. When designing the hardware as a single thread, the programmer must declare

the variable in the deepest scope possible; otherwise, it will consume more hardware resource

than it needs. AOCL (Altera OpenCL) generates a detailed report containing the depth of the

variables; we improved the depth of our variables through this report.

Regarding loop pipelining, single kernel executes multiple iterations in flight. Not all

loops are capable of pipelining; the outermost loop (plain square), responsible for controlling

the iterations of the algorithm, is an example. The algorithm demands the loop to stop when it

convergences since each matrix have different stop criteria the compiler cannot infer any order.

CSR format adds a complex loop exit condition in the pipeline (dotted red square)

since each row has different NNZ; Note the red border square, it means that it is necessary

two loads. Another problem is the loop-carried dependency on the sum accumulator. Such

condition, multiple loads, and loop-carried dependency degrade loop pipeline performance

because subsequent iterations cannot launch until the previous one completes. So for Jacobi

single sparse, dot product is the bottleneck.

During vector norm calculation (innermost dotted black square) we also have a loop-

carried dependency on the accumulator, but now there is a well-formed loop. That is, the loop is

always the same independent of iteration. Such loop allows us to remove it by inferring shift

registers. So the vector norm calculation becomes parallel. In Figure 23, we show the pipelines

for Jacobi.

Besides the different architecture, this kernel is 100% in hardware. So we do not avoid

any expensive operation; we used built-in functions for power and square root calculation. This

architecture represents the Jacobi method algorithm in hardware, totally independent from the

host processor.

Figure 23 shows a single compute unit. Although the compiler allows the programmer to

infer more compute units in a single kernel, the behavior does not make sense. Define more than

one compute unit for a single thread kernel means the same calculation over different circuits.

Different from NDRange, the amount of work is not divisible.

Each matrix belongs to a single kernel; the programmer can increase throughput by

replicating the kernels manually and calling them with different queues and matrices on the host.

As already stated in the previous architectures, the programmer must consider if this a good

approach due to memory competition.



66 Chapter 3. Development of the Codesign for the Chemical Reactivity of BRAMS

Load xjaj

(k)Load Sum

Pool of processing elements

a2a3⋯ a4am

a1

×

Load aj

+

Acc Sum
j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

if (i ≠ j) ∧ (j < size)

j ← start

Single Compute Unit

i ← i + 1

i ← 1

Load xi
(k-1)

−
+

Acc Conv

Load xi
(k)

Square

i ← i + 1

SqrtConv

if Conv < 1e-7

Converged

it ← 1

it ← it + 1

if it < maxIt

if i < size

i ← 1

if i < size

Figure 23 – Schematic of Sparse Jacobi method with single thread.



3.2. CCATT–BRAMS Codesign 67

3.2.6 Interoperability with Jacobi Single-threaded Sparse

The complex hardware architecture allowed us to improve host code because we do not

have to keep track of convergence. It also improved I/O exponentially, now we send the data

only once, and receive the result back.

Regarding I/O we implemented two modifications. First, we changed the buffer allo-

cations; we noticed that we could boost performance by using pinned memory. This kind of

memory resides in a non-pageable space, by using such allocation we avoid one extra copy from

pageable memory to non-pageable; we show this in Figure 24. It is important to point out that a

huge amount of pinned memory can degrade system host performance by decreasing pageable

memory space (CHENG; GROSSMAN; MCKERCHER, 2014).

Pageable data Transfer Pinned data Transfer

Pageable

memory

Pinned

memory

DRAM DRAM

Pinned

memory

host host

Device Device

Figure 24 – How pageable and pinned memory data transfer work, based on Harris (2012).

In the second modification, we implemented a double buffering scheme. This method

hides I/O latency, while the pipeline is processing one matrix, another one is being transferred

from the host to FPGA. Double buffering is kernel independent, i.e. the programmer order

the enqueues to overlap communication and computation. Since Intel FPGA SDK does not

implement out-of-order queues, we had to use two queues for using double buffering.

With exactly same function, we could call this new hardware from Fortran. The biggest

change was on the underlying hardware. Now we launch the kernel as a task, not as NDRange.

So, for each call from Fortran, we have a task parallelism.





69

CHAPTER

4

RESULTS

In this chapter, we present the profiling from BRAMS. In this profiling we confirm that

the chem term is the most expensive equation in the mass continuity equation. Then we show the

experiments with the hardware in FPGA to solve the linear system from this equation.

We perform three experiments, one for each architecture of Jacobi method, we also

present the results from Sparse1.3a. We used the same heterogeneous machine we used for

profiling BRAMS. Regarding the analysis, we discuss precision, time execution, and energy.

4.1 Result analysis

We used Gprof to profile BRAMS under two configurations: with the chemical module

enabled, and with the chemical module disabled. Such configuration is possible through the

RAMSIN file, the input configuration file. We discuss the results below.

In the first configuration, we realized that the function radrrtm_ is responsible for 68%

of the total time of computation. That is the only function that exceeds 3% of the total time.

On Figure 25 we can see the call graph, we generated this graphic representation with

gprof2dot. It is important to point out that this call graph is not complete, we defined some

thresholds to make the call graph fit the page. For this discussion, this call graph is enough.

When we enable the chemical module, we note that rodas-3 from Rosenbrock method

takes about 41% of the total time. We represented the call graph on Figure 26; again this is a

partial call graph.

The second heaviest function is spFactor; it is responsible for 17% of the total time. This

function decomposes the matrix in LU format, as we mentioned earlier this decomposition is

O(n3). By comparing the call graph in Figure 25 with Figure 26, we noted that solving linear

systems in rodas-3 are two times more expensive than computing radiation.



70 Chapter 4. Results

M
A
IN

_
_

9
7
.6

8
%

(0
.0

0
%

)
1
×

m
o
d
o
n
e
p
ro

c
_
m

p
_
o
n
e
p
ro

c
_

9
7
.6

8
%

(0
.0

0
%

)
1
× 9
7
.6

8
%

1
×

m
o
d
tim

e
s
te

p
_
m

p
_
tim

e
s
te

p
_

9
7
.5

0
%

(0
.0

0
%

)
2
8
8
×

9
7
.5

0
%

2
8
8
×

ra
d
ia

tio
n
_
m

p
_
ra

d
ia

te
_

7
6
.0

8
%

(0
.0

0
%

)
2
8
8
×

7
6
.0

8
%

2
8
8
×

d
iffu

s
e
_

8
.4

7
%

(0
.1

5
%

)
2
8
8
×

8
.4

7
%

2
8
8
×

a
d
ve

c
tc

_
6
.1

6
%

(0
.1

4
%

)
5
7
6
×

6
.1

6
%

5
7
6
×

m
ic

ro
_

1
.8

0
%

(0
.0

2
%

)
2
8
8
×

1
.8

0
%

2
8
8
×

m
o
d
a
c
o
u
s
t_

m
p
_
a
c
o
u
s
tic

_
n
e
w
_

1
.7

6
%

(0
.0

0
%

)
2
8
8
×

1
.7

6
%

2
8
8
×

e
x
e
vo

lve
_

1
.2

5
%

(0
.0

3
%

)
8
6
4
×

1
.2

5
%

8
6
4
×

m
a
in

9
7
.6

8
%

(0
.0

0
%

)

9
7
.6

8
%

1
×

ra
d
rrtm

_
7
6
.0

3
%

(6
7
.8

4
%

)
1
8
×

7
6
.0

3
%

1
8
×

d
iffs

c
lr_

6
.2

4
%

(2
.3

7
%

)
4
3
2
0
×

6
.2

4
%

4
3
2
0
×

d
iffve

l_
1
.0

7
%

(0
.4

9
%

)
2
8
8
×

1
.0

7
%

2
8
8
×

s
tra

in
_

0
.6

2
%

(0
.1

1
%

)
2
8
8
×

0
.6

2
%

2
8
8
×

fa
_
x
c
_

1
.7

2
%

(1
.7

2
%

)
4
6
0
8
×

1
.6

2
%

4
3
2
0
×

fa
_
y
c
_

1
.6

9
%

(1
.6

9
%

)
4
6
0
8
×

1
.5

9
%

4
3
2
0
×

fa
_
z
c
_

1
.6

1
%

(1
.6

1
%

)
4
6
0
8
×

1
.5

1
%

4
3
2
0
×

ve
l_

a
d
ve

c
tc

_
0
.7

8
%

(0
.7

8
%

)
2
8
8
×

0
.7

8
%

2
8
8
×

m
c
p
h
y
s
_

1
.1

6
%

(0
.0

5
%

)
9
6
8
8
3
2
×

1
.1

6
%

9
6
8
8
3
2
×

ra
n
g
e
_
c
h
e
c
k
_

0
.5

5
%

(0
.5

5
%

)
9
6
8
8
3
2
×

0
.5

5
%

9
6
8
8
3
2
×

m
o
d
a
c
o
u
s
t_

m
p
_
a
c
o
u
s
t_

n
e
w
_

1
.7

5
%

(0
.0

0
%

)
2
8
8
×

1
.7

5
%

2
8
8
×

a
d
ve

c
t_

th
e
ta

_
0
.6

7
%

(0
.0

0
%

)
2
8
8
× 0
.6

7
%

2
8
8
×

rrtm
g
_
s
w
_
ra

d
_
m

p
_
rrtm

g
_
s
w
_

6
.1

5
%

(0
.1

5
%

)
1
8
× 6
.1

5
%

1
8
×

rrtm
g
_
lw

_
ra

d
_
m

p
_
rrtm

g
_
lw

_
1
.9

9
%

(0
.1

0
%

)
1
8
×

1
.9

9
%

1
8
×

rrtm
g
_
s
w
_
s
p
c
vm

c
_
m

p
_
s
p
c
vm

c
_
s
w
_

5
.4

2
%

(1
.9

0
%

)
6
0
5
5
2
×

5
.4

2
%

6
0
5
5
2
×

rrtm
g
_
lw

_
rtrn

m
c
_
m

p
_
rtrn

m
c
_

0
.8

3
%

(0
.8

3
%

)
6
0
5
5
2
×

0
.8

3
%

6
0
5
5
2
×

rrtm
g
_
lw

_
ta

u
m

o
l_

m
p
_
ta

u
m

o
l_

0
.7

6
%

(0
.0

0
%

)
6
0
5
5
2
×

0
.7

6
%

6
0
5
5
2
×

g
ra

d
_

2
.4

5
%

(0
.0

0
%

)
1
0
9
4
4
×

1
.9

4
%

8
6
4
0
×

d
ivc

a
rt_

2
.3

2
%

(0
.0

0
%

)
1
0
3
6
8
×

1
.9

4
%

8
6
4
0
×

0
.3

9
%

1
7
2
8
×

0
.5

2
%

2
3
0
4
×

ra
m

s
_
g
ra

d
_

4
.7

8
%

(0
.0

0
%

)
2
1
3
1
2
×

2
.4

5
%

1
0
9
4
4
×

2
.3

2
%

1
0
3
6
8
×

rrtm
g
_
s
w
_
vrtq

d
r_

m
p
_
vrtq

d
r_

s
w
_

1
.9

1
%

(1
.9

1
%

)
1
3
5
6
3
6
4
8
×

1
.9

1
%

1
3
5
6
3
6
4
8
×

rrtm
g
_
s
w
_
re

ftra
_
m

p
_
re

ftra
_
s
w
_

1
.2

2
%

(1
.2

2
%

)
1
3
5
6
3
6
4
8
×

1
.2

2
%

1
3
5
6
3
6
4
8
×

g
ra

d
y
v_

1
.2

6
%

(1
.2

6
%

)
5
1
8
4
×

1
.2

6
%

5
1
8
4
×

g
ra

d
x
u
_

1
.2

4
%

(1
.2

4
%

)
5
1
8
4
×

1
.2

4
%

5
1
8
4
×

g
ra

d
y
t_

1
.1

3
%

(1
.1

3
%

)
5
1
8
4
×

1
.1

3
%

5
1
8
4
×

g
ra

d
x
t_

1
.1

1
%

(1
.1

1
%

)
5
1
8
4
×

1
.1

1
%

5
1
8
4
×

m
o
d
a
c
o
u
s
t_

m
p
_
p
rd

c
tp

1
_

0
.6

7
%

(0
.6

7
%

)
8
6
4
×

0
.6

7
%

8
6
4
×

e
x
th

va
d
v_

0
.6

5
%

(0
.0

2
%

)
2
8
8
×

0
.6

5
%

2
8
8
×

0
.1

1
%

2
8
8
×

0
.1

1
%

2
8
8
×

0
.1

0
%

2
8
8
×

Figure 25 – Call Graph for BRAMS with chemical module disabled.

4.2 Experiments

We performed the experiments on a heterogeneous machine. Currently, we have a single

node for testing BRAMS execution with FPGA. In this single node, we must run BRAMS with a



4.2. Experiments 71

M
AIN__

81.45%
(0.00%

)
1×

m
odoneproc_m

p_oneproc_
81.45%
(0.00%

)
1× 81.45%

1×

m
odtim

estep_m
p_tim

estep_
81.28%
(0.00%

)
1440× 81.28%

1440×

m
odule_chem

istry_driver_m
p_chem

istry_driver_
42.38%
(0.00%

)
5760×

42.38%
5760×

carm
a_driv_m

p_carm
a_driver_

16.25%
(0.00%

)
1440×

16.25%
1440×

m
onotonic_adv_m

p_advm
nt_driver_

11.74%
(0.00%

)
1440×

11.74%
1440×

diffuse_
3.44%
(0.08%

)
1440× 3.44%

1440×

m
icro_thom

pson_
2.56%
(0.00%

)
1440×

2.56%
1440×

chem
drydepdriver_m

p_drydep_driver_
2.10%
(0.00%

)
1440×

2.10%
1440×

chem
sourcesdriver_m

p_sources_driver_
1.03%
(0.00%

)
1440×

1.03%
1440×

m
ain

81.45%
(0.00%

)

81.45%
1×

m
od_chem

_spack_rodas3_dyndt_m
p_chem

_rodas3_dyndt_
41.05%
(7.24%

)
360×

41.05%
360×

m
odtuvdriver_m

p_tuvdriver_
1.33%
(0.52%

)
72× 1.33%

72×

rad_carm
a_m

p_radcom
p_carm

a_
16.24%
(0.00%

)
72×

16.24%
72×

m
onotonic_adv_m

p_advect_m
nt_

11.52%
(0.28%

)
79200×

11.52%
79200×

diffsclr_
3.00%
(1.52%

)
79200×

3.00%
79200×

bram
s_to_m

ic_thom
pson_

2.55%
(0.32%

)
4844160×

2.55%
4844160×

m
odule_dry_dep_m

p_dry_dep_
2.10%
(0.03%

)
1440×

2.10%
1440×

chem
_sources_m

p_sources_
0.74%
(0.00%

)
1440× 0.74%

1440×

solve_sparse_m
p_fact_solve_m

atrix_
21.22%
(0.02%

)
169416100×

21.22%
169416100×

solve_sparse_m
p_solve_linear_

9.64%
(0.02%

)
169416100×

9.64%
169416100×

m
od_chem

_spack_jacdchem
dc_m

p_jacdchem
dc_

1.84%
(1.49%

)
643047×

1.84%
643046×

m
od_chem

_spack_fexchem
_m

p_fexchem
_

0.94%
(0.43%

)
1966200×

0.94%
1966200×

m
odtuv_m

p_tuv_
0.81%
(0.17%

)
132514×

0.81%
132514×

spFactor
17.58%
(17.58%

)
169416100×

17.58%
169416100×spSolve

3.62%
(3.62%

)
169416100×

3.62%
169416100×

solve_sparse_m
p_load_m

atrix_
7.14%
(3.40%

)
169416100×

7.14%
169416100×

spClear
2.48%
(2.48%

)
169416101×

2.48%
169416100×

m
od_chem

_spack_rates_m
p_rates_

0.51%
(0.51%

)
1966200×

0.51%
1966200×

rad_carm
a_m

p_radcarm
a_

16.24%
(0.02%

)
242208×

16.24%
242208×

rad_carm
a_m

p_radtran_
14.40%
(0.22%

)
484416×

14.40%
484416×

rad_carm
a_m

p_initrad_
1.30%
(0.00%

)
484416×

1.30%
484416×

rad_carm
a_m

p_oppr_
8.54%
(8.54%

)
484416×

8.54%
484416×

rad_carm
a_m

p_add_
2.31%
(2.31%

)
484416×

2.31%
484416×

rad_carm
a_m

p_newflux1_
1.84%
(1.84%

)
484416×

1.84%
484416×

rad_carm
a_m

p_twostr_
1.34%
(1.34%

)
484416×

1.34%
484416×

rad_carm
a_m

p_setuprad_
1.30%
(1.30%

)
484416×

1.30%
484416×

m
onotonic_adv_m

p_advec3d_z_
4.26%
(4.26%

)
79200×

4.26%
79200×

m
onotonic_adv_m

p_advec3d_y_
2.80%
(2.80%

)
79200×

2.80%
79200×

m
onotonic_adv_m

p_advec3d_x_
2.61%
(2.61%

)
79200× 2.61%

79200×

m
onotonic_adv_m

p_advec3d_z_sedim
_

1.56%
(1.56%

)
40320×

1.56%
40320×

sfadd1real_
3.74%
(3.74%

)
1469075172×

3.74%
1469075172×

grad_
0.79%
(0.00%

)
169920×

0.74%
158400×

divcart_
0.78%
(0.00%

)
167040×

0.74%
158400×

ram
s_grad_

1.57%
(0.00%

)
336960×

0.79%
169920×

0.78%
167040×

m
odule_m

p_thom
pson_m

p_m
p_gt_driver_

1.98%
(0.11%

)
4844160×

1.98%
4844160×

m
odule_m

p_thom
pson_m

p_m
p_thom

pson_
1.87%
(1.65%

)
4844160×

1.87%
4844160×

m
odule_dry_dep_m

p_dry_dep_sedim
_particles_

1.75%
(0.04%

)
1440×

1.75%
1440×

m
odule_dry_dep_m

p_sedim
_particles_3d_

1.58%
(1.58%

)
1440× 1.58%

1440×

Figure 26 – Call Graph for BRAMS with chemical module enabled.

single MPI process.

According to HRZ (2017), the fine-grained scheduling available in GPU is not present

on the FPGA circuit generated by Intel OpenCL SDK, i.e. two processes cannot share the FPGA

circuit. Even with this information, we decided to perform some tests to reinforce this affirmation.

In our first attempt, we replicated the kernel for each MPI process. That requires the

knowledge of how many processes will access the device simultaneously. Figure 27 shows the



72 Chapter 4. Results

schematic for our explanation using two processes.

P1 P2

Load xjaj

(k)Load Sum

Pool of processing elements

a2a3⋯ a4am

a1

×

Load aj

+

Acc Sum
j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

if (i ≠ j) ∧ (j < size)

j ← start

Single Compute Unit

i ← i + 1

i ← 1

Load xi
(k-1)

−
+

Acc Conv

Load xi
(k)

Square

i ← i + 1

SqrtConv

if Conv < 1e-7

Converged

it ← 1

it ← it + 1

if it < maxIt

if i < size

i ← 1

if i < size

Load xjaj

(k)Load Sum

Pool of processing elements

a2a3⋯ a4am

a1

×

Load aj

+

Acc Sum
j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

if (i ≠ j) ∧ (j < size)

j ← start

Single Compute Unit

i ← i + 1

i ← 1

Load xi
(k-1)

−
+

Acc Conv

Load xi
(k)

Square

i ← i + 1

SqrtConv

if Conv < 1e-7

Converged

it ← 1

it ← it + 1

if it < maxIt

if i < size

i ← 1

if i < size

FPGA
Figure 27 – Each MPI process accesses a copy of the kernel (an FPGA circuit).

For using this scheme, FPGA reconfiguration must occur before BRAMS execution.

Otherwise, both processes try to reconfigure the same FPGA and a deadlock occurs. During

execution, we realized that this approach is not feasible; the second MPI process is not able to

continue execution because Intel FPGA SDK kills it.

We tried another method; we decided to share OpenCL structures by using inter-process

shared memory in Linux1. Figure 28 shows that each process has a private Context and Queue,

we share program, device, and memory. We can see the program as a set of FPGA circuits, where

each circuit represents a kernel. The device represents the FPGA board; each process declares a

memory region inside the FPGA (device), in the figure we represent them as two purple boxes.

The first problem arose from this approach was the execution order of the MPI processes.

MPI does not impose any order in its pool of processes; we needed to execute the master process

before any other process. The master process was responsible for creating the shared region.

During our tests, with two processes, we could infer an order randomly.

Considering the cases where there was order among processes, we still reached the Intel

runtime restriction. Regarding the out-of-order cases, a segmentation fault occurred because

there was no program structure.

We tried to avoid this problem by using a mixed approach. We programmed the FPGA

before BRAMS execution, as we tried in the first approach, and execute BRAMS with shared

1 http://man7.org/linux/man-pages/man7/shm_overview.7.html



4.3. Results from Jacobi Multi-threaded Dense 73

OpenCL

Queue 1
Program

Load xjaj

(k)Load Sum

Pool of processing elements

a2a3⋯ a4am

a1

×

Load aj

+

Acc Sum
j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

if (i ≠ j) ∧ (j < size)

j ← start

Single Compute Unit

i ← i + 1

i ← 1

Load xi
(k-1)

−
+

Acc Conv

Load xi
(k)

Square

i ← i + 1

SqrtConv

if Conv < 1e-7

Converged

it ← 1

it ← it + 1

if it < maxIt

if i < size

i ← 1

if i < size

Load xjaj

(k)Load Sum

Pool of processing elements

a2a3⋯ a4am

a1

×

Load aj

+

Acc Sum
j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

if (i ≠ j) ∧ (j < size)

j ← start

Single Compute Unit

i ← i + 1

i ← 1

Load xi
(k-1)

−
+

Acc Conv

Load xi
(k)

Square

i ← i + 1

SqrtConv

if Conv < 1e-7

Converged

it ← 1

it ← it + 1

if it < maxIt

if i < size

i ← 1

if i < size

K1

Load xjaj

(k)Load Sum

Pool of processing elements

a2a3⋯ a4am

a1

×

Load aj

+

Acc Sum
j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

if (i ≠ j) ∧ (j < size)

j ← start

Single Compute Unit

i ← i + 1

i ← 1

Load xi
(k-1)

−
+

Acc Conv

Load xi
(k)

Square

i ← i + 1

SqrtConv

if Conv < 1e-7

Converged

it ← 1

it ← it + 1

if it < maxIt

if i < size

i ← 1

if i < size

Program

K2

Load xjaj

(k)Load Sum

Pool of processing elements

a2a3⋯ a4am

a1

×

Load aj

+

Acc Sum
j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

if (i ≠ j) ∧ (j < size)

j ← start

Single Compute Unit

i ← i + 1

i ← 1

Load xi
(k-1)

−
+

Acc Conv

Load xi
(k)

Square

i ← i + 1

SqrtConv

if Conv < 1e-7

Converged

it ← 1

it ← it + 1

if it < maxIt

if i < size

i ← 1

if i < size

Device - Bittware (FPGA)

Memory 1 

Buffer 1

Buffer 2

Buffer n

Queue 2

Context 2

Context 1 Shared Resource

Memory 2

Buffer 1

Buffer 2

Buffer n

Figure 28 – OpenCL data structures – Program, Device and Memory buffers are shared among MPI processes.

memory. This approach did not require to make any modification to BRAMS source code.

Although we avoid the order problem, runtime still kills the second process. These tests could

confirm that each device requires a single process access.

4.3 Results from Jacobi Multi-threaded Dense

In our first design, we programmed our FPGA as GPU, i.e. we used the concept of several

working units working parallel. Despite the difficulty to understand, this programming model is

very common for parallel programming, and we found several tutorials teaching how to program

simple problems in OpenCL. Jacobi method is similar to matrix-vector multiplication, a general

operation in OpenCL programming.

During this approach, we realized the host is as important as the kernel. In this attempt,

we committed several errors that led to a severe degradation in performance. We will discuss the

kernels problems, and then host problems.

The memory hierarchy is critical regarding kernel programming. We have three memory

types: Global, Local and Private memory. We tried to use the general practice of avoiding

memory access to global memory by copying the contents to a local memory.

Our designs usually had a higher frequency when we avoided this practice, after some



74 Chapter 4. Results

digging on the source code behavior we discovered that compiler optimizes accesses to constant

global memory. When the programmer defines the global memory as a constant, which is the

case for the matrix A and vector b in the linear system, the compiler creates a cache in on-chip

memory to store these arguments, and it allows to cache the data for each load (INTEL, 2016a).

Intel FPGA SDK allows the programmer to define two types of cache. The first approach

requires a key __constant for all constant parameters; in this manner, a single cache is responsible

for storing all the values from different constant parameters. The default cache size is 16Kb;

however, the programmer can define another size during compilation. Using a single constant

cache did not improve the performance of our kernel, in our case, this approach decreased the

kernel frequency.

A second method uses __global const, which creates a cache for every parameter, i.e.

no shared cache. According to our results, this configuration led to higher frequency kernels.

Copying from global memory to local memory is useful when data is not constant,

otherwise it is not worth it. We used this approach for x in Jacobi method; this copy requires a

barrier to guarantee that all work-groups have a copy of x. Each iteration of Jacobi updates the

current solution and uses it for the next iteration.

It is important to point out that the pipeline for NDRange in this architecture is not the

same pipeline for the single thread. This pipeline accepts multiple work-items from different

work-groups; thus there is no pipeline for loops in the kernel.

This pipeline differences became apparent with the graphical reports from Intel FPGA

SDK. Although the user may compile the project on a computer with Ubuntu (operational

system), the tool requires Red Hat or CentOS to generate this report. Figure 29 shows the report,

regarding loop pipelining, for this architecture.

Figure 29 – Pipeline report for Jacobi multi-threaded dense.



4.3. Results from Jacobi Multi-threaded Dense 75

This report describes the information about the developed kernel. On the left of the figure

is the loop analysis; in this field, we have four tabs. The first tab indicates if it pipelined the loop

in line 19; the compiler does not support loop pipelining in NDRange. II represents how many

cycles this loop must wait before processing the next iteration; as we do not have loop pipelining,

this value is n/a.

Regarding the third and fourth columns, as the name says, they are related to the bottle-

neck of the pipeline and the details of how the compiler optimizes the loop. Programming like a

NDrange does not generate a report with much information. On the right, we have the source

code of the kernel. The report highlights which line is consuming more resources.

Although we could improve kernel area utilization and performance with the reports,

communication CPU-FPGA the was a problem. For every iteration of Jacobi, we needed to

exchange information with the host, because we could not perform vector norm in hardware.

Figure 30 shows this strong communication.

This communication exchange caused a severe drop of performance in BRAMS. In

average, for each matrix computation, we needed 28ms. Intel provides a profiling tool that is

capable of measuring the communication and kernel computation time accurately. We show the

communication and execution time in Figure 31.

In the kernel execution tab, the tool presents the kernel execution time (jacobi_method)

and memory transfers. Note that the execution starts when the FPGA receives the first chunk of

data; the communication is dominant in time execution.

Besides the time execution, we wanted to check the occupancy and stall of the kernel

pipeline. This first measures the amount of work we perform; the second measures the contention

in the memory bandwidth.

According to Figure 32, we do not have enough work for our kernel; our highest occu-

pancy is 52%. Considering that we are filling the pipeline with zeros, the occupancy for actual

computation must be even smaller. Regarding the stalls, we have a worst-case scenario of 9.29%;

the ideal percentage is zero, i.e. almost no contention in the memory.

Lastly, we present the statistics for this architecture in Figure 33. As we can see, our

design still allows much improvement regarding memory bandwidth; this requires significant

change on BRAMS structure of the chemical reactivity.

From our experience with the tool, we do not recommend to execute kernel profiling

for more than a few seconds to BRAMS execution. We tried to generate a final profiling with

the entire execution, and it generated a file with more than 25GB. Reading such file was not

possible due to memory restrictions imposed by our machine. We believe that this behavior must

be similar for other huge applications. Although Altera ensures that their profiling hardware

counters do not increase any overhead, we had different results in this dissertation and we did

notice some overhead.



76 Chapter 4. Results

Load xjaj

(k)Load Sum

Pool of processing elements

a2a3⋯ a4am

a1

×

Load aj

+

Acc Sum
j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

if (i ≠ j) ∧ (j < size)

j ← start

Single Compute Unit

i ← i + 1

i ← 1

Load xi
(k-1)

−
+

Acc Conv

Load xi
(k)

Square

i ← i + 1

SqrtConv

if Conv < 1e-7

Converged

it ← 1

it ← it + 1

if it < maxIt

if i < size

i ← 1

if i < size

CPU

CPU

Send Data

Receive Result and

Compute norm

If Converged
Yes No

Figure 30 – CPU communicates with FPGA for every iteration. CPU sends to the FPGA the initial data, after FPGA
processing it, the FPGA returns the result to the CPU, which in turn computes the vector norm and
decides if it sends another data or computes another iteration.

Despite the unsatisfactory performance of this architecture, we wanted to prove that our

design was correct. We measured the error in the Rosenbrock Method, this method computes a

linear system, whose solution depends on Jacobi Method, and updates vector b for the next stage.

After the fourth stage, the algorithm computes the error and rounding of the block. If rounding is

over the tolerance, Rosenbrock updates each matrix A of the block. In this manner, a new set of

linear systems is available for each Rosenbrock stage.

Computing a 24-hour weather forecasting is not possible with this architecture due to

time limitation. According to our extrapolation, it would be necessary 44 days to process this

resolution. So we measured just the first block of error of the Rosenbrock Method; we compare

the result with the first block of error in software using Sparse1.3a. We obtained a satisfactory

error of 1.241371e−19.



4.3. Results from Jacobi Multi-threaded Dense 77

Figure 31 – Communication and execution time with Intel FPGA SDK profiling for kernels. Note that there is much
more communication than computation.

Figure 32 – Efficiency of Jacobi multi-threaded dense with Intel FPGA SDK profiling for kernels. The red line
points that the global memory reads (line 22) are the bottleneck of the application.

Figure 33 – Statistics of Jacobi multi-threaded dense with Intel FPGA SDK profiling for kernels.

Regarding energy consumption, we used PowerPlay Power Analyzer Tool from Quartus

II; this tool is responsible for estimating the potency in mW of the circuit. According to the tool,

our design consumes about 11W. We summarize the results of this architecture in Table 6 and

Table 7. In the latter, we split the execution time from transfer time.

Table 6 – Results from Arch 1.

Area Frequency Time Energy Error
19% 305 Mhz ∼44 days 11 W 1.241e-19



78 Chapter 4. Results

Table 7 – Timing results from Arch 1.

CPU-FPGA Execution FPGA-CPU Total Time
11686us 9153us 7806us 28645us

4.4 Results from Jacobi Multi-threaded Sparse

In the profiling of the previous execution, we noted that communication was not the only

problem. We realized that there was extra computational time in the kernel; as we were using a

dense representation, we chose to avoid filling the pipeline with zeros.

We decided to use CSR, a sparse representation suitable for Sparse Matrix-Vector

multiplication (SpMV) (BELL; GARLAND, 2008). As we mentioned earlier, Jacobi method

is very similar to the matrix-vector algorithm; we used this characteristic in the choice of CSR

format.

In Figure 34, we show the statistics related to stall, occupancy, and bandwidth. We

compare each result with the previous architecture, which is the most similar architecture. We do

not present the loop pipeline report for this architecture (NDRange does not pipeline the loops).

Figure 34 – Efficiency of Jacobi multi-threaded sparse with Intel FPGA SDK profiling for kernels. Sparse format
causes a severe drop of performance when saving the results back to the global memory.

The red rows represent the worst case in efficiency in the kernel. Reading from global

memory is still the bottleneck of the application. We noted a severe drop in efficiency in saving

the results back to the global memory by using sparse format. We found two principal reasons for

this low efficiency: unbalanced access to global memory on the SpMV, and a higher percentage

of stalls in the pipeline.

Regarding the stalls, in this architecture, the compiler could not hide global memory

latency due to the increase of three reads from the global memory. Although ia and ja are constant

vectors, fetching from global memory must be avoided.

From Figure 35, we noted that changing matrix representation did not cause any im-

provement in BRAMS execution. We decided to check kernel execution and memory transfers.

Again, we compare the results with the dense version. From this, we could find what was

causing the bad performance of Jacobi. Despite the lower execution time, we noted that there

were more memory transfers between computations than in Architecture 1 due to CSR format.



4.4. Results from Jacobi Multi-threaded Sparse 79

Figure 35 – Execution and memory transfer time of Jacobi multi-threaded sparse with Intel FPGA SDK profiling
for kernels. Note that transfer time did not improve due to variable sparsity of the matrices.

In the dense representation, we needed to transfer four data structures, and now we send six data

structures.

What draw our attention was the worst-case stall. In this version we improved in 6%. As

expected, memory bandwidth is lower in the sparse architecture, since we need fewer data from

global memory. Figure 36 shows these statistics.

Figure 36 – Statistics of Jacobi multi-threaded sparse with Intel FPGA SDK profiling for kernels.

As we did in the previous architecture, we evaluated the precision from this architecture.

We used the same set of configuration for comparison, i.e. we used extrapolation to measure the

error from the first block of the Rosenbrock Method obtained in Jacobi (hardware) compared

to the first block obtained in the Sparse1.3a (software). As expected, our average error is

1.241371e−19; the same result from the previous architecture.

We also studied the impact of our new design on power consumption, as we mentioned

earlier we cannot execute a weather forecasting for 24 hours due to time limitation. According to

PowerPlay Power Analyzer Tool, this new architecture requires 14W. We show the summarized

results in Table 8 and Table 9.



80 Chapter 4. Results

Table 8 – Results from Arch 2.

Area Frequency Time Energy Error
29% 260 MHz ∼50 days 14 W 1.241e-19

Table 9 – Timing results from Arch 2.

CPU-FPGA Execution FPGA-CPU Total Time
17597us 7846us 7863us 33306us

4.5 Results from Jacobi Single-threaded Sparse

This architecture has a significant improvement over the previous ones. Now we can

compute the entire algorithm in hardware; this kernel is similar to a C to hardware.

We reused most of the knowledge of Architectures 1 and 2. At this point memory

hierarchy was a solid concept, and we used the best practices for a single thread kernel. With

this new concept of programming, new problems arose; we discuss the problems, solutions, and

results from this architecture.

Our first version was a copy-paste of the Jacobi algorithm in software. We knew that

there was room for plenty optimization, but we needed to perform the compilation to see the

problems. Intel FPGA SDK allows us to compile only the intermediate object file; this is much

faster than generating the hardware.

Compiling the kernel source into an intermediate representation is enough to provide a

detailed report of loop pipelining. As we mentioned earlier, a single thread kernel pipelines the

iterations of the loops. We show this report in Figure 37 and discuss the improvements we made.

According to Figure 37, copy from the current to the previous solution has II of 1; this

the most efficient pipeline, it means that every cycle computes an iteration. Traversing each line

of the matrix leads to a great result as well. We show an optimum pipeline in Figure 38.

This ideal pipeline is not present in the loop responsible for traversing each NNZ element

from the ith row. The problem with this loop is the data dependency on the sum accumulator; as

we cannot guarantee the same NNZ for each row, the pipeline must wait for the current iteration

to finish before it starts the next one. This restriction also prevents us from using shift registers

on the matrix-vector operation.

We show in Figure 39, how it is the pipeline for matrix-vector accumulator; we use two

iterations for simplicity. Note that this implies in an empty pipeline for some cycles, and it is

responsible for reducing the performance of Jacobi.

We have a similar problem in the convergence calculation, but now there is a well-formed

loop. We declared an array (conv) to avoid data dependency, and we used a shift register to

guarantee an optimum II. For using a shift register in OpenCL, we fully unrolled the loop

responsible for accumulating all the elements of conv. In Figure 40, we show the report for the



4.5. Results from Jacobi Single-threaded Sparse 81

Figure 37 – Pipeline report for Jacobi single-threaded sparse.



82 Chapter 4. Results

C
lo

ck
 C

y
cl

es
 

I0

I1

I2

I3

I4

I5

0

1

2

3

4

5

6

7

Figure 38 – Optimum pipeline with II of 1, figure from Intel (2016a).
C
lo

ck
 C

y
cl

es
 

I0

I1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 39 – Matrix-vector pipeline with II of 11, based on Intel (2016a).

changes we made to this kernel.

These modification on the loop pipelines allowed us to reduce from 24 cycles to 14

cycles; an improvement of 42% compared to the initial solution. During this optimization stage,

we noted that our kernel demanded one global write for each iteration of Jacobi; we improved

that by using a local memory and performing a single write in the end of computation. With

this solution, we want to measure stall, occupancy, efficiency, execution and transfer time of the

kernel. We profiled the kernel to obtain accurate measures.

In Figure 41 we show the kernel efficiency. Despite the lower occupancy ( 18%) compared

to the Architectures 1 and 2, we present optimum efficiency and stall for every pipeline. In this

architecture, there is no bottleneck, which means that we achieved the best pipeline configuration.

The worst-case stall is still very close to zero.

Using a shift register for convergence calculation led to an effective bandwidth. The



4.5. Results from Jacobi Single-threaded Sparse 83

Figure 40 – Pipeline report for Jacobi single-threaded sparse optimized.



84 Chapter 4. Results

Figure 41 – Efficiency for Jacobi single-threaded sparse. After the modifications, all the pipelines shows 100% of
efficiency and almost zero stall.

same applies to the stalls in the pipeline; in the profiling, we can see numbers very close to zero.

Besides the great results for the pipelines and stalls, we cannot infer the same about occupancy.

The changes in the architecture showed that occupancy is still a problem. That is not

a design related problem, but a data problem. We do not provide enough data for the kernel,

resulting in an idle time in the kernel; in future work, we intend to change BRAMS structure

related to the chemical reactivity — spack data structure. In this manner, we will be able to

improve occupancy.

Even with low occupancy, we had an improvement with this design compared to the

previous ones. According to our results for a 24-hour weather forecasting, we improved the

computational time in 63 times. We show in Figure 42 execution and memory transfers time.

Here we present an appropriate balance between execution and memory transfers. This

result relies on the improved Jacobi method; we implemented it 100% in hardware, in this

manner Jacobi only communicates with the host to receive and send data. According to our

measures, processing an entire linear system takes in average 1ms.

As we mentioned before, our design suffers from the lack of massive data to process.

Figure 43 supports this affirmation by showing how much data is necessary during execution

(measured column); in the same figure, we can see that the burst write is six times better in this



4.5. Results from Jacobi Single-threaded Sparse 85

Figure 42 – Execution and memory transfers time for Jacobi single-threaded sparse. Each bar in spjacobi_method1
means a complete execution over a matrix.

architecture than in Architecture 2, and two times better than Architecture 1.

Figure 43 – Statistics for Jacobi single-threaded sparse.

Once we improved time execution, we could perform comparisons with software re-

garding the precision of the floating point. For such comparison, we retrieved the first block of

error of the Rosenbrock Method in software and in hardware every timestep, then we measured

the difference between the results. We measured the error for 1440 timesteps (24-hour weather

forecasting), and we obtained an average error of −6.277075e−09. If we compare in the same

conditions as the previous architectures, we obtain an average error of 8.027268e−20, i.e. 10×

smaller than Architectures 1 and 2.

Jacobi impacts Rosenbrock convergence rate since it depends on the error of fourth stage.

In the Literature, we find several works supporting that Jacobi method has a slow convergence

rate (TAMULI et al., 2015; KHUSHPREETKAUR, 2012). We decided to take advantage of this

slow rate convergence to improve throughput by using double buffering scheme. In Figure 42,

there are some matrices whose execution time is higher than memory transfer.

According to our experiments, we could not use double buffering on Intel FPGA SDK

correctly. By using this scheme, we noted that data from different queues were overlapping the



86 Chapter 4. Results

pipeline, which returned a wrong result. No warning or error during compilation occurred, we

found these errors during the measuring of Rosenbrock error.

We decided to make a copy of the kernel and then distribute them over the queues, in

our case, we use two queues. Our first attempt was not successful due to space limitation of the

FPGA; we had to downgrade our design to make the replication fit the FPGA.

During the execution of BRAMS with the downgraded version, we noted the same

problems we had before. According to our experiments, sharing the FPGA is not possible when

using OpenCL for Intel devices (a similar problem happened when we tried to share the FPGA

for more than one proccess, see Section 4.2).

After all the possible optimizations, we decided to measure the energy required for

processing the chemical reactivity in FPGA. We could make a more accurate test than the

previous architectures since we could perform a complete execution of BRAMS for a 24-hour

weather forecasting.

According to our results, this architecture requires 15W. So far, this architecture is the

most energy efficient and fastest version we implemented by using 15% more of resources of the

FPGA. We summarize the results in Table 10 and in Table 11.

Table 10 – Results from Arch 3.

Area Frequency Time Energy Error
34% 269 MHz ∼19 hours 15 W 8.027e-20

Table 11 – Tmining results from Arch 3.

CPU-FPGA Execution FPGA-CPU Total Time
92us 912us 9us 1013us

4.6 Results from Jacobi Single-threaded Dense

In the Arch 3, we noticed that NNZ is a problem in CSR sparse format since we cannot

infer an optimum pipeline. To avoid this problem, we implemented a dense version of Arch 3;

we called it Arch 4. We do not present any report for this architecture since we it did not improve

the time execution. The compiler unrolls automatically the internal loop to process more data

in parallel, this feature can be disabled, this is why the hardware takes 45% of the available

hardware. Unrolling the loop also decreases hardware frequency, it needs 239 Mhz.

In this manner, we can conclude that sparse format is still the most suitable format for

our problem. We show the results in Table 12, as we can see in this table, transferring from CPU

to FPGA is faster using dense format. This behavior shows that transferring small chunks of data

is slower than sending bigger ones due to the delay of the OpenCL API.



4.7. Results from Sparse1.3a 87

Table 12 – Timing results from Arch 4.

CPU-FPGA Execution FPGA-CPU Total Time
78us 3090us 16us 3184us

4.7 Results from Sparse1.3a

We also executed BRAMS with a single process with Sparse1.3a for a 24-hour weather

forecasting. We compare execution time from the software library with our Arch 3.

According to the results, the software versions takes about one hour and fifteen minutes

to complete the execution. The same execution in hardware takes about 19 hours to execute, i.e.

our hardware demands 15× more time execution, which is prohibitive in practice.

This poor execution time is related to several factors: (a) matrix size; (b) communication;

and (c) one process per FPGA. Batched execution of linear algebra operations on small matrices

are still a problem, and high performance accelerator remains a challenging problem (DONG et

al., 2016).

The focus of this project was to migrate a snippet of BRAMS to a heterogeneous machine

with FPGA, which was successfully performed. Time execution is not critical at this moment. In

Table 13, we show the main characteristics of each implementation, and their advantages and

disadvantages. In Table 15, we compare the transfer and execution time for each architecture.

Table 13 – Table of comparison among implementations.

Features A B C D E Advantages Disadvantage
Arch 1 X X X Easy to understand and pro-

gram.
Too much communication
between CPU-FPGA.

Arch 2 X X X Pipeline never computes ze-
ros.

It is hard to define a suitable
NDRange.

Arch 3 X X X 100% of Jacobi in hardware. Performance loss due to data
representation.

Arch 4 X X X No load imbalance. Performance loss compared
to Arch 3.

Sw X X X Fast and suitable for CPUs. It is not suitable for paral-
lelism.

Features:

∙ A: Parallel algorithm;

∙ B: MPI Support;

∙ C: Coupled to BRAMS;

∙ D: Iterative method;

∙ E: Direct Method;



88 Chapter 4. Results

Table 15 – Comparison among architectures

Arch CPU-FPGA Execution FPGA-CPU Total Time
1 11686us 9153us 7806us 28645us
2 17597us 7846us 7863us 33306us
3 92us 912us 9us 1013us
4 78us 3090us 16us 3184us



89

CHAPTER

5

CONCLUSION

In this project, we explore the possibility to use heterogeneous computing to solve the

chem term. As we showed in the related works, coupling the chemical reactivity to BRAMS is a

complex task that we could perform by using OpenCL. We used this framework to implement

the dense and sparse version of Jacobi, an iterative linear solver.

We provide a parallel Jacobi suitable for FPGAs pipelining. By using FPGA, we could

implement 100% of the algorithm on the device side and still maintain it coupled to BRAMS, to

the best of our knowledge, this is the first work that couples FPGA to BRAMS. According to our

tests, we proved the program presents the same behavior and accuracy of the software.

Such algorithm is critical to the solution of the chem term of the mass continuity equation;

the chemical term became the most expensive when the developers included the gas chemical

module. We obtained the same results through profilings techniques applied to BRAMS, such as

Gprof. Currently, BRAMS executes only in CPU with MPI parallelism.

With this project, we could prove that porting parts of BRAMS to heterogeneous com-

puting — CPU-FPGA — is possible. Our work allows the scientific community to explore more

parallel solution using FPGAs.

5.1 Limitations

As we presented in Section 4.2, our design does not allow more than one process to

access the same device. The sparse format we chose imposes a severe drop of performance in

pipeline execution. Performance is also a problem since our best architecture is 15× slower than

software.

CSR format imposes a load imbalance on the computation, and such problem imposes

a higher latency in the pipeline. With this format, it is not possible to improve II of SpMV

operation since the sparsity of the matrices varies from 8% up to 25%.



90 Chapter 5. Conclusion

5.2 Future Work

In future work, we intend to solve the limitations in our design. Our first target is the

Rosenbrock method, which we could perform the stages of the method in hardware, as we saw in

Figure 2, all Rosenbrock stages require minor modifications and perform the same computation.

Such implementation could be carried out if there is enough space in FPGA area.

We would also need to study the I/O involved in this process if this is a suitable solution.

Regarding the sparse format, we could explore the viability of other sparse formats that could

perform in parallel. One of the options is the Ellpack format, which does not impose a load

imbalance. Although it seems a perfect solution, such format could lead to huge amount of

additional memory and computation.

During BRAMS execution, we noted that much of the communication could be avoided.

Instead of sending a single matrix to process and receiving a single result, we could process the

entire block by sending all the data related to the block and manage them in hardware.

Another possible solution is to explore the serialization of the MPI processes, i.e. when

they reach FPGA execution only one of the process could perform the computation at a time. For

this, we could use a master-slave approach similar to what already happens in BRAMS, where

just the master has access to the device.

A harder optimization requires the modification of BRAMS source code related to

chemical reactivity data structure — spack data structure. Fortran90 does not align components

of derived type, i.e. components from the data structure. A deeper study of this structure could

boost BRAMS performance.



91

BIBLIOGRAPHY

ACCELEWARE. OpenCL on FPGAs for GPU Programmers. [S.l.], 2014. Available at:
<https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf>. Accessed
on: May 12, 2017. Cited on page 52.

ACKERMAN, P.; ACKERMAN, S.; KNOX, J. Meteorology. Jones & Bartlett Learning,
LLC, 2013. ISBN 9781284027389. Available at: <https://books.google.com.br/books?id=
qWcrAQAAQBAJ>. Cited on page 30.

AHMAD, S.; BOPPANA, V.; GANUSOV, I.; KATHAIL, V.; RAJAGOPALAN, V.; WITTIG, R.
A 16-nm multiprocessing system-on-chip field-programmable gate array platform. IEEE Micro,
IEEE, v. 36, n. 2, p. 48–62, 2016. Cited 2 times on pages 13 and 45.

ALISSON, E. Sistema faz previsões simultâneas de tempo e qualidade do ar na América
do Sul. [S.l.], 2016. Available at: <http://agencia.fapesp.br/sistema_faz_previsoes_simultaneas_
de_tempo_e_qualidade_do_ar_na_america_do_sul/22921/>. Accessed on: Mar 20, 2017. Cited
on page 55.

ALTERA. Implementing FPGA Design with the OpenCL Standard. [S.l.], 2013. Available
at: <https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf>. Accessed on:
May 4, 2017. Cited 2 times on pages 13 and 42.

AN, J.; WANG, D. Efficient one-sided jacobi svd computation on amd gpu using opencl. In:
2016 IEEE 13th International Conference on Signal Processing (ICSP). [S.l.: s.n.], 2016. p.
491–495. ISSN 2164-5221. Cited on page 51.

ANTON, H.; RORRES, C. Elementary Linear Algebra: Applications Version, 11th Edition:.
Wiley Global Education, 2013. ISBN 9781118879160. Available at: <https://books.google.com.
br/books?id=loRbAgAAQBAJ>. Cited on page 35.

BELL, N.; GARLAND, M. Efficient sparse matrix-vector multiplication on CUDA. [S.l.],
2008. Cited on page 78.

BINDEL, D.; GOODMAN, J. Principles of scientific computing linear algebra ii, algorithms.
2006. Cited on page 36.

BITTWARE, I. S5-PCIe-HQ. [S.l.], 2015. 57 p. Cited 2 times on pages 13 and 46.

BLICKLE, T.; TEICH, J.; THIELE, L. System-level synthesis using evolutionary algorithms.
Design Automation for Embedded Systems, Springer, v. 3, n. 1, p. 23–58, 1998. Cited on
page 48.

BOBDA, C. Introduction to Reconfigurable Computing: Architectures, Algorithms, and
Applications. Springer Netherlands, 2007. ISBN 9781402061004. Available at: <https://books.
google.com.br/books?id=\_cNSgjR32LkC>. Cited on page 44.

BORKAR, S.; CHIEN, A. A. The future of microprocessors. Communications of the ACM,
ACM, v. 54, n. 5, p. 67–77, 2011. Cited on page 28.

https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://books.google.com.br/books?id=qWcrAQAAQBAJ
https://books.google.com.br/books?id=qWcrAQAAQBAJ
http://agencia.fapesp.br/sistema_faz_previsoes_simultaneas_de_tempo_e_qualidade_do_ar_na_america_do_sul/22921/
http://agencia.fapesp.br/sistema_faz_previsoes_simultaneas_de_tempo_e_qualidade_do_ar_na_america_do_sul/22921/
https://www.altera.com/en_US/pdfs/literature/wp/wp-01173-opencl.pdf
https://books.google.com.br/books?id=loRbAgAAQBAJ
https://books.google.com.br/books?id=loRbAgAAQBAJ
https://books.google.com.br/books?id=\_cNSgjR32LkC
https://books.google.com.br/books?id=\_cNSgjR32LkC


92 Bibliography

BOUT, D. V. FPGAs?! Now What? [s.n.], 2011. Available at: <http://www.xess.com/static/
media/appnotes/FpgasNowWhatBook.pdf>. Cited on page 45.

BRAVO, I.; JIMENEZ, P.; MAZO, M.; LAZARO, J. L.; GARDEL, A. Implementation in fpgas
of jacobi method to solve the eigenvalue and eigenvector problem. In: 2006 International
Conference on Field Programmable Logic and Applications. [S.l.: s.n.], 2006. p. 1–4. ISSN
1946-147X. Cited on page 49.

BUCHTY, R.; HEUVELINE, V.; KARL, W.; WEISS, J.-P. A survey on hardware-aware and
heterogeneous computing on multicore processors and accelerators. Concurrency and Compu-
tation: Practice and Experience, Wiley Online Library, v. 24, n. 7, p. 663–675, 2012. Cited
on page 38.

CHE, S.; LI, J.; SHEAFFER, J. W.; SKADRON, K.; LACH, J. Accelerating compute-intensive
applications with gpus and fpgas. In: IEEE. Application Specific Processors, 2008. SASP 2008.
Symposium on. [S.l.], 2008. p. 101–107. Cited on page 28.

CHENG, J.; GROSSMAN, M.; MCKERCHER, T. Professional CUDA C Programming.
Wiley, 2014. (Wrox : Programmer to Programmer). ISBN 9781118739310. Available at:
<https://books.google.com.br/books?id=Jgx\_BAAAQBAJ>. Cited on page 67.

CHU, P. FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 Version. Wi-
ley, 2011. ISBN 9781118210604. Available at: <https://books.google.com.br/books?id=
nXdbDRUUCyUC>. Cited on page 44.

CONG, J.; ZOU, Y. Fpga-based hardware acceleration of lithographic aerial image simulation.
ACM Transactions on Reconfigurable Technology and Systems (TRETS), ACM, v. 2, n. 3,
p. 17, 2009. Cited on page 28.

CRASSIER, V.; SUHRE, K.; TULET, P.; ROSSET, R. Development of a reduced chemical
scheme for use in mesoscale meteorological models. Atmospheric Environment, Elsevier,
v. 34, n. 16, p. 2633–2644, 2000. Cited on page 31.

CZAJKOWSKI, T. S.; AYDONAT, U.; DENISENKO, D.; FREEMAN, J.; KINSNER, M.;
NETO, D.; WONG, J.; YIANNACOURAS, P.; SINGH, D. P. From opencl to high-performance
hardware on fpgas. In: IEEE. Field Programmable Logic and Applications (FPL), 2012 22nd
International Conference on. [S.l.], 2012. p. 531–534. Cited on page 41.

CZAJKOWSKI, T. S.; NETO, D.; KINSNER, M.; AYDONAT, U.; WONG, J.; DENISENKO, D.;
YIANNACOURAS, P.; FREEMAN, J.; SINGH, D. P.; BROWN, S. D. Opencl for fpgas: Proto-
typing a compiler. In: Int’l Conf. on Engineering of Reconfigurable Systems and Algorithms
(ERSA). [S.l.: s.n.], 2012. p. 3–12. Cited 3 times on pages 13, 43, and 44.

DAGA, V.; GOVINDU, G.; PRASANNA, V.; GANGADHARAPALLI, S.; SRIDHAR, V. Ef-
ficient floating-point based block lu decomposition on fpgas. In: International Conference
on Engineering of Reconfigurable Systems and Algorithms, Las Vegas. [S.l.: s.n.], 2004. p.
21–24. Cited on page 49.

DAVISON, M. Shallow/Deep Convection. [S.l.], 1999. Available at: <http://origin.wpc.ncep.
noaa.gov/international/training/deep/sld001.htm>. Accessed on: May 8, 2017. Cited on page
30.

http://www.xess.com/static/media/appnotes/FpgasNowWhatBook.pdf
http://www.xess.com/static/media/appnotes/FpgasNowWhatBook.pdf
https://books.google.com.br/books?id=Jgx\_BAAAQBAJ
https://books.google.com.br/books?id=nXdbDRUUCyUC
https://books.google.com.br/books?id=nXdbDRUUCyUC
http://origin.wpc.ncep.noaa.gov/international/training/deep/sld001.htm
http://origin.wpc.ncep.noaa.gov/international/training/deep/sld001.htm


Bibliography 93

DINIGROUP. FPGA Selection Guide. [S.l.], 2017. Available at: <http://www.dinigroup.com/
product/common/DINI_selection_guide_v540.pdf>. Accessed on: May 4, 2017. Cited on page
46.

DONG, T.; HAIDAR, A.; LUSZCZEK, P.; TOMOV, S.; ABDELFATTAH, A.; DONGARRA, J.
Magma batched: A batched blas approach for small matrix factorizations and applications on
gpus. Aug 2016. Cited on page 87.

ELLER, P.; SINGH, K.; SANDU, A. Development and acceleration of parallel chemical transport
models. In: SOCIETY FOR COMPUTER SIMULATION INTERNATIONAL. Proceedings of
the 2010 Spring Simulation Multiconference. [S.l.], 2010. p. 90. Cited 2 times on pages 49
and 52.

ERNST, R.; HENKEL, J.; BENNER, T. Hardware-software cosynthesis for microcontrollers.
IEEE Design Test of Computers, v. 10, n. 4, p. 64–75, Dec 1993. ISSN 0740-7475. Cited on
page 48.

FAZENDA, A. L.; ENARI, E. H.; RODRIGUES, L. F.; PANETTA, J. Towards production code
effective portability among vector machines and microprocessor-based architectures. In: IEEE.
Computer Architecture and High Performance Computing, 2006. SBAC-PAD’06. 18TH
International Symposium on. [S.l.], 2006. p. 11–20. Cited on page 51.

FAZENDA, A. L.; RODRIGUES, E. R.; TOMITA, S. S.; PANETTA, J.; MENDES, C. L.
Improving the scalability of an operational scientific application in a large multi-core cluster. In:
2012 13th Symposium on Computer Systems. [S.l.: s.n.], 2012. p. 126–132. Cited on page
34.

FERNANDES, A. d. A. Paralelização do Termo de Reatividade Química do Modelo Am-
biental CCATT-BRAMS utilizando um Solver Baseado em Estimação Linear Ótima. 76 p.
Dissertação (Mestrado) — Instituto Nacional de Pesquisas Espaciais, 2014. Master’s thesis at
INPE-SP. Cited 4 times on pages 31, 51, 55, and 62.

FOERTSCH, J.; JOHNSON, J.; NAGVAJARA, P. Jacobi load flow accelerator using fpga. In:
Proceedings of the 37th Annual North American Power Symposium, 2005. [S.l.: s.n.], 2005.
p. 448–454. Cited on page 49.

FREITAS, S.; LONGO, K.; DIAS, M. S.; CHATFIELD, R.; DIAS, P. S.; ARTAXO, P.; AN-
DREAE, M.; GRELL, G.; RODRIGUES, L.; FAZENDA, A. et al. The coupled aerosol and tracer
transport model to the brazilian developments on the regional atmospheric modeling system
(catt-brams)–part 1: Model description and evaluation. Atmospheric Chemistry and Physics,
Copernicus GmbH, v. 9, n. 8, p. 2843–2861, 2009. Cited on page 29.

FREITAS, S.; LONGO, K.; TRENTMANN, J.; LATHAM, D. Technical note: Sensitivity of 1-d
smoke plume rise models to the inclusion of environmental wind drag. Atmospheric Chemistry
and Physics, Copernicus GmbH, v. 10, n. 2, p. 585–594, 2010. Cited on page 30.

FU, H.; GAN, L.; YANG, C.; XUE, W.; WANG, L.; WANG, X.; HUANG, X.; YANG, G. Solving
global shallow water equations on heterogeneous supercomputers. PloS one, Public Library of
Science, v. 12, n. 3, p. e0172583, 2017. Cited on page 52.

GAILLY, J.-l.; ADLER, M. A Massively Spiffy Yet Delicately Unobtrusive Compression
Library (Also Free, Not to Mention Unencumbered by Patents). [S.l.], 2015. Available at:
<http://www.zlib.net/>. Accessed on: Dec. 15, 2015. Cited on page 34.

http://www.dinigroup.com/product/common/DINI_selection_guide_v540.pdf
http://www.dinigroup.com/product/common/DINI_selection_guide_v540.pdf
http://www.zlib.net/


94 Bibliography

GALLERY, R. Hardware/software codesign. The ITB Journal, v. 4, n. 1, p. 5, 2015. Cited 2
times on pages 46 and 47.

GOLUB, G.; LOAN, C. V. Matrix Computations. Johns Hopkins University Press, 2013.
(Johns Hopkins Studies in the Mathematical Sciences). ISBN 9781421407944. Available at:
<https://books.google.com.br/books?id=X5YfsuCWpxMC>. Cited on page 36.

GOMES, G. A. A. Linear solvers for stable fluids: Gpu vs cpu. 17th EncontroPortugues de
ComputacaoGrafica (EPCG09), p. 145–153, 2009. Cited on page 51.

GRAHAM, S.; PARKINSON, C.; CHAHINE, M. Weather Forecasting Through the Ages.
[S.l.], 2002. Available at: <http://earthobservatory.nasa.gov/Features/WxForecasting/wx.php>.
Accessed on: July 30, 2015. Cited on page 25.

GRØNØS, S. Vilhelm bjerknes’ vision for scientific weather prediction. The Nordic Seas: An
Integrated Perspective, Wiley Online Library, p. 357–366, 2005. Cited on page 26.

GROPP, W.; HOEFLER, T.; LUSK, E.; THAKUR, R. Using Advanced MPI: Modern Features
of the Message-Passing Interface. MIT Press, 2014. (Computer science & intelligent systems).
ISBN 9780262527637. Available at: <https://books.google.com.br/books?id=Po5IBQAAQBAJ>.
Cited on page 35.

GROUP, H. HDF5 Technologies. [S.l.], 2011. Available at: <https://www.hdfgroup.org/about/
hdf_technologies.html>. Accessed on: Dec. 15, 2015. Cited on page 34.

GUPTA, P. Xeon+FPGA Platform for the Data Center. [S.l.], 2015. Available at: <https:
//www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf>. Accessed on: Apr
10, 2017. Cited on page 46.

GUPTA, R. K.; MICHELI, G. D. Hardware-software cosynthesis for digital systems. IEEE
Design Test of Computers, v. 10, n. 3, p. 29–41, Sept 1993. ISSN 0740-7475. Cited on page
48.

GáCITA, M. S. Estudos Numéricos de Química Atmosférica para a região do Caribe e
América Central com Ênfase em Cuba. Dissertação (Mestrado) — Instituto Nacional de
Pesquisas Espaciais - INPE, São José dos Campos - SP - Brasil, 2011. Cited on page 31.

HARRIS, M. How to Optimize Data Transfers in CUDA C/C++. [S.l.], 2012. Available at:
<https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/>. Accessed
on: Apr 3, 2017. Cited 2 times on pages 14 and 67.

HENKEL, M. 21st Century Homestead: Sustainable Agriculture II: Farming and Natural
Resources. Lulu.com, 2015. ISBN 9781312939684. Available at: <https://books.google.com.br/
books?id=jmHxCQAAQBAJ>. Cited on page 25.

HRZ. MPI + OpenCL Altera. [S.l.], 2017. Available at: <http://www.alteraforum.com/forum/
showthread.php?t=55035>. Accessed on: Mar 6, 2017. Cited on page 71.

INPE/CPTEC. Model Description. [S.l.], 2015. Available at: <http://brams.cptec.inpe.br/>.
Accessed on: Dec. 16, 2015. Cited on page 29.

INTEL. Intel FPGA SDK for OpenCL – Best Practices Guide. [S.l.], 2016. Avail-
able at: <https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.
pdf>. Accessed on: Mar 29, 2017. Cited 8 times on pages 13, 15, 42, 43, 57, 64, 74, and 82.

https://books.google.com.br/books?id=X5YfsuCWpxMC
http://earthobservatory.nasa.gov/Features/WxForecasting/wx.php
https://books.google.com.br/books?id=Po5IBQAAQBAJ
https://www.hdfgroup.org/about/hdf_technologies.html
https://www.hdfgroup.org/about/hdf_technologies.html
https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/
https://books.google.com.br/books?id=jmHxCQAAQBAJ
https://books.google.com.br/books?id=jmHxCQAAQBAJ
http://www.alteraforum.com/forum/showthread.php?t=55035
http://www.alteraforum.com/forum/showthread.php?t=55035
http://brams.cptec.inpe.br/
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf


Bibliography 95

. Intel FPGA SDK for OpenCL – Programming Guide. [S.l.], 2016. Avail-
able at: <https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.
pdf>. Accessed on: May 4, 2017. Cited on page 42.

JANIK, I.; TANG, Q.; KHALID, M. An overview of altera sdk for opencl: A user perspec-
tive. In: IEEE. Electrical and Computer Engineering (CCECE), 2015 IEEE 28th Canadian
Conference on. [S.l.], 2015. p. 559–564. Cited 2 times on pages 43 and 44.

KAPRE, N.; DEHON, A. Parallelizing sparse matrix solve for spice circuit simulation using fpgas.
In: IEEE. Field-Programmable Technology, 2009. FPT 2009. International Conference on.
[S.l.], 2009. p. 190–198. Cited on page 48.

. rmSPICE2: Spatial processors interconnected for concurrent execution for accelerating
the spice circuit simulator using an fpga. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, v. 31, n. 1, p. 9–22, Jan 2012. ISSN 0278-0070. Cited on
page 49.

KARNIADAKIS, G.; KIRBY, R. Parallel Scientific Computing in C++ and MPI: A Seam-
less Approach to Parallel Algorithms and their Implementation. Cambridge University
Press, 2003. ISBN 9781107494770. Available at: <https://books.google.com.br/books?id=
Py8XAgAAQBAJ>. Cited on page 35.

KASBAH, S. J.; DAMAJ, I. W. The jacobi method in reconfigurable hardware. In: World
Congress on Engineering. [S.l.: s.n.], 2007. p. 823–827. Cited on page 49.

KHUSHPREETKAUR, H. Convergence of jacobi and gauss-seidel method and error reduction
factor. IOSR Journal of Mathematics (IOSRJM), v. 2, p. 20–23, 2012. Cited on page 85.

KIRK, D. B.; WEN-MEI, W. H. Programming massively parallel processors: a hands-on
approach. [S.l.]: Newnes, 2012. Cited on page 27.

KRISHNAIYER, R. Data Alignment to Assist Vectorization. [S.l.], 2015. Available at: <https:
//software.intel.com/en-us/articles/data-alignment-to-assist-vectorization>. Accessed on: Mar
21, 2017. Cited on page 62.

KUNDERT, K. S.; SANGIOVANNI-VINCENTELLI, A. Sparse1.3. [S.l.], 1988. Available at:
<http://web.cs.ucla.edu/classes/CS258G/sis-1.3/sis/linsolv/>. Accessed on: Oct. 28, 2015. Cited
2 times on pages 32 and 36.

LABORATORY, E. S. R. Regional Modeling. [S.l.], 2015. Available at: <http://www.esrl.noaa.
gov/research/themes/regional>. Accessed on: July 30, 2015. Cited 2 times on pages 25 and 26.

LAMBERS, J. Jacobi Methods. [S.l.], 2010. Available at: <http://web.stanford.edu/class/
cme335/lecture7.pdf>. Accessed on: May 11, 2017. Cited on page 51.

LARSON, R. Elementary Linear Algebra. Cengage Learning, 2016. ISBN 9781305887824.
Available at: <https://books.google.com.br/books?id=2sQaCgAAQBAJ>. Cited on page 35.

LINFORD, J. C.; MICHALAKES, J.; VACHHARAJANI, M.; SANDU, A. Multi-core ac-
celeration of chemical kinetics for simulation and prediction. In: IEEE. High Performance
Computing Networking, Storage and Analysis, Proceedings of the Conference on. [S.l.],
2009. p. 1–11. Cited on page 55.

https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://books.google.com.br/books?id=Py8XAgAAQBAJ
https://books.google.com.br/books?id=Py8XAgAAQBAJ
https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization
https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization
http://web.cs.ucla.edu/classes/CS258G/sis-1.3/sis/linsolv/
http://www.esrl.noaa.gov/research/themes/regional
http://www.esrl.noaa.gov/research/themes/regional
http://web.stanford.edu/class/cme335/lecture7.pdf
http://web.stanford.edu/class/cme335/lecture7.pdf
https://books.google.com.br/books?id=2sQaCgAAQBAJ


96 Bibliography

LINFORD, J. C.; SANDU, A. Vector stream processing for effective application of heterogeneous
parallelism. In: Proceedings of the 2009 ACM Symposium on Applied Computing. New
York, NY, USA: ACM, 2009. (SAC ’09), p. 976–980. ISBN 978-1-60558-166-8. Available at:
<http://doi.acm.org/10.1145/1529282.1529496>. Cited on page 51.

LONGO, K.; FREITAS, S.; PIRRE, M.; MARÉCAL, V.; RODRIGUES, L.; PANETTA, J.;
ALONSO, M.; ROSÁRIO, N.; MOREIRA, D.; GÁCITA, M. et al. The chemistry catt–brams
model (ccatt–brams 4.5): a regional atmospheric model system for integrated air quality and
weather forecasting and research. Model Dev. Discuss, v. 6, p. 1173–1222, 2013. Cited 4 times
on pages 13, 29, 30, and 31.

LYNCH, P. The origins of computer weather prediction and climate modeling. Journal of
Computational Physics, Elsevier, v. 227, n. 7, p. 3431–3444, 2008. Cited on page 26.

MCEWEN, J.; EYERS, D. szip1.0b1 Data compression on the sphere. [S.l.], 2011. Available
at: <http://www.jasonmcewen.org/codes/szip/>. Accessed on: Dec. 15, 2015. Cited on page 34.

MICHALAKES, J.; VACHHRAJANI, M. Gpu acceleration of numerical weather predic-
tion. Parallel Processing Letters, v. 18, n. 04, p. 531–548, 2008. Available at: <http://www.
worldscientific.com/doi/abs/10.1142/S0129626408003557>. Cited on page 51.

MOORE ANDREW; WILSON, R. FPGAs for Dummies. Wiley, 2017. ISBN 978-1-119-39047-
3. Available at: <https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/
misc/fpgas_for_dummies_ebook.pdf>. Cited on page 44.

MOREIRA, D.; FREITAS, S.; BONATTI, J.; MERCADO, L.; ROSÁRIO, N.; LONGO, K.;
MILLER, J.; GLOOR, M.; GATTI, L. Coupling between the jules land-surface scheme and
the ccatt-brams atmospheric chemistry model (jules-ccatt-brams1. 0): applications to numerical
weather forecasting and the co 2 budget in south america. Geoscientific Model Development,
Copernicus GmbH, v. 6, n. 4, p. 1243–1259, 2013. Cited on page 32.

MORRIS, G. R.; PRASANNA, V. K. An fpga-based floating-point jacobi iterative solver. In:
IEEE. Parallel Architectures, Algorithms and Networks, 2005. ISPAN 2005. Proceedings.
8th International Symposium on. [S.l.], 2005. p. 8–pp. Cited 3 times on pages 36, 49, and 57.

MPICH. MPICH Overview. [S.l.], 2015. Available at: <https://www.mpich.org/about/overview/
>. Accessed on: Dec. 15, 2015. Cited on page 34.

MUNSHI, A. The OpenCL Specification. [S.l.], 2009. Available at: <https://www.khronos.org/
registry/OpenCL/specs/opencl-1.0.pdf>. Accessed on: Mar 21, 2017. Cited 4 times on pages
13, 40, 41, and 60.

MUNSHI, A.; GASTER, B.; MATTSON, T. G.; GINSBURG, D. OpenCL programming guide.
[S.l.]: Pearson Education, 2011. Cited 4 times on pages 37, 38, 40, and 61.

NIELSEN, F. Introduction to HPC with MPI for Data Science. Springer International Pub-
lishing, 2016. (Undergraduate Topics in Computer Science). ISBN 9783319219035. Available
at: <https://books.google.com.br/books?id=eDiFCwAAQBAJ>. Cited on page 35.

OSTHOFF, C.; SCHEPKE, C.; VILASBÔAS, F.; BOITO, F.; PANETTA, J.; PILLA, L.; MAIL-
LARD, N.; GRUNMANN, P.; DIAS, P. L. S.; LOPES, P. P. et al. Improving Atmospheric
Model Performance on a Multi-Core Cluster System. [S.l.]: INTECH Open Access Publisher,
2012. Cited on page 26.

http://doi.acm.org/10.1145/1529282.1529496
http://www.jasonmcewen.org/codes/szip/
http://www.worldscientific.com/doi/abs/10.1142/S0129626408003557
http://www.worldscientific.com/doi/abs/10.1142/S0129626408003557
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/misc/fpgas_for_dummies_ebook.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/misc/fpgas_for_dummies_ebook.pdf
https://www.mpich.org/about/overview/
https://www.mpich.org/about/overview/
https://www.khronos.org/registry/OpenCL/specs/opencl-1.0.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.0.pdf
https://books.google.com.br/books?id=eDiFCwAAQBAJ


Bibliography 97

PANETTA, J. Production. [S.l.], 2015. Available at: <http://www.cesup.ufrgs.br/videos/
jairo-panetta/view>. Accessed on: Oct. 28, 2015. Cited on page 26.

PATTERSON, D.; HENNESSY, J. Computer Organization and Design: The Hardware/soft-
ware Interface. Morgan Kaufmann, 2012. (Morgan Kaufmann Series in Computer Graphics).
ISBN 9780123747501. Available at: <https://books.google.com.br/books?id=DMxe9AI4-9gC>.
Cited 3 times on pages 13, 37, and 38.

PENG, R. Algorithm design using spectral graph theory. Tese (Doutorado) — Microsoft
Research, 2013. Cited on page 36.

PRASANNA, V. K.; MORRIS, G. R. Sparse matrix computations on reconfigurable hardware.
Computer, v. 40, n. 3, p. 58–64, March 2007. ISSN 0018-9162. Cited on page 49.

RANDALL, D. A. An Introduction to Atmospheric Modeling. [s.n.], 2013. Available at:
<http://kiwi.atmos.colostate.edu/group/dave/at604.html>. Cited on page 30.

RAYMOND, E. S. The Cathedral & the Bazaar: Musings on linux and open source by an
accidental revolutionary. [S.l.]: " O’Reilly Media, Inc.", 2001. Cited on page 29.

REW, R.; DAVIS, G. Netcdf: an interface for scientific data access. IEEE Computer Graphics
and Applications, v. 10, n. 4, p. 76–82, July 1990. ISSN 0272-1716. Cited on page 32.

REW, R. K. What Is netCDF? [S.l.], 2015. Available at: <http://www.unidata.ucar.edu/software/
netcdf/docs/faq.html#whatisit>. Accessed on: Dec. 15, 2015. Cited on page 32.

RODRIGUES, E. R.; MADRUGA, F. L.; NAVAUX, P. O.; PANETTA, J. Multi-core aware
process mapping and its impact on communication overhead of parallel applications. In: IEEE.
Computers and Communications, 2009. ISCC 2009. IEEE Symposium on. [S.l.], 2009. p.
811–817. Cited on page 57.

RUAN, H.; HUANG, X.; FU, H.; YANG, G. Jacobi solver: A fast fpga-based engine system for
jacobi method. Research Journal of Applied Sciences, Engineering and Technology, March
2013. ISSN 2040-7459. Cited on page 50.

SCHAUMONT, P. A practical introduction to hardware/software codesign. [S.l.]: Springer
Science & Business Media, 2012. Cited 3 times on pages 13, 47, and 48.

SCHMID, M.; REICHE, O.; SCHMITT, C.; HANNIG, F.; TEICH, J. Code generation for
high-level synthesis of multiresolution applications on fpgas. arXiv preprint arXiv:1408.4721,
2014. Cited 2 times on pages 50 and 51.

SILVA, E. Pereira da. Projeto de um Processador Open Source em Bluespec Baseado no Pro-
cessador Soft-core Nios II da Altera. 95 p. Dissertação (Mestrado em Ciência da Computação)
— Univerisity of São Paulo, São Paulo, 2014. Cited on page 45.

SOCIETY, A. M. Weather Forecasting. [S.l.], 2015. Available at: <http://www.ametsoc.org/
policy/weaforc.html>. Accessed on: Sept. 27, 2015. Cited on page 25.

STOCKWELL, W. R.; KIRCHNER, F.; KUHN, M.; SEEFELD, S. A new mechanism for
regional atmospheric chemistry modeling. Journal of Geophysical Research: Atmospheres
(1984–2012), Wiley Online Library, v. 102, n. D22, p. 25847–25879, 1997. Cited on page 31.

http://www.cesup.ufrgs.br/videos/jairo-panetta/view
http://www.cesup.ufrgs.br/videos/jairo-panetta/view
https://books.google.com.br/books?id=DMxe9AI4-9gC
http://kiwi.atmos.colostate.edu/group/dave/at604.html
http://www.unidata.ucar.edu/software/netcdf/docs/faq.html#whatisit
http://www.unidata.ucar.edu/software/netcdf/docs/faq.html#whatisit
http://www.ametsoc.org/policy/weaforc.html
http://www.ametsoc.org/policy/weaforc.html


98 Bibliography

TAMULI, M.; DEBNATH, S.; RAY, A.; MAJUMDER, S. A review on jacobi iterative solver and
its hardware based performance analysis. In: proceedings of 1st International Conference on
Power, Dielectric and Energy Management at NERIST. [S.l.: s.n.], 2015. p. 10–11. Cited
on page 85.

TEICH, J. Hardware/software codesign: The past, the present, and predicting the future. Pro-
ceedings of the IEEE, IEEE, v. 100, n. Special Centennial Issue, p. 1411–1430, 2012. Cited
on page 46.

TSUCHIYAMA, R.; NAKAMURA, T.; IIZUKA, T.; ASAHARA, A.; SON, J.; MIKI, S. The
OpenCL Programming Book. Fixstars, 2012. Available at: <https://books.google.com.br/
books?id=O86m1hJxA6QC>. Cited 2 times on pages 37 and 40.

VAUGHAN, C. Deep Thoughts on Deep Convection. [S.l.], 2009. Available at: <http://blogs.
ei.columbia.edu/2009/03/01/deep-thoughts-on-deep-convection/>. Accessed on: May 8, 2017.
Cited on page 30.

VERWER, J. G.; SPEE, E. J.; BLOM, J. G.; HUNDSDORFER, W. A second-order rosen-
brock method applied to photochemical dispersion problems. SIAM Journal on Scientific
Computing, SIAM, v. 20, n. 4, p. 1456–1480, 1999. Cited on page 31.

WANG, T.; WEI, P. Hardware efficient architectures of improved jacobi method to solve the eigen
problem. In: 2010 2nd International Conference on Computer Engineering and Technology.
[S.l.: s.n.], 2010. v. 6, p. V6–22–V6–25. Cited on page 49.

WANNER, G.; HAIRER, E. Solving ordinary differential equations ii. Stiff and Differential-
Algebraic Problems, 1991. Cited on page 31.

WARNER, T. T. Numerical weather and climate prediction. [S.l.]: Cambridge University
Press, 2010. Cited 2 times on pages 25 and 26.

WILLIS, E. P.; HOOKE, W. H. Cleveland abbe and american meteorology, 1871-1901. Bulletin
of the American Meteorological Society, v. 87, n. 3, p. 315–326, 2006. Cited on page 26.

WU, W.; SHAN, Y.; CHEN, X.; WANG, Y.; YANG, H. Fpga accelerated parallel sparse matrix
factorization for circuit simulations. In: SPRINGER. International Symposium on Applied
Reconfigurable Computing. [S.l.], 2011. p. 302–315. Cited on page 49.

YANG, C.; XUE, W.; FU, H.; YOU, H.; WANG, X.; AO, Y.; LIU, F.; GAN, L.; XU, P.; WANG, L.
et al. 10m-core scalable fully-implicit solver for nonhydrostatic atmospheric dynamics. In: IEEE
PRESS. Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. [S.l.], 2016. p. 6. Cited on page 52.

YARWOOD, G.; RAO, S.; YOCKE, M.; WHITTEN, G. Updates to the carbon bond chemical
mechanism: Cb05. Final report to the US EPA, RT-0400675, v. 8, 2005. Cited on page 31.

ZHANG, H.; LINFORD, J. C.; SANDU, A.; SANDER, R. Chemical mechanism solvers in
air quality models. Atmosphere, v. 2, n. 3, p. 510–532, 2011. ISSN 2073-4433. Available at:
<http://www.mdpi.com/2073-4433/2/3/510>. Cited 2 times on pages 55 and 57.

ZHUO, L.; PRASANNA, V. K. Sparse matrix-vector multiplication on fpgas. In: Proceedings
of the 2005 ACM/SIGDA 13th International Symposium on Field-programmable Gate Ar-
rays. New York, NY, USA: ACM, 2005. (FPGA ’05), p. 63–74. ISBN 1-59593-029-9. Available
at: <http://doi.acm.org/10.1145/1046192.1046202>. Cited on page 48.

https://books.google.com.br/books?id=O86m1hJxA6QC
https://books.google.com.br/books?id=O86m1hJxA6QC
http://blogs.ei.columbia.edu/2009/03/01/deep-thoughts-on-deep-convection/
http://blogs.ei.columbia.edu/2009/03/01/deep-thoughts-on-deep-convection/
http://www.mdpi.com/2073-4433/2/3/510
http://doi.acm.org/10.1145/1046192.1046202


Bibliography 99

. High-performance and parameterized matrix factorization on fpgas. In: IEEE. Field
Programmable Logic and Applications, 2006. FPL’06. International Conference on. [S.l.],
2006. p. 1–6. Cited on page 49.





Appendix





103

APPENDIX

A

INSTALLATION

In this Appendix, we describe the installation of BRAMS 5.2 and its libraries. Before

compiling BRAMS and the necessary libraries, the user needs to install Intel Fortran Compiler1

(ifort); our tests with gfortran failed.

After installing ifort, the user can proceed to compile the libraries2 below. We provide

useful links to libraries and BRAMS source code in Annex A.

∙ netcdf 4.1.3;

∙ hdf5 1.8.15;

∙ zlib 1.2.8;

∙ szip 2.1;

∙ mpich 3.1.4.

In this section, we consider the following directory structure for local installation3.

Main directory: home/<username>/brams

Libraries: home/<username>/brams/lib

Source code of BRAMS 5.2: home/<username>/brams/model

Each library demands its configuration, but the steps afterward are the same. The user

needs to make, make check and make install. Do not ignore the make check command, the

user must read the log file to find any particular problem.

∙ Compile Zlib.
1 https://software.intel.com/en-us/fortran-compilers
2 It is important to point out that it is necessary the same library versions cited in this section.
3 The user may choose another location.



104 APPENDIX A. Installation

1 $ CC= i c c FC= i f o r t CPP= i c p c . / c o n f i g u r e −−p r e f i x = / home / <

username >/ brams / l i b / z l i b / 1 . 2 . 8 /

∙ Compile Szip.

1 $ CC= i c c FC= i f o r t CXX= i c p c F77= i f o r t . / c o n f i g u r e −−p r e f i x = /

home / < username >/ brams / l i b / s z i p / 2 . 1 /

∙ Compile Mpich.

1 $ CFLAGS=−O2 FFLAGS=−O2 CXXFLAGS=−O2 FCFLAGS=−O2 CC= i c c FC=

i f o r t F77= i f o r t CXX= i c p c . / c o n f i g u r e −−d i s a b l e − f a s t −−

p r e f i x = / home / < username >/ brams / l i b / mpich / 3 . 1 . 4

– Before the installation of Mpich you need to export the bin directory to bash file.

1 $ g e d i t ~ / . b a s h r c

2 export PATH=\$PATH : / home / < username >/ brams / l i b / mpich

/ 3 . 1 . 4 / b i n

3 $ source ~ / . b a s h r c

– Additionally you need to add your computer to the hosts list.

1 $ g e d i t / e t c / h o s t s

2 1 2 7 . 0 . 1 . 1 <computer−name>

∙ Compile hdf5 and enable parallelism and fortran.

1 $ CFLAGS=−O2 FCFLAGS=−O2 CXXFLAGS=−O2 CC=/ home / < username >/

brams / l i b / mpich / 3 . 1 . 4 / b i n / mpicc FC=/ home / < username >/

brams / l i b / mpich / 3 . 1 . 4 / b i n / mpif90 CXX=/ home / < username >/

brams / l i b / mpich / 3 . 1 . 4 / b i n / mpicxx . / c o n f i g u r e −−enable−

f o r t r a n −−enable−p a r a l l e l −−p r e f i x = / home / < username >/

brams / l i b / hdf5 / 1 . 8 . 1 5 /

∙ Compile Netcdf with gcc and ifort, disable “netcdf-4" option.

1 $ FC= i f o r t F77= i f o r t F90= i f o r t CC=gcc . / c o n f i g u r e −−p r e f i x

= / home / < username >/ brams / l i b / n e t c d f / 4 . 1 . 3 / −−d i s a b l e −

s h a r e d −−d i s a b l e −n e t c d f −4 −−enable−f o r t r a n

∙ Compile JULES and make some modifications.

– Backup the LIB directory of JULES;

– Rename makefile_ifort to makefile;



105

– Edit the variable BUILD=debug to BUILD=fast.

After installing all the required libraries, the user may proceed to BRAMS installation.

BRAMS source code is available in Annex A.

∙ Go to /home/<username>/brams/model/build

∙ Configure BRAMS;

1 $ . / c o n f i g u r e −−program−p r e f i x =BRAMS −−p r e f i x = . . / i n s t a l l −−

enable− j u l e s −−with−chem=RELACS_TUV −−with−a e r =SIMPLE −−

with−fpcomp =/ home / < username >/ brams / l i b / hdf5 / 1 . 8 . 1 5 / b i n /

h5pfc −−with−cpcomp =/ home / < username >/ brams / l i b / hdf5

/ 1 . 8 . 1 5 / b i n / h5pcc −−with−fcomp= i f o r t −−with−ccomp= i c c −−

with−z l i b = / home / < username >/ brams / l i b / z l i b / 1 . 2 . 8 /

With BRAMS installed, the user may want to test it. CPTEC/INPE provides a test case;

the user can also find this link in Annex A. The steps below refer to the installation of BRAMS’s

test case. The user must choose where it want to install the test case.

∙ Rename ANL, HIS and POSPROCESS to ANL.old, HIS.old and POSPROCESS.old;

∙ Create new directories with the respective names ANL, HIS and POSPROCESS;

∙ Rename RAMSIN to RAMSIN.bak;

∙ Make a copy of RAMSIN-5.1-meteo-only and rename it to RAMSIN;

∙ Download surface data and place it on datain directory;

∙ Edit RAMSIN file according to the following lines:

– Rename all

1 / Use r s / s a u l o f r e i t a s / work t o / home / < username >/ run / b i n /

t e s t c a s e _ b r a m s 5 . 1 / s h a r e d _ d a t a i n /SURFACE_DATA

– Rename CCATT = 0 to CCATT = 1;

– Rename CHEMISTRY = -1 to CHEMISTRY = 4;

∙ Move the executable of BRAMS to <testcase_home>;

For executing BRAMS, the user needs the following command:

1 mpirun −np N . / e x e c u t a b l e −f RAMSIN

Where N is the number of cores running in parallel BRAMS.





107

APPENDIX

B

OBSERVING THE RESULTS

BRAMS will write two outputs on POS directory. They are in Grads format. On Ubuntu

it is possible to install Grads through apt-get:

1 $ sudo ap t−g e t i n s t a l l g r a d s

In other operating systems, it is necessary to download from Grads website. The link

for Grads is also available in Appendix A, download and install it according to the website

instructions.

After installing Grads, go to POS directory. For each model output, there is a file with a

description of extension .ctl and another extension .bin which contains the binary output. For

opening them, use the following command:

1 $ g r a d s − l

This command will display a prompt for the graphical output, and the terminal will return

“ga->". With this prompt, the user can open a .ctl file, for example:

1 $ ga−> open l i g h t −A−2015−08−27−030000−g1 . c t l

It will display something like this:

1 LON s e t t o −64.9338 −59.8931

2 LAT s e t t o −3.6793 1 .35826

3 LEV s e t t o 1000 1000

4 Time v a l u e s s e t : 2 0 1 5 : 8 : 2 7 : 0 2 0 1 5 : 8 : 2 7 : 0

5 E s e t t o 1 1

You can also check the variables in the file:

1 $ ga−> q f i l e



108 APPENDIX B. Observing the results

The screen will display a variable list and other data. For plotting a variable, use the

command “d" and the variable name as in the example below:

1 $ ga−> d tempc

For more information type help command. Now the user is able to see the results and

compare with the test case provided by INPE/CPTEC. We used this test case for profiling the

application.



109

ANNEX

A

USEFUL LINKS

∙ Libraries:

– <ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.1.3.tar.gz>

– <http://www.hdfgroup.org/ftp/HDF5/current/src/hdf5-1.8.15-patch1.tar.gz>

– <http://zlib.net/zlib-1.2.8.tar.gz>

– <http://www.hdfgroup.org/ftp/lib-external/szip/2.1/src/szip-2.1.tar.gz>

– <http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz>

∙ BRAMS:

– <ftp://ftp1.cptec.inpe.br/poluicao/BRAMS/src/BRAMS.tgz>

∙ BRAMS testcase:

– <ftp://ftp1.cptec.inpe.br/poluicao/BRAMS/testcase/testcase_brams5.1.tgz>

∙ Grads

– <http://www.iges.org/grads/>

ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.1.3.tar.gz
http://www.hdfgroup.org/ftp/HDF5/current/src/hdf5-1.8.15-patch1.tar.gz
http://zlib.net/zlib-1.2.8.tar.gz
http://www.hdfgroup.org/ftp/lib-external/szip/2.1/src/szip-2.1.tar.gz
http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz
ftp://ftp1.cptec.inpe.br/poluicao/BRAMS/src/BRAMS.tgz
ftp://ftp1.cptec.inpe.br/poluicao/BRAMS/testcase/testcase_brams5.1.tgz
http://www.iges.org/grads/


U
N

IV
E

R
S

ID
A

D
E

 D
E

 S
Ã

O
 P

A
U

L
O

In
st

it
u

to
 d

e
 C

iê
n

ci
a

s 
M

a
te

m
á

ti
ca

s 
e

 d
e

 C
o

m
p

u
ta

çã
o


