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Abstract: Flexible electronics can create lightweight, conformable components that 8 

could be integrated into smart systems for applications in healthcare, wearable devices 9 

and the Internet of Things. Such integrated smart systems will require a flexible 10 

processing engine to address their computational needs. However, the flexible 11 

processors demonstrated so far are typically fabricated using low-temperature poly-12 

silicon thin-film transistor (TFT) technology, which has a high manufacturing cost, and 13 

the processors that have been created with low-cost metal-oxide TFT technology have 14 

limited computational capabilities. Here, we report a processing engine that is fabricated 15 

with a commercial 0.8 μm metal-oxide TFT technology. We develop a resource-efficient 16 

machine learning (ML) algorithm (termed univariate Bayes feature voting classifier) and 17 

demonstrate its implementation with hardwired parameters as a flexible processing 18 

engine for an odour recognition application. Our flexible processing engine contains 19 

around 1,000 logic gates and has a gate density per area that is 20–45 times higher 20 

than other digital integrated circuits built with metal-oxide TFTs. 21 

Flexible electronic devices are built on substrates such as paper, plastic and metal foil, 22 

and use active materials such as organics, metal oxides and amorphous silicon. They 23 

offer a number of advantages over traditional silicon devices, including thinness, 24 

conformability and low manufacturing costs, and various commercial systems are 25 

already available, including organic light emitting diodes, flexible displays and organic 26 

photovoltaics. The integration of different flexible components — for instance, printed 27 

sensors, organic displays, printed batteries, energy harvesters, memories, antennas, 28 

and near field communication or radio frequency identification (RFID) chips — could 29 

lead to innovative products such as flexible integrated smart systems [1] for logistics, 30 

fast moving consumer goods (FMCG), healthcare, wearables, and the Internet of Things 31 
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(IoT) [2]. However, to address the computational requirements of such integrated 32 

systems, a flexible processing engine, which operates as a central processing unit 33 

(CPU) or a domain-specific processing engine, is required.  34 

CPUs are general-purpose (i.e. programmable) processors that can be used for multiple 35 

applications. As a result, when an application is run, parts of the hardware inside a 36 

general-purpose processor remain unused, and become an overhead (mainly in terms 37 

of area and power consumption) for the application running on it. This observation — 38 

called the Turing tax [3] — defines the compromise of universal computing. In contrast, 39 

domain-specific processing engines [4][5][6] are specialised hardware designed for a 40 

class of applications within a single domain, such as graphics, signal processing, 41 

machine learning, augmented/virtual reality, and security. They make the computation 42 

more efficient in terms of energy consumption, area, cost, and performance. 43 

One approach is to integrate conventional silicon-based CPUs onto flexible substrates 44 

as processing engines. This is called hybrid integration [7][8][9] in which the silicon 45 

wafer is thinned and dies from the wafer are integrated onto a flexible substrate. 46 

However, this approach requires an expensive packaging process because the thinning 47 

process makes silicon more fragile. Thus, it is not a viable long-term solution for high-48 

volume, low-cost, flexible integrated smart systems. Alternatively, a processing engine 49 

(either general-purpose or domain-specific) can be built exclusively with flexible 50 

electronic fabrication techniques, an approach we term a natively-flexible processing 51 

engine (NFPE).  52 

Thin-film transistors (TFTs) can be fabricated on insulating substrates, such as glass or 53 

flexible polymeric substrates, and have a lower processing cost than metal–oxide–54 

semiconductor field-effect transistors (MOSFETs) on silicon substrates [2][10]. A flexible 55 

CPU has, for example, been developed using a transfer process from a glass substrate 56 

onto a flexible one [11]. Furthermore, a flexible 8-bit CPU based on the integration of a 57 

flexible RFID controller and an antenna has been reported [12], as well as an 58 

asynchronous flexible 8-bit CPU [13] and an 8-bit ultra-high frequency radio frequency 59 

CPU (UHF RFCPU) on a flexible substrate [14]. However, all of these flexible 8-bit 60 

CPUs were developed using low-temperature poly-silicon (LTPS) TFT technology, 61 
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which has a high manufacturing cost and poor lateral scalability (limiting the complexity 62 

of the integrated circuits). More recently, a 16-bit RISC-V processor [15] built from 63 

complementary carbon nanotubes transistors was developed, though this used a 64 

conventional wafer rather than a flexible substrate. 65 

Metal-oxide TFTs [16] are, in contrast, low-cost and can also be scaled down to the 66 

much smaller geometries required for large scale integration [17]. To date, only basic 8-67 

bit arithmetic logic units (ALU; part of the CPU) fabricated with metal-oxide TFTs on a 68 

flexible substrate [18][19] have been demonstrated; these are proof-of-concept 69 

prototypes with limited computational capabilities. To develop an NFPE that can 70 

perform meaningful computations, a sufficient number of metal-oxide TFTs needs to be 71 

integrated.  72 

In this Article, we report a domain-specific NFPE that is fabricated using a 0.8 µm metal-73 

oxide TFT technology and implements a machine learning (ML) algorithm. We develop 74 

an algorithm, termed Univariate Bayes Feature Voting Classifier (UB-FVC), and 75 

implement it in hardware for an odour classification application (e-nose). The UB-FVC 76 

algorithm achieves a prediction accuracy of 90%, and its implementation as a NFPE 77 

contains 1,024 logic gates, which has a higher gate density (by 20–45 times) compared 78 

to other flexible processing circuits based on metal-oxide TFT technology. 79 

Table 1 Process technology parameters. The table shows the FlexLogIC® fabrication technology 80 

information and lists the statistical variations of TFT parameters. 81 

“Technology information and parameters” “Values/Types” 

Semiconductor material in metal-oxide TFTs Indium-Gallium-Zinc Oxide (IGZO) 

Flexible substrate Polyimide 

Channel length (µm) 0.8 

Minimum supply voltage (V) 3 

Wafer diameter (mm) 200 

Total thickness (µm) < 15  

Number of material layers 13 

Number of routable metal layers 4 

TFT Vth (V) Mean:0.685, St dev:0.057 

TFT sub-threshold swing (V/dec) Mean:0.119, St dev:0.017 
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TFT linear on-current (µA) Mean: 2.23, St dev:0.25 

TFT saturation on-current (µA) Mean: 32.7, St dev:4.3 

TFT hysteresis (V) Mean: 0.126, St dev:0.023 

FlexIC technology 82 

Our NFPE is based on a flexible integrated circuit (flexIC) fabricated using a commercial 83 

‘fab-in-a-box’ manufacturing line, FlexLogIC® [20]. The process uses an n-type metal-84 

oxide TFT technology based on indium-gallium-zinc-oxide (IGZO) and generates the 85 

flexIC design on a 200 mm diameter wafer by running several sequences of material 86 

deposition, patterning and etching. The details of the fabrication methodology can be 87 

found in the Methods section. 88 

The IGZO TFT circuits are made using conventional semiconductor processing 89 

equipment configured to produce devices on a flexible substrate - polyimide with less 90 

than 15 µm thickness - that can be bent to a radius of curvature of 5mm without damage 91 

to circuitry. The TFTs have a channel length of 0.8µm, and a minimum supply voltage of 92 

3V. Process parameters and statistical variations of TFT parameters are summarised in 93 

Table 1. 94 

Development of hardwired ML NFPE  95 

The specific domain of our NFPE is ML where the training phase of an ML algorithm is 96 

performed offline. After training, the learned parameters remain fixed or hardwired in the 97 

inference phase so that the inference phase of an ML algorithm can be efficiently 98 

implemented in hardware. We develop an NFPE implementing an ML inference 99 

algorithm with hardwired parameters for an odour classification in sweat application that 100 

uses a flexible e-nose sensor array consisting of multiple organic field-effect transistors 101 

(OFETs) [21]. 102 

The e-nose sensor array model used in the Article is based on OFET sensors similar to 103 

the flexible OFET sensor reported previously in [22] [23]. As shown in Fig. 1a, each 104 

OFET sensor has an organic semiconductor between the source and drain electrodes 105 

that is sensitive and selective to volatile organic compounds (VOCs) in odour, and 106 

generates a current when exposed to odour. An array of OFET sensors each of which 107 
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has a different organic semiconductor material and/or geometry will respond to a 108 

number of VOCs. Each sensor is not tuned to detect a specific VOC, so all sensors can 109 

respond to VOCs in odour in a different manner because of their different sensing 110 

material and geometry. The combined behaviour of the sensor array makes the 111 

difference to separate one odour type from another.  112 

 113 

Fig. 1 OFET sensors and system architecture of the flexible smart system. a) A single OFET sensor 114 

and an e-nose sensor array consisting of eight OFET sensors. b) System architecture of the flexible smart 115 

system consisting of the e-nose sensor array with ADCs on a flexible substrate and the natively flexible 116 

hardwired ML processing engine on a flexible substrate 117 

Each sensor generates an output current that will be converted into digital data by an 118 

analog-to-digital converter (ADC), which will then be processed by the NFPE in order to 119 

classify the odour as shown in Fig. 1b. The focus of this Article is the design, 120 

implementation, fabrication and test of the NFPE. The NFPE development methodology 121 

is generic enough to be adapted to other odour-based applications such as food 122 

packaging, wound dressing, room air quality detection etc. Each application has 123 
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different input, output and performance requirements, and the best performing ML 124 

algorithm can vary from application to application but the methodology to develop it 125 

remains the same.  126 

A number of standard ML algorithms will need to be explored in order to meet the 127 

prediction accuracy requirement of the application. Once the best performing ML 128 

algorithm is found, a thorough analysis is required to assess the hardware 129 

implementation constraints of the ML algorithm. This is because the ML algorithm will 130 

be implemented as a domain-specific processing engine using the flexible electronics 131 

fabrication technology that is not as mature as the conventional silicon technology in 132 

terms of large-scale integration. If the hardware of the algorithm cannot reasonably be 133 

fabricated, then either the hardware design needs to be further optimised to reduce its 134 

complexity or the ML algorithm needs to be modified to have simpler hardware 135 

implementation given the fabrication constraints.  136 

In this Article, we focus on the application of “odour classification in sweat” for which a 137 

90% prediction accuracy is acceptable. In order to develop an ML hardware to classify 138 

odour in this application, we investigate a number of standard ML algorithms such as 139 

Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), Decision Tree (DT), k-140 

Nearest Neighbour (k-NN) and Gaussian Naïve Bayes (GNB). We run each ML model 141 

on the e-nose sensor array data generated by the OFET sensor model. There are eight 142 

e-nose sensors in the sensor array, and the ML engine will classify their response into 143 

five different odour classes at the output. The full precision of the sensor data is 9 bits 144 

but we also quantise the sensor data from the full precision down to 2 bits using 145 

dynamic data range scaling to understand the effects of using fewer data bits on the 146 

performance of the ML algorithms. Quantised data are used both in training and 147 

inference stages for all models. 148 

The prediction accuracy results are shown in Fig. 2a. When the sensor data are in full 149 

precision, the best performing ML algorithm is GNB with a prediction accuracy of 92%. 150 

We also observe that quantising the sensor output down to 5 bits does not impact the 151 

classification accuracy for GNB and other ML models. This implies that a 5-bit ADC 152 

conversion would be sufficient for the ML inference hardware running the ML algorithm. 153 
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 154 

Fig. 2 Design Space Exploration with Various ML Algorithms. a) Prediction accuracies are shown for 155 

various standard ML algorithms on the odour classification application varying data quantisation levels 156 

from 2 bits to 9 bits (full precision). The ML training and performance evaluation methodology follows the 157 

standard ML practice: The dataset is split into training and test datasets. Then, the ML algorithms are 158 

trained offline using the training datasets. Once the training is complete, the performance of the ML 159 

algorithms with learned parameters are evaluated with the test datasets. We use a 5-fold cross-validation 160 

methodology to avoid overfitting. Classification prediction accuracy is used as a metric that is defined as 161 

how accurate the prediction is with respect to the ground truth. No visible difference is observed between 162 

5-bit and full precision data representations. The best performing ML algorithm is GNB with a prediction 163 

accuracy of 92%. b) The 5-bit GNB design variants are compared in terms of gate count and execution 164 

time. The three GNB variants are created by either sharing or duplicating the multiply-accumulate (MAC) 165 
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units for features (i.e. sensor inputs) and classes (i.e. outputs). Sharing a MAC among classes and 166 

features reduces the number of gates while increasing the execution time. On the other hand, separate 167 

MACs will increase the number of gates while improving the execution time by doing computations in 168 

parallel. The smallest GNB implementation is the one with a shared MAC for classes and separate MACs 169 

for features and is comprised of over 3000 gates. 170 

We pick GNB as the best performing ML algorithm among all ML algorithms. Then, we 171 

design and implement the GNB inference algorithm as a NFPE using the generic 172 

methodology described in our earlier work [24]. Fig. 2b compares three variants of the 173 

GNB hardware using 5-bit data quantisation in terms of total gate count and execution 174 

time. The smallest GNB hardware implementation has over 3000 gates.  175 
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 176 

Fig. 3 Univariate Bayes feature voting classifier (UB-FVC). a) The training algorithm of UB-FVC 177 

computes the class posterior probabilities for each feature (i.e. sensor) independently (Step 3), and picks 178 

the best class (BC) for the feature (Step 4). Because feature values are quantised values from 0 to 2n-1 179 

where n is the data bitwidth, the algorithm computes the BC for each value of a feature (Step 2) and 180 

stores them in a look-up table (LUT) per feature and value (Step 5). These steps are repeated for all 181 

features (Step 1s). b) The performance of UB-FVC is compared with GNB from 2 bits to 9 bits (full 182 

precision). UB-FVC stabilises at the 5-bit quantisation level beyond which no performance improvement is 183 

observed, achieving 90% prediction accuracy. c) In the inference stage of UB-FVC, when new sensor 184 

values are received, each 5-bit sensor value is used to query its own sub-LUT denoted as Feature LUT X 185 

to retrieve its BC, which becomes its vote. The most frequent class (i.e. statistical mode) is selected 186 

among all votes or BCs, which becomes the predicted class.  187 
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Univariate Bayes feature voting classifier 188 

Metal oxide TFTs are at much earlier stage in the development cycle than silicon and 189 

consequently, to date, the most complex digital designs achieved with metal oxide TFTs 190 

have been less than a thousand (NAND2 equivalent) gates [19] [25]. 191 

To build a more resource-efficient ML NFPE for our application, we develop a new ML 192 

algorithm termed “Univariate Bayes Feature Voting Classifier” or UB-FVC. The training 193 

stage of the UB-FVC is similar to the training stage of other ML algorithms where 194 

training is performed offline. The training algorithm of the UB-FVC is described in Fig. 195 

3a. It is inspired by the GNB algorithm that accumulates the log-likelihood functions of 196 

all the features for each class and picks the best class (BC) with the maximum posterior 197 

probability as the predicted class, and stores the BC information in a Look-up Table 198 

(LUT) the LUT contents become the learned coefficients of the UB-FVC after the 199 

training stage completes.  200 

We compare the performance of UB-FVC to GNB (which was the best ML algorithm) for 201 

our application, and show the results for varying levels of data quantisation in Fig. 3b. 202 

At the 5-bit quantisation level, the prediction accuracy of UB-FVC reaches 90%, which 203 

is only 2 percentage points behind GNB but still provides an acceptable prediction 204 

accuracy for our application. 205 

At the inference stage of UB-FVC as shown in Fig. 3c, only the LUT is used to make 206 

classifications. All the information needed to make a prediction are stored in the LUT. 207 

The sufficiency of the 5-bit data quantisation level for our application allows us to build a 208 

32-entry LUT per feature. 5-bit feature data are received from eight sensors, and each 209 

5-bit feature data is used to access the LUT associated with the feature to read out its 210 

BC. Then, a voter selects the most frequent class (i.e. statistical mode) among all eights 211 

BCs as the predicted class. The UB-FVC approach simplifies the hardware 212 

implementation for the odour classification application into table lookups and statistical 213 

mode computation. 214 

Fig. 4a shows the microarchitecture of the UB-FVC inference stage described in Fig. 215 

3c. The 5-bit sensor data values are received serially from the ADC, and are 216 

demultiplexed and stored in the sensor data buffer selected by the 3-bit sensor address 217 
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input. The five odour classes are encoded in a 5-bit one-hot format so that the position 218 

of the hot bit determines the class. Because the design is custom for the specific 219 

application, the LUTs are not stored in memory. Instead, the LUT entries (i.e. one-hot 5-220 

bit predetermined BC values) are hardwired as inputs to the multiplexors to simplify the 221 

hardware complexity. Thus, the 5-bit sensor data is used as an address to select one of 222 

the thirty-two hardwired BC values, which becomes the vote of a sensor. After finding 223 

each vote per sensor, the statistical mode among eight sensor votes is computed by 224 

histogram calculation, maximum value determination and a set of parallel comparators. 225 

Except for the 8-entry sensor data buffer, everything else in the design is combinational 226 

logic.  227 

 228 
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 229 

Fig. 4 UB-FVC NFPE. a) The microarchitecture of the UB-FVC inference stage is shown. 5-bit sensor 230 

data are received serially and demultiplexed (Block 1) into the sensor data buffer (Block 2). Each feature 231 

LUT is implemented as a multiplexor (Block 3s) where LUT entries are hardwired inputs. Block 4 232 

performs a fast histogram count calculation for the eight BCs or votes. Because classes are represented 233 

as one-hot values, the histogram count can be calculated very fast by adding the corresponding bits of 234 

the BCs (e.g. the most significant bits of the BCs are added together and so on). The fast histogram count 235 

calculation unit generates five histogram values (i.e. one per class) each of which has 4 bits to 236 

accommodate values from 0 count to 8 counts. The next step is to find the highest histogram value 237 

among the five classes in order to determine the class that has the highest count. The highest histogram 238 

value is calculated through a comparator reduction tree shown as the “Find MAX” block (Block 5). Five 239 

parallel comparators (Block 6) take the five histogram values and compare each one with the highest 240 

histogram value from Block 5 to find the statistical mode. It is possible to have more than one statistical 241 

mode in which case one class is picked from the leftmost order. b) Die photo of the NFPE implementing 242 

the UB-FVC microarchitecture.  243 
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Fabrication of UB-FVC based NFPE and measurement results 244 

We fabricate the NFPE implementing the UB-FVC ML algorithm using PragmatIC’s 245 

0.8µm process with n-type metal-oxide TFTs. To implement the NFPE, we need to build 246 

a standard cell library for the 0.8µm process. The standard cell library based on the 247 

metal oxide TFT technology contains 57 cells.  248 

The micrograph of the NFPE flexIC is shown in Fig. 4b. It utilises 23 pins, which 249 

includes 8 power/ground and 15 input/output. The power and ground rails are routed 250 

through the combinational logic that gives the impression of having four symmetric 251 

blocks. The entire chip consists of combinational logic except for the 8-entry sensor 252 

data buffer that stores the sensor data at the interface. The clock is implemented as an 253 

unbuffered tree driven from an input pin. The nominal operating voltage is 4.5V. Output 254 

pins are driven by pseudo-CMOS buffers with a maximum driving capability of 1mA. 255 

Table 2 Comparison between different complex digital circuits designed with metal-oxide TFTs on 256 

flexible substrates. The first column describes the figure of merit in terms of technology, design and 257 

implementation. The second column is our work while last two columns show the closest prior art. 258 

“Figure of merit” “NFPE” “Flexible 8-bit ALU [19]” “Flexible NFC Tag [25]” 

Area (mm2) 5.6  225.6 50.55 

Technology (µm) 0.8 metal-
oxide TFT 

5 dual-gate organic + metal-
oxide TFTs 

 

1.5-2 metal-oxide TFT 

 

Logic type Unipolar 
n-type 
resistive 
load 

Complementary oxide & 
organic 

 

N-type pseudo-CMOS 

 

Supply voltage (V) 4.5 6.5 3 & 6 

Chip pin count 23 30 N/A 

Number of devices 3132 
(2084 
TFTs + 
1048 
Resistors) 

3504 

 

1712 

 

Max circuit clock 
frequency (kHz) 

104 2.1 N/A 

NAND2-equivalent 
gate count 

1024 876 428 
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Power consumption 
(mW) 

7.2 Not reported 7.5 

Gate density 
(gates/mm2) 

183  4  9  

 

 259 

We measure eight fully functional NFPEs, and all measurements are performed at room 260 

temperature whilst the flexible foil remains on its glass carrier. The implementation and 261 

fabricated chip measurement results are tabulated in Table 2, and are compared to the 262 

closest prior art that use metal-oxide TFTs on flexible substrates [19] [25] that 263 

developed complex digital circuits with metal-oxide TFTs on flexible substrates. The 264 

median power consumption among eight NFPEs is 7.2mW at 4.5V. The maximum 265 

circuit clock frequency is 104kHz.  An NFPE comprises 2084 n-type TFTs and 1048 266 

resistors with a core area of 2.32mm x 2.41mm. The NAND2 equivalent gate count is 267 

1024 gates, which makes it the most complex digital circuit fabricated with metal-oxide 268 

TFTs. It has 20-45x higher gate density in terms of the number of gates per mm2 area 269 

than the prior art. The chip simulation and measurement details can be found in the 270 

Methods section. 271 

Conclusions 272 

We have reported a domain-specific natively flexible processing engine (NFPE) 273 

fabricated with 0.8 μm metal-oxide TFT technology. We developed a resource-efficient 274 

ML algorithm, termed univariate Bayes feature voting classifier (UB-FVC), for sweat 275 

odour classification, and implemented the UB-FVC inference stage in hardware as an 276 

NFPE. The NFPE requires only 1,024, which is lower than the number required (3,000 277 

gates) when implementing other ML algorithms like Gaussian Naïve Bayes. 278 

Furthermore, compared to other digital flexICs based on metal-oxide TFTs, our flexIC 279 

has a more complex design and a higher gate density per area by 20-45 times. 280 

NFPEs are of potential use in emerging applications such as smart packaging, fast 281 

moving consumer goods (FMCG), and mass-market healthcare. The common 282 

characteristics of these markets are that the relevant products are low cost, high volume 283 

and have short lifetimes. For example, a smart label with a flexible e-nose sensor array 284 
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and ML NFPE could be attached to a meat package in order to monitor food quality and 285 

safety. The shelf life of such a product is normally a few days, after which the package 286 

(along with flexible electronics components) is disposed of or recycled.  287 

Alternatively, a smart wound dressing that contains flexible temperature and e-nose 288 

sensors attached to an ML NFPE could perform real-time monitoring of the wound by 289 

processing sensor outputs and predicting the healing of the wound. The lifetime of the 290 

dressing is similar to the meat package (a few days), but here the predicted output 291 

could be a binary one, signalling the healing status as “healed” or “unhealed”. The 292 

performance metric would be the prediction accuracy of the healing status decision, 293 

which may be very high (over 95 %, for example) to avoid false positives, since the 294 

prediction outcome may be safety critical for the patient. A number of ML algorithms 295 

would need to be modelled on the training datasets in order to find the best performing 296 

ML model to meet the performance requirements of the application.  297 

Like our UB-FVC algorithm, a large number of ML algorithms (e.g. GNBs, neural 298 

networks including the state-of-the-art deep learning neural nets) use offline 299 

training/learning. The parameters are learned during the offline training stage. These 300 

learned parameters do not change during inference, and can only change when the ML 301 

algorithm is re-trained offline with new datasets. After retraining, the parameters are 302 

updated in the rewritable memory of a system through a software/firmware update. A 303 

ML NFPE that is based on one of these ML algorithms and used, for example, in FMCG 304 

will be of single use and have short shelf lifetimes. Programmability may not be required 305 

for the ML NFPEs because the learned parameters do not need to change during the 306 

short lifetime of an FMCG product, so they can be hardwired instead of requiring a 307 

rewritable memory.  308 

Finally, the development of CMOS technology is a vital step towards low-power circuit 309 

designs and larger scale integration of metal-oxide TFTs. To date, no commercially 310 

viable route to CMOS based on metal-oxide technology has been found due to the lack 311 

of an appropriate p-type material. Without CMOS, complex IC design will be 312 

constrained, but, as we have shown here, domain-specific NFPEs that have a 313 

reasonable gate and power budget can be built with n-type TFT logic. 314 



 16 

Methods 315 

FlexIC fabrication methodology 316 

The forward transfer characteristic for an IGZO TFT is shown in Extended Data Fig. 1. 317 

The linear regime transfer curve plot is shown for an n-type metal-oxide TFT at 318 

logarithmic scale. The transistor has a drain voltage of 0.1V and a threshold voltage of 319 

0.61V, a sub-threshold slope of 0.13V/dec, an on-current of 2.5µA and an off-current 320 

below the noise floor of the measurement equipment. 321 

FlexLogIC® is based on a 200mm diameter wafer where repeated instances of the 322 

flexIC design are generated by running several sequences of material deposition, 323 

patterning and etching. For ease of handling and to allow industry standard tool to be 324 

used and sub-micron patterned features to be achieved, the flexible substrate is spin-325 

coated onto glass at the outset of production.  The process has been 326 

optimised to ensure that the thickness variation is significantly less than 3% over 327 

20mm lateral distance.  Substrate processing conditions have also been carefully 328 

optimised to minimise film stress and substrate bow.  Feature patterning is achieved 329 

using a photolithographic stepper tool which images a shot that is repeated at multiple 330 

instances across the 200mm diameter wafer. Each shot is focussed individually which 331 

further compensates for any thickness variation within the spun-cast film. The 332 

measurements were carried out using process control monitoring structures.  All 333 

measurements presented in this article were taken before release of the flexible foil 334 

from the glass carrier.  335 

Chip simulation and measurement validation methodology 336 

Extended Data Fig. 2 and Extended Data Fig 4 depict simulation and chip 337 

measurement results of the UB-FVC based NFPE with a tester clock frequency of 338 

104kHz and supply voltage of 4.5V. The input test vectors for both simulation and 339 

measurement results are the test datasets from our sweat odour classification 340 

application. We use over 500 test vectors (each test vector has eight 5-bit sensor 341 

values) to stimulate the simulation model and the fabricated chip, and the results of 342 

simulation match the results of the actual measurements for all test vectors.  343 
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Simulation results in Extended Data Fig. 2 demonstrate the functionality of the UB-FVC 344 

hardware. Eight 5-bit sensor data arrives serially at each cycle starting from address 0 345 

to 7. Each 5-bit Sensor value is stored in the 8-entry 5-bit sensor data buffer selected by 346 

the 3-bit Address input from address 0 to address 7. For example, Sensor0 stores the 347 

value of “0x0A” at address 0 in the buffer, and Sensor1 stores “0x07” at address 1 and 348 

so on. This is shown inside the red rectangle drawn in the waveform. Then, each 5-bit 349 

Sensor data stored in the buffer is used to select one of the 32 5-bit hardwired best 350 

class (BC) coefficients. For example, Sensor0 has the value of “0x0A”. The value will be 351 

used to access the 10th BC coefficient for Sensor0. The predetermined one-hot encoded 352 

BC coefficients are hardwired in the microarchitecture and shown in Extended Data 353 

Fig. 3. The 10th BC coefficient for Sensor0 is “2” in one-hot encoded format, which 354 

becomes the vote for Sensor0 as denoted by Sensor0_vote in Extended Data Fig. 2. 355 

Sensor1 has the value of “0x07”, and the 7th BC coefficient for Sensor1 is also “2” in 356 

one-hot encoded format, which becomes Sensor1_vote. After finding the BC values of 357 

all sensors, the eight votes are {2, 2, 4, 2, 4, 2, 2, 4}. The statistical mode is 2 among all 358 

these eight votes, so Output becomes 2.  359 

The measurement results Extended Data Fig. 4 confirm the correct functionality 360 

demonstrated in simulations with exact test stimulus. Each individual output bit in 361 

Output_X is shown in the waveform. The output settles at 2 after all sensor data are 362 

received. This can be seen in the waveform when Output_1 becomes 1 and the 363 

remaining output bits are 0.  364 

Additionally, the slow rising and falling edges can be observed on the Output_X signals. 365 

This is due to the experimental setup capacitive loading of the logic analyser and the 366 

limited drive strength capabilities of the output buffers. Furthermore, small glitches can 367 

be observed which correspond to the combinational nature of the histogram calculation. 368 
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 369 

Extended Data Fig.1 Forward transfer characteristic of a metal-oxide TFT.  370 

 371 

Extended Data Fig. 2 NFPE simulation results. The column on the left shows the list of input, 372 

intermediate and output signals. Sensor[4:0] and Address[2:0] are the inputs, and represent the 5-bit 373 

sensor data, and 3-bit sensor address, respectively. SensorX_vote[4:0] is intermediate signals, and 374 

represent the 5-bit BC coefficients (essentially votes) for each sensor. Finally, Output[4:0] shows the 5-bit 375 

one-hot predicted class as output. 376 

 377 

Extended Data Fig. 3 One-hot coefficients to represent BCs. The top row shows the sensor data 378 

values from 0 to 31. For each sensor value, the BC or vote of the sensor is predetermined and hardwired 379 

in the microarchitecture. 380 
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 381 

Extended Data Fig. 4 NFPE chip measurement results of a fabricated chip for the same setup as in 382 

the simulation. This is the waveform captured from the logic analyser. All inputs and outputs are shown 383 

as individual signals. Sensor_X and Address_X are input signals, and represent the sensor data and 384 

address. Output_X represents the 5-bit one-hot predicted class output signals.  385 

Data availability 386 

The data that support the plots within this paper and other findings of this study are 387 

available from the corresponding author upon reasonable request. 388 

Code availability 389 

The code used to generate the plots within this paper is available from the 390 

corresponding author upon reasonable request. 391 
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Figure captions 466 

Fig. 1 OFET sensors and system architecture of the flexible smart system. a) A 467 

single OFET sensor and an e-nose sensor array consisting of eight OFET sensors. b) 468 

System architecture of the flexible smart system consisting of the e-nose sensor array 469 

with ADCs on a flexible substrate and the natively flexible hardwired ML processing 470 

engine on a flexible substrate 471 

Fig. 2 Design Space Exploration with Various ML Algorithms. a) Prediction 472 

accuracies are shown for various standard ML algorithms on the odour classification 473 

application varying data quantisation levels from 2 bits to 9 bits (full precision). The ML 474 

training and performance evaluation methodology follows the standard ML practice: The 475 

dataset is split into training and test datasets. Then, the ML algorithms are trained 476 

offline using the training datasets. Once the training is complete, the performance of the 477 

ML algorithms with learned parameters are evaluated with the test datasets. We use a 478 

5-fold cross-validation methodology to avoid overfitting. Classification prediction 479 

accuracy is used as a metric that is defined as how accurate the prediction is with 480 

respect to the ground truth. No visible difference is observed between 5-bit and full 481 

precision data representations. The best performing ML algorithm is GNB with a 482 

prediction accuracy of 92%. b) The 5-bit GNB design variants are compared in terms of 483 

gate count and execution time. The three GNB variants are created by either sharing or 484 

duplicating the multiply-accumulate (MAC) units for features (i.e. sensor inputs) and 485 

classes (i.e. outputs). Sharing a MAC among classes and features reduces the number 486 

of gates while increasing the execution time. On the other hand, separate MACs will 487 

increase the number of gates while improving the execution time by doing computations 488 

in parallel. The smallest GNB implementation is the one with a shared MAC for classes 489 

and separate MACs for features and is comprised of over 3000 gates. 490 

Fig. 3 Univariate Bayes feature voting classifier (UB-FVC). a) The training algorithm 491 

of UB-FVC computes the class posterior probabilities for each feature (i.e. sensor) 492 
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independently (Step 3), and picks the best class (BC) for the feature (Step 4). Because 493 

feature values are quantised values from 0 to 2n-1 where n is the data bitwidth, the 494 

algorithm computes the BC for each value of a feature (Step 2) and stores them in a 495 

look-up table (LUT) per feature and value (Step 5). These steps are repeated for all 496 

features (Step 1s). b) The performance of UB-FVC is compared with GNB from 2 bits to 497 

9 bits (full precision). UB-FVC stabilises at the 5-bit quantisation level beyond which no 498 

performance improvement is observed, achieving 90% prediction accuracy. c) In the 499 

inference stage of UB-FVC, when new sensor values are received, each 5-bit sensor 500 

value is used to query its own sub-LUT denoted as Feature LUT X to retrieve its BC, 501 

which becomes its vote. The most frequent class (i.e. statistical mode) is selected 502 

among all votes or BCs, which becomes the predicted class. 503 

Fig. 4 UB-FVC NFPE. a) The microarchitecture of the UB-FVC inference stage is 504 

shown. 5-bit sensor data are received serially and demultiplexed (Block 1) into the 505 

sensor data buffer (Block 2). Each feature LUT is implemented as a multiplexor (Block 506 

3s) where LUT entries are hardwired inputs. Block 4 performs a fast histogram count 507 

calculation for the eight BCs or votes. Because classes are represented as one-hot 508 

values, the histogram count can be calculated very fast by adding the corresponding 509 

bits of the BCs (e.g. the most significant bits of the BCs are added together and so on). 510 

The fast histogram count calculation unit generates five histogram values (i.e. one per 511 

class) each of which has 4 bits to accommodate values from 0 count to 8 counts. The 512 

next step is to find the highest histogram value among the five classes in order to 513 

determine the class that has the highest count. The highest histogram value is 514 

calculated through a comparator reduction tree shown as the “Find MAX” block (Block 515 

5). Five parallel comparators (Block 6) take the five histogram values and compare 516 

each one with the highest histogram value from Block 5 to find the statistical mode. It is 517 

possible to have more than one statistical mode in which case one class is picked from 518 

the leftmost order. b) Die photo of the NFPE implementing the UB-FVC 519 

microarchitecture. 520 

Extended Data Fig.1 Forward transfer characteristic of a metal-oxide TFT.  521 
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Extended Data Fig. 2 NFPE simulation results. The column on the left shows the list 522 

of input, intermediate and output signals. Sensor[4:0] and Address[2:0] are the inputs, 523 

and represent the 5-bit sensor data, and 3-bit sensor address, respectively. 524 

SensorX_vote[4:0] is intermediate signals, and represent the 5-bit BC coefficients 525 

(essentially votes) for each sensor. Finally, Output[4:0] shows the 5-bit one-hot 526 

predicted class as output. 527 

Extended Data Fig. 3 One-hot coefficients to represent BCs. The top row shows the 528 

sensor data values from 0 to 31. For each sensor value, the BC or vote of the sensor is 529 

predetermined and hardwired in the microarchitecture. 530 

Extended Data Fig. 4 NFPE chip measurement results of a fabricated chip for the 531 

same setup as in the simulation. This is the waveform captured from the logic 532 

analyser. All inputs and outputs are shown as individual signals. Sensor_X and 533 

Address_X are input signals, and represent the 5-bit sensor data and 3-bit address. 534 

Output_X represents the 5-bit one-hot predicted class output signals. 535 


