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1. Introduction

Let

Lp,μu=−ΔH ,pu−μψp
|u|p−2u

dp , 0≤ μ≤
(
Q− p

p

)p

, (1.1)

be the Hardy operator on the Heisenberg group. We consider the following weighted
eigenvalue problem with a singular weight:

Lp,μu= λ f (ξ)|u|p−2u, in Ω⊂Hn,

u= 0, on ∂Ω,
(1.2)

where 1 < p < Q = 2n + 2, λ ∈ R, f (ξ) ∈ �p := { f : Ω→R+ | limd(ξ)→0(dp(ξ) f (ξ)/
(ψp(ξ))= 0, f (ξ)∈ L∞loc(Ω \ {0})},Ω is a bounded domain in the Heisenberg group, and
the definitions of d(ξ) and ψp(ξ); see below. We investigate the weak solution of (1.2) and
the asymptotic behavior of the first eigenvalue for different singular weights as μ increases
to ((Q− p)/p)p. Furthermore, we show that the first eigenvalue is simple and isolated, as
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well as the eigenfunctions corresponding to other eigenvalues change sign. Our proof is
mainly based on a Hardy inequality with remainder terms. It is established by the vec-
tor field method and an elementary integral inequality. In addition, we show that the
constants appearing in Hardy inequality are the best. Then we conclude a compact em-
bedding in the weighted Sobolev space.

The main difficulty to study the properties of the first eigenvalue is the lack of regu-
larity of the weak solutions of the p-sub-Laplacian in the Heisenberg group. Let us note
that the Cα regularity for the weak solutions of the p-subelliptic operators formed by
the vector field satisfying Hörmander’s condition was given in [1] and the C1,α regularity
of the weak solutions of the p-sub-Laplacian ΔH ,p in the Heisenberg group for p near 2
was proved in [2]. To obtain results here, we employ the Picone identity and Harnack
inequality to avoid effectively the use of the regularity.

The eigenvalue problems in the Euclidean space have been studied by many authors.
We refer to [3–11]. These results depend usually onHardy inequalities or improvedHardy
inequalities (see [4, 12–14]).

Let us recall some elementary facts on the Heisenberg group (e.g., see [15]). LetHn be
a Heisenberg group endowed with the group law

ξ ◦ ξ′ =
(
x+ x′, y + y′, t+ t′ +2

n∑
i=1

(
xi y

′
i − x′i yi

))
, (1.3)

where ξ = (z, t) = (x, y, t) = (x1,x2, . . . ,xn, y1, . . . , yn, t), z = (x, y), x ∈ Rn, y ∈ Rn, t ∈ R,
n ≥ 1; ξ′ = (x′, y′, t′) ∈ R2n+1. This group multiplication endows Hn with a structure of
nilpotent Lie group. A family of dilations onHn is defined as

δτ(x, y, t)=
(
τx,τ y,τ2t

)
, τ > 0. (1.4)

The homogeneous dimension with respect to dilations is Q = 2n+ 2. The left invariant
vector fields on the Heisenberg group have the form

Xi = ∂

∂xi
+2yi

∂

∂t
, Yi = ∂

∂yi
− 2xi

∂

∂t
, i= 1,2, . . . ,n. (1.5)

We denote the horizontal gradient by ∇H = (X1, . . . ,Xn,Y1, . . . ,Yn), and write
divH(v1,v2, . . . ,v2n) =

∑n
i=1(Xivi + Yivn+i). Hence, the sub-Laplacian ΔH and the p-sub-

Laplacian ΔH ,p are expressed by

ΔH =
n∑
i=1

X2
i +Y 2

i =∇H·∇H ,

ΔH ,pu=∇H
(∣∣∇Hu

∣∣p−2∇Hu
)= divH

(∣∣∇Hu
∣∣p−2∇Hu

)
, p > 1,

(1.6)

respectively.
The distance function is

d(ξ,ξ′)= {[
(x− x′)2 + (y− y′)2

]2
+
[
t− t′ − 2(x·y′ − x′·y)]2}1/4, for ξ,ξ′ ∈Hn.

(1.7)
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If ξ′ = 0, we denote

d(ξ)= d(ξ,0)= (|z|4 + t2
)1/4

, with |z| = (
x2 + y2

)1/2
. (1.8)

Note that d(ξ) is usually called the homogeneous norm.
For d = d(ξ), it is easy to calculate

∇Hd = 1
d3

(
|z|2x+ yt
|z|2y− xt

)
,

∣∣∇Hd
∣∣p = |z|

p

dp = ψp, ΔH ,pd = ψp
Q− 1
d

. (1.9)

Denote by BH(R) = {ξ ∈Hn | d(ξ) < R} the ball of radius R centered at the origin. Let

Ω1 = BH(R2)\ BH(R1) with 0 ≤ R1 < R2 ≤ ∞ and u(ξ) = v(d(ξ)) ∈ C2(Ω1) be a radial
function with respect to d(ξ). Then

ΔH ,pu= ψp

∣∣v′∣∣p−2
[
(p− 1)v′′ +

Q− 1
d

v′
]
. (1.10)

Let us recall the change of polar coordinates (x, y, t)→(ρ,θ,θ1, . . . ,θ2n−1) in [16]. If
u(ξ)= ψp(ξ)v(d(ξ)), then

∫
Ω1
u(ξ)dξ = sH

∫ R2

R1

ρQ−1v(ρ)dρ, (1.11)

where sH = ωn

∫ π
0 (sinθ)

n−1+p/2dθ, ωn is the 2n-Lebesgue measure of the unitary Euclidean
sphere in R2n.

The Sobolev space inHn is written byD1,p(Ω)={u :Ω→R;u,|∇Hu|∈Lp(Ω)}.D1,p
0 (Ω)

is the closure of C∞0 (Ω) with respect to the norm ‖u‖D1,p
0 (Ω) = (

∫
Ω|∇Hu|pdξ)1/p.

In the sequel, we denote by c, c1, C, and so forth some positive constants usually except
special narrating.

This paper is organized as follows. In Section 2, we prove the Hardy inequality with
remainder terms by the vector field method in the Heisenberg group. In Section 3, we
discuss the optimality of the constants in the inequalities which is of its independent
interest. In Section 4, we show some useful properties concerning the Hardy operator
(1.1), and then check the existence of solutions of the eigenvalue problem (1.2) (1 < p <
Q) and the asymptotic behavior of the first eigenvalue as μ increases to ((Q− p)/p)p. In
Section 5, we study the simplicity and isolation of the first eigenvalue.

2. The Hardy inequality with remainder terms

D’Ambrosio in [17] has proved a Hardy inequality in the bounded domain Ω ⊂Hn: let

p > 1 and p �=Q. For any u∈D
1,p
0 (Ω,|z|p/d2p), it holds that

CQ,p

∫
Ω
ψp
|u|p
dp dξ ≤

∫
Ω

∣∣∇Hu
∣∣p
dξ, (2.1)

where CQ,p = |(Q− p)/p|p. Moreover, if 0 ∈ Ω, then the constant CQ,p is best. In this
section, we give the Hardy inequality with remainder terms on Ω, based on the careful
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choice of a suitable vector field and an elementary integral inequality. Note that we also
require that 0∈Ω.

Theorem 2.1. Let u∈D
1,p
0 (Ω / {0}). Then

(1) if p �=Q and there exists a positive constantM0 such that supξ∈Ωd(ξ)e
1/M0 := R0 <∞,

then for any R≥ R0,

∫
Ω

∣∣∇Hu
∣∣p
dξ ≥

∣∣∣∣Q− p

p

∣∣∣∣
p∫

Ω
ψp
|u|p
dp dξ +

p− 1
2p

∣∣∣∣Q− p

p

∣∣∣∣
p−2∫

Ω
ψp
|u|p
dp

(
ln
(
R

d

))−2
dξ;

(2.2)

moreover, if 2≤ p < Q, then choose supξ∈Ωd(ξ)= R0;
(2) if p =Q and there exitsM0 such that supξ∈Ωd(ξ)e

1/M0 < R, then

∫
Ω

∣∣∇Hu
∣∣p
dξ ≥

(
p− 1
p

)p∫
Ω
ψp

|u|p(
d ln(R/d)

)p dξ. (2.3)

Before we prove the theorem, let us recall that

Γ
(
d(ξ)

)=
⎧⎨
⎩
d(ξ)(p−Q)/(p−1) if p �=Q,
− lnd(ξ) if p =Q

(2.4)

is the solution of ΔH ,p at the origin, that is, ΔH ,pΓ(d(ξ)) = 0 on Ω \ {0}. Equation (2.4)
is useful in our proof. For convenience, write �(s) = −1/ ln(s), s ∈ (0,1), and A = (Q−
p)/p. Thus, for some positive constantM > 0,

0≤�
(
d(ξ)
R

)
≤M, sup

ξ∈Ω
d(ξ) < R, ξ ∈Ω. (2.5)

Furthermore,

∇H�γ
(
d

R

)
= γ

�γ+1(d/R)∇Hd

d
,

d�γ(ρ/R)
dρ

= γ
�γ+1(ρ/R)

ρ
∀γ ∈R, (2.6)

∫ b

a

�γ+1(s)
s

ds= 1
γ

[
�γ(b)−�γ(a)

]
. (2.7)

Proof. Let T be aC1 vector field onΩ and let it be specified later. For any u∈ C∞0 (Ω \ {0}),
we use Hölder’s inequality and Young’s inequality to get

∫
Ω

(
divHT

)|u|pdξ =−p
∫
Ω

〈
T,∇Hu

〉|u|p−2udξ

≤ p

(∫
Ω

∣∣∇Hu
∣∣p
dξ

)1/p(∫
Ω
|T|p/(p−1)|u|pdξ

)(p−1)/p

≤
∫
Ω

∣∣∇Hu
∣∣p
dξ + (p− 1)

∫
Ω
|T|p/(p−1)|u|pdξ.

(2.8)
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Thus, the following elementary integral inequality:
∫
Ω

∣∣∇Hu
∣∣p
dξ ≥

∫
Ω

[
divHT− (p− 1)|T|p/(p−1)]|u|pdξ (2.9)

holds.
(1) Let a be a free parameter to be chosen later. Denote

I1(�)= 1+
p− 1
pA

�
(
d

R

)
+ a�2

(
d

R

)
, I2(�)= p− 1

pA
�2

(
d

R

)
+2a�3

(
d

R

)
,

(2.10)

and pick T(d)=A|A|p−2(|∇Hd|p−2∇Hd/dp−1)I1. An immediate computation shows

divH

(
A|A|p−2

∣∣∇Hd
∣∣p−2∇Hd

dp−1

)

= A|A|p−2 dΔH ,pd− (p− 1)
∣∣∇Hd

∣∣p

dp

= A|A|p−2 (Q− 1− p+1)
∣∣∇Hd

∣∣p

dp = p|A|p
∣∣∇Hd

∣∣p

dp .

(2.11)

By (2.6),

divHT= p|A|p
∣∣∇Hd

∣∣p

dp I1 +A|A|p−2
∣∣∇Hd

∣∣p−2∇Hd

dp−1

× ∇Hd

d

[
p− 1
pA

�2
(
d

R

)
+2a�3

(
d

R

)]

= p|A|p
∣∣∇Hd

∣∣p

dp I1 +A|A|p−2
∣∣∇Hd

∣∣p

dp I2,

divHT− (p− 1)|T|p/(p−1) = p|A|p
∣∣∇Hd

∣∣p

dp I1 +A|A|p−2
∣∣∇Hd

∣∣p

dp I2

− (p− 1)|A|p
∣∣∇Hd

∣∣p

dp I
p/(p−1)
1

= |A|p
∣∣∇Hd

∣∣p

dp

(
pI1 +

1
A
I2− (p− 1)I

p/(p−1)
1

)
.

(2.12)

We claim

divHT− (p− 1)|T|p/(p−1) ≥ |A|p
∣∣∇Hd

∣∣p

dp

(
1+

p− 1
2pA2

�2
(
d

R

))
. (2.13)

In fact, arguing as in the proof of [13, Theorem 4.1], we set

f (s) := pI1(s) +
1
A
I2(s)− (p− 1)I

p/(p−1)
1 (s) (2.14)
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andM =M(R) := supξ∈Ω�(d(ξ)/R), and distinguish three cases
(i)

1 < p < 2 < Q, a >
(2− p)(p− 1)

6p2A2
, (2.15)

(ii)

2≤ p < Q, a= 0, (2.16)

(iii)

p > Q, a <
(2− p)(p− 1)

6p2A2
< 0. (2.17)

It yields that

f (s)≥ 1+
p− 1
2pA2

s2, 0≤ s≤M, (2.18)

(see [13]) and then follows (2.13). Hence (2.2) is proved.
(2) If p = Q, then we choose the vector field T(d) = ((p− 1)/p)p−1(|∇Hd|p−2∇Hd/

dp−1)�p−1(d/R). It gives

divHT=
(
p− 1
p

)p−1{[
Q− 1− (p− 1)

]∣∣∇Hd
∣∣p

dp �p−1
(
d

R

)
+ (p− 1)�p

(
d

R

)∣∣∇Hd
∣∣p

dp

}

= p
(
p− 1
p

)p

�p
(
d

R

)∣∣∇Hd
∣∣p

dp ,

(2.19)

and hence

divHT− (p− 1)|T|p/(p−1) =
(
p− 1
p

)p

�p

(
d

R

)∣∣∇Hd
∣∣p

dp . (2.20)

Combining (2.20) with (2.9) follows (2.3). �

Remark 2.2. The domain Ω in (2.9) may be bounded or unbounded. In addition, if we
select that T(d)= A|A|p−2(|∇Hd|p−2∇Hd/dp−1), then

divHT− (p− 1)|T|p/(p−1) = p|A|p
∣∣∇Hd

∣∣p

dp − (p− 1)|A|p
∣∣∇Hd

∣∣p

dp = |A|p
∣∣∇Hd

∣∣p

dp .

(2.21)

Hence, from (2.9) we conclude (2.1) on the bounded domain Ω and on Hn (see [15]),
respectively.

We will prove in next section that the constants in (2.2) and (2.3) are best.
Now, we state the Poincaré inequality proved in [17].
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Lemma 2.3. LetΩ be a subset ofHn bounded in x1 direction, that is, there exists R > 0 such

that 0 < r = |x1| ≤ R for ξ = (x1,x2, . . . ,xn, y1, . . . , yn, t) ∈ Ω. Then for any u ∈ D
1,p
0 (Ω),

then

c
∫
Ω
|u|pdξ ≤

∫
Ω

∣∣∇Hu
∣∣p
dξ, (2.22)

where c = ((p− 1)/pR)p.

Using (2.9) by choosing T=−((p− 1)/p)p−1(∇Hr/r p−1) immediately provides a dif-
ferent proof to (2.22).

In the following, we describe a compactness result by using (2.1) and (2.22).

Theorem 2.4. Suppose p �=Q and f (ξ) ∈�p. Then there exists a positive constant Cf ,Q,p

such that

Cf ,Q,p

∫
Ω
f (ξ)|u|pdξ ≤

∫
Ω

∣∣∇Hu
∣∣p
dξ, (2.23)

and the embedding D
1,p
0 (Ω)↩Lp(Ω, f dξ) is compact.

Proof. Since f (ξ)∈�p, we have that for any ε > 0, there exist δ > 0 and Cδ > 0 such that

sup
BH (δ)⊆Ω

dp

ψp
f (ξ)≤ ε, f (ξ)|Ω\BH (δ) ≤ Cδ. (2.24)

By (2.1) and (2.22), it follows
∫
Ω
f (ξ)|u|pdξ =

∫
BH (δ)

f |u|pdξ +
∫
Ω\BH (δ)

f |u|pdξ

≤ ε
∫
BH (δ)

ψp
|u|p
dp dξ +Cδ

∫
Ω\BH (δ)

|u|pdξ ≤ C−1f ,Q,p

∫
Ω

∣∣∇Hu
∣∣p
dξ,

(2.25)

then (2.23) is obtained.
Now, we prove the compactness. Let {um} ⊆ D

1,p
0 (Ω) be a bounded sequence. By re-

flexivity of the space D
1,p
0 (Ω) and the Sobolev embedding for vector fields (see [18]), it

yields

umj ⇀ u weakly in D
1,p
0 (Ω),

umj −→ u strongly in Lp(Ω)
(2.26)

for a subsequence {umj} of {um} as j→∞. Write Cδ = ‖ f ‖L∞(Ω\BH (δ)). From (2.1),
∫
Ω
f
∣∣umj −u

∣∣p
dξ =

∫
BH (δ)

f
∣∣umj −u

∣∣p
dξ +

∫
Ω\BH (δ)

f
∣∣umj −u

∣∣p
dξ

≤ ε
∫
BH (δ)

ψp

∣∣umj −u
∣∣p

dp dξ +Cδ

∫
Ω\BH (δ)

∣∣umj −u
∣∣p
dξ

≤ εC−1Q,p

∫
Ω

∣∣∇H
(
umj −u

)∣∣p
dξ +Cδ

∫
Ω

∣∣umj −u
∣∣p
dξ.

(2.27)
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Since {um} ⊆D
1,p
0 (Ω) is bounded, we have

∫
Ω

f
∣∣umj −u

∣∣p
dξ ≤ εM +Cδ

∫
Ω

∣∣umj −u
∣∣p
dξ, (2.28)

whereM > 0 is a constant depending on Q and p. By (2.26),

lim
j→∞

∫
Ω

f
∣∣umj −u

∣∣p
dξ ≤ εM. (2.29)

As ε is arbitrary, lim j→∞
∫
Ω f |umj − u|pdξ = 0. Hence D

1,p
0 (Ω)↩ Lp(Ω, f dξ) is compact.

�

Remark 2.5. The class of the functions f (ξ)∈�p has lower-order singularity than d−p(ξ)
at the origin. The examples of such functions are

(a) any bounded function,
(b) in a small neighborhood of 0, f (ξ)= ψp(ξ)/dβ(ξ), 0 < β < p,

(c) f (ξ)= ψp(ξ)/dp(ξ)(ln(1/d(ξ)))2 in a small neighborhood of 0.

3. Proof of best constants in (2.2) and (2.3)

In this section, we prove that the constants appearing in Theorem 2.1 are the best. To do
this, we need two lemmas. First we introduce some notations.

For some fixed small δ > 0, let the test function ϕ(ξ)∈ C∞0 (Ω) satisfy 0≤ ϕ≤ 1 and

ϕ(ξ)=
⎧⎪⎨
⎪⎩
1 if ξ ∈ BH

(
0,
δ

2

)
,

0 if ξ ∈Ω \BH(0,δ),
(3.1)

with |∇Hϕ| < 2|∇Hd|/d. Let ε > 0 small enough, and define

Vε(ξ)= ϕ(ξ)�ε, with�ε = d−A+ε�−κ
(
d

R

)
,

1
p
< κ <

2
p
,

Jγ(ε)=
∫
Ω
ϕp(ξ)

∣∣∇Hd
∣∣p

dQ−pε
�−γ

(
d

R

)
dξ, γ ∈R.

(3.2)

Lemma 3.1. For ε > 0 small, it holds
(i) cε−1−γ ≤ Jγ(ε)≤ Cε−1−γ, γ >−1,
(ii) Jγ(ε)= (pε/(γ+1))Jγ+1(ε) +Oε(1), γ >−1,
(iii) Jγ(ε)=Oε(1), γ <−1.

Proof. By the change of polar coordinates (1.11) and 0≤ ϕ≤ 1, we have

Jγ(ε)≤
∫
BH (δ)

∣∣∇Hd
∣∣p

dQ−pε
�−γ

(
d

R

)
dξ = sH

∫
ρ<δ

ρ−Q+pε�−γ
(
ρ

R

)
ρQ−1dρ

= sH

∫
ρ<δ

ρ−1+pε�−γ
(
ρ

R

)
dρ.

(3.3)
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By (2.7) we know that for γ <−1 the right-hand side of (3.3) has a finite limit, hence (iii)
follows from ε→0.

To show (i), we set ρ = Rτ1/ε. Thus, dρ = (1/ε)Rτ1/ε−1dτ, �−γ(τ1/ε)= ε−γ�−γ(τ), and

Jγ(ε)≤ sH

∫
ρ<δ

ρ−1+pε�−γ
(
ρ

R

)
dρ = sH

∫ (δ/R)ε

0

(
Rτ1/ε

)−1+pε
�−γ

(
Rτ1/ε

R

)
1
ε
Rτ1/ε−1dτ

= sHR
pεε−1−γ

∫ (δ/R)ε

0
τ p−1�−γ(τ)dτ.

(3.4)

It follows the right-hand side of (i). Using the fact that ϕ= 1 in BH(δ/2),

Jγ(ε)≥
∫
BH (δ/2)

∣∣∇Hd
∣∣p

dQ−pε
�−γ

(
d

R

)
dξ = sHRpεε−1−γ

∫ (δ/2R)ε
0 τ p−1�−γ(τ)dτ, (3.5)

and the left-hand side of (i) is proved.
Nowwe prove (ii). LetΩη:= {ξ ∈Ω | d(ξ) > η}, η > 0, be small and note the boundary

term

−
∫
d=η

(
ϕp

∣∣∇Hd
∣∣p−2∇Hd

dQ−1−pε

)
�−γ−1

(
d

R

)
∇Hd·�ndS−→ 0 as η −→ 0. (3.6)

From (2.6),

∫
Ω
divH

(
ϕp

∣∣∇Hd
∣∣p−2∇Hd

dQ−1−pε

)
�−γ−1

(
d

R

)
dξ

=−
∫
Ω

ϕp
∣∣∇Hd

∣∣p−2

dQ−1−pε

〈
∇Hd,∇H�−γ−1

(
d

R

)�
dξ

= (γ+1)
∫
Ω

ϕp
∣∣∇Hd

∣∣p

dQ−pε
�−γ

(
d

R

)
dξ = (γ+1)Jγ(ε).

(3.7)

On the other hand,

∫
Ω
divH

(
ϕp

∣∣∇Hd
∣∣p−2∇Hd

dQ−1−pε

)
�−γ−1

(
d

R

)
dξ

= p
∫
Ω
ϕp−1

∣∣∇Hd
∣∣p−2〈∇Hd,∇Hϕ

〉
dQ−1−pε

�−γ−1
(
d

R

)
dξ

+ (1−Q+ pε+Q− 1)
∫
Ω
ϕp

∣∣∇Hd
∣∣p

dQ−pε
�−γ−1

(
d

R

)
dξ

= p
∫
Ω
ϕp−1

∣∣∇Hd
∣∣p−2〈∇Hd,∇Hϕ

〉
dQ−1−pε

�−γ−1
(
d

R

)
dξ + pεJγ+1(ε).

(3.8)
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We claim that p
∫
Ωϕ

p−1(|∇Hd|p−2〈∇Hd,∇Hϕ〉/dQ−1−pε)�−γ−1(d/R)dξ =Oε(1). In fact,
by (3.1) and (1.11),

∫
Ω
ϕp−1

∣∣∇Hd
∣∣p−2〈∇Hd,∇Hϕ

〉
dQ−1−pε

�−γ−1
(
d

R

)
dξ

≤ 2
∫
BH (δ)

∣∣∇Hd
∣∣p

dQ−pε
�−γ−1

(
d

R

)
dξ

≤ 2sH

∫
BH (δ)

ρ−Q+pε�−γ−1
(
ρ

R

)
ρQ−1dρ

= 2sH

∫
BH (δ)

ρpε−1�−γ−1
(
ρ

R

)
dρ.

(3.9)

Using the estimate (i) follows that
∫
BH (δ)ρ

pε−1�−γ−1(ρ/R)dρ = Oε(1). Combining (3.7)
with (3.8) gives

(γ+1)Jγ(ε)= pεJγ+1(ε) +Oε(1). (3.10)

This allows us to conclude (ii). �

We next estimate the quantity

I[Vε]=
∫
Ω

∣∣∇HVε
∣∣p
dξ −|A|p

∫
Ω

∣∣∇Hd
∣∣p

∣∣Vε∣∣p

dp dξ. (3.11)

Lemma 3.2. As ε→0, it holds
(i) I(Vε)≤ (κ(p− 1)/2)|A|p−2Jpκ−2(ε) +Oε(1);
(ii)

∫
BH (δ)|∇HVε|pdξ ≤ |A|pJpκ(ε) +Oε(ε1−pκ).

Proof. By the definition of Vε(ξ), we see∇HVε(ξ)= ϕ(ξ)∇H�ε +�ε∇Hϕ. Using the ele-
mentary inequality

|a+ b|p ≤ |a|p + cp
(|a|p−1|b|+ |b|p), a,b ∈R2n, p > 1, (3.12)

one has

∣∣∇HVε
∣∣p ≤ ϕp

∣∣∇H�ε
∣∣p

+ cp
(∣∣∇Hϕ

∣∣�εϕp−1∣∣∇H�ε
∣∣p−1

+
∣∣∇Hϕ

∣∣p∣∣�ε∣∣p)

≤ ϕp
∣∣∇H�ε

∣∣p
+ cp

(∣∣2∇Hd
∣∣

d
�εϕ

p−1∣∣∇H�ε
∣∣p−1

+
(∣∣2∇Hd

∣∣
d

)p∣∣�ε∣∣p
)
.

(3.13)
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Since∇H�ε =−d−A+ε−1�−κ(d/R)(A− ε+ κ�(d/R))∇Hd, it follows
∫
Ω

∣∣∇HVε
∣∣p
dξ ≤

∫
BH (δ)

∣∣∇Hd
∣∣p
ϕpd−Q+pε�−pκ

(
d

R

)∣∣∣∣A−
(
ε− κ�

(
d

R

))∣∣∣∣
p

dξ

+2cp

∫
BH (δ)

∣∣∇Hd
∣∣p
ϕp−1d−Q+pε�−pκ

(
d

R

)∣∣∣∣A−
(
ε− κ�

(
d

R

))∣∣∣∣
p−1

dξ

+2pcp

∫
BH (δ)

∣∣∇Hd
∣∣p
d−Q+pε�−pκ

(
d

R

)
dξ :=ΠA +Π1 +Π2.

(3.14)

We claim that

Π1,Π2 =Oε(1). (3.15)

Indeed, since |A− (ε− κ�(d/R))| is bounded, using (3.1) we get

Π1 ≤ C
∫
BH (δ)

∣∣∇Hd
∣∣p
ϕp−1d−Q+pε�−pκ

(
d

R

)∣∣∣∣A−
(
ε− κ�

(
d

R

))∣∣∣∣
p−1

dξ

≤ C
∫
BH (δ)

∣∣∇Hd
∣∣p
d−Q+pε�−pκ

(
d

R

)
dξ,

Π2 ≤ C
∫
BH (δ)

∣∣∇Hd
∣∣p
d−Q+pε�−pκ

(
d

R

)
dξ.

(3.16)

By (i) of Lemma 3.1, it derives Π1, Π2 =Oε(1), as ε→0.
From (3.14), (3.15) and the definition of Jγ(ε), it clearly shows

I
[
Vε

]=
∫
BH (δ)

∣∣∇HVε
∣∣p
dξ −|A|pJpκ(ε)≤ΠA−|A|pJpκ(ε) +Oε(1)=Π3 +Oε(1),

(3.17)

whereΠ3 =
∫
BH (δ)|∇Hd|pϕpd−Q+pε�−pκ(d/R)(|A− (ε− κ�(d/R))|p−|A|p)dξ. For sim-

plicity, denote ζ = ε− κ�(d/R). Since ζ is small compared toA, we use Taylor’s expansion
to yield

|A− ζ|p−|A|p ≤−pA|A|p−2ζ + p(p− 1)
2

|A|p−2ζ2 +C|ζ|3. (3.18)

Thus, we can estimate Π3 by

Π3 ≤Π31 +Π32 +Π33, (3.19)

where

Π31 =−pA|A|p−2
∫
BH (δ)

∣∣∇Hd
∣∣p
ϕpd−Q+pε�−pκ

(
d

R

)(
ε− κ�

(
d

R

))
dξ,

Π32 = p(p− 1)
2

|A|p−2
∫
BH (δ)

∣∣∇Hd
∣∣p
ϕpd−Q+pε�−pκ

(
d

R

)(
ε− κ�

(
d

R

))2

dξ,

Π33 = C
∫
BH (δ)

∣∣∇Hd
∣∣p
ϕpd−Q+pε�−pκ

(
d

R

)∣∣∣∣ε− κ�
(
d

R

)∣∣∣∣
3

dξ.

(3.20)
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We will show that

Π31, Π33 =Oε(1), as ε −→ 0. (3.21)

In fact, using (ii) of Lemma 3.1 with γ =−1+ pκ yields

Π31 =−pA|A|p−2
(
εJpκ(ε)− κJpκ−1(ε)

)
=−pA|A|p−2(εJpκ(ε)− εJpκ(ε) +Oε(1)

)=Oε(1).
(3.22)

Recalling (a− b)3 ≤ (|a|+ |b|)3 ≤ c(|a|3 + |b|3), we obtain

Π33 ≤ cε3Jpκ(ε) + cJpκ−3(ε) for ε > 0. (3.23)

From (i) and (iii) in Lemma 3.1 and the fact that 1 < pκ < 2 it followsΠ33 =Oε(1). Using
(ii) of Lemma 3.1 twice (pick γ = pκ− 1 >−1 and γ = pκ− 2 >−1, resp.), we conclude
that

Π32 = p(p− 1)
2

|A|p−2
∫
BH (δ)

∣∣∇Hd
∣∣p
ϕpd−Q+pε�−pκ

(
d

R

)(
ε2−2εκ�

(
d

R

)
+κ2�2

(
d

R

))
dξ

= p(p− 1)
2

|A|p−2
[
ε2Jpκ(ε)− 2εκJpκ−1(ε) + κ2

(
pκ− 1
pκ

+
1
pκ

)
Jpκ−2(ε)

]

= p(p− 1)
2

|A|p−2
(
ε2Jpκ(ε)− εκ pε

pκ
Jpκ(ε)− εκJpκ−1(ε)

+
κ2(pκ− 1)

pκ

pε
pκ− 1

Jpκ−1(ε) +
κ

p
Jpκ−2(ε) +Oε(1)

)

= κ(p− 1)
2

|A|p−2Jpκ−2(ε) +Oε(1).

(3.24)

In virtue of (3.17), (3.19), (3.21), and (3.24) we deduce (i) of Lemma 3.2. By (3.17),
(3.24), and (i) of Lemma 3.2,

∫
BH (δ)

∣∣∇HVε
∣∣p
dξ = I

[
Vε

]
+ |A|pJpκ(ε)≤ |A|pJpκ(ε) + κ(p− 1)

2
|A|p−2Jpκ−2(ε) +Oε(1).

(3.25)

Hence (ii) of Lemma 3.2 follows from (i) in Lemma 3.1. It completes the proof. �

We are now ready to give the proof of the best constants in Theorem 2.1.

Theorem 3.3. Let 0 ∈ Ω be a bounded domain in Hn and p �=Q. Suppose that for some
constants B > 0, D ≥ 0, and ι > 0, the following inequality holds for any u(ξ)∈ C∞0 (Ω \ {0}):

∫
Ω

∣∣∇Hu
∣∣p
dξ ≥ B

∫
Ω
ψp
|u|p
dp dξ +D

∫
Ω
ψp
|u|p
dp �ι

(
d

R

)
dξ. (3.26)



Jingbo Dou et al. 13

Then,
(i) B ≤ |A|p;
(ii) if B = |A|p and D > 0, then ι≥ 2;
(iii) if B = |A|p and ι= 2, then D ≤ ((p− 1)/2p)|A|p−2.

Proof. Choose u(ξ)=Vε(ξ).
(i) By (ii) of Lemma 3.2, we have

B ≤
∫
BH (δ)

∣∣∇HVε
∣∣p
dξ∫

BH (δ)ψp(|Vε|p/dp)dξ
≤ |A|pJpκ(ε) +Oε

(
ε1−pκ

)
∫
BH (δ)ψp(|ϕd−A+ε�−κ(d/R)|p/dp)dξ

= |A|
p
(
1+ cε2

)
Jpκ(ε) +Oε(1)

Jpκ(ε)
.

(3.27)

Note that Jpκ(ε)→∞, as ε→0, so B ≤ |A|p.
(ii) Set B = |A|p and assume by contradiction that ι < 2. Since pκ− ι >−1, using (i)

of Lemma 3.2 and (i) of Lemma 3.1 leads to

0 < D ≤ I
(
Vε

)
∫
Ωψp(|Vε|p/dp)�ι(d/R)dξ

= I
(
Vε

)
Jpκ−ι(ε)

≤
(
κ(p− 1)/2

)|A|p−2Jpκ−2(ε) +Oε(1)

Jpκ−ι(ε)

≤ Cε1−pκ

cε−1−pκ+ι
= Cε2−ι −→ 0, as ε −→ 0,

(3.28)

which is a contradiction. Hence ι≥ 2.
(iii) If B = |A|p and ι= 2, then by (i) of Lemma 3.2,

D ≤ I
(
Vε

)
Jpκ−2(ε)

≤
(
κ(p− 1)/2

)|A|p−2Jpκ−2(ε) +Oε(1)

Jpκ−2(ε)
. (3.29)

The assumption κ > 1/p implies Jpκ−2(ε)→∞, as ε→0. Hence, by (i) of Lemma 3.1 we
conclude that D ≤ (κ(p− 1)/2)|A|p−2, as ε→0. Then letting κ→1/p, the proof is finished.

�

Theorem 3.4. Set 0 ∈ Ω and p = Q. Suppose that there exist some constants D ≥ 0 and
ι > 0 such that the following inequality holds for all u(ξ)∈ C∞0 (Ω \ {0}):

∫
Ω

∣∣∇Hu
∣∣p
dξ ≥D

∫
Ω
ψp
|u|p
dp �ι

(
d

R

)
dξ. (3.30)

Then,
(i) if D > 0, then ι≥ p;
(ii) if ι= p, then D ≤ ((p− 1)/p)p.

Proof. The proof is essentially similar to one of Theorem 3.3. Let the test function ϕ be
as before (see (3.1)). For ε > 0, κ > (p− 1)/p, define Vε = ϕ�ε with �ε = dε(− ln(d/R))κ.
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Using (3.12) yields

∫
Ω

∣∣∇HVε
∣∣p
dξ =

∫
BH (δ)

∣∣ϕ∇H�ε +�ε∇Hϕ
∣∣p
dξ

≤
∫
BH (δ)

ϕp
∣∣∇H�ε

∣∣p
dξ + cp

∫
BH (δ)

ϕp−1�ε
∣∣∇H�ε

∣∣p−1∣∣∇Hϕ
∣∣dξ

+ cp

∫
BH (δ)

�
p
ε
∣∣∇Hϕ

∣∣p
dξ :=Π4 +Π5 +Π6.

(3.31)

Arguing as in the proof of previous theorem and letting ε→0, we have

Π5, Π6 =Oε(1). (3.32)

Denoting by c
p
i the coefficients of binormial expansion, we get

∣∣∇H�ε
∣∣p = ∣∣∇Hd

∣∣p
dpε−p�−pκ

(
d

R

)∣∣∣∣ε− κ�
(
d

R

)∣∣∣∣
p

≤ ∣∣∇Hd
∣∣p
dpε−p�−pκ

(
d

R

)(
ε+ κ�

(
d

R

))p

= ∣∣∇Hd
∣∣p
dpε−p�−pκ

(
d

R

)
Σ
p
i=0c

p
i εp−iκi�i

(
d

R

)
.

(3.33)

Hence,

Π4 ≤ Σ
p
i=0c

p
i εp−iκiJpκ−i(ε), (3.34)

where Jγ(ε) =
∫
Ω|∇Hd|pϕpdpε−p�−γ(d/R). By (ii) of Lemma 3.1 and the induction ar-

gument it holds

εp−iJpκ−i(ε)=
(
κ− i

p

)(
κ− i+1

p

)
···

(
κ− p− 1

p

)
Jpκ−p(ε)+Oε(1), i= 0,1, . . . , p− 1.

(3.35)

Now (i) of Lemma 3.1 and the assumption κ > (p− 1)/p imply that Jpκ−p(ε)→∞, as ε→0,
and

D ≤ limsup
ε→0

∫
Ω

∣∣∇HVε
∣∣p
dξ∫

Ωψp
(∣∣Vε∣∣p

/dp
)
�p(d/R)dξ

≤ limsup
ε→0

[
κp +Σ

p−1
i=0 c

p
i κ

i
(
κ− i/p

)(
κ− (i+1)/p

)···(κ− (p− 1)/p
)]
Jpκ−p(ε) +Oε(1)

Jpκ−p(ε)

=
[
κp +Σ

p−1
i=0 c

p
i κ

i
(
κ− i

p

)(
κ− i+1

p

)
···

(
κ− p− 1

p

)]
.

(3.36)

The last expression converges to ((p− 1)/p)p as κ→(p− 1)/p. The proof is over. �
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4. The weighted eigenvalue problem

This section is devoted to the problem (1.2) by using the Hardy inequality with remainder
terms.

We begin with some properties concerning the Hardy operator (1.1).

Lemma 4.1. Suppose that u(ξ)∈D
1,p
0 (Ω) and p �=Q. Then

(1) Lp,μ is a positive operator if μ ≤ CQ,p; in particular, if μ = CQ,p, then v(ξ) =
d(p−Q)/p(ξ) is a solution of Lp,μu= 0;

(2) Lp,μ is unbounded from below if μ > CQ,p.

Proof. (1) It is obvious from (2.1) that Lp,μ is a positive operator.
We now suppose that μ= CQ,p and verify that v = d(p−Q)/p satisfies Lp,μu= 0. For the

purpose, set vε = d(p−Q)/p+ε ∈D
1,p
0 (Ω) and A= (Q− p)/p. Since

v′ε = (ε−A)d−A−1+ε, v′′ε = (ε−A)(ε−A− 1)d−A−2+ε, (4.1)

it yields from (1.10) and (4.1) that

−ΔH ,pvε =−ψp

∣∣v′ε
∣∣p−2

[
(p− 1)v′′ε +

Q− 1
d

v′ε

]

=−ψp

∣∣(ε−A)d−A−1+ε
∣∣p−2

[
(p− 1)(ε−A)(ε−A− 1)d−A−2+ε

+
Q− 1
d

(ε−A)d−A−1+ε
]

=−ψp(ε−A)|ε−A|p−2d(−A−1+ε)(p−2)+(−A−2+ε)[(p− 1)(ε−A− 1)+Q− 1]

=−ψp
[
(ε−A)(p− 1)+Q− p

]
(ε−A)|ε−A|p−2d(−A+ε)(p−1)−p

=−[(ε−A)(p− 1)+ pA
]
(ε−A)|ε−A|p−2ψp

v
p−1
ε

dp .

(4.2)

Letting ε→0, the conclusion follows.
(2) By the density argument, we select φ(ξ) ∈ C∞0 (Ω), ‖φ‖Lp = 1, such that CQ,p =∫

Ω|∇Hφ|p/(
∫
Ω(|z|p/dp)(|φ|p/dp)). Using the best constant of the inequality (2.1), one

has

〈
Lp,μφ,φ

〉=
∫
Ω

∣∣∇Hφ
∣∣p−μ

∫
Ω

|z|p
dp

|φ|p
dp <

∫
Ω

∣∣∇Hφ
∣∣p−CQ,p

∫
Ω

|z|p
dp

|φ|p
dp = 0.

(4.3)

Denote uτ(x, y, t)= τQ/pφ(δτ(x, y, t)) and ξ = (x, y, t). Thus,

∥∥uτ(x, y, t)∥∥p
Lp =

∫
Ω

∣∣τQ/pφ(δτ(x, y, t))∣∣p
dξ =

∫
Ω

∣∣φ(δτ(x, y, t))∣∣p
τQdξ = 1, (4.4)

and 〈Lp,μuτ ,uτ〉 = τ p〈Lp,μφ,φ〉 < 0. This concludes the result. �

In order to prove the main result (Theorem 4.6 below) we need the following two
preliminary lemmas.
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Lemma 4.2. Let {gm} ⊂ Lp(Ω)(1≤ p <∞) be such that asm→∞,

gm⇀ g weakly in Lp(Ω),

gm −→ g a.e. in Ω.
(4.5)

Then,

lim
m→∞

[∥∥gm∥∥p
Lp(Ω)−

∥∥gm− g
∥∥p
Lp(Ω)

]= ‖g‖pLp(Ω). (4.6)

The proof is similar to one in the Euclidean space (see [19, Chapter 1, Section 4]. We
omit it here.

Lemma 4.3. Suppose that {um} ⊂D
1,p
0 (Ω)(1≤ p <∞) satisfies

um⇀ u weakly in D
1,p
0 (Ω),

um −→ u strongly in L
p
loc(Ω),

(4.7)

asm→∞, and

−ΔH ,pum = fm + gm, in �′(Ω), (4.8)

where fm→ f strongly in D−1,p′(Ω)(p′ = p/(p− 1)), gm is bounded in M(Ω) (the space of
Radon measures), that is,

∣∣〈gm,ϕ〉∣∣≤ CK‖ϕ‖L∞ (4.9)

for all ϕ∈�(Ω) with supp(ϕ)⊂ K , where CK is a constant which depends on the compact
set K . Then there exists a subsequence {umj} of {um} such that

umj −→ u strongly in D
1,q
0 (Ω), ∀q < p. (4.10)

Its proof is similar to one of [20, Theorem 2.1].

Lemma 4.4. Let p �=Q and

Ip :=
{
f :Ω−→R+ | lim

d(ξ)→0

dp(ξ)
ψp(ξ)

f (ξ)
(
ln

1
d(ξ)

)2

<∞, f (ξ)∈ L∞loc
(
Ω \ {0})

}
. (4.11)

(i) If f (ξ) ∈ Ip, then there exists λ( f ) > 0 such that for all u ∈ D
1,p
0 (Ω \ {0}), the

following holds:

∫
Ω

∣∣∇Hu
∣∣p
dξ ≥

∣∣∣∣Q− p

p

∣∣∣∣
p ∫

Ω
ψp(ξ)

|u|p
dp dξ + λ( f )

∫
Ω
|u|p f (ξ)dξ. (4.12)

(ii) If f (ξ) �∈ Ip and (dp(ξ)/ψp(ξ)) f (ξ)(ln1/d(ξ))
2→∞ as d(ξ)→0, then (4.12) is not

true.
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Proof. (i) If f (ξ)∈ Ip, then

lim
ε→0

sup
ξ∈BH (ε)

dp(ξ)
ψp

f (ξ)
(
ln

1
d(ξ)

)2

<∞. (4.13)

Without any loss of generality we assume that R = 1 in (2.2). For the sufficiently small
ε > 0, we have

f (ξ) <
Cψp

dp(ln1/d)2
, in BH(ε). (4.14)

Outside BH(ε), f (ξ) is also bounded. Hence there exists C( f ) > 0 such that

∫
Ω
|u|p f (ξ)dξ ≤ C( f )

∫
Ω
ψp

|u|p
dp(ln1/d)2

dξ, on Ω. (4.15)

Taking λ( f )= C( f )−1((p− 1)/2p)|A|p−2 > 0, (4.12) follows from (2.2).
(ii) We write f (ξ) = ψph(ξ)/dp(ξ)(ln 1/d(ξ))2, where h(ξ)→∞ as d(ξ)→0. Then, for

the sufficiently small ε > 0, we select u(ξ) = Vε(ξ) = ϕ(ξ)d−A+ε(ξ)�−κ(d(ξ)/R) and get
from (i) of Lemma 3.2,

0 < λ( f )≤ I
(
Vε

)
∫
BH (δ)

∣∣Vε∣∣p
f (ξ)dξ

≤ I
(
Vε

)
∫
BH (δ)ψp(|Vε|ph(ξ)/dp(ln 1/d)2)dξ

≤ I
(
Vε

)
Kδ

∫
BH (δ)ψp

(∣∣Vε∣∣p
/dp(ln 1/d)2

)
dξ
≤

(
κ(p− 1)/2

)|A|p−2Jpκ−2(ε) +Oε(1)

KδJpκ−2(ε)

≤ cε1−pκ

cKδε1−pκ
= C

Kδ
−→ 0, as δ,ε −→ 0,

(4.16)

where Kδ = inf ξ∈BH (δ)h(ξ). The impossibility shows that (4.12) cannot hold for f (ξ) �∈
Ip. �

Definition 4.5. Let λ ∈ R, u ∈ D
1,p
0 (Ω), and u �≡ 0. Call that (λ,u) is a weak solution of

(1.2) if
∫
Ω

∣∣∇Hu
∣∣p−2〈∇Hu,∇Hϕ

〉
dξ −μ

∫
Ω

ψp

dp |u|p−2uϕ dξ = λ
∫
Ω
f (ξ)|u|p−2uϕ dξ (4.17)

for any ϕ ∈ C∞0 (Ω). In this case, we call that u is the eigenfunction of problem (1.2)
associated to the eigenvalue λ.

Theorem 4.6. Suppose that 1 < p < Q, 0≤ μ < ((Q− p)/p)p, and f (ξ)∈�p. The problem

(1.2) admits a positive weak solution u∈D
1,p
0 (Ω), corresponding to the first eigenvalue λ=

λ1μ( f ) > 0. Moreover, as μ increases to ((Q− p)/p)p, λ1μ( f )→λ( f ) ≥ 0 for f (ξ) ∈�p and

the limit λ( f ) > 0 for f (ξ) ∈ Ip. If f (ξ) �∈ Ip and ψ−1p (ξ)dp(ξ) f (ξ)(ln 1/d(ξ))2→∞, as
d(ξ)→0, then the limit λ( f )= 0.
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Proof. We define

Jμ(u) : =
∫
Ω

∣∣∇Hu
∣∣p−μ

∫
Ω
ψp
|u|p
dp . (4.18)

Obviously, Jμ is continuous and Gâteaux differentiable on D
1,p
0 (Ω). By (2.1),

Jμ(u)≥
∫
Ω

∣∣∇Hu
∣∣p− μ

CQ,p

∫
Ω

∣∣∇Hu
∣∣p =

(
1− μ

CQ,p

)∫
Ω

∣∣∇Hu
∣∣p

(4.19)

for 0≤ μ < ((Q− p)/p)p. Note that CQ,p = ((Q− p)/p)p for 1 < p < Q. Hence Jμ is coer-

cive in D
1,p
0 (Ω). We minimize the function Jμ(u) over the mainfold � = {u ∈ D

1,p
0 (Ω) |∫

Ω|u|p f (ξ)dξ = 1} and let λ1μ be the infimum. It is clear that λ1μ > 0 from Lemma 4.1.
Now, we choose a special minimizing sequence {um} ⊂� with

∫
Ω|um|p f (ξ)dξ = 1, and

Jμ(um)→λ1μ and J ′μ(um)→0 strongly in D
−1,p′
0 (Ω), when the component of J ′μ(um) is re-

stricted to �. The coercivity of Jμ implies that {um} is bounded and then there exists a
subsequence, still denoted by {um}, such that

um⇀ u weakly in D
1,p
0 (Ω),

um⇀ u weakly in Lp
(
Ω,ψpd

−p),
um −→ u strongly in Lp(Ω),

(4.20)

as m→∞. By Theorem 2.4 in Section 2 we know that D
1,p
0 (Ω) is compactly embedded

in Lp(Ω, f dξ), and it follows that � is weakly closed and hence u ∈�. Moreover, um
satisfies

−ΔH ,pum−ψp
μ

dp

∣∣um∣∣p−2
um = λm

∣∣um∣∣p−2
um f + fm, in �′(Ω), (4.21)

where fm→0 strongly inD−1,p′(Ω) and λm→λ, asm→∞. Letting gm = ψp(μ/dp)|um|p−2um
+λm|um|p−2um f , we check easily that gm is bounded in M(Ω) and conclude almost ev-
erywhere convergence of∇Hum to∇Hu in Ω by Lemma 4.3, and

Jμ(um)=
∥∥∇Hum

∥∥p
Lp(Ω)−μ

∥∥um∥∥p
Lp(Ω,ψpd−p)

= ∥∥∇H
(
um−u

)∥∥p
Lp(Ω)−μ

∥∥um−u
∥∥p
Lp(Ω,ψpd−p)+

∥∥∇Hu
∥∥p
Lp(Ω)−μ‖u‖

p
Lp(Ω,ψpd−p)+o(1)

≥ (
CQ,p−μ

)∥∥um−u
∥∥p
Lp(Ω,ψpd−p) + λ1μ + o(1),

(4.22)

by applying Lemma 4.2 to um and∇Hum, where o(1)→0 as m→∞. Thus CQ,p > μ, ‖um−
u‖pLp(Ω,ψpd−p)→0, and ‖∇H(um−u)‖pLp(Ω)→0 asm→∞. It shows that Jμ(u)= λ1μ and λ= λ1μ.
Since Jμ(|u|)= Jμ(u), we can take u > 0 in Ω. By Lemma 4.3, u is a distribution solution

of (1.2) and since u ∈ D
1,p
0 (Ω), it is a weak solution to eigenvalue problem (1.2) corre-

sponding to λ= λ1μ. Moreover, if f (ξ)∈ Ip, then by Lemma 4.4,

λ1μ( f )−→ λ( f )= inf
u∈D1,p(Ω\{0})

∫
Ω

(∣∣∇Hu
∣∣p−CQ,pψp

(|u|p/dp
))
dξ∫

Ω|u|p f dξ
> 0, (4.23)
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as μ increases to ((Q− p)/p)p. When f (ξ) �∈ Ip, using Lemma 4.4 again, it follows that
(4.12) is not true and hence λ( f )= 0. This completes the proof. �

Remark 4.7. The set � is a C1 manifold in D
1,p
0 (Ω). By Ljusternik-Schnirelman critical

point theory on C1 manifold, there exists a sequence {λm} of eigenvalues of (1.2), that
is, writing Γm = {A ⊂ � | A is symmetric, compact, and γ(A) ≥m}, where γ(A) is the
Krasnoselski’s genus of A (see [19]), then for any integerm> 0,

λm = inf
A∈Γm

sup
u∈A

Jμ(u) (4.24)

is an eigenvalue of (1.2). Moreover, limm→∞λm→∞.

5. Simplicity and isolation for the first eigenvalue

This section is to consider the simplicity and isolation for the first eigenvalue. We always
assume that f satisfies the conditions in Theorem 4.6. From the previous results we know
clearly that the first eigenvalue is

λ1μ = λ1μ( f )= inf
{
Jμ(u) | u∈D

1,p
0

(
Ω \ {0}),

∫
Ω
|u|p f (ξ)dξ = 1

}
. (5.1)

In what follows we need the Picone identity proved in [15].

Proposition 5.1 (Picone identity). For differentiable functions u ≥ 0, v > 0 on Ω ⊂Hn,
with Ω a bounded or unbounded domain inHn, then

L(u,v)= R(u,v)≥ 0, (5.2)

with

L(u,v)= ∣∣∇Hu
∣∣p

+ (p− 1)
up

vp
∣∣∇Hv

∣∣p− p
up−1

vp−1
∣∣∇Hv

∣∣p−2∇Hu·∇Hv,

R(u,v)= ∣∣∇Hu
∣∣p−∣∣∇Hv

∣∣p−2∇H

(
up

vp−1

)
·∇Hv

(5.3)

for p > 1. Moreover, L(u,v)= 0 a.e. on Ω if and only if∇H(u/v)= 0 a.e. on Ω.

Theorem 5.2. (i) λ1μ is simple, that is, the positive eigenfunction corresponding to λ1μ is
unique up to a constant multiple.

(ii) λ1μ is unique, that is, if v ≥ 0 is an eigenfunction associated with an eigenvalue λ with∫
Ω f (ξ)|v|pdξ = 1, then λ= λ1μ.
(iii) Every eigenfunction corresponding to the eigenvalue λ (0 < λ �=λ1μ) changes sign in Ω.

Proof. (i) Let u > 0 and v > 0 be two eigenfunctions corresponding to λ1μ in �. For suffi-

ciently small ε > 0, set φ = up/(v+ ε)p−1 ∈D
1,p
0 (Ω). Then

∫
Ω

∣∣∇Hv
∣∣p−2〈∇Hv,∇Hφ

〉
dξ = μ

∫
Ω
ψp

up−1

dp φdξ + λ1μ

∫
Ω
f (ξ)vp−1φdξ. (5.4)
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Using Proposition 5.1 and (5.4),

0≤
∫
Ω
L(u,v+ ε)=

∫
Ω
R(u,v+ ε)

=
∫
Ω

∣∣∇Hu
∣∣p
dξ −

∫
Ω

∣∣∇Hv
∣∣p−2

〈
∇H

(
up

(v+ ε)p−1

)
,∇Hv

�
dξ

=
∫
Ω

(
μ
ψp

dp + λ1μ f (ξ)
)
updξ −

∫
Ω

(
μ
ψp

dp + λ1μ f (ξ)
)
vp−1

up

(v+ ε)p−1
dξ

=
∫
Ω

(
μ
ψp

dp + λ1μ f (ξ)
)
up

(
1− vp−1

(v+ ε)p−1

)
dξ.

(5.5)

The right-hand side of (5.5) tends to zero when ε→0. It follows that L(u,v) = 0 and by
Proposition 5.1 there exists a constant c such that u= cv.

(ii) Let u > 0 and v > 0 be eigenfunctions corresponding to λ1μ and λ, respectively. Sim-
ilarly to (5.5), we have

∫
Ω

(
μ
ψp

dp + λ1μ f (ξ)
)
updξ −

∫
Ω

(
μ
ψp

dp + λ f (ξ)
)
vp−1

up

(v+ ε)p−1
dξ

=
∫
Ω
μ
ψp

dp

(
1− vp−1

(v+ ε)p−1

)
updξ +

∫
Ω
f (ξ)up

(
λ1μ− λ

vp−1

(v+ ε)p−1

)
dξ ≥ 0.

(5.6)

Letting ε→0 shows that
(
λ1μ − λ

)∫
Ω f (ξ)updξ ≥ 0, which is impossible for λ > λ1μ. Hence

λ= λ1μ.
(iii) With the same treatment as in (5.6) we get

(
λ1μ− λ

)∫
Ω
f (ξ)updξ ≥ 0. (5.7)

Noting that
∫
Ω f (ξ)updξ > 0 and λ > λ1μ leads to a contradiction. So v must change sign

in Ω. �

Lemma 5.3. If u∈D
1,p
0 (Ω) is a nonnegative weak solution of (1.2), then either u(ξ)≡ 0 or

u(ξ) > 0 for all ξ ∈Ω.

Proof. For any R > r, BH(0,R)⊃ BH(0,r), let u∈D
1,p
0 (Ω) be a nonnegative weak solution

of (1.2). In virtue of Harnack’s inequality (see [1]), there exists a constantCR > 0 such that

sup
BH (0,R)

{
u(ξ)

}≤ CR inf
BH (0,R)

{
u(ξ)

}
. (5.8)

This implies u≡ 0 or u > 0 in Ω. �

Theorem 5.4. Every eigenfunction u1 corresponding to λ1μ does not change sign in Ω: either
u1 > 0 or u1 < 0.

Proof. From the proof of existence of the first eigenvalue we see that there exists a positive
eigenfunction, that is, if v is an eigenfunction, then u1 = |v| is a solution of the minimiza-
tion problem and also an eigenfunction. Thus, from Lemma 5.3 it follows that |v| > 0 and
then u1 has constant sign. �
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Lemma 5.5. For u ∈ C(Ω \ {0})∩D
1,p
0 (Ω), let � be a component of {ξ ∈ Ω | u(ξ) > 0}.

Then u|� ∈D
1,p
0 (�).

Proof. Let um ∈ C(Ω \ {0})∩D
1,p
0 (Ω) be such that um→u in D

1,p
0 (Ω). Therefore, u+m→u+

inD
1,p
0 (Ω). Set vm(ξ)=min{um(ξ),u(ξ)}, and let ϕR(ξ)∈ C(Ω) be a cutoff function such

that

ϕR(ξ)=

⎧⎪⎪⎨
⎪⎪⎩
0 if d(ξ)≤ R

2
,

1 if d(ξ)≥ R,
(5.9)

with |∇HϕR| ≤ C|∇Hd|/d(ξ), for some positive constant C. Now, consider the sequence
ωm(ξ)= ϕR(ξ)vm(ξ)|�. Since ϕR(ξ)vm(ξ)∈ C(Ω), we claim that ωm ∈ C(�) and ωm = 0
on the boundary ∂�. In fact, if ξ ∈ ∂� and ξ = 0, then ϕR = 0, and so ωm = 0. If ξ ∈
∂�∩Ω and ξ �=0, then u = 0 (since u is continuous except at {0}), and hence vm = 0. If

ξ ∈ ∂Ω, then um = 0 and so vm = 0. Therefore, ωm = 0 on ∂�, and ωm ∈D
1,p
0 (�). Noting

∫
Ω

∣∣∇Hωm−∇H
(
ϕRu

)∣∣p
dξ =

∫
�

∣∣ϕR∇Hvm + vm∇HϕR−ϕR∇Hu−u∇HϕR

∣∣p
dξ

≤ ∥∥ϕR
(∇Hvm−∇Hu

)∥∥p
Lp(�) +

∥∥∇HϕR
(
vm−u

)∥∥p
Lp(�),
(5.10)

it is obvious that
∫
Ω|∇Hωm−∇H(ϕRu)|pdξ→0, asm→∞. That is ωm→ϕRu|� inD

1,p
0 (�).

By (2.1),

∫
�

∣∣u∇HϕR +ϕR∇Hu−∇Hu
∣∣p
dξ

≤
∫

�

∣∣ϕR∇Hu−∇Hu
∣∣p
dξ +

∫
�∩{R/2<d<R}

∣∣u∇HϕR

∣∣p
dξ

≤
∫

�

∣∣ϕR∇Hu−∇Hu
∣∣p
dξ +Cp

∫
�∩{R/2<d<R}

ψp
|u|p
dp dξ

≤
∫

�

∣∣ϕR∇Hu−∇Hu
∣∣p
dξ +C1

∫
�∩{R/2<d<R}

∣∣∇Hu
∣∣p
dξ,

(5.11)

which approaches 0, as R→0. Hence u|� ∈D
1,p
0 (�). �

Theorem 5.6. The eigenvalue λ1μ is isolated in the spectrum, that is, there exists δ > 0 such
that there is no other eigenvalues of (1.2) in the interval (λ1μ,λ

1
μ + δ). Moreover, if v is an

eigenfunction corresponding to the eigenvalue λ �=λ1μ and � is a nodal domain of v, then

(
Cλ‖ f ‖L∞

)−Q/p ≤ |�|, (5.12)

where C is a constant depending only on Q and p.
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Proof. Let u1 be the eigenfunction corresponding to the eigenvalue λ1μ. Let {λm} be a
sequence of eigenvalues such that λm > λ1μ and λm ↘ λ1μ, and the corresponding eigenfunc-
tions um→u1 with

∫
Ω f (ξ)|um|pdξ = 1, that is, λm and um satisfy

Lp,μum = λm f (ξ)
∣∣um∣∣p−2

um. (5.13)

Since

0 <
∫
Ω

∣∣∇Hum
∣∣p
dξ −μ

∫
Ω

ψp

dp

∣∣um∣∣p
dξ = λm

∫
Ω
f (ξ)

∣∣um∣∣p
dξ = λm, (5.14)

it follows that um is bounded. By Lemma 4.3, there exists a subsequence (still denoted

by {um}) of {um} such that um ⇀ u weakly in D
1,p
0 (Ω), um→u strongly in Lp(Ω) and

∇Hum→∇Hu a.e in Ω. Lettingm→∞ in (5.13) yields

Lp,μu= λ1μ f (ξ)|u|p−2u. (5.15)

Therefore, u = ±u1. Using (iii) of Theorem 5.2 we see that um changes sign. For conve-
nience, we assume that u= +u1. Then

∣∣{ξ ∈Ω | um < 0
}∣∣−→ 0. (5.16)

Now, we check (5.13) with um = u−m,
∫
Ω

∣∣∇Hu
−
m

∣∣p
dξ −μ

∫
Ω

ψp

dp

∣∣u−m
∣∣p
dξ = λm

∫
Ω
f (ξ)

∣∣u−m
∣∣p
dξ. (5.17)

Using the Hardy inequality and Sobolev inequality yields

(
1− μ

CQ,p

)∫
Ω−

∣∣∇Hum
∣∣p
dξ

≤
∫
Ω−

∣∣∇Hum
∣∣p
dξ −μ

∫
Ω−

ψp

dp

∣∣um∣∣p
dξ

= λm

∫
Ω−

f (ξ)
∣∣um∣∣p

dξ

≤ λm‖ f ‖L∞
∫
Ω−

∣∣um∣∣p
dξ

≤ c1‖ f ‖L∞
∥∥um∥∥p

D1,p

∣∣Ω−
m

∣∣p/Q
,

∣∣Ω−
m

∣∣≥ (
c2‖ f ‖L∞

)Q/p
, Ω−

m =
{
ξ ∈Ω | um < 0

}
.

(5.18)

It contradicts with (5.16). Hence, there is no other eigenvalue of (1.2) in (λ1μ,λ
1
μ + δ) for

δ > 0.
Next, we prove (5.12). Assume v > 0 in � (the case v < 0 being treated similarly). In

view of Lemma 5.5, we have v|� ∈D
1,p
0 (�). Define the function

ω(ξ)=
⎧⎨
⎩
v(ξ) if ξ ∈�,

0 if ξ ∈Ω \�.
(5.19)
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Clearly, ω(ξ)∈D
1,p
0 (Ω). Taking ω as a test function in (4.17) satisfied by v and arguing as

in (5.18), we have

(
1− μ

CQ,p

)
‖v‖pD1,p(�) ≤ λ‖ f ‖L∞

∫
�
|v|pdξ ≤ λC̃‖ f ‖L∞‖v‖pD1,p(�)|�|p/Q (5.20)

for some constant C̃ = C(Q, p) and hence (5.12) holds. �

Corollary 5.7. Each eigenfunction has a finite number of nodal domains.

Proof. Let � j be a nodal domain of an eigenfunction associated to some positive eigen-
value λ. It follows from (5.12) that

|Ω| ≥
∑
j

∣∣� j

∣∣≥ (
Cλ‖ f ‖L∞

)−Q/p∑
j

1. (5.21)

The result is proved. �
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