
A Hardware/Software Partitioning Algorithm for Designing
Pipelined ASIPs with Least Gate Counts

Nguyen Ngoc Bı̀nh�, Masaharu Imai�, Akichika Shiomiy, and Nobuyuki Hikichiz

Dept. of Information & Computer Sciences zDept. of Software Technology
Toyohashi University of Technology Software Research Associates, Inc.

Toyohashi, 441 Japan Tokyo, 170 Japan

Abstract — This paper introduces a new HW/SW par-
titioning algorithm used in automating the instruction set
processor design for pipelined ASIP (Application Spe-
cific Integrated Processor). The partitioning problem
is formalized as a combinatorial optimization problem
that partitions the operations into hardware and soft-
ware so that the HW cost (gate count) of the designed
pipelined ASIP is minimized under given execution cy-
cle and power consumption constraints. A branch-and-
bound algorithm with proposed lower bound functions is
used to solve the presented formalization in the PEAS-I
system. The experimental results show that the proposed
method is found to be effective and efficient.

1 Introduction
As a type of embedded systems, an Application Specific

Integrated Processor (ASIP) is a dedicated microprocessor
that is designed putting a special application field in mind.
It contains a CPU core, memory (ROM, RAM), and periph-
eral circuits. In the traditional ASIP design, system archi-
tects decide which operations will be implemented in hard-
ware (HW) or software (SW). In order to produce an efficient
design in reasonable time, an efficient HW/SW codesign par-
titioning method should be used. Many HW/SW partition-
ing methods have been proposed. Gupta and De Micheli [1]
introduced a method that moves operations from hardware
to software to meet performance deadline at minimal cost.
Ernst et al. [2] take the opposite approach moving time crit-
ical operations from software to hardware. Woo et al. [3]
introduced a codesign method that divides the operations
into hardware, software and codesign groups. Then designer
manually investigates the HW/SW tradeoff by distributing
the implementation of the codesign operations between hard-
ware and software. In these conventional codesign methods,

�The authors are currently with the Department of Information and
Computer Sciences, Faculty of Engineering Science, Osaka University,
Toyonaka-shi, Osaka, 560 Japan.

yThe author is currently with the Department of Computer Science, Fac-
ulty of Information, Shizuoka University, Hamamatsu-shi, 432 Japan.

there is no formal method used to obtain the optimal design.
Moreover, the design process still largely depends on the de-
signer’s skill, and the design is achieved manually after in-
vestigating many design candidates.

In the ASIP design, there are three important factors:
the performance, HW resources, and power consumption.
Therefore, problems of the ASIP design can be classified
into 3 classes: highest performance design, least HW cost
(gate count) design, and lowest power consumption design.
The HW/SW codesign problem addressed in this paper re-
lates to the least gate count design with execution cycle and
power consumption constraints. A formal HW/SW partition-
ing method for ASIP design is introduced. The method is
based on a combinatorial optimization technique that decides
which operations to be implemented in hardware or in soft-
ware so that the ASIP gate counts are minimized under given
execution cycle and power consumption constraints. An al-
gorithm based on the branch-and-bound method is used to
solve the presented optimization problem.

Besides the mentioned works [1, 2, 3], there are also
other HW/SW codesign systems such as CASTLE [4] and
ASIA [5] for the ASIP development. However, the HW/SW
partitioning is also done manually in these systems. Perform-
ing the automatic HW/SW partitioning to find an optimal
CPU core is one of the distinguished features of the method
proposed in this paper compared to the above HW/SW code-
sign systems.

In the following sections, we introduce the HW/SW par-
titioning problem and its formalization, then show its imple-
mentation with the experimental results in the PEAS-I sys-
tem [6].

2 HW/SW Partitioning Problem
In the ASIP design, we are given an application program

with associated input data, and tools of a design environment
such as an analyzer, C compiler, and so on. Assuming that
the application program with its input data is analyzed to rec-
ognize the utilized operations with their execution frequen-
cies. An ASIP must contain a minimum HW, called ‘Kernel’,
which can make it to work with a minimum set of so-called
Primitive operations. Other operations are called Basic op-
erations (shortly, operations), which will be implemented in
HW or SW. Also, assuming that there are a hardware mod-
ule database and an implementation method database in the
design environment. An implementation method of an op-
eration can be a software module (run-time subroutine) or a
set of HW modules, which can be shared among operations.
We are to design a least gate count pipelined ASIP under
given execution cycle and power consumption constraints.
The HW/SW partitioning problem in this case is as follows:

1
33rd Design Automation Conference

Permission to make digital/hard copy of all or part of this work for personal or class-room use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50

“Select the implementation methods of operations,
among hardware choices and software, so that the gate
count of the designed pipelined ASIP is minimized un-
der given execution cycle and power consumption con-
straints, taking HW resource sharing among operations.”
2.1 Definitions and Notations

In order to formalize the above problem, following defi-
nitions and notations are used:
(1) The “implementation method” refers to any of hardware,
or software implementations of an operation. For any opera-
tion there might be many hardware implementations such as
fast or slow hardware modules.
(2) “n” denotes the total number of different operations to be
considered.
(3) “fi” denotes the execution frequency of operation #i in
the given application program, where 1 � i � n. f0 is for
the sum of execution frequencies of all primitive operations.
(4) “M” denotes the whole set of implementation methods
that realize all operations.
(5) “Mi” denotes the set of implementation methods which
realize operation #i, where Mi �M , and 1 � i � n.
(6) “xi” denotes an implementation method that realizes op-
eration #i, where xi 2 Mi, 1 � i � n. x0 denotes the
Kernel as minimum HW including an ALU, a 1-bit shifter,
and a register file. Then X = (x1; x2; . . . ; xn) is as an archi-
tecture configuration.
(7) When Mi \Mj 6= � (i 6= j), and if Mi \Mj contains a
functional module x, then x can be used to implement oper-
ations #i and #j simultaneously.
(8) “S” represents the set of selected implementation meth-
ods of the whole basic operations, and defines as S =Sn

i=1fxig. Note that jSj � n. When one or more functional
module(s) is/are shared, j S j < n, otherwise j S j = n.
(9) “ti(xi)” denotes the execution cycles of operation #i
when implemented by method xi, where 1 � i � n.
(10) “a(xi)” and “p(xi)” denote the area and power consump-
tion required for implementation method xi, respectively,
where 1 � i � n.
(11) “T max” and “P max” denote the maximum allowable
execution cycles and the maximum allowable power con-
sumption, respectively, for the selected functional modules
in the ASIP chip.
(12) “N” denotes the total number of basic blocks in the ap-
plication program’s code.
(13) “t(Bj ; X)” denotes the execution cycles needed to exe-
cute basic block Bj using a combination of implementation
methods X , where 1 � j � N .
(14) “Fj” denotes the execution frequency of basic block Bj
in the given application program, where 1 � j � N .
(15) “cj” denotes clock cycles needed to define control (e.g.,
branch delay) from block Bj to another one, where 1 � j �
N . Here, it is assumed that all branches are taken and delay
slot scheduling is not performed.
(16) “b” denotes execution cycles reduced by un-taken
branches in execution of the given application program.
2.2 Problem Formalization

The hardware/software partitioning problem can be for-
malized as a combinatorial optimization problem as follows:
Find a solution vector

X = (x1; x2; � � � ; xn)

which minimizes the objective function:

A(X) =
X

xi2S

a(xi) (1)

subject to:

T (X) =
NX

j=1

fFj�
�
t(Bj ;X) + cj

�
g � b � T max ; (2)

and
P (X) =

X

xi2S

p(xi) � P max: (3)

The key point in computing T (X) in Eq.(2) is to obtain the
value of t(Bj ; X). It can be computed by using a HW/SW
partitioning-oriented pipeline scheduling algorithm [7] to es-
timate t(Bj ; X) for basic block Bj under configuration X,
where the pipeline architecture is given (e.g., the number of
pipeline stages, whether there is a bypass or not, and so on).
The pipeline scheduler must detect and solve all types of
pipeline data hazards, and should produce pipelined sched-
ules as if without HW interlock to estimate the total exe-
cution cycles of the basic block under given configuration.
The pipeline control hazards are addressed in introducing the
coefficients cj’s, which can also be defined by the pipeline.
Note that the number of clock cycles due to control hazards
is equal to

PN

j=1(Fj � cj) � b. Also, the pipeline scheduling
algorithm detects and resolves all structural hazards.

3 Proposed Algorithm
The problem described in the previous section is NP-hard.

In order to solve it in reasonable computation time an algo-
rithm based on the branch-and-bound method is used. The
algorithm characteristics are described in the following sub-
sections.

3.1 Input and Output
The inputs to the algorithm are the execution frequen-

cies (fi’s) of basic operations, execution frequencies of basic
blocks (Fj ’s), b, execution cycle constraint (T max), power
consumption constraint (P max), the module information
database which includes area (gate count), power consump-
tion, and the database of the HW/SW implementation meth-
ods of each operation with the number of execution cycles.
The output of the algorithm is the set of optimal implemen-
tation methods of these operations, and a pipelined sched-
ule of the application program’s code under selected optimal
pipeline architecture.

3.2 Variable Reordering
In order to reduce the computation time of the algorithm,

the operations to be considered are sorted in an ascending
order according to a heuristic function before applying the
branch-and-bound method. Many heuristic functions can be
tested to find the best one. The following heuristic was found
to be the best:

h(i) = min
xi2Mi

a(xi): (4)

This heuristic tries to implement first such an operation by
hardware that needs less area. Inside each Mi (set of imple-
mentation methods for operation #i by xi, i = 1; . . . ; n) the
elements are sorted in an ascending order of ti(xi), where ties
are broken arbitrary.

3.3 Lower Bound Function
The key to solving an optimization problem efficiently

by the branch-and-bound method is to design a good lower
bound function to prune as many non-optimum solutions as

2

possible. The lower bound function used in the algorithm is
as follows:

Lower bound =
X
xi2S

0

d

a(xi) +
X

xi2S
00

d
nS

0

d

a(xi) ; (5)

where d represents the depth of the search tree node to be
investigated and associated with xi, and ’n’ represents set
subtraction. S

0

d and S
00

d are defined as follows:

S
0

d =
d�1[
i=1

fxig ; S
00

d =
n[
i=d

fxmin
i g ; (6)

where xmin
i is defined as follows. Assume that

Mmin
i = fx 2Mi j a(x) = min

xi2Mi

a(xi)g: (7)

If jMmin
i j = 1, let xmin

i be the element in Mmin
i . If

jMmin
i j > 1, there are more than one implementation meth-

ods with the same minimum area for operation #i. In this
case xmin

i is determined as follows:

xmin
i 2 S

0

d \Mmin
i ; if S

0

d \Mmin
i 6= � ; (8)

xmin
i 2 Mmin

i ; otherwise: (9)

In Eqs.(8) and (9), ties are broken arbitrary. In Eq.(8), the
shown xmin

i is chosen so that the solution optimality is guar-
anteed.

During the branch-and-bound search, each node in the
search tree corresponds to an (incomplete) solution, and its
cost is of the (incomplete) path. The cost of the node plus the
minimum cost along the remaining path represents a lower
bound for the nodes of its subtree. If the lower bound of a
node is greater than or equal to the cost of any previously
found feasible solution, the subtree of the node can be pruned.
3.4 Estimation of Lower Bound for Execution

Cycles
Besides the lower bound in Eq.(5) for the objective func-

tion of Eq.(1), another important fact to quickly find an opti-
mum solution by the branch-and-bound method is to ensure
the given constraints to be satisfied at the current node in the
search tree. In this paper we focus on finding the estimation
of execution cycles at a current node as the lower bound of
T (X) being estimated fully when a leaf node is reached. Dif-
ficulty in designing such a lower bound is how to accurately
predict effects of the pipeline characteristics of selected func-
tional units (FUs) at the current moment as well as to predict
those of FUs to be selected later. Such a desired lower bound
function denoted as Tgain(d; xi) for execution cycles T (X)
at a node (for xi) of depth d can be as follows:

Tgain(d; xi) = Tgain(d� 1; xi�1) + (fi � ui(xi)) ; (10)

where

ui(xi) =

�
1; if xi is a HW implementation;
ti(xi); if xi is a SW implementation: (11)

At the beginning of the algorithm we set

Tgain(0; x0) = Stallfast+f0 = T (Xfast)�
nX
i=1

fi ; (12)

where T (Xfast) is computed by using Eq.(2) with the hy-
pothetical one-cycle FUs denoted by Xfast, and Stallfast =
T (Xfast) �

Pn

i=0 fi , i.e. Tgain(0; x0) � f0 as well, is the
number of pipeline stalls (pipeline data hazards, control haz-
ards and structural hazards) in executing the given applica-
tion program. Please refer to Ref. [14] for the reason of these
considerations. We have

Tgain(d; xi) < Tgain(d0; xi0) � T (X) ;
0 � d < d0 � n:

(13)

Note that Tgain(d; xi) depends on xi (i.e., on X) as shown
in Eq.(10). We can consider that d = i if xi’s are sorted
by using Eq.(4) and renamed before applying the algorithm.
This lower bound allows us to prune as soon as possible all
paths in the search tree which do not satisfy the execution
cycle constraint by finding that Tgain(d; xi) > T max.
3.5 Functional Module Sharing

The functional module sharing relation is to be considered
when the cost is calculated and the lower bound is estimated.
The functional module sharing can be solved as follows:

“For a given path, if a hardware module which can im-
plement more than one operations is selected to implement
an operation for the first time, its cost (gate count or power
consumption) is accumulated. If the same module is then se-
lected for the second time or later to implement other opera-
tion, its cost is not accumulated.”
3.6 Power Consumption

The power consumption estimation P (X) in Eq.(3) is still
a crude approximation by simply adding average power fig-
ures of the different modules without accounting for switch-
ing activity.

4 Implementation in PEAS-I
In the previous section we have generally defined the

HW/SW partitioning problem for ASIP design, and proposed
the algorithm using the branch-and-bound method. In the rest
of this paper we evaluate the proposed method under the cir-
cumstance of PEAS-I as an example.
4.1 PEAS-I System

A HW/SW codesign system PEAS-I (Practical Environ-
ment for ASIP development - type I) [6] employs a formal
method to synthesize an optimal instruction set processor
by solving Instruction set implementation Method Selection
Problems (IMSP) types 1, 2 and 3. IMSP-1 [8] is set up as-
suming no interaction among the operations, and each oper-
ation was to be implemented using a separate HW module.
However, IMSP-2 [9] is an extension of IMSP-1 by taking
resource sharing into account. While IMSP-1, 2 are for de-
signing the highest performance ASIPs, IMSP-3 [10] yields
the design of ASIP with the least HW cost subjecting to ex-
ecution cycle and power consumption constraints. Applying
the proposed method, we deal with IMSP-3P for designing
a pipelined ASIP with the least HW cost subjecting to exe-
cution cycle and power consumption constraints.
4.2 Pipelined Architecture

The minimum part in the PEAS-I CPU core architecture
is the ‘Kernel’ which consists of an ALU, a one-bit shifter,
and a register file. The CPU core may include other func-
tional units (FUs) such as multiplier, divider, and so on. The
pipelined architecture synthesized by PEAS-I consists of four
stages: IF (Instruction Fetch and decode), EX (EXecution),
MEM (MEMory access) and WR (Write back to Register
file), respectively. While each of IF, MEM, and WR stages
takes only one cycle, EX stage takes one or more cycles. The

3

PEAS-I CPU has a RISC type load/store (register-register)
architecture and each control step corresponds to one clock
cycle. While the CPU may contain the Kernel and differ-
ent types of FUs, it is assumed that the CPU has no identical
FUs. The architecture has a register bypass to forward com-
putation results to Kernel or FUs. When a load instruction
loads a value from memory needed by the next immediate
instruction we have to stall the latter one cycle. Each FU
can be multi cycle and pipelined. These characteristics of the
pipeline are used by the pipeline scheduler [7] to estimate the
value of t(Bj ; X) in Eq.(2).

The instruction set architecture of the designed ASIP is
based on the GNU C Compiler (GCC) abstract machine
model [11]. The GCC Register-Transfer Language (RTL)
operations are divided into primitive and basic operations.
The primitive operations contain the minimum operations
that can be included in the ASIP chip so that it can executes
any C program. The primitive operations are implemented
in hardware by Kernel. The basic operations contain other C
operators and functions that are not primitive operations and
can be implemented using some hardware choices (such as
fast or slow hardware modules) or using a software subrou-
tine that uses primitive operations. Some of the basic opera-
tions are shown in the last column of Tab.1.

4.3 Module Database
A module database of non-pipelined FUs synthesized by

using the high-level synthesis tools of PARTHENON [12]
with cell library VTI.lib from VLSI Technology, Inc. has
been given in Ref. [10]. Another HW/SW module informa-
tion database of both pipelined and non-pipelined FUs as well
as SW subroutines has been described in Ref. [13]. As shown
in Ref. [10], the former database is with a search space of
above 1:8 � 104 nodes. The number of nodes in the search
tree generated by the latter database is over 8:2�107 (please
refer to Refs. [13, 14]). We use the latter database shown
in Tab.1 to perform the experiments for both IMSP-3 and
IMSP-3P solvers. Note that in Tab.1 the multiplication has
ten HW implementation methods, the division has six, while
the extension and shift have only one for each. Moreover,
each operation has one or more SW implementation meth-
ods (run-time subroutines), whose execution cycles depend
on the application program with its input data.

5 Experimental Results
This section shows the effectiveness and efficiency of the

proposed algorithm.

5.1 Sample Programs
The sample programs used in the experiments are as fol-

lows [13, 14]: ESS (Equation System Solver program, which
solves a system of two linear equations using Cramer’s rule),
IMC (Inverse Matrix Calculator program that computes the
inverse of a non-singular 3� 3 matrix using Cramer’s rule),
and diffeq (a program for solving a second order differential
equation from Ref. [15].)

These sample programs with associated input data were
fed to the Application Program Analyzer of the PEAS-I sys-
tem to obtain the execution frequencies of basic operations,
of basic blocks, etc. The analyzed results have been shown in
Refs. [13, 14]. The code optimization was performed by the
GCC, the pipeline scheduling was performed by the sched-
uler described in Ref. [7].

Using the adaptive database generator [13] we got the ex-
ecution cycle estimation of SW implementations of the basic
operations met in these sample programs as shown in Tab.2.

Table 1: Part of module database with pipelined and non-
pipelined multipliers and dividers.

Module Gate Power* L D Implied
Name Count Operations

kernel** 14918 18062.3 1 1 (primitive)
b alsft 756 876.3 1 1 ashl, ashr,

lshl, lshr
extend 137 172.8 1 1 extendhi,

extendqi,
z extendhi,
z extendqi

mul csa 7747 11106.9 1 1 mul, umul
mul 3clk 6118 8008.5 3 3
mul bpr 3161 3643.0 17 17
mul seq 2393 2777.1 32 32
mul seq p4 14567 17138.4 4 32
mul seq p8 7586 8989.1 8 32
mul seq p16 4052 4829.7 16 32
mul bpr p2 19552 23103.2 2 16
mul bpr p4 10149 12029.9 4 16
mul bpr p8 5400 6497.5 8 16
div 2seq 5808 6910.4 19 19 div, udiv,
div seq 3396 3931.4 35 35 mod, umod
div seq p17 5458 6628.6 17 34
div 2seq p3 29127 34804.9 3 18
div 2seq p6 15499 18362.8 6 18
div 2seq p9 10744 12713.5 9 18

* Unit: �Watt/MHz ** with 8 registers
L: Latency (cycles) D: Delay (cycles)

Table 2: Part of adaptive database with # execution cycles of
SW modules for ESS, IMC, and diffeq.

i Basic # Execution cycles
Operation ESS IMC diffeq

1 mul 52 52 48
2 div 280 279 283
3 mod 278 278 278
4 ashl 21 21 21
5 extendqi 8 8 8
6 z extendqi 1 1 1

5.2 Hardware/Software Partitioning
Using the analyzed information from the given applica-

tion program, the IMSP-3P algorithm accordingly selected
the optimum partitioning for different values of execution
cycle constraint. The power consumption was ignored to
simplify the experimental cases. For instance, the results
for the ESS sample program are partly shown in Tab.3. In
this table the second column represents the execution cycles
constraints T max in cycles. The third and fourth columns
represent the predicted execution cycles and predicted areas
by the algorithm. The last column shows the selected HW
modules that implement the corresponding basic operations
(other operations are implemented in SW.) For any given exe-
cution cycle constraint, the shown partitioning represents the
optimum one.

5.3 Execution Cycle - Area Tradeoff
Figure 1 shows the execution cycle - area tradeoff by

IMSP-3 and IMSP-3P for ESS. Note that IMSP-3P yields

4

Table 3: Predicted execution cycle, area, and HW/SW parti-
tioning by IMSP-3P for ESS program.

T max T (X) A(X) Selected HW modules
(cycles) (gates) (with Kernel)

1 400000 353729 14918 (Kernel only)
2 353700 341066 15055 extend
3 341000 324371 15674 b alsft
4 324300 311708 15811 b alsft extend
5 311700 307988 18204 b alsft extend mul seq
6 307900 130863 18314 div seq
7 130800 118200 18451 extend div seq
8 118100 101505 19070 b alsft div seq
9 101500 88842 19207 div seq

10 88800 80254 21269 div seq p17
11 80200 74378 21619 div 2seq
12 74300 70148 24012 div 2seq mul seq
13 70100 67448 24780 div 2seq mul bpr
14 67400 66458 27019 div 2seq mul bpr p8
15 66400 65708 27737 div 2seq mul 3clk
16 65700 65476 28948 mul seq div 2seq p9
17 65400 62776 29716 mul bpr div 2seq p9
18 62700 61696 31955 mul bpr p8 div 2seq p9
19 61600 60736 32673 mul 3clk div 2seq p9
20 60700 60586 34302 mul csa div 2seq p9

Note: Selected HW modules in #9 – #20 contain ‘b alsft’ and ‘extend’.

better designs than IMSP-3 due to considering the pipeline
characteristics. Note that for the same execution cycle con-
straint, IMSP-3P can give the ASIPs of up to 8.3%, 13.2%,
and 10.7% of gate counts less than IMSP-3 for ESS, IMC,
and diffeq, respectively. Also, the performance of the ASIPs
designed by IMSP-3P can be improved by 4.2%, 8.4%, and
6.7% compared to IMSP-3 for ESS, IMC, and diffeq, respec-
tively. Especially, IMSP-3P can handle tight execution cycle
constraints (i.e., high performance) of below 60000, 70000,
and 25000 cycles for ESS, IMC, and diffeq, respectively,
whereas IMSP-3 could not.

5.4 Area and Execution Cycle Prediction Errors
Note that IMSP-3P can accurately estimate the area and

execution cycles of the designed ASIP without having to syn-
thesize the design. Our approach enables designers to pre-
dict the main part of the execution cycle vs. area tradeoff
of their design. The measured area values were obtained by
synthesizing the design using PARTHENON while the mea-
sured execution cycles were obtained using the PEAS-I sys-
tem simulator. It is found that the area prediction values were
fairly good with an average gate count error of about 1.7% as
the same as shown in Ref. [10], and the execution cycle es-
timation errors were below 2% (with the adaptive database
approach as in Ref. [14].) Especially, the execution cycle
estimation errors were almost 0% in cases of all HW imple-
mented operations.

5.5 Constraint Satisfiability
We have found that all designs by IMSP-3P were satis-

fiable (in terms of that the execution cycle constraints have
been satisfied) due the accurate estimation of execution cy-
cles and the pipeline hazards, whereas most of the designs
by IMSP-3 were with exceeded execution cycles (i.e. did
not satisfy the execution cycle constraints) after the first trial
pass. Therefore, it is necessary to iterate some times the pro-
cess ‘reduce the execution cycle constraint – re-perform the
IMSP-3 solver – estimate the design by simulation’ until the
design is satisfiable.

10

15

20

25

30

35

40

45

50

55

50 100 150 200 250 300 350 400

G
A
T
E

C
O
U
N
T

(
K
g
a
t
e
s
)

EXECUTION CYCLE CONSTRAINT (x1000)

IMSP-3P
IMSP-3

Figure 1: Execution cycle - area tradeoff for ESS.

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

M
E
A
S
U
R
E
D

E
X
E
C
U
T
I
O
N

C
Y
C
L
E
S

(
x
1
0
0
0
)

EXECUTION CYCLE CONSTRAINT (x1000)

alpha = 0
alpha = 1
alpha = 2
alpha = 3
alpha = 7

Constraint Boundary

Figure 2: Execution cycle constraint satisfiability for ESS
using the safe factor.

The execution cycle constraint satisfaction by IMSP-3P
without iterating the design process is due to the accurate
estimation of execution cycles under any architecture con-
figuration and due to taking the pipeline characteristics into
account by the proposed method.
5.6 Effect of Input Data Variation

Note that IMSP-3P can produce the satisfiable pipelined
ASIPs for the given application program with the given as-
sociated input data. However, for other data the constraint
might not be satisfied because the execution cycles of the SW
module depend on data fed to operands. But we can enhance
the satisfiability of the design for some class of input data to
the given application program by introducing the safe factor
� together with the standard deviation �i of basic operation
#i as follows: for the SW implemented basic operation #i the
execution cycles will be

ti(xi) = � (#i) + � � �i ; (14)

where � (#i) is the average execution cycles of operation #i
by SW with the given input data from profiling the given ap-

5

plication program with associated input data [14]. So far we
have set � = 0 in running the IMSP-3 and IMSP-3P solvers.
The designer can drive the design process by setting � to
any suitable value to enhance the satisfiability of the design.
The experimental results for �=0, 1, 2, 3, and 7 for ESS are
shown in Fig. 2 (with �mul = 52, �mul=13.97; �div = 280,
�div=1.44; �ashl = 21, �ashl=0.40; etc.) In this figure, for
design constraints of below 74000 cycles the measured ex-
ecution cycles are very close to the given execution cycle
constraints for any� because all basic operations were imple-
mented in HW. Note that the larger the�, the more the valida-
tion of design is guaranteed. For example, for � = 1, 2, 3, and
7 we have the reserved execution cycles (for data variation
of software operations) of 4.4%, 7.3%, 10.7%, and 20.37%,
respectively. However, the designs might suffer from a sup-
plementary HW cost.

5.7 Algorithm Efficiency
We have shown the effectiveness of the IMSP-3P. We have

also found that IMSP-3P with the proposed algorithm, espe-
cially with the described lower bounds of area and execu-
tion cycle estimation, is so efficient that the optimal pipelined
ASIP as well as its instruction set can be selected within 2
seconds on SPARCstation 10 (SS-10) for any execution cy-
cle constraint. The average number of visited nodes in the
search tree is 124, 168, and 176 for ESS, IMC, and diffeq,
respectively. The time for profiling an application program
is about 20 seconds as shown in Ref. [14].

6 Conclusion and Future Work
In this paper an effective and efficient partitioning method

for designing a pipelined ASIP with least gate count under
given execution cycle and power consumption constraints
has been introduced. The method is based on a combina-
torial optimization formalization that selects the implemen-
tation methods of the basic operations. A branch-and-bound
algorithm was used to solve the presented partitioning prob-
lem and was implemented in C language. Designing the good
lower bounds for the algorithm has been presented. The ef-
fectiveness and efficiency of the algorithm have been demon-
strated through performing a set of sample programs. The
area and the execution cycles of the designed ASIPs chips
that execute sample programs were predicted for different
partitioning combinations. The predicted gate count was
found to have an average error rate of 1.7% while the exe-
cution cycle estimation was found to have an error rate of
below 2%. As an implementation, IMSP-3P is a full auto-
matic HW/SW partitioning algorithm able to give an optimal
solution in reasonable computation time. This feature makes
our approach differ from existing ones.

However, there are the following limitations in this work:
(1) the cost of other components of CPU such as bus width,
RAM, ROM and so on was not addressed; (2) the power con-
sumption is still a crude approximation. Switching activity
and the power consumption in case of the software imple-
mentations should be taken into account, for example, by us-
ing the technique proposed by V. Tiwari [16]; (3) the satisfia-
bility of the design is still not fully guaranteed; (4) the appli-
cation programs are mainly computational and small. Larger
application programs, e.g. DSP programs, should be fed to
the PEAS-I system; etc.

Our further research needs to investigate these issues. The
development of a HW/SW partitioning algorithm for design-
ing a pipelined ASIP with lowest power consumption under
execution cycle and gate count constraints is also planned.

Acknowledgments
The authors would like to express their thanks to NTT

Communication Science Laboratories, VLSI Technology,
Inc., Science Create, Co. Ltd., Japan, for their kind assis-
tance. This research is supported in part by Grant-in-Aid for
Scientific Research Nos. 07558038 and 07680353 from the
Ministry of Education, Science and Culture, Japan.

References
[1] R. Gupta, and G. De Micheli: “Hardware-Software Cosynthesis

for Digital Systems,” IEEE Design & Test, pp. 29 – 41, Sep.
1993.

[2] R. Ernst, J. Henkel, and T. Benner: “Hardware-Software
Cosynthesis for Microcontroller,” IEEE Design & Test, pp. 64
– 75, Sep. 1993.

[3] N. Woo, A. Dunlop, and W. Wolf: “Codesign from Cospecifi-
cation,” Computer, pp. 42 – 47, Jan. 1994.

[4] J. Wilberg, et al.: “Design Flow for Hardware/Software Cosyn-
thesis of a Video Compression System,” Proc. of Codes/CASHE
’94, Grenoble, France, 1994.

[5] I-J. Huang, and A.M. Despain: “Synthesis of Instruction Sets
for Pipelined Microprocessors,” Proc. of DAC’94, pp. 5 – 11,
1994.

[6] J. Sato, A. Alomary, Y. Honma, T. Nakata, A. Shiomi, N. Hi-
kichi, and M. Imai, “PEAS-I: A Hardware/Software Codesign
System for ASIP Development,” IEICE Trans. Fundamentals,
vol.E77-A, no.3, pp. 483 – 491, Mar. 1994.

[7] N.N. Binh, M. Imai, A. Shiomi, and N. Hikichi: “A Pipeline
Scheduling Algorithm for Instruction Set Processor Design Op-
timization,” Proc. of APCHDL’94, pp. 59 – 66, Toyohashi,
Japan, Oct. 1994.

[8] M. Imai, A. Alomary, J. Sato, and N. Hikichi: “An Integer Pro-
gramming Approach to Instruction Implementation Method Se-
lection Problem,”Proc. of EURO-DAC’92, pp. 106 – 111, 1992.

[9] A. Alomary, T. Nakata, Y. Honma, M. Imai, and N. Hikichi:
“An ASIP Instruction set Optimization Algorithm with Func-
tional Module Sharing Constraint,”Proc. of ICCAD-93, pp. 526
– 532, Nov. 1993.

[10] A. Alomary, T. Nakata, Y. Honma, A. Shiomi, M. Imai,
and N. Hikichi: “An ASIP Instruction Set Optimization Algo-
rithm with Execution Cycle Constraint,” Proc. of the 4th Syn-
thesis And SImulation Meeting and international Interchange
(SASIMI’93), pp. 34 – 43, Nara, Japan, Oct. 1993.

[11] R. Stallman: Using and Porting GNU CC, Free Software
Foundation, Version 1.40, 1991.

[12] Y. Nakamura, K. Oguri, A. Nagoya: “Synthesis from Pure
Behavioral Descriptions,” in High-Level VLSI Synthesis, Cam-
posano, R., and Wolf, W., eds, pp. 205-229, Kluwer Academic
Publishers, 1991.

[13] N.N. Binh, M. Imai, A. Shiomi, and N. Hikichi: “A Hard-
ware/Software Partitioning Algorithm for Pipelined Instruc-
tion Set Processor,” Proc. of EURO-DAC’95, pp. 176 – 181,
Brighton, U.K., Sep. 1995.

[14] N.N. Binh, M. Imai, A. Shiomi, and N. Hikichi: “A Hard-
ware/Software Codesign Method for Pipelined Instruction Set
Processor Using Adaptive Database,” Proc. of ASP-DAC’95,
pp. 81 – 86, Chiba, Japan, Aug. 1995.

[15] P.G. Paulin, J.P. Knight, and E.F. Girczyc: “HAL: A Multi-
paradigm Approach to Automatic Data Path Synthesis,” Proc.
of DAC’86, pp. 263 – 270, 1986.

[16] V. Tiwari, S. Malik, and A. Wolfe: “Power Analysis of Em-
bedded Software: A First Step Towards Software Power Mini-
mization,” IEEE Trans. VLSI, vol.2, no.4, pp. 437 – 445, Dec.
1994.

6

