
A Hardware/Software Partitioner using a dynamically determined
Granularity

Jörg Henkel Rolf Ernst
C&C Research Laboratories Institut für DV–Anlagen

NEC USA, Princeton, NJ 08540 Technische Universität Braunschweig
henkel@ccrl.nj.nec.com D–38106 Braunschweig, Germany

ABSTRACT

Computer aided hardware/software partitioning is one of the key
challenges in hardware/software co-design. While previous ap-
proaches have used a fixed granularity, i.e. the size of the parti-
tioning objects was fixed, we present a partitioning approach that
dynamically determines the partitioning granularity to adapt opti-
mization steps to application properties and to intermediate opti-
mization results. Experiments with simulated annealing optimiza-
tion show a faster convergence and far better adaptability to cost
function variations than in previous experiments with fixed granu-
larity.

1 Introduction

Computer aided hardware/software partitioning is one of the most
challenging tasks in co-design. With 100 million transistor systems-
on-a-chip [1], it will become a key factor for design space explo-
ration and, eventually, be used in automated co-synthesis flow to
speed up the design process.

Even today, interactive co-synthesis has successfully been used
in first industrial projects, where 50% saving (including develop-
ment and product cost) could be reported [2].

However, computer aided partitioning must always be compared
to manual design decisions. While many partitioning approaches
just consider partitioning and allocation at the level of complete
functions or even processes, at least data dominated applications
such as high speed signal processing need a finer granularity, e.g.,
to make use of loop parallelization and pipelining as the designer
would do. Manual rewriting of functions to get smaller functions
just for the purpose of partitioning is a tedious and error–prone
task. Partitioning with a finer granularity, however, suffers from a
huge design space which might not be necessary for many system
functions and is therefore bound to make optimization less efficient.

In a manual design the designer typically adapts his or her focus
to the critical parts of a system. Applied to computer aided parti-

Design Automation Conference R
Copyright c 1997 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

tioning, this means to depart from the fixed granularity of current
approaches and introduce a dynamically adapted granularity.

In this paper we present a new method for automated hard-
ware/software partitioning since the granularity — i.e. the size of
system parts that can either be implemented as hardware or as
software — is determined during the partitioning process i.e. it is
dynamically determined. This offers the opportunity to obtain a
better adaptation of the partitioning process and a specific appli-
cation and hence to obtain better partitioning results in terms of
implementation cost and computation times used for partitioning.

The outline of this paper is as follows: In section 2 an overview
of approaches to hardware/software co–synthesis and especially to
hardware/software partitioning is given. Then section 3 gives an
overview of our approach whereas section 4 describes the according
algorithms in detail. Section 5 describes the results that confirm the
usefulness of the approach. Finally a conclusion is given.

2 Related work

The first approaches to automated hardware/software partitioning
have been presented in the VULCAN II system [3] and in COSYMA
[4]. Both approaches use a fine–grain partitioning(basic block).
Coarse–grainpartitioning on the other side means that whole func-
tions or processes are moved from software to hardware or vice
versa in order to find the best hardware/software tradeoff.
The approaches described in [5, 6, 7, 8, 10, 11, 12] use also fine–
grain partitioning whereas [13, 14, 16, 17, 18] use coarse–grain
partitioning. Some other approaches do not perform automatic
partitioning but concentrate on interface synthesis [19, 20] or on
co-simulation [21].
All these approacheshave in common that their granularity is fixed.
Our approach has previously also been limited to relatively fine
grain. (basic block). The new partitioning approach is not any
longer limited in this way since it determines the granularity dur-
ing the partitioning process (i.e. dynamically) through moving very
small and very large system parts — according to the peculiarities
of a specific application and the given constraints.

3 Problem definition and fundamental approach

Since different applications have different peculiarities like

� programming style,
� size (lines of code) and
� type of application (control or data–dominated etc.)

a fixed granularity during partitioning can cause an expensive hard-
ware/software system (production and development cost).

Example 1:
Given the specification of a real–time system consisting of the two
tasks T1 and T2. Furthermore, assume that the target architecture
consists of one standard processor core (SW) and an application
specific hardware (HW). There are only four possibilities for parti-
tioning (the arrow "!" has the meaning "is implemented on"):

1) T1, T2 ! SW
2) T1 ! SW; T2 ! HW
3) T1 ! HW;T2 ! SW
4) T1, T2 ! HW

Case 1) and 4) are the trivial cases. Hardware/software systems usu-
ally are represented by cases 2) and 3). Maybe, the given real–time
constraints could be met by only implementing one computation in-
tensive loop — hidden in T1 or T2 — as hardware. Nervertheless,
a whole task has to be implemented in hardware. This can lead to a
hardware/software system that is many times more expensive than
necessary.

Example 2:
The target architecture assumed in this case is the same as in ex-
ample 1. But now the granularity is fine–grain (e.g. basic block)
and the specification of the hardware/software system is quite large
(e.g. > 1000 basic blocks). For the case that each basic block can
possibly be implemented as hardware or as software there are 21000

different implementations. Independent from the chosen optimiza-
tion algorithm it is hard to find the global optimum i.e. the cheapest
implementation that meets all given constraints.

The first example gives a characteristic disadvantageof coarse–
grain partitioning whereas the second one is disadvantageous when
using fine–grain partitioning.

The main idea of our approach is to combine the advantages
of fine–grain and coarse–grain partitioning using a dynamically
determined granularity since that:

a) permits the implementation of very small as well as very
large system parts to be implemented as sw or as hw.

b) avoids large computation times.

Our approach consists of three following principal steps:
Step 1:

The high–level behavioural description (a superset of ANSI C) of
the real–time application is transformed into a control flow graph
(cfg) where each node represents a basic block or a single instruc-
tion. We call this our base granularity.

Step 2:
The smallest possible parts are integrated into partitioning objects.
Thereby, the smallest partitioning object can consist of only one
basic block or instruction whereas the largest one contains the
whole real–time application. Partitioning objects can share same
parts of the application i.e. they are not mutual exclusive.

� Small system parts as well as large system parts can be imple-
mented as hw or as sw without distinctly increasing computation
time.

� Constraints of different criticalness can easily be found due to
more possibilities.

� The computation time to generate the partitioning objects is very
small since this step needs no behavioural information.

Note that this step is performed by using structural information of
the application only. Nevertheless the algorithm (detailed described
in section 4.2) creates the objects in such a way that they may be
promising candidates to be implemented as hardware or as software.

Step 3:
In contradiction to the last step this step uses behavioural informa-
tion in order generate the so–called macro instruction. A macro
instruction is composed of at least one partitioning object. It is

node number

nesting level

Figure 1: Example of a graph G with corresponding source code

generated an optimization algorithm that integrates partitioning ob-
jects into macro instructions controlled by an objective function.
According to the hardness of the (time) constraints the algorithm
therfore automatically picks up small or large partitioning objects.

The next section describes in detail each of the above steps.
Thereby subsection 4.1 describes step 1, subsection 4.2 refers to
step 2 and subsections 4.3, 4.4 and 4.5 belong to step 3.

4 Partitioning method

4.1 Defining a base granularity

First the behavioural description given in a high–level language
is transformed into a cfg G = fV; Eg. Each node vi 2 V cor-
responds to a part of the application that itself belongs to the base
granularity (a single instruction or a basic block). There are three
different types of nodes. A node that

� contains straight forward code. Designation: vBi with vBi 2
V B; V B � V .

� contains the beginning of a control construct (e.g. the beginning
of a loop or branch). Designation: vSi with vSi 2 V S; V S � V .

� contains the end of a control construct. Designation: vEi with
vEi 2 V E; V E � V .

An edge ei;j 2 V gives the direction of the control flow from node
vi to node vj . A node vi = pred(vj) is called the predecessor of
node vj if there is an edge ei;j . Accordingly a node vj = succ(vi)
is called the successor of node vi if there is an edge ei;j . The set of
all successor of a node vi is SUCC(vi), the set of all predecessors
is PRED(vi).
Furthermore there are two dedicated nodes: a start node and an end
node. For the algorithm in the next subsection a so–called nesting
levelST as an attribute of a node is needed. It is defined as follows:

ST (vi) :=

8<
:

1 : vi is start node
ST (pred(vi)) + 1 : pred(vi) 2 V S

maxfST (pred(vi))g � 1 : vi 2 V E

ST (pred(vi)) : else

Figure 2: Steps of generating the partitioning objects for an example

4.2 Generating the partitioning objects

Before the algorithm for generating the partitiong objects is de-
scribed the demands that led to the definition are given:

a) It is desirable to put small parts like basic blocks or instruc-
tions into a partitioning object.

b) Larger partitioning objects should contain whole control
contructs (e.g. nested loops) or possibly functions/procedures

c) Only a few moves (a move is the action to put an object
from sw to hw or vice versa) should be necessary to obtain
a good co–design.

Some definitions: oi with oi 2 V O is called a partitioning object.
oi itself is a set that contains of nodes vi 2 V . So, V O is a set
of sets. Furthermore, an temporarily set V O� is used. It contains
the partitioning objects that have been generated during the actual
iteration step of the algorithm. There is the relation V O� � V O . To
simplify the algorithm the term foa; obg; oc has the meaning that
a new partitioning object is created by copying the contents of oa
and ob to oc. Thereby oa; ob; oc represent partitioning objects. In
the following the algorithm for generating the partitioning objects
is given:

1) Transform elements vi 2 V into partitioning objects

a) n = 0

For all vi 2 V :
If ^

vi2V

�
jpred(vi)j � 1 ^ jsucc(vi)j � 1

�
then

a) fvig; on
b) n = n+ 1

2) For all oi 2 V O� :

a) Integrate sequential system parts:W
oj2PRED(oi) ^ jpred(oj)j�1

foi; ojg; on

b) Integrate control constructsW
oj2PRED(oi) ^ ST (oj)<ST (oi)

V
ok2SUCC(oj)�

succ(ok) � succ(oi)
�

)

([
ok

; oi; oj; succ(oi)

)
; on

c) n = n+ 1

3) updating V O , V O� and removing redundancy
4) ready, if jV O� j = 1, else proceed with step 2)

The whole algorithm is performed as long as the condition of
step 4) is false. This means that there is a partitioning object that
contains the whole application. Only one of the conditions in 1),
2)a), 2)b) becomes true for possibly new generated partitioning
objects.
The effect after performing the algorithm is shown in figure 2. The
example application is the graph from fig. 1. Each of the graphs
in the figure represents the state after one iteration through the
algorithm. The respectively generated partitioning objects are set
off by the grey color. Note that the complete set V O contains all
meanwhile generated objects (in the example o1 to o17).

4.3 Optimization

Describing the optimization algorithm that generate the so–called
macro instructions, is necessary since the following steps will de-
pend on its peculiarities. In order to solve the problem of finding
the best macro instructions to be implemented in hardware — this
is a combinatorial optimization problem — we have chosen the
simulated annealing algorithm [22] for the following reasons:

� It is mathematically well investigated.
� It offers the possibility of a quality/computation time trade–off.
� It is independent from a specific problem.

Our implementation uses the so–called annealing schedule de-
scribed in [23] since it offers one of the best quality/computation
time trade–offs. The interface between the annealing schedule and
the specific problem formulation consists of:

� generate()
If this function is called the generation of a new state is requested
i.e. in hardware/software partitioning a new co–designC has to
be generated. This is done by a movem of a partitioning object
from sw to hw or vice versa. A characteristic peculiarity of each
co–designC are its cost Cost : C ! R

+ . Thereby C is the set
of all possible co–designs.

� accept()

If the annealing algorithm has decided to accept this move then
accept() returns the value "TRUE".

� reject()

If the annealing algorithm has decided not to accept this move
then accept() returns the value "FALSE".

4.4 Selection of a move

The following prerequisites led to the definition of the selection
algorithm for a new move:
� Exactly one partitioning object is moved from software to hard-

ware or vice versa during one call of the generate() function.
� The algorithm assumes that hardware and software parts execute

in mutual exclusion.
� The algorithm should select a new move in dependency upon

the current co–design.

Figure 3: All possible base configurations and characteristic moves

In the following algorithm the term or
mr

7�! H has the meaning that
partitioning objector is moved from software to hardware using the
move mr . The algorithm is defined as follows:

1) Random selection of an object or 2 V O

2) Case 1: Selected object is in SW
If ^

vi2or

vi 2 S

!
Then

a) Valid move:

 [
vi2or

vi

!
mr
7�! H

3) Case 2: Selected object is in HW
If ^

vi2or

vi 2 H

!
Then

a) If 0
@ _
oj2V O

0
@(oj � or) ^

0
@ _

vi2oj ;vi 62or

vi 2 H

1
A
1
A
1
A

Then
No move possible. Proceed with step 1)

Else

Valid move:

 [
vi2or

vi

!
mr

7�! S

4) Case 3: Selected object is in parts on SW and in parts on HW
If 0
@ _
vi2or

_
vj2or

�
vi 2 S ^ vj 2 H

�1A

Then

a) ok =
[

vi2or ; vi2H

vi

b) ol = ornok

c) Valid move:

 [
vi2ol

vi

!
mr

7�! H

5) If
None of the conditions in steps 2), 3), 4) is fulfilled

Then
Proceed with step 2)

Else
Ready, since a valid move is found

If a valid move is found exactly one of the cases Case 1, Case
2 or Case 3 is valid. All possible base configurations and moves
are given in fig. 3. The assignments of cases to figures are as
follows: Case 1 = "TRUE" corresponds to fig.3a), Case 2 a) =
"TRUE" corresponds to fig.3b), Case 2 a) = "FALSE" corresponds
to fig.3c) and Case 3 = "TRUE" corresponds to fig.3d). A situation
like in fig.3e) is impossible since no move can generate such an
initial configuration (it would hurt the conventions about the target
architecture).
Based on this base configurations and according moves every valid
co–design can be reached (see [24]).

4.5 Cost function

After each generated move a new co–design C emerges. The
simulated annealing algorithm requests the cost of a co–design C
in order to decide on acceptionor rejection. The cost function reads:

Cost = A � costT (THW=SW)| {z }
time component

+B � warea �
Area

A| {z }
area component

: (1)

The total cost of a co–design are composed of a time component
and an area component. Thereby A and B are heuristically chosen
factors which guarantee that the area component in every case is
small compared to the time component since "time" is a constraint
whereas "area" is an optimization goal. warea is balancing function
that delivers values between 0 and 1. This allows a separation of the
two phases "meet the time constraint" and "minimize the hardware
effort". For lack of spacewarea is not described here. Furthermore
Area is the gate count of all partitioning objects that have currently
been implemented as hardware. A is the average gate count of a
partitioning object. Area andA are estimated by a high–level area
estimation tool [24].

The time cost are obtained as follows:

costT = e

T
HW=SW

�Tcst

T0 � jTcst � THW=SW j �
1
TN

(2)

The exponential factor enforces the simulated annealing algorithm
to punish non–valid co–designs (THW=SW � Tcst) and so it accel-
erates the convergence of the optimization procedure. T0 and TN
are heuristically chosen.
Each partitioning object has a couple of attributes:

tOHW This is the execution time for the case that partitioning object
o is implemented as hardware.

tOcom This is the communication time (transfer of data and control)
from software to hardware and vice versa for the case object
o is implemented as hardware.

tOSW This is the execution time for the case that partitioning object
o is implemented as software.

it This is the number of times the partitioning object o is exe-
cuted (profiling data for a typical set of stimuli).

sp
ee

du
p

speedup constraint spucst

spuest

spucst

Figure 4: Speedup constraint spuconstr and estimated speedup
spuest for different design points of an application

tOHW is estimated by a path–based estimation technique and tOSW
uses a run–time analysis tool

The incremental cost (timing) of a partitioning object o are
calculated as follows:

t
o
= (t

o
HW + t

o
com � t

o
syn;com � t

o
SW) � it

o
(3)

After each move the run–time of the whole co–design (i.e. the hard-
ware/software system) is updated:
If

(Partitioning object o is moved from SW to HW)
Then

THW=SW = THW=SW + toi

Else
THW=SW = THW=SW � toi

Together with equations 1, 2 and 3 the cost of a move can
be calculated incrementally. This is useful since it saves a lot of
computation time during partitioning. Furthermore note that all the
attributes of a partitioning object have been pre–calculated — that
means before the simulated annealing is performed. For further
information about the target architecture, please refer to [25].

5 Experimental results

In this section we demonstrate the efficiency of the proposed algo-
rithm by means of a set of applications that partly come from real
industrial projects. The sizes of the applications reach from about
30 lines of C–code to about 500 lines of C–code. All steps of the
partitioning algorithm are fully automated as well as the necessary
estimation methods.

Speedup and timing constraints
Speedup and timing constraint are defined as

spuH=S =
TSW=HW

TSW
� spucst;

where TSW is the execution time of an application for an all–
software solution, TSW=HW is the execution time of the same
application but for a hardware/software implementation (after par-
titioning) and spucst is the given constraint speedup. Fig. 4 shows
the behaviour of the obtained speedup and speedup constraint for
different design points of an application. The graph "spuest" gives
the result obtained by the partitioner. It can be seen that in all cases
the constraint of the above inequation is met (spuest � spucst).
Table 1 shows some more results. It also shows the real speedup

Applic. Meas.
Time constraints spucst

2.00 3.00 5.00 10.00

spuest ! 3.90 5.20 13.77
"bin" spusyn ! 3.27 5.36 11.63

geq ! 2632.0 12997.0 12690.0

spuest 2.04 3.03 5.04 max.
"bp2" spusyn 1.62 3.10 4.69 spu

geq 32990.5 35861.5 36914.0 8.45

spuest 2.70 3.00 max. max.
"digb" spusyn 4.25 4.79 spu spu

geq 20395.0 21507.0 3.90 3.90

spuest ! ! ! 15.78
"frac" spusyn ! ! ! 19.98

geq ! ! ! 19527.5

spuest 2.00 max. max. max.
"huff" spusyn 2.78 spu spu spu

geq 7272.0 3.80 3.80 3.80

spuest ! ! 7.42 10.29
"sm1" spusyn ! ! 9.13 11.46

geq ! ! 11.089.5 12706.5

Table 1: Results of estimated speedup, synthesized speedup and
hardware effort

"spusyn" that has been obtained as follows: after hardware/software
partitioning the software part has been mapped to a standard pro-
cessor core (SPARC) and the hardware part (including interfaces)
has been synthesized using high–level synthesis. Afterwards we
have taken the output (slif netlist) of the high–level synthesis and
optimized it using the SYNOPSYS design compiler. After simula-
tion of software and hardware parts we got the real speedup called
"spusyn".
The table shows that in all cases the speedupvalues are very close to
the constraint. The partitioner meets the given speedupconstraint in
all cases. Due to the inaccuracy of the estimation tools (hardware
run–time, software run–time, communication time) that perform
estimation at a high level of abstraction there are some deviations
between real synthesis results (spusyn) and constraint (spucst). It
shows that the estimation tools have a good accuracy.
An arc in the table means that the according design point is the
same as the one the arc points to. Other applications cannot be
sped up more than a maximum value due to the peculiarities of an
application.

Computation time
Due to the variable size of the partitioning objects that can cover the
whole application or only a single instruction, the computation time
could almost be kept independent from the size of the benchmark.
Of course, the number of all possible partitioning objects is larger
than it would be when using a fixed–size granularity (we measured
about four times more partitioning objects than there would have
been if the granularity had been fixed to basic block level). As
a result the computation times have been in most cases within a
couple of seconds.

Hardware cost
Also an important task in embeddedsystems design is the minimiza-
tion of the hardware cost. The attribute "geq" (gate equivalents)
gives the hardware cost for every design point. Large speedups
around 10.0 lead to a small hardware cost (application specific
hardware of the hardware/software system) of only 30.000 or less
gate equivalents is due to the cost function that also takes into ac-
count a hardware component (see eq. 1). The hardware results are
obtained by using the SYNOPSYS design compiler.
Fig. 5 shows the percentage of hardware that could be saved com-
pared to the same cost function but without the hardware compo-
nent. It can be seen that in some cases savings of up to 50% have
been achieved.

0

10

20

30

40

50

60

schub ww fractals hash kontour sm1

ha
rd

w
ar

e
sa

vi
ng

s
[%

]

Figure 5: Savings in hardware cost by using an explicit hardware
cost component in the cost function

6 Conclusion

We have presented a hardware/software partitioning approach that
determines the granularity dynamically i.e. during the partitioning
process. Therefore the granularity is best suited for the specific
peculiarities of an application. This is the major difference to known
approaches. The experimental results have shown that a large
speedup is obtained and in every case the given speedup constraints
could be met. The new partitioning approach is integrated into the
COSYMA environment [4]. Due to the dynamically determined
granularity the computation times of the partitioner are kept small.
Nevertheless an improvement in system speedup can be obtained
by extending the target architecture to a concurrent execution of
hardware and software parts.

REFERENCES

[1] TI’s 0.18 Micron Process Technology Packs 125 Million
Transistors on a Single Chip, Texas Intruments, Published
in the Internet, http://www.ti.com/corp/docs/pressrel/1996/-
96025b.htm, 1996.

[2] C. Kuttner, Hardware–Software Codesign Using Processor
Synthesis, IEEE Design & Test of Computers, Vol. 13, No. 3,
pp. 43–53, 1996.

[3] R.K. Gupta and G.D. Micheli, System-level Synthesis us-
ing Re-programmable Components, IEEE/ACM Proc. of
EDAC’92, IEEE Comp. Soc. Press, pp. 2–7, 1992.

[4] R. Ernst, J. Henkel and Th. Benner, Hardware/Software Co-
Synthesis for Microcontrollers, IEEE Design & Test Maga-
zine, Vol. 10, No. 4, Dec. 1993.

[5] E. Barros, W. Rosenstiel, X. Xiong, A Method for Partition-
ing UNITY Language in Hardware and Software, Proc. of
IEEE/ACM Proc. of The European Conference on Design
Automation (EuroDAC) 1994, pp. 220–225, 1994.

[6] A. Jantsch, P. Ellervee, J. Oeberg et. al., Hardware/Software
Partitioning and Minimizing Memory Interface Traffic,
IEEE/ACM Proc. of The European Conference on Design
Automation (EuroDAC) 1994, pp. 220–225, 1994.

[7] P. Athanas and H.F. Silverman, Processor Reconfiguration
Through Instruction–Set Metamorphosis, IEEE Computer
Magazine, pp. 11–18, March 1993.

[8] Z. Peng, K. Kuchcinski, An Algorithm for Partitioning of
Application Specific System, IEEE/ACM Proc. of The Euro-
pean Conference on Design Automation (EuroDAC) 1993,
pp. 316–321, 1993.

[9] M. Edwards, J. Forrest, A Development Environment for
the Cosynthesis of Embedded Software/Hardware Systems,
IEEE/ACM Proc. of EDAC’94, pp. 469–473, 1994.

[10] J. Madsen, P. V. Knudsen, LYCOS Tutorial, Handouts from
Eurochip course on Hardware/Software Codesign, Denmark,
14.–18. Aug. 1995.

[11] R. Niemann, P. Marwedel,Hardware/Software Partitioning
using Integer Programming, IEEE/ACM Proc. of EDAC’96,
pp.473–479, 1996.

[12] I. Karkovski, R. H. J. M. Otten,An Automatic Hardware–
Software Partitioner Based on the Possibilistic Program-
ming, IEEE/ACM Proc. of EDAC’96, pp.467–472, 1996.

[13] F. Vahid, D.D. Gajski, J. Gong, A Binary–Constraint
Search Algorithm for Minimizing Hardware during Hard-
ware/Software Partitioning, IEEE/ACM Proc. of The Euro-
pean Conference on Design Automation (EuroDAC) 1994,
pp. 214–219, 1994.

[14] F. Vahid, D. D. Gajski, Clustering for improved system–level
functional partitioning, IEEE/ACM Proc. of 8th. Interna-
tional Symposium on System Synthesis, pp. 28–33, 1995.

[15] D.D. Gajski, F. Vahid, S. Narayan, J. Gong, Specification
and Design of Embedded Systems, Prentice Hall, 1994.

[16] T. Y. Yen, W. Wolf, Multiple–Process Behavioral Synthesis
for Mixed Hardware–SoftwareSystems, IEEE/ACM Proc. of
8th. International Symposium on System Synthesis, pp. 4–9,
1995.

[17] J. K. Adams, D. E. Thomas Multiple–Process Behav-
ioral Synthesis for Mixed Hardware–Software Systems,
IEEE/ACM Proc. of 8th. International Symposium on Sys-
tem Synthesis, pp. 10–15, 1995.

[18] A. Kalavade, E. Lee, A Global Critically/Local Phase Driven
Algorithm for the Constraint Hardware/Software Partition-
ing Problem, Proc. of 3rd. IEEE Int. Workshop on Hard-
ware/Software Codesign, pp. 42–48, 1994.

[19] P. H. Chou, R. B. Ortega, G. B. Borriello, The Chinook
Hardware/Software Co–Synthesis System, IEEE/ACM Proc.
of 8th. International Symposium on System Synthesis, pp.
22–27, 1995.

[20] T.B. Ismail, M. Abid, A. Jerraya COSMOS: A CoDesign
Approach for Communicating System, IEEE/ACM Proc. of
3rd. IEEE Int. Workshop on Hardware/Software Codesign,
pp. 17–24, 1994.

[21] F. Balarin, M. Chiodo, D. Engels et al., POLIS: A design en-
vironment for control–dominated embedded systems, Tech-
nical Report, UC Berkeley, 1996.

[22] R. Otten, P. van Ginneken, The Annealing Algorithm,
Kluwer, 1989.

[23] J. Lam, J.-M. Delosme, Performance of a New Annealing
Schedule, IEEE/ACM Proc. of 25th. Design Automation
Conference (DAC), pp. 306–311, 1988.

[24] J. Henkel,
Automatisierte Hardware/Software–Partitionierung im En-
twurf integrierter Echtzeitsysteme, PhD thesis, Technische
Universität Braunschweig, 1996.

[25] J. Henkel, Th. Benner, R. Ernst, W. Ye, N. Serafimov and G.
Glawe,COSYMA: A Software–Oriented Approach to Hard-
ware/SoftwareCodesign, The Journal of Computer and Soft-
ware Engineering, Vol. 2, No. 3, pp. 293–314, 1994.

[26] J. Henkel, R. Ernst, A Path-Based Estimation Technique
for Estimating Hardware Runtime in HW/SW-Cosynthesis,
IEEE/ACM Proc. of 8th. International Symposium on Sys-
tem Synthesis, pp. 116–121, 1995.

