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Single-cell RNA sequencing data can unveil the molecular diversity of cell types. Cell type

atlases of the mouse spinal cord have been published in recent years but have not been

integrated together. Here, we generate an atlas of spinal cell types based on single-cell

transcriptomic data, unifying the available datasets into a common reference framework. We

report a hierarchical structure of postnatal cell type relationships, with location providing the

highest level of organization, then neurotransmitter status, family, and finally, dozens of

refined populations. We validate a combinatorial marker code for each neuronal cell type and

map their spatial distributions in the adult spinal cord. We also show complex lineage

relationships among postnatal cell types. Additionally, we develop an open-source cell type

classifier, SeqSeek, to facilitate the standardization of cell type identification. This work

provides an integrated view of spinal cell types, their gene expression signatures, and their

molecular organization.
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A
revolution in single-cell sequencing technologies is

transforming many fields of biology. By sequencing the
RNA/cDNA or open chromatin from many individual

cells and using computational analysis to identify shared patterns
of gene expression or epigenetic structure, we may simultaneously
define cell types, characterize their molecular signatures, and
track how each cell type in tissue changes in different biological
conditions such as development and disease. Within the central
nervous system, this approach may also reveal the molecular basis
of the impressive levels of neuronal diversity, can provide marker
genes for developing genetic tools to manipulate neuronal func-
tion, and may help to reveal the cellular basis of behavior.

In the postnatal mouse spinal cord, there have been several
papers profiling single-cell RNA expression that, combined, cover
a range of biological parameters, including age, tissue region,
developmental lineage, and circuit features1–11. These studies
provide a powerful and multi-faceted perspective on spinal cord
cell types, yet despite this significant effort and a rich literature of
spinal cord cell type characterization (see reviews12–19), there is
still no consensus cell type atlas of the spinal cord20. A major
obstacle is the lack of accepted ground truth of cell types in this
tissue that could form the basis of a reference atlas. Unfortu-
nately, this challenge is compounded by the difficulty in com-
paring data between studies even when the same tissue types and
techniques are used3,5. This is partly due to biological differences
and technical limitations, but may also reflect particular analysis
parameters and technical artifacts that conceal underlying simi-
larities between these studies. Indeed, it is not clear whether the
cell types from the original studies are comparable in their cur-
rent forms, resulting in a fragmented set of incomplete and
conflicting atlases for the spinal cord. Rather than being specific
to the study of the spinal cord, these are among the grand chal-
lenges that scientists face as we re-discover the cells and tissues we
study through the perspective of single-cell profiling21.

To begin to overcome these challenges within the mammalian
central nervous system, we sought to establish a harmonized,
validated atlas of postnatal spinal cord cell types that could reveal
the organizing principles of spinal neuronal diversity and serve as
a standard foundation for future work. We began by performing a
merged and integrated analysis of the raw data from the first six
publicly available postnatal spinal cord single-cell datasets. We
clustered the cells and nuclei of this meta-dataset to reveal 15
non-neural and 69 neural cell types, thereby providing a cell type
resolution and characterization that surpasses all prior studies,
both in the depth of its detail and the breadth of general trends.
By analyzing gene expression profiles across families of cell types,
we created a combinatorial panel of dozens of marker genes and
validated it with high-content in situ hybridization to characterize
the spatial distribution and prevalence of each cell type in adult
tissue. This work revealed striking differences between dorsal and
ventral neuronal cell types, both in their cell-type relationships
and molecular trends. Co-integration with embryonic cell types
allowed us to infer putative lineage relationships for each post-
natal cell type and uncovered complex convergent contributions
from multiple lineages to many cell types. Finally, we tested a
range of automated classification algorithms and identified a two-
tiered model based on label transfer and neural networks as the
best method for classifying spinal cord cell types. We now present
SeqSeek, a web-based resource for querying this data by gene or
cell type and for accessing automated classification algorithm of
any spinal cord cell or nucleus from raw sequencing data.

Results
Merged analysis of spinal cord cells and nuclei. We first created
a merged dataset with over one hundred thousand cells and

nuclei from the first six published studies of the postnatal mouse
spinal cord1–6. These studies cover a range of biological and
experimental parameters (Fig. 1a). To best compare the data from
these studies, we began with the raw sequencing reads from each
study and performed our own data processing with uniform
methods and filters. All sequencing reads were aligned to a com-
mon genomic sequence that included both exons and introns and
we used common, liberal filtering thresholds for inclusion (> 200
genes per cell/nucleus) and exclusion (<5% percent of genes from
mitochondria). As a result, this merged dataset contains more cells
and nuclei than were analyzed in the original studies and a uniform
set of genes.

Our first major goal was to create a harmonized atlas of the
major spinal cord cell types that are shared across these studies
and we considered whether it would be possible to register
different studies to each other and thereby identify a common set
of cell types that would simply require the resolution of
differences in nomenclature. To perform a direct comparison of
the clusters between different studies, we used the merged data
(with common threshold criteria and genes analyzed) and we
focused on dorsal neurons that were commonly studied by
Sathyamurthy et al., Haring et al., and Zeisel et al. For each study,
we calculated the mean expression of each gene in each cluster
and then analyzed the correlation in overall gene expression
between the studies. When either all genes or the top 500 highly
variable genes were analyzed, there were weak overall correlations
and very few alignments between clusters from different studies
(Supplementary Fig. 1a, b, d). We therefore concluded that the
previously published atlases cannot simply be registered to each
other to achieve a valid reference atlas. This is similar to previous
reports which used correlation in gene expression between
clusters to attempt to link cell types across studies and this
approach yielded weak and/or incomplete correlations, even
between studies in which the same sample age and tissue
dissociation method were used3,5.

Next, we hypothesized that co-clustering cells and nuclei across
all of the studies would provide an improved ability to relate cell
types in one study to those in another. We performed
dimensionality reduction using principal component analysis
and visualized the cells and nuclei using Unifrom Manifold
Approximation and Projection (UMAP) plots. Unfortunately, the
cells or nuclei from each study were segregated from each other
almost completely, indicating that the study of origin is a major
source of variability in the dataset (Fig. 1b). This technical
limitation obscured all cell type distinctions.

Finally, we used a recently developed integration method,
implemented in the Seurat software package, to align the cells and
nuclei across studies to reduce experimental sources of variability
and reveal the core set of spinal cord cell types22,23. With this
approach, the cells and nuclei from all six studies were spatially
interposed in a UMAP visualization of principal component
space (Fig. 1c) and separated into groupings that each expressed a
panel of well-established cell type markers such as Snap25
(neurons), Mbp (oligodendrocytes), Aqp4 (astrocytes), and Ctss
(microglia) (Fig. 1d, e). Moreover, the integration-adjusted gene
expression values markedly improved the ability to identify
relationships between the clusters of the original studies and also
improved the top correlation score for each original cluster
(Supplementary Fig. 1c, d).

With the integrated merged data, we performed preliminary
clustering and removed low-quality clusters and doublets (see
Methods) to obtain a final dataset of over fifty thousand cells and
nuclei (Supplementary Fig. 2a, e). The majority of these cells/
nuclei from this analysis are from the three studies that used high
throughput collection and barcoding techniques (the Sathya-
murthy, Rosenberg, and Zeisel datasets). A comparison across
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studies revealed that these high throughput studies detected fewer
genes per cell/nucleus than studies that used single well technical
approaches (the Hayashi, Haring, and Baek datasets), and studies
that used cells (the Hayashi, Haring, Zeisel, and Baek datasets)
detected more genes per cell/nucleus but had higher levels of
immediate early gene and stress gene expression than did studies
that used nuclei (the Sathyamurthy and Rosenberg datasets)
(Supplementary Fig. 2). These trends across technical approaches
were expected based on other reports (reviewed22). Thus,
integration has the potential to facilitate merged analysis and
comparison amongst independent datasets by reducing (but not
eliminating) the effects of technical differences between the
studies.

To test whether the particular integration method may bias
downstream results and alter cell type assessments, we also
performed integration using three independent methodologies24:
Harmony25, Conos26, and LIGER27 (Supplementary Fig. 3). In
each case, highly reliable cell type results were observed, based on
visual inspection of UMAP distributions and low Local Inverse
Simpson Index (LISI) values for cell type coherence when
compared to Seurat integration. Together, these analyses
demonstrated that integration of publicly available datasets can
be used to harmonize spinal cord sequencing data, preserve
important biological differences between studies, and uncover a
robust set of shared cell types.

A harmonized atlas of major cell types. Next, we performed
coarse clustering to define the major cell types of the mouse
spinal cord (Fig. 1d, e and Supplementary Fig. 2). Sixteen major
types were identified that represent all known classes of spinal
cord cell types. These cell types are: (1) oligodendrocyte precursor
cells; (2–3) two maturational stages of oligodendrocyte progeni-
tors; (4–5) two types of oligodendrocytes that likely correspond to
myelinating and mature cell types and that blend into each other;
(6) Schwann cells; (7) peripheral glia; (8–9) two types of meninges
that likely correspond to vascular leptomeningeal cells and ara-
chnoid barrier cells; (10) ependymal cells that surround the
central canal; (11–12) two types of astrocytes that likely corre-
spond to a major population of regular astrocytes and a minor
population of Gfap-expressing proliferating/activated/white
matter astrocytes; (13–14) two types of vascular cells that likely
correspond to endothelial cells and pericytes; (15) microglia; and
(16) neurons, which are discussed in detail below.

As expected, the cell types that were derived from each study
corresponded to the techniques used to isolate the cells or nuclei
(Supplementary Fig. 2e). The three studies that FACS sorted
neurons from the spinal cord (Hayashi, Haring, and Baek
datasets) predominantly gave rise to cells in the neuronal sub-
clusters, as well as non-neural cells that most likely represented
doublets. Moreover, among the three studies that examined all
cell types, the early postnatal Rosenberg study showed

a

edc

b

Astro-2

Pericytes

OPC

Neurons

Microglia

Schwann

Mening-1

Epend

Astro-1
Endoth

Mening-2

PG

SathyamurthyZeiselRosenberg

Baek Haring

Hayashi

AdultJuvenile Postnatal

Nuclei

Cells

Oligo-1

OProg-1

OProg-2

Oligo-2

Sathyamurthy

Hayashi

Haring

Rosenberg

Zeisel

Baek

W
it
h
o
u
t 
In

te
g
ra

ti
o
n

W
it
h

 I
n

te
g

ra
ti
o

n
 b

y
 S

tu
d

y

BlumAlkaslasi

Embryonic

Delile

Merged & Integrated Multi-Study Analysis

Fig. 1 Integration of six independent studies on single cell spinal cord data reveals the major cell types of the spinal cord. a Summary of the datasets

used in this study, including the studies that used single-cell/nucleus RNA sequencing to analyze postnatal mouse spinal cord cell types (colored names

above the gray bar) and additional studies that were used for focused aspects of the analysis below the gray bar. The age and technique (cell or nuclei

isolation) is represented for each study. b UMAP presentation of the 52,623 cells/nuclei in the final dataset, without integration and colored by the study of

origin (colors in the legend). c UMAP presentation of the same 52,623 cells/nuclei in the final dataset, integrated by study and colored by the study of

origin (same colors as in (b)). d UMAP presentation of the cells/nuclei in the merged dataset, integrated by study and colored by cell type. e Dot plot of

the expression of marker genes for the major coarse cell types. Average expression for each cluster is shown by color intensity and the percent of cells/

nuclei in each cluster that expressed each gene is shown by dot diameter.
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enrichment of immature cells of oligodendrocyte lineage relative
to the adult Sathyamurthy study, while the adolescent Zeisel study
showed an intermediate distribution. The only study to dissect
the spinal cord including the dorsal and ventral spinal roots (the
Sathyamurthy dataset) was the only source of Schwann and
peripheral glia cells that would be located in these roots.

Overview of harmonized neuronal cell types. We next focused
our analysis on neuronal populations to further probe their
impressive diversity and to define a reference set of cell types for
understanding the spinal cord cellular basis of behavior. Based on
the coarse cell type assignments above, we selected and clustered
all neuronal cells/nuclei (Supplementary Fig. 4). Preliminary
analysis revealed that putative dorsal horn clusters separated well
in principal component space while putative mid and ventral
horn clusters did not, which prompted us to perform a targeted
sub-clustering of all mid and ventral cells/nuclei (see Methods).
In total, 69 neuronal clusters were identified (Fig. 2, Supple-
mentary Figs. 4 and 5, Supplementary Table 2, and Supplemen-
tary Movie 1) and the neurotransmitter status and putative
regional location (dorsal horn, mid-region, ventral horn) were
determined by marker gene expression and comparison to the
original six studies. Subsequent validation studies confirmed these
determinations (see below). We observed 20 dorsal excitatory

clusters, 14 dorsal inhibitory clusters, 10 deep dorsal/mid exci-
tatory clusters, 7 deep dorsal/mid inhibitory clusters, 8 ventral
excitatory clusters, 6 ventral inhibitory clusters, 3 cholinergic
motoneuron clusters, and 1 cluster of the cerebrospinal fluid
contacting neurons (CSF-cN).

To determine the robustness of these clusters, we used a
bootstrapped co-clustering test of the consistency with which cells
and nuclei in each cluster remain together upon repeated clustering
(Fig. 2c and Supplementary Fig. 5). Dorsal clusters showed very
high robustness with this measure, whereas mid and ventral clusters
showed low to moderate robustness. This general feature was
consistent with previous observations and likely reflects similar
patterns of gene expression amongst mid and ventral clusters1,4.

To assess how these neuronal clusters relate to previously
characterized transcriptomic spinal cord cell types, we first
focused on the original clusters from the Sathyamurthy and
Haring datasets because these two studies included a common set
of cell types (dorsal horn neurons) and provided the most
analysis, annotation, and marker validation for their respective
cell types. Some ventral neurons from the Sathyamurthy dataset
appeared in low-quality clusters that were discarded from the
harmonized analysis due to low counts of genes per cell/nucleus
and a lack of marker genes, whereas some neurons from the
Haring dataset were classified as non-neural cell types or
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Fig. 2 Harmonized atlas of 69 populations of spinal cord neurons. a UMAP presentation of 19,353 neuronal cells/nuclei of the postnatal mouse spinal
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inhibitory. Laminae were assigned based on in situ hybridization validation experiments and are colored by the approximate depth from the dorsal surface

of the cord (hot pink to violet). See main text for description of neuronal families.
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appeared in doublet clusters that were also discarded from the
harmonized analysis. Nevertheless, we found that cells/nuclei
from the original studies were distributed into the harmonized
clusters in coherent patterns that facilitated the registration of the
original clusters based on their distance in the neuron principal
component space (Supplementary Fig. 6). We next compared the
harmonized clusters to the clusters reported in a recent study by
Blum et al. which focused on spinal motoneurons but also
included many interneurons and glia. We found general
agreement between the clusters that they reported and our
harmonized analysis with the following differences (Supplemen-
tary Fig. 7). First, they described many more sub-types of
motoneurons, similar to the work of Alkaslasi et al., and we
incorporated both of these studies and performed an expanded
analysis of motoneuron sub-types (see below). Second, most
excitatory or inhibitory clusters that Blum et al. described
corresponded to multiple refined harmonized clusters. Third,
Blum et al. cluster “0” was described as inhibitory neurons but
likely included both inhibitory and excitatory ventral neurons.
And fourth, there were a few putative mis-annotation errors in
the Blum et al. dataset: cluster “22” was not annotated but likely
corresponded to ependymal cells; cluster “24” was annotated as
inhibitory interneurons but likely corresponded to oligodendro-
cyte precursor cells; and cluster “35” was annotated as
oligodendrocytes but likely corresponded to a mix (or doublets)
of oligodendrocyte precursors/progenitors and other glial cell
types such as astrocytes. Finally, we compared all marker genes
that we highlight in this paper (those in Table 1 and all figures) to
their patterns in a recent spatial transcriptomics analysis of the
spinal cord28 and to the Allen29 and Gensat30 expression
databases and found general concordance between these
resources (Supplementary Table 4). Together, this analysis reveals
the overall reproducibility of single-cell sequencing atlases of the
spinal cord but also highlights the power of integrating many
sources of information to obtain the most refined and robust cell
types and the importance of having an annotated reference atlas
to facilitate cell type analysis in future work.

General trends in molecular identity relationships amongst
neuronal populations. We next sought to examine the major
features that govern the broad molecular identity relationships
amongst spinal cord neurons. We used a dendrogram analysis of
the distance between the clusters within the 50-dimensional
principal component space. This revealed that the primary dis-
tinctions within spinal interneurons/projection neurons (non-
motoneurons) were based on spatial location in the dorsal horn
or mid/ventral regions of the spinal cord. Interestingly, this
bifurcation occurred even before cell types split by neuro-
transmitter status (for example into dorsal excitatory or dorsal
inhibitory types), a core feature of neuronal identity. This analysis
also revealed that putative dorsal clusters were well separated
from each other by long dendrogram branches, while putative
mid and ventral clusters were much closer to each other in this
reduced gene expression space (Fig. 3a). Intriguingly, neurons
that are located at the spatial mid-point between the dorsal and
ventral sides of the cord (preganglionic cells and two excitatory
populations near the central canal) were organized as a single
branch (Fig. 3a; center), further underscoring the importance of
spatial distribution as an organizing principle in the spinal cord.

We next performed differential expression between dorsal and
mid/ventral neuron types and compared the signature gene
expression profiles by gene ontology analysis to uncover the
broad molecular differences that distinguish these classes.
Remarkably, we found that genes related to plasticity were
significantly enriched in the dorsal horn of the spinal cord. This

included (1) genes that were widely expressed in the dorsal horn
but not in the ventral horn, such as Camk2a which has well-
established roles in long-term potentiation (LTP)31; (2) genes that
were present at higher levels in the dorsal horn than the mid/
ventral horn, such as Grm5 which encodes the mGluR5 receptor
which has been linked to meta-plasticity32, Plcb1 (PLCβ), and
Gria3 (GluR3); and (3) genes with restricted expression in
particular dorsal horn neuron types such as Prkcg (PKCγ),
Kcnip3 (DREAM), Nrgn, and Nos1 (nNOS) (Fig. 3b, c, d, g). In
contrast, genes related to structural adhesion and stability were
enriched in the ventral horn of the spinal cord, including (1)
genes related to cell-cell adhesion such as Lrrtm3, Cntn5, Cdh18,
and Sdk1; (2) genes related to perineuronal net components such
as Bcan (Brevican) and Tnr (Tenascin R), and genes related to
limiting the signal transduction pathways associated with LTP
such as Ptpn5 (STEP)33 (Fig. 3b, e, f, g). We validated the
differentially expressed patterns of several of these genes using
in situ hybridization and also at the protein level for CAMK2α
and WFA-lectin to reveal perineuronal nets, thereby confirming
predicted gene expression signatures that would differentially
regulate plasticity in the dorsal and ventral horns of the spinal
cord (Fig. 3c–f). Thus, we discovered general differences in the
relationships between clusters in the dorsal versus the ventral
horn and molecular trends that could confer differential plasticity
control in these two regions.

We also performed a similar analysis to compare gene
expression between excitatory and inhibitory classes of spinal
neurons. As expected, genes involved in neurotransmitter status
were detected (such as Pax2 and Gad2) but we also observed
consistent differential expression between excitatory and inhibi-
tory neurons for a pair of calcium channels (Cacna2d3 and
Cacna2d1) and a pair of synaptic adhesion molecules that
promote repulsion to limit homophilic interactions (Dscam and
Dscaml1) (Supplementary Fig. 8).

Detailed cluster analysis and marker validation for harmonized
neuronal cell types. Next, we sought to characterize the indivi-
dual clusters at a molecular level and to define their marker genes.
There are multiple approaches for identifying cell type markers
based on single-cell data. Commonly used methods such as the
Wilcox Rank Sum test and Area Under the Curve Receiver
Operating Characteristic (AUROC) analysis use differential
expression to identify genes that are enriched within one identi-
fied cell cluster as compared to all other clusters and we used this
approach to generate candidate markers for each cluster (Sup-
plementary Table 1). However, these approaches do not prioritize
markers that are shared between related clusters or those markers
that are well-established for a given tissue, nor do they produce
an efficient final set of markers that can be used to define neu-
ronal cell types for use in other types of experiments. To over-
come these obstacles, we therefore used a combination of Wilcox
and ROC individual cluster markers, Wilcox and ROC markers
for dendrogram branches, and established markers from the lit-
erature to generate a panel of combinatorial markers for spinal
cord neurons that follows a family name and given name analogy.
For example, Excit-14 through Excit-19 comprise the Sox5 family.
They are distinguished by expression of Col5a2 (Excit-14),
Col5a2 and Enpp1 (Excit-15), Col5a2, Enpp1, and Tac1 (Excit-
16), Dcx expression and being present almost exclusively at early
post-natal stages (Excit-17), Nmu (Excit-18), and Tac2 (Excit-19)
(Fig. 4A, B).

To determine whether this panel of markers corresponded to
in situ gene expression patterns and to define the anatomical
distribution of each cluster, we performed high-content in situ
hybridization with combinatorial sets of marker gene probes
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including both known and not previously described marker genes
(Supplementary Table 3). While the harmonized analysis above
included a range of tissue ages, all validation work was done in
the adult lumbar spinal cord to test whether predicted gene
expression patterns are accurate and whether they can be used in
the adult context to study cells involved in the mature function.
We tested 95 unique genes and analyzed gene expression in ten
overlapping sets of 12 genes each. For each set, hundreds of cells
were counted from three spinal cords and their locations mapped
by lamina with examples shown in Fig. 4 and Supplementary
Fig. 9. (Details for the counting procedure including are described
in the “Methods”.)

Using this approach, 79 genes (out of 95) showed reliable
expression in the adult spinal cord (Supplementary Table 3) and
71% of neurons in the adult lumbar spinal cord could be
identified as belonging to one of the 69 neuronal clusters (2057/
2894 total). An additional 9% of neurons could be identified as
belonging to pairs of closely related clusters (266/2894 total). Of
note, the ability to use defined markers to identify cell types in
tissue varied by combinatorial gene set such that dorsal sets could
be more readily assigned based on in situ gene expression than
ventral sets (Fig. 4F). This suggests that the distinction between
dorsal and ventral neurons that we described above is not limited
to the sequencing data but exists in the adult spinal cord tissue.

This detailed in situ hybridization analysis also revealed the in-
tissue prevalence and laminar location of each of the lumbar adult
neuronal cell types (Table 1) and can serve to translate single-cell
sequencing data back into tissue-based analysis.

The cell type markers, typical laminar distribution, prevalence,
and putative embryonic lineage (described below) of each cluster
are shown in Table 1, Fig. 4, and Supplementary Fig. 9.

The motoneuron (MN) family includes alpha motoneurons
(MNa) which had relatively higher levels of Poln and Spp134,
gamma motoneurons (MNg) which had relatively higher levels of
Esrrg and Htr1f35, and the related preganglionic cells (PGC)
which expressed Gfra3, Nos1, and Fbn236,37. This family was only
comprised of nuclei from the Sathyamurthy and Rosenberg
datasets but we could not detected refined sub-populations of
motoneurons. However, this included only 565 MNs. Recently,
data from Blum et al.10 and Alkaslasi et al.11, focusing only on
cholinergic neurons, became available. Therefore, we incorpo-
rated this data and performed a targeted analysis of a merged set
of 23,032 spinal motoneurons. This larger dataset, combined with
the barcoding of the Alkaslasi study enabled the identification of
distinctly localized MN subtypes that were not previously
resolved. PGCs were clustered into 23 subtypes that varied by
spinal cord level and MNa were clustered into 14 subtypes that
also varied by spinal level. For example, we found that digit-
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Fig. 3 Trends in dorsal-ventral organization of spinal cord neuron types. a Dendrogram showing the relationships between the 69 neuronal cell types

based on their distance from each other in the 50-dimensional principal component (PC) space. MN motoneuron, IN interneurons (and projection

neurons), CSF-cN cerebrospinal fluid contacting neurons, DE dorsal excitatory, DI dorsal inhibitory ME mid excitatory, MI mid inhibitory, VE ventral

excitatory, VI ventral inhibitory, center represents a group of 3 cell types located near lamina X–the center of the spinal cord. b Differential gene expression

tests (ROC) were used to compare overall gene expression between the dorsal cell types and mid/ventral cell types and significant gene lists were

analyzed by gene ontology (GO) term searches with GO DAVID using molecular function and biological process terms, as well as KEGG pathway lists

(which are underlined) and the top terms for each cell class are shown. c–f Validation of differentially expressed genes using RNA in situ hybridization (c,

e), antibody staining (d), or WFA-lectin staining (f). 20x tiled images, with brightness and contrast adjusted. All images are representative of the pattern

observed in at least 3 sections each from N= 3 animals. Scale bars are 200 μm. g Dot plots showing expression of plasticity-related genes in each

harmonized cluster, in which dot color intensity corresponds to average expression level (Ave Exp) and dot size corresponds to the percent of each cluster

that expressed the gene (% Exp).
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innervating motoneurons, expressing Cpne4 and Fign38, sepa-
rated into two subtypes, one found in limb-innervating regions
(both cervical and lumbar) and one that was specifically localized
to the lumbar spinal cord39,40 (Supplementary Fig. 9A and
Supplementary Fig. 10).

Cerebrospinal fluid contacting neurons (CSF-cN) were dis-
tinguished by Pkd2l1 and Pkd1l2. This population has been

suggested to be involved in postural control in zebrafish41–45.
This cluster was very distinct from other neuronal populations,
inhibitory, and also expressed the early neuron marker Sox2 and
the V2b lineage markers Gata2 and Gata3, suggesting an
immature phenotype. (Supplementary Fig. 9A).

The dorsal excitatory cell types were comprised of the
following families:
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The Cpne4 dorsal, excitatory family was comprised of Excit-
1 and Excit-2. Excit-1 was a rare subset, both in the
harmonized clusters and in the in situ counts, that also
expressed Dach2. Excit-2 was more prevalent and co-expressed
Prkcg as well as Cbln2. This family had markers of
interneurons suggested to be involved in mechanical itch46,47.
(Supplementary Fig. 9B).

The Prkcg dorsal, excitatory family was comprised of Excit-3
and Excit-4 and likely corresponded to neurons involved in light
static touch and allodynic pain in pathological situations46,48–56.
Prkcg is a classic marker gene in the spinal cord and defined this
family together with the neuropeptides Cck and Trh (Excit-3) and
Nts (Excit-4). Both subsets also expressed Calb1, although it was
not specific to these clusters. This family was also close to Excit-7,
an immature cluster grouped with the Maf family. Of note, there
were two discrepancies in this family between the sequencing data
and the in situ hybridization data: Cck was present at high levels
in the Excit-3 in the sequencing data but we did not detect Cck in
most Prkcg-expressing cells of the adult spinal cord and Prkcg
was not enriched in Excit-4 in the sequencing data but was readily
detected with Nts and Calb1 in this cluster in adult tissue.
(Supplementary Fig. 9B).

The Maf dorsal, the excitatory family was comprised of Excit-5,
Excit-6, and Excit-7 which expressed markers of neurons
involved in light touch46,48,50,56,57. All three clusters expressed
enriched levels of Maf and Rora (which was broadly expressed in
many other clusters at lower levels). Excit-5 also expressed Pvalb
and Cck, Excit-6 expressed Rorb and Cpne4, and Excit-7 was
distinguished by having only nuclei from the Rosenberg dataset
and expressed the immature neuron marker Dcx, suggesting an
immature phenotype. The similarity of Excit-7 with Excit-3,
Excit-4, Excit-5, and Excit-6 suggests a shared lineage relationship
between these families. This family also expressed low levels of
Slc17a8 (vGlut3). (Supplementary Fig. 9B).

The Reln dorsal, excitatory family was comprised of Excit-8,
Excit-9, Excit-10, and Excit-11 and expressed markers indicative
of a role in chemical itch sensation58–62. These clusters expressed
enriched levels of Car12 (in particular in Excit-9 and Excit-10),
the neuropeptide receptors Trhr (Excit-8), Npr1 (Excit-9 and
Excit-10), and Nmur2 (Excit-10), and the neuropeptide Grp
(Excit-9). (Supplementary Fig. 9C).

The Rreb1 dorsal, excitatory family was comprised of Excit-12
and Excit-13. These clusters also expressed Satb1 and either Zim1
(Excit-12) or Nmur2 and Crh (Excit-13). (Supplementary Fig. 9C).

The Sox5 dorsal, the excitatory family was comprised of Excit-
14, Excit-15, Excit-16, Excit-17, Excit-18, and Excit-19, and
expressed markers suggestive of a role in coping pain and
mechanical nociception46,52,56,63–67. Within this family, Excit-14
and Excit-15 were slightly separated and also similar to the Rreb1

family clusters and expressed Col5a2 (Excit-14) or Col5a2 and
Enpp1 (Excit-15). Excit-16, Excit-18, and Excit-19 expressed the
neuropeptides Tac1 (Excit-16), Nmu-hi/Tac2-lo (Excit-18), and
Tac2hi/Nmu-lo (Excit-19). Excit-17 included almost exclusively
nuclei from the Rosenberg dataset and showed enriched
expression of the immature neuron marker Dcx. (Fig. 4).

The Megf11 cluster (Excit-20) displayed features of dorsal
excitatory neurons and mid excitatory neurons, being located in
lamina 4/5 and being grouped with mid neurons in principal
component space in the UMAP and dendrogram analysis. It
expressed Megf11 and Mdga1.

The dorsal inhibitory cell types were comprised of the
following families:

The Rorb and Adamts5 dorsal, the inhibitory family was
comprised of Inhib-1, Inhib-2, Inhib-3, Inhib-4, and Inhib-5, with
markers of neurons involved in the dampening of dynamic
touch48,68,69. Each of these clusters, except Inhib-2, expressed
Rorb. Inhib-2 is grouped with this family based on its proximity
in principal component space, as reflected in the UMAP and
dendrogram analysis. In addition to Rorb, Inhib-1 expressed
Sorcs3, Inhib-3 expressed Nppc as well as Nrgn, Inhib-4
expressed Rxfp2, and Inhib-5 did not express these other genes.
Inhib-2 expressed Sorcs3 and Adamts5. (Supplementary Fig. 9D).

The Cdh3 dorsal, inhibitory family was comprised of Inhib-6,
Inhib-7, and Inhib-8 and are likely to be involved in the
dampening of dynamic touch and therefore in mechanical
allodynia70–72. Inhib-6 and Inhib-7 expressed Cdh3 and were
distinguished by co-expression of Kcnip2 and Pvalb in Inhib-7.
While Inhib-8 contained only low levels of Cdh3 in this analysis,
Cdh3 expression was confirmed by in situ hybridization and this
cluster was included in this family based on proximity in
principal component space as reflected in the UMAP and
dendrogram analysis. Inhib-8 also expressed Klhl14. (Supple-
mentary Fig. 9D).

The Pdyn dorsal, inhibitory family was comprised of Inhib-9,
Inhib-10, and Inhib-11 and expressed markers suggestive of a role
in chemical itch52,61,73–77. Each of these clusters expressed Pdyn,
while Inhib-10 also expressed Gal and Mlxipl and Inhib-11 also
expressed Gal only. Of note, the clusters in this family also
expressed Rorb and Nrgn. (Supplementary Fig. 9E).

The Npy dorsal, the inhibitory family was comprised of Inhib-
12 and Inhib-13. Studies suggest this family’s markers identify
neurons involved in mechanical itch and pain73,78,79. These
clusters expressed Npy and were distinguished by low levels of
Vgf (Inhib-12) or by expression of Qrfpr (Inhib-13). (Supple-
mentary Fig. 9E).

The Chat dorsal inhibitor cluster Inhib-14 was a deep dorsal
(lamina 4), inhibitory and cholinergic population and also
expressed Nos180–82.

Fig. 4 Family structure and in situ validation for adult spinal cord tissue. a UMAP for neuronal cell types Excit-14 through Excit-19. b Dot plot of the

distribution of selected marker genes across the 69 neuronal clusters in which dot color intensity corresponds to average expression level (Ave Expression)

and dot size corresponds to the percent of each cluster that expressed the gene (% Expressed). c Feature plots of each gene expression pattern in Excit-14

through Excit-19. Expression levels are indicated by color intensity, with the maximum level indicated below each plot. The co-expression of Nmu (red) and

Tac2 (green) are shown in the right-most plot, with expression levels cut-off at a maximum of 2.5 to highlight co-expressing cells in yellow. d, e RNA in situ

hybridization of selected marker genes Sox5, Col5a2, Tac1, Nmu, Tac2 on an adult mouse lumbar spinal cord section. Cells were assigned to individual

excitatory clusters with cluster number identity shown based on marker gene expression. Inset show representative cells of Excit-14 (14*) and Excit-15

(15**) with in situ hybridization for Sox5 (green), Col5a2 (red), Enpp1 (blue). 20x tiled images, with brightness and contrast adjusted. All images are

representative of the pattern observed in at least 3 sections each from N= 3 animals. Scale bar is 100 μm in (d) and 25 μm in (e). f Quantification of the

cells in adult spinal cord tissue that could be defined using sets of marker genes in situ. The cell types analyzed by each set of genes are shown on the left,

the number of cells counted for each set are shown at the base of the bars, and the percent of counted cells are shown for each animal (N= 3, replicates

and mean ± standard error) that could be confidently assigned to a single cluster (white bars), or that could be assigned to a single cluster or to pair of

closely related clusters (gray). For each set, the coarse criteria for counting total cells are specified in the Methods. Set 4, which includes the Sox5 family

clusters, is highlighted in green as an example.
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Table 1 Cell-type census of 69 populations of spinal cord neurons.

Cluster Lamina % NT Family Individual Markers Putative Lineage

MN-alpha 9 1.1 Chat MN Spp1 Poln Tns1 MN
MN-gamma 9 0.5 Chat MN Esrrg Htr1f Tns1 MN
PGC 7-IML Chat MN Gfra3 Nos1 Fbn2 MN
CSF-cN 10 0.3 Slc6a1 CSF-cN Pkd2l1 V2b.2/V2b.4
Excit-1 1/2o 0.6 Slc17a6 Cpne4 Dach2 (Cck) dI3.3/dI5
Excit-2 1/2o/2i 3.7 Slc17a6 Cpne4 Prkcg (Rorb) dI5.4
Excit-3 1/2o/2i 3.8 Slc17a6 Prkcg (Cck) Calb1 dI5.4
Excit-4 2i/3 2.8 Slc17a6 (Prkcg) Nts Calb1-hi dI5.4
Excit-5 2i/3/4 3.2 Slc17a6 Maf Cck dI5.4
Excit-6 3/4 2.4 Slc17a6 Maf Rorb Cpne4 dI5.4/dI5.5
Excit-7 N/A N/A Slc17a6 Maf Dcx (vGlut3) dI5.4/dI5.5
Excit-8 1/2 1.4 Slc17a6 Reln Trhr (Car12) (Grp) dI3.3/dI5.4
Excit-9 1/2/3 1.7 Slc17a6 (Reln) Grp Calb2 dI5.4/dI5.5
Excit-10 1/2 2 Slc17a6 Reln Car12 Nmur2 dI5.4
Excit-11 N/A 0 Slc17a6 Reln Car12 Gabra2 dI5.4
Excit-12 1/2 0.2 Slc17a6 Rreb1 Satb1 Zim1 dI5.5
Excit-13 2i/3 0.7 Slc17a6 Rreb1 Nmur2 (Satb1) dI5.5
Excit-14 1/2o 1.7 Slc17a6 Sox5 Col5a2 (dI5)
Excit-15 1/2/3 0.2 Slc17a6 Sox5 Col5a2 Enpp1 (dI5)
Excit-16 1/2o (2i-4) 6.5 Slc17a6 Sox5 Col5a2 Enpp1 Tac1 (dI5)
Excit-17 N/A N/A Slc17a6 Sox5 Dcx (dI5)
Excit-18 1/2o (2i-4) 2.7 Slc17a6 Sox5 Nmu (Tac2) (dI5)
Excit-19 2i (3/4) 1.9 Slc17a6 Sox5 Tac2 (Nmu) dI5.4/dI5.5
Excit-20 4/5 2 Slc17a6 Megf11 Mdga1 dI2.1/dI5.5
Inhib-1 3 (1-4) 7.4 Slc6a1 Rorb Sorcs3 (Nppc) (Runx2) dI4.3
Inhib-2 3 (1-4) 10.3 Slc6a1 (Rorb) Adamts5 Klhl14 Sorcs3 dI4.3
Inhib-3 1-4 3 Slc6a1 Rorb Nppc Nrgn dI4.3
Inhib-4 1/2o/2i 0.4 Slc6a1 Rorb Rxfp2 dI4.3
Inhib-5 1/2o (3) 1 Slc6a1 Rorb dI4.3
Inhib-6 3/4 (1/2o) 1.3 Slc6a1 Cdh3 dI4.4
Inhib-7 2i/3 (1-4) 3.6 Slc6a1 Cdh3 Kcnip2 Pvalb dI4.4
Inhib-8 3/4 0.5 Slc6a1 (Cdh3) Klhl14-hi dI4.4
Inhib-9 1/2o (2i/3) 1.6 Slc6a1 Pdyn (Rorb) (Rspo3) dI4.1/dI4.4
Inhib-10 3 (1-5) 9.7 Slc6a1 Pdyn Gal Mlxipl Rspo3 dI4.1/dI4.4
Inhib-11 1/2o/2i/3 0.9 Slc6a1 Pdyn Gal (Rorb) Nrgn dI4.1/dI4.4
Inhib-12 1/2o/4 1.8 Slc6a1 Npy (Vgf) dI4.6
Inhib-13 1/2o/2i 2.1 Slc6a1 Npy Qrfpr dI4.6
Inhib-14 4 0.1 Slc6a1 Chat Slc6a5 Nos1 dI4.1/dI4.6
Excit-21 4/lat 5 0.5 Slc17a6 ME/Lmx1b Zfhx3 Nms dI5.5
Excit-22 4/5/6 0.1 Slc17a6 ME/Lmx1b Zfhx3 dI3.3/dI5.5
Excit-23 4/med 5 1.2 Slc17a6 ME/Lmx1b Nfib Cep112 (dI5)
Excit-24 4/5/6 0.7 Slc17a6 ME/Lmx1b (Nfib) (Cep112) (dI5)
Excit-25 4/5/6 0 Slc17a6 ME/Lmx1b Nfib Prox1 (dI5)
Excit-26 4 0.1 Slc17a6 ME Nfib (Prox1) (Satb1) (dI1/dI2)
Excit-27 4/5 1.3 Slc17a6 ME Adamts2 Cep112) (dI2)
Excit-28 10 0.1 Chat ME Pitx2 Pou6f2 Onecut2 V0*
Excit-29 5/6 0.3 Slc17a6 ME Onecut2 Pmfbp1 (V0)
Excit-30 5 0.8 Slc17a6 CC# Gbx2 Neurod2+ Pou6f2 V2a.1
Inhib-15 med 5 1.1 Slc6a5 MI Prox1 Gabra1 Nfib V1.7
Inhib-16 med 5 0.6 Slc6a5 MI Gpc3 (Rorb) Sema5b dI4.6
Inhib-17 N/A N/A Slc6a5 MI Satb2 dI4.4/dI4.6/(dI6)
Inhib-18 5/6 0.5 Slc6a5 MI Sema5b dI4
Inhib-19 med 5 0.5 Slc6a5 MI Ccbe1 Pou6f2 dI4.4
Inhib-20 5/6 1 Slc6a5 MI Tfap2b dI4.6/V1.1/(dI6)
Inhib-21 4/med 5 0.8 Gad2 MI Nfib Pax6 dI4.6/V1.6/(dI6)
Excit-31 6/7/8 0.3 Slc17a6 VE Lhx9 Gm26673 Syt2 (dI1/dI2)
Excit-32 6/7/8 0.4 Slc17a6 VE Lhx9 Prlr Mdga1 dI1/dI2/dI3
Excit-33 N/A N/A Slc17a6 VE Lhx9 dI2.1
Excit-34 6/7/8 0.4 Slc17a6 VE Bnc2 Pou6f2 Lhx2 dI1/dI2
Excit-35 6/7 0.5 Slc17a6 VE Vsx2 Pou6f2 Vamp1 V2a*
Excit-36 6/7 0.3 Slc17a6 VE Vsx2 Esrrg (Gm26673) dI1/dI2/V2a
Excit-37 7 0.8 Slc17a6 VE Vsx2 Shox2* V2a*
Excit-38 N/A N/A Slc17a6 VE Sim1 Rnf220 V3*
Inhib-22 7 0.1 Slc6a5 VI Foxp2 (Esrrb) (dI6)/V1.3
Inhib-23 7/8 0.6 Slc6a5 VI Foxp2 Esrrbb+ Gm26673 (dI6)/V1.3
Inhib-24 7 0.6 Slc6a5 VI Pou6f2 Nr5a2 V1
Inhib-25 7/8 1.1 Slc6a5 VI Esrrb (Pvalb) (dI6)/V1
Inhib-26 ventral 7 0.5 Slc6a5 VI Chrna7 Calb1 (Pvalb) V1.1/V1.2
Inhib-27 7 0.3 Slc6a5 VI Foxp2 (Gata3) Pax2-hi (dI6)/V1/V2b

The lamina, prevalence, neurotransmitter marker gene, family, individual marker genes, and putative embryonic lineage for each neuronal cluster are shown. The clusters are color-coded to correspond

approximately to their color in Fig. 2a. The prevalence of each cluster was determined by counting the confidently assigned cells of each type based on RNA in situ hybridization on sections from three

animals and are presented as the percent of the total number of confidently assigned neurons. Genes in parenthesis are expressed at lower levels. Genes in gray were not validated (due to probe failure,

being present only in postnatal animals, or were not included in the analysis). + denotes relatively higher expression. # denotes a possible identity of Clarke’s column (CC). * denotes a marker that was

validated using RNAScope V2 but did not work in the RNAScope Hiplex assay.
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The cell types of the mid-region of the spinal cord, the deep
dorsal horn, were comprised of the following families and the
clusters were generally less robust than dorsal clusters (Fig. 2b
and Supplementary Fig. 5).

The mid excitatory (ME)/Lmx1b family was comprised of
Excit-21, Excit-22, Excit-23, Excit-24, and Excit-25 and corre-
sponds to cells suggested to be involved in pain3,83. These clusters
expressed Lmx1b, suggesting a dI5/dILB embryonic origin. All of
the clusters except Excit-25 expressed Tacr1 and Excit-21 also
expressed Lypd1, suggesting that these are candidate ascending
populations3. These clusters could also be distinguished by
expression of Zfhx3 (Excit-21 and Excit-22) or Nfib (Excit-23,
Excit-24, and Excit-25), which corresponded to lateral Zfhx3 and
medial Nfib sub-types. Other markers sub-divided the clusters in
a combinatorial manner, including Nms (Excit-21), Bcl11a
(Excit-22 through Excit-25), Satb1 and Cdh23 (Excit-23, Excit-
24, and Excit-25), Cep112 (Excit-23 and Excit-24), and Prox1
(Excit-25). Of note, nearly all of the cells and nuclei in this family
were from the Rosenberg and Sathyamurthy datasets. (Supple-
mentary Fig. 9F).

The remaining ME family was comprised of mid, excitatory
clusters were comprised of Excit-26, Excit-27, Excit-28, and Excit-
29. These clusters do not express Lmx1b, in contrast to the other
mid excitatory family and are likely derived from dI1-3 or ventral
embryonic lineages. Excit-26 expressed Nfib, Excit-27 expressed
Adamts2, Excit-28 expressed Chat and Pitx2 and thus likely
corresponds to V0c neurons, and Excit-29 expressed Pmfbp1.
Excit-28 and Excit-29 also express Onecut2 and Pou6f2,
potentially revealing a link with ventral cell types. Of note, nearly
all of the cells and nuclei in this family were from the Rosenberg
and Sathyamurthy datasets and Excit-26 in particular was
predominantly from the Rosenberg dataset. (Supplementary
Fig. 9A and F).

The Excit-30 cluster was marked by Gbx2, Neurod2, and Sp8
and there was partial evidence that it corresponded to Clarke’s
column (CC). This cluster expressed multiple genes associated
with Clarke’s column including Chmp2b, Syt4, Ebf3, Rgs4, and
Enc16. The Clarke’s column marker gene, Gdnf, was expressed at
very low levels in the merged dataset, but was present in several
Excit-30 cells. However, this cluster only contained two defined
spinocerebellar cells from the Baek et al. dataset while the
majority of this cluster was from the Hayashi dataset, arguing
against Clarke’s column identity and also suggesting a V2
embryonic lineage. As the in situ hybridization experiments were
performed on mid/lower lumbar spinal cord sections, we did not
validate markers for this cluster.

The mid inhibitory cell types were grouped as one family
comprised of Inhib-15, Inhib-16, Inhib-17, Inhib-18, Inhib-19,
Inhib-20, and Inhib-21, which expressed the glycinergic marker
Slc6a5 (with the exception of Inhib-21) and also the gaba-ergic
marker Gad2, implicating these neurons in sensorimotor
processing84–86. Inhib-15 expressed Prox1, Gabra1, and Nfib,
Inhib-16 expressed Gpc3 and Sema5b, Inhib-17 expressed Satb2,
Inhib-18 expressed Sema5b, Inhib-19 expressed Ccbe1 and
Pou6f2, Inhib-20 expressed higher levels of Tfap2b as well as
Zfhx3, and Inhib-21 expressed Nfib and was distinguished by
having only Gad2 and not Slc6a5 and was mainly derived from
the Rosenberg dataset. (Supplementary Fig. 9G).

In general, we found that the ventral clusters had less distinct
gene expression patterns and were less robust than dorsal and
mid clusters; therefore, the final identities of these clusters should
be considered with caution. We identified several genes that
contribute to overlapping gene expression patterns across clusters
by being present in a spatial region of the cord and in diverse
mid/ventral cell types. For example, Pou6f2 was expressed in the
deep dorsal horn and in the dorsal part of the ventral horn and

was enriched in mid-excitatory (Excit-21, Excit-28, and Excit 30),
ventral excitatory (Excit-34 and Excit-35), and ventral inhibitory
(Inhib-24) clusters that are located within this domain. Similarly,
Nfib was expressed in the medial deep dorsal horn (mid) spinal
cord and was enriched in both excitatory (Excit-23, Excit-25, and
Excit-30) and inhibitory (Inhib-15 and Inhib-21) clusters. Of
note, several cluster markers of ventral cell types, such as Sim1,
were not observed in adult spinal cord tissue by in situ
hybridization and while they are detected in the harmonized
sequencing data, they likely represent lingering RNA from
developmental samples.

The ventral, excitatory clusters were grouped as one family
comprised of Excit-31, Excit-32, Excit-33, Excit-34, Excit-35,
Excit-36, Excit-37, and Excit-38. Of these, Excit-31, Excit-32,
Excit-33, and Excit-34 expressed low levels of Lhx2, Lhx9, and
Isl1, potentially suggesting dorsal dI1/dI2/dI3 embryonic lineages
for these clusters. These clusters could be distinguished by
Gm26673, Syt2, and Prlr (Excit-31), Mdga1 and Prlr (Excit-32),
and Bnc2 and Pou6f2 (Excit-34). Excit-33 was comprised almost
entirely of nuclei from the Rosenberg dataset and may represent
an immature cell type. Excit-35, Excit-36, and Excit-37 are likely
derived from the V2a lineage, as they expressed Vsx2 (Chx10)
and included many cells from the Hayashi dataset that sorted cells
based on Chx10 genetic expression and thus may play a role in
skilled reaching87. Excit-35 also expressed Vamp1, Pou3f1, Shox2,
and Pou6f2 and Excit-36 expressed Esrrg. Intriguingly, many cells
from the Baek dataset, which sorted cells based on spinocerebellar
status were found in Excit-35, suggesting that this population
includes ascending projection neurons that target the cerebellum.
Excit-37 expressed low levels of the V3 marker gene Sim1 as well
as Rnf220. (Supplementary Fig. 9H).

The ventral, inhibitory clusters were also grouped as one family
that was comprised of Inhib-22, Inhib-23, Inhib-24, Inhib-25,
Inhib-26, and Inhib-27. Each of these clusters expressed the
glycinergic marker Slc76a5. Inhib-22 and Inhib-27 also expressed
the gaba-ergic marker Gad2 as well as Pax2 and Pou6f2. They
were distinguished by low levels of Gata3 expression in Inhib-27,
which may represent V2b lineage. Inhib-23 and Inhib-25
expressed Foxp2 and Esrrb, suggesting they correspond to the
Foxp2 clade of V1 lineage neurons described by Bikoff and
colleagues88. They were identified by expression of Gm26673 and
Pvalb in Inhib-23, which may suggest that this cluster included
Ia-inhibitory neurons89. Inhib-24 expressed both Pou6f2 and
Nr5a2, suggesting that this cluster corresponded to the Pou6f2/
Nr5a2 clade of V1 lineage neurons88. Inhib-26 was the most
robust ventral cluster and expressed the Renshaw marker genes
Chrna2, Chrna7, and Calb1, suggesting that this cluster
corresponded to Renshaw cells89,90. (Supplementary Fig. 9I).

Developmental lineages of postnatal spinal neuron popula-
tions. Having established this harmonized atlas of postnatal
through adult spinal cord neurons, we next asked if these cell
types could be aligned with the cardinal classes of embryonic
spinal progenitors. Developmental lineage has been a powerful
and influential framework for categorizing spinal neurons, par-
ticularly within the ventral horn, and relies on the combinatorial
expression code of transcription factors that specify distinct
progenitor domains along the dorsal-ventral axis of the spinal
cord. While recent work has revealed an impressive diversity of
gene expression patterns within each cardinal class2,88,89,91–97,
the contribution of these populations to adult neuronal classes
and function is still not clear.

We co-integrated the merged dataset of six postnatal studies
with the neurons from a single cell sequencing atlas of e9.5 to
e13.5 mouse spinal cord7 and analyzed these seven studies
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together (Fig. 5a). Dimensionality reduction with principal
components (PC) was performed and the distances in PC-space
between the centroid of each embryonic or postnatal cluster and
every other cluster centroid was used to determine transcription-
ally similar nearest neighbors between embryonic and postnatal
cell types. In addition, the identity of the individual embryonic
cells that were closest in PC-space to each cluster were also
determined (Supplementary Table 5).

We found that long trajectories of embryonic cells led towards
particular cluster families, which allowed us to infer develop-
mental relationships (Fig. 5b). The molecular identities of the
cardinal classes were confirmed by classic marker analysis
(Fig. 5c) and these marker genes often extended into the
postnatal cell type domains as well. A combination of centroid
distance, nearest cells, and marker gene expression was used to
assign an embryonic lineage for each harmonized neuron
population (Table 1 and Fig. 5d).

The most striking finding from this analysis was the
unexpectedly high degree of convergence of multiple lineages
into postnatal cell types. Notable examples of this trend include:
(1) Multiple dorsal excitatory cell types seemed to be derived
from a mixed set of dI5 lineage cells (as expected) and an Isl1-
negative, Tlx3-positive dI3.3/dI3.4 embryonic population (which
was unexpected). Although Tlx3 is known to be a dorsal marker
and a marker of dI3 neurons, the dI3 population is generally
considered to give rise to an Isl1-positive population in the deep
dorsal horn/intermediate zone98–102. (2) A subset of cells from
the dorsal dI4.6/dI6 lineages contributed to most ventral

inhibitory populations, which was unexpected though there have
been reports of scattered dI4 Ptf1a-derived cells in the embryonic
and perinatal ventral horn103,104, and the very small dI6
population is known to be ventrally located105–107. (3) Dual
contributions of dI5.5 and dI2.1 to Excit-20 and of V1 and V2b to
Inhib-27 were also observed. This analysis also supported a
division of deep dorsal horn excitatory neurons into two overall
groups (with the ME/Lmx1b family being more closely related to
dI5, while the other ME clusters are more closely related to dI1-
dI3) and a division of ventral excitatory neurons into two groups
(with Excit-31 through Excit-34 being closer to dI1-3 and Excit-
35 through Excit-37 being closer to V0, V2a, and V3 popula-
tions). Together, the joint analysis of spinal cord neurons from
embryonic through adult stages began to align these two
perspectives on cell types while also highlighting the complex
relationships that exist between genetically defined cellular origins
and mature transcriptional signatures.

Using machine learning to classify spinal cord cell types. We
next sought a means to standardize and automate spinal cord cell
type classification. First, we tested three strategies that have been
used successfully to classify single-cell data from other tissues on
their ability to classify spinal cord cells into coarse cell types.
These were label transfer23, a support vector machine, and a fully
connected neural network (with two hidden layers of 512 nodes
and L2 regularization for each). It is important to note that each
of these models were trained using cell type labels from the

Fig. 5 Co-integration of embryonic and postnatal through adult spinal cord neuronal types. a To reveal the temporal relationship between embryonic and

postnatal through adult cell types, the Delile, and harmonized datasets were co-integrated and are shown in a UMAP, colored by dataset (right). b A

UMAP of the co-integrated datasets, colored by clusters from the Delile et al. study (bold labels) or the harmonized analysis (regular font labels). Cluster

annotations are repeated in cases in which a group of cells from a given cluster are located at a distance from the cluster centroid (ex. for dI4.6). c Feature

plots of selected marker genes for the cardinal classes of spinal cord lineages. d Sankey plot of the relationships between embryonic lineages (left) and

harmonized cell types (right) showing multiple examples of divergence and convergence.
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harmonized analysis because there is no existing gold standard
for spinal cord cell identities. In this context, the first phase of the
analysis that follows should be considered a feasibility study for
machine learning classifiers on spinal cord single cell count data.
The full merged dataset of 101,070 cells and nuclei was tested,
including low-quality cells and nuclei and doublets, in order to
represent the full range of input raw data. All three strategies
performed well, with label transfer showing the best performance

(overall accuracy of 89%), followed by the neural network (83%),
and then the SVM (80%) (Fig. 6a and Supplementary Table 6).

Next, we tested label transfer and neural networks on a more
refined and challenging task: the classification of 69 neuronal sub-
types. For label transfer, two phases of analysis were performed
(dorsal sub-types and then mid/ventral sub-types) because we
found that this approach was important for clustering spinal cord
neurons. For the neural networks, a non-exhaustive hand sweep
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Fig. 6 Computational classification of spinal cord cell types. a Confusion matrices of the F1 scores for the classification of coarse cell types using label

transfer, a support vector machine (SVM), and a fully connected neural network (neural net), (blue= 0; maroon= 1). The actual cell types are in rows and

the predicted cell types are in columns in the same order. b Confusion matrices of the F1 scores for the classification of fine neuronal sub-types using label

transfer and a fully connected neural network. The actual cell types are in rows and the predicted cell types are in columns, both in the order presented in

Table 1. Alternating cell types are labeled. c Model of the two-tiered classification approach in which all cells/nuclei are classified into coarse cell types

using label transfer (also including low-quality junk and doublets). Subsequently, all cells/nuclei that were classified as neurons, motoneurons, or doublets

by label transfer are further classified into 69 neuronal cell types (also including doublets). d Experimental design for generating an independent set of

single nucleus RNA sequencing data. e Distribution plot showing how nuclei from each cluster (rows) were distributed into each of the harmonized cell

types (columns), normalized by rows with dark blue= 0.0 fraction; maroon= 1.0 fraction). f Bar plot of the total counts of nuclei that were from known

clusters and were correctly classified (81% of total), that were from known clusters and were incorrectly classified (9% of total), that were from unknown

clusters but could be identified by their classification (3% of total), or that were from unknown clusters and could not be identified (7% of total). OPC

oligodendrocyte precursor cell, progen.1 oligodendrocyte progenitor 1, progen.2 oligodendrocyte progenitor 2, Olig.1 oligodendrocyte 1, Olig.2

oligodendrocyte 2, Periph. peripheral glia, Mening.1 meninges 1, Mening.2 meninges 2, Epend. Ependymal cells, Astro.1 astrocytes 1, Astro.2 astrocytes 2,

Endoth endothelial cells, Pericy pericytes, MN=motoneurons; low qual. low quality, MNa motoneurons alpha, PGC preganglionic cell.
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of several hyperparameters was conducted, including network
depth, optimizer, number of hidden nodes, and the number of
training epochs, and seven different models were tested (see
Methods and Supplementary Table 6). We found that a linear
model (with no regularization and with an SGD optimizer)
showed the best performance, with an overall test accuracy of
85% (Fig. 6b and Supplementary Table 6). The model showed
very high confidence scores for correct predictions; however,
performance varied with cell type prevalence suggesting a target
for improving the model in the future (Supplementary Fig. 11).

How should the performance of this model be assessed and
should we expect automated classification to achieve 100%
accuracy? Perfect performance would require perfect and
invariable biological data: discrete cell types that express
completely distinct patterns of gene expression and experimental
data without natural heterogeneity, doublets, low-quality cells, or
other sources of indeterminate data. Knowing that this is not
possible, we still sought to determine a benchmark performance
guide for the classification of adult mouse spinal cord neurons
using neural network models and considered four metrics of
cluster definition and separation. We examined the relationship
between the model performance for each cluster (F1 score) and
(1) the co-clustering frequency of each cell type across 100
clustering iterations, (2) how distant each cluster was from its
nearest neighbor in principal component space, and (3) the
confidence with which clusters could be distinguished based on
in situ marker expression (measured by in situ analysis sets of
clusters) (Supplementary Fig. 12). We found that the model
performance varied with the co-clustering frequency of each
cluster and with the ability to identify cell types in situ and we
propose that these measures can be used to set a reasonable
expectation for neural network performance. Overall, neuronal
cells/nuclei of a given type co-clustered together 65% of the time
(average from Supplementary Fig. 5E) and a total of 70% of cells
could be classified in situ (Fig. 4). In comparison, the model’s
accuracy of 85% reveals the outstanding performance of this
approach.

To develop a standardized pipeline for the classification of
independent datasets unrelated to the original studies analyzed
above, we considered a two-tiered approach that would take
advantage of the strengths of both the label transfer for coarse
classification (Tier 1) and a neural network model for classifica-
tion of neuronal sub-types (Tier 2) (Fig. 6c). By combining these
two methods, we improved overall performance by maximizing
performance at both steps. We first selected all cells/nuclei that
were assigned as doublets or neurons during the harmonized
analysis above to represent the output of the first tier and input to
the second tier. In this context, we trained another set of five
neural network models (see Methods and Supplementary Table 6).
A neural network model with one hidden layer (256 nodes) and
an SGD optimizer showed the best performance (overall accuracy
of 80%) and was selected for further work. Using the raw
(normalized) data from each of the six original studies as an
independent input to the two-tiered model, we found that it
showed strong performance in identifying the neuronal sub-types
in five of the six studies (Sathyamurthy, Hayashi, Haring,
Rosenberg, and Zeisel) (Supplementary Fig. 11). The model
may have shown poor performance for the sixth dataset (Baek)
due to its very small size and minor contribution to the overall
training data and to the neuron training data, as we observed a
relationship between the fraction of correct predictions and the
contribution to the training data in the context of all cell types
(Supplementary Fig. 11). These results must be interpreted with
caution because each of these datasets were included in the overall
training data which could lead to artificially high performance.

As a final performance test of the two-tiered model, we applied
it to spinal cord nuclei from a completely independent dataset
that was not included in the integration or model training. As the
model was trained on different data, overfitting is not a concern
on this dataset, so these results are indicative of real-world
performance on independent data. Nuclei were isolated from the
lumbar spinal cords of four adult mice, sequenced using 10x
Chromium, clustered using Seurat, and marker genes were
identified for each cluster (Fig. 6d and Supplementary Fig. 13).
90% of nuclei (out of 28,584 total) were in clusters that could be
assigned a cell-type label based on marker gene expression
(known clusters). In cases for which labels could not be
confidently assigned (10% of nuclei, unknown clusters), a
placeholder name was given (Supplementary Fig. 13). We
performed classification of all nuclei from the independent
dataset that passed quality-control thresholds (Fig. 6c) in an
analysis that took less than thirty minutes of computational time
(~20 min for Tier 1 and less than one minute for Tier 2). We
found that 90% of nuclei from known clusters were accurately
classified by the two-tiered model (Fig. 6f known + accurate). We
next considered how this model performed upon the classification
of nuclei from the challenging unknown clusters that could not be
identified based on marker genes. Surprisingly, we found that
28% of unknown nuclei could be identified with the two-tier
classification model (Fig. 6f unknown + identified). Thus, the
two-tiered model surpassed the ability of experienced users to
identify spinal cord cell types.

Of note, several cell types were not expected to be present in
the independent dataset, including Schwann cells, peripheral glia,
and meninges 2 (based on the surgical dissection method used
that did not include spinal roots or outer layers of meninges) and
including PGC, Excitatory-7, and Excitatory-17 (based on the
lumbar region and adult age that was used). As expected, these
cell types were not predicted by the two-tiered model. There were
also several cell types that were not classified as expected. In
particular, several mid/ventral cell types were not detected in the
independent dataset while two ventral clusters (Excitatory-31 and
Inhibitory-27) were over-represented (Fig. 6 and Supplementary
Fig. 13). This may reflect a training dataset that is not large
enough to train a model that distinguishes closely related cell
types, that small clusters are not modeled as well, and that some
mid/ventral clusters are defined partly by early postnatal gene
expression contained within the harmonized analysis but absent
from the independent adult dataset.

These results establish a two-tiered model based on label
transfer and a neural network as an effective approach for the
computational classification of single-cell sequencing data, even
in the context of the finely separated populations of spinal cord
neurons. The neural network model was at least as accurate as
other methods such as Seurat-based clustering and high-content
in situ hybridization and was orders of magnitude faster. In
addition, it can standardize spinal cord cell type classification so
that a unified and harmonized set of cell types can be identified
and studied consistently between datasets, biological conditions,
and laboratories throughout the field.

SeqSeek: a community resource for analyzing and classifying
spinal cord cell types. Finally, we have developed an online
resource for spinal cord single-cell data, SeqSeek (available at
seqseek.ninds.nih.gov). This resource includes user-friendly tools
to search gene expression across spinal cord cell types using single
genes or gene lists (SeqSeek Genes), to compare gene expression
between clusters or groups of clusters (SeqSeek Cells), and to
access the SeqSeek algorithm for cell-type classification (SeqSeek
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Classify, also available on our Github repository https://github.
com/ArielLevineLabNINDS).

Discussion
For the field of spinal cord biology to build upon the incredible
promise of single-cell technologies, it is critical to establish a
standard set of cell types. Here, we leveraged and expanded upon
the previously published single-cell sequencing studies of the
postnatal mouse spinal cord to define 84 types of spinal cord cells.
We present a harmonized atlas of these cell types; a validated
combinatorial panel of markers to facilitate their study either
in vivo, in tissue sections, and in vitro cell culture; putative
embryonic lineages for each cell type; computational resources for
classifying spinal cord cells based on transcriptomics; and a web-
based resource, SeqSeek, to allow the community to interact easily
with and explore single cell spinal cord data. This work estab-
lishes a common framework that will serve as a powerful resource
for the field and facilitates the discovery of biological features of
spinal cord cell types. As an example, we identified major dif-
ferences between dorsal and ventral neuron types in their cluster
relationships and in plasticity gene signatures, highlighting the
primary role of spatial location in the organization of the mam-
malian spinal cord.

The first key consideration is whether the cell types of the atlas
are correct biologically or whether they are confounded by
technical issues contributed by the original studies or analysis
choices that we made here. For example, it is possible that inte-
grating these studies would obscure important biological differ-
ences between them or that merging early postnatal and adult
datasets would blur proper cell type descriptions. In the absence
of a commonly accepted standard set of spinal cord cell types, it is
impossible to answer this question completely. However, several
pieces of evidence support the accurate description of spinal cord
cell types. First, highly reliable clusters were identified based on
four independent integration methodologies – Seurat V3, Har-
mony, Conos, and LIGER – suggesting that these clusters
represent the underlying biological reality of cell types. Second,
these clusters correspond well with prior gene expression analysis
of the postnatal spinal cord including many classic and well-
established marker gene studies as well as three independent
single nucleus sequencing datasets that were not included in the
harmonized clustering: an independent dataset that we clustered
separately and used to test the SeqSeek Classify algorithm, and
two recent studies that used different analysis strategies but found
similar markers to the harmonized set8,9. Third, and most
importantly, this atlas does not rest only on select studies or on
computational approaches that would be subject to the biases of
particular tools and parameter choices. We performed high
content in situ hybridization to test the validity of predicted
expression profiles in the full transverse view of adult lumbar
spinal cord tissue. In a few instances, this data differed from the
harmonized sequencing data (for example in Excit-3 and Excit-4)
which may reflect differences in developmental patterns. How-
ever, we validated the vast majority of predicted expression pat-
terns from the harmonized atlas and the resulting data provided
the most extensive characterization of cell types, their prevalence,
and their spatial distribution in the postnatal spinal cord.

In addition to serving as a powerful reference resource, what
new biological information can this study reveal? One of the most
striking findings was the difference in cell type organization
between the dorsal and mid/ventral regions of the spinal cord,
both in cluster relationships and in general molecular trends.
Dorsal clusters are distinct from each other with clearly separated
individual cell types that can be grouped loosely into families.
These cell types are located at greater distances from each other in

principal component/UMAP space, have higher measures of
robustness (such as co-clustering frequency and silhouette score),
and can be reliably distinguished by machine learning algorithms
or in tissue with combinatorial marker genes. In contrast, ventral
clusters are much more similar to each other, with close or
overlapping distributions in principal component space and
overlapping gene expression patterns. Ventral neuron cell types
may be organized at a second, nested level of spatial trends that
overlay embryonic lineage-defined cell types: a Pou6f2-Esrrg
trend along the dorsal-ventral axis and a Nfib-Zfhx3/4 and
birthdate trends along the medial-lateral axis, consistent with a
recent report108. It is not yet known what these differences
between the dorsal and mid/ventral spinal cord may signify, but
an exciting possibility is that discreet versus overlapping sets of
cell types would give rise to different network computational
properties109.

Related to these overall differences in cell type relationships,
the dorsal and ventral regions of the spinal cord displayed broad
molecular differences from each other that drove the primary
bifurcation amongst spinal interneurons/projection neurons
(non-motoneurons or CSF-cN neurons) in our cluster dendo-
gram analysis, even before excitatory and inhibitory neuron types
separated from each other. Differential gene expression and gene
ontology analysis revealed that learning-related genes are enri-
ched in the dorsal horn while structural stability-related genes are
enriched in the ventral horn. Within the dorsal horn, this
included both broadly expressed genes such as Camk2a
(CAMK2α) as well as cell type-specific genes such as Prkcg
(PKCγ)31. Within the ventral horn, this included components of
perineuronal nets (which are thought to restrict plasticity and had
been previously detected in the ventral spinal cord110,111) such as
Tnr (Tenascin-R), as well as adhesion molecules such as Sdk1 and
intracellular signaling components such as Ptpn5 (STEP) which
de-phosphorylates CAMK2α, NMDA receptors, and ERK
kinases33. This raises the intriguing possibility that meta-plasticity
trends govern spinal cord circuits to facilitate learning in dorsal
regions, where central sensitization112, wind-up113, and long-
term potentiation and depression114–116 have been observed and
may underly chronic pain states117,118. In contrast, the ventral
horn may be stabilized to restrict certain plasticity mechanisms
from altering core locomotor circuits. We had previously noted
differences in the robustness of dorsal and ventral cell type
clusters1 and a similar trend of overlapping ventral cell types was
observed in the neonatal spinal cord4. Building on these pre-
liminary findings, the scope of the harmonized analysis here
afforded a much deeper characterization of cell type relationships
and robustness, the validation of these molecular distinctions in
tissue, and through machine learning. This work also led to the
surprising discovery of gene expression signatures for plasticity in
the dorsal horn and for structural stability in the ventral horn.

This work also provides a broad view of the relationships
between embryonic lineage domains and their mature neuronal
progeny. For the past thirty years, the cardinal classes of spinal
cord progenitors have been used as a framework to classify spinal
cord cell types, particularly within the ventral horn of the spinal
cord13,15,16,119,120. However, it has been challenging to relate
these domains to cell types defined in the adult by function,
connectivity, or electrophysiology and it has therefore been
unclear how these perspectives on cell type intersect and which
perspective is the most useful for linking spinal cord neurons to
behavior. Here, we co-integrated an embryonic (e9.5–e13.5)
spinal cord sequencing dataset7 with our harmonized analysis
and identified putative lineages of many postnatal cell types.
These relationships must be tested experimentally in future stu-
dies but, if true, they reveal two intriguing trends in spinal cord
cell type organization. The first trend is that cell types within the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25125-1

14 NATURE COMMUNICATIONS | (2021)12:5722 | https://doi.org/10.1038/s41467-021-25125-1 | www.nature.com/naturecommunications

https://github.com/ArielLevineLabNINDS
https://github.com/ArielLevineLabNINDS
www.nature.com/naturecommunications


family structure that we described generally shared common
embryonic lineages, suggesting a developmental basis for the
group resemblances. For example, the deep dorsal horn excitatory
neurons can be divided into two families, with Excit-21 through
Excit-25 in one family that is likely derived from dI5 precursors
and Excit-26 through Excit-29 in a looser family that includes
dI1/2 and V0 precursors. The second trend is that many cell types
were derived from multiple lineage domains. For example, dI3.3
and dI3.4 were found together with dI5.3 and dI5.4 in a long
trajectory toward the majority of dorsal excitatory neurons. It is
already known that the adult cell types of Ia inhibitory neurons
and CSF-contacting neurons each have dual origins43,45,121,
suggesting that this could be a common occurrence. Perhaps
there isn’t a simple but rigid logic by which cardinal classes
mature and differentiate into distinct and refined populations.
Rather, a complex process may operate in which there is both
divergence and convergence in the relationships of developmental
and mature cell types, with influences such as birthdate, cell body
location, connectivity, or activity-dependent maturation playing
important modulatory roles. By providing a broad perspective on
developmental and mature cell type similarities, this work sug-
gests that there are multiple schemes that guide the differentiation
of spinal cord neural precursors into the highly refined and
diverse array of neurons that mediate adult behavior.

On the analytical side, this work is among the first practical
applications of automated classification for large and complex
single-cell datasets from neural tissue. A wide range of cell
annotation approaches have been described recently but it is not
yet clear which methods will work best for each type of
data23,122–125. A comparative analysis of automated classification
approaches across diverse datasets found that SVM and neural
network models showed the best performance on the Allen Brain
Atlas dataset of 92 neuronal cell types–a dataset similar in scale
and complexity to the harmonized analysis here125. This analysis
also found that performance depends partly on the number of cell
types and the complexity (the relatedness between clusters) of a
dataset, similar to what we observed. Here, we found that a two-
tiered model that incorporates label transfer and a neural network
displayed excellent performance in the computationally challen-
ging task of classifying cells and nuclei into the 69 fine resolution
neuronal cell types of the spinal cord. In the future, larger spinal
cord single-cell datasets will be available and the neural network
model that we presented here can be refined and improved.
Specifically, larger training datasets may facilitate classification of
closely related mid/ventral neuronal populations; region or
sample age-specific training datasets may reduce the number of
cell types that cannot be detected; and generative models may be
used to enhance training on rare cell populations. As this work
proceeds, we expect that increasingly powerful neural network
models will be developed that allow rapid, accurate, and stan-
dardized classification of all spinal cord cell types directly from
raw sequencing data. This could be done by individual users with
downloadable models or through the development of a spinal
cord single-cell data commons that could continuously refine the
models and provide classification analysis through a cloud-based
platform, similar to what has been proposed for the Human Cell
Atlas126. A forthcoming study aims to partially address these
challenges. Theis and colleagues propose a method called single-
cell architectural surgery that uses transfer learning to map query
datasets onto a reference, simultaneously contextualizing the
query while updating the reference. This allows for decentralized
reference building without the sharing of raw data, which could
further increase the effectiveness of neural network-based
classifiers127.

There are several notable limitations to this study. Most spe-
cifically, this analysis is limited in scope to RNA expression in the

postnatal mouse spinal cord and reflects a merged study of
multiple time points. As more data become available from studies
that include more specific regions of the spinal cord, more bio-
logical conditions, more developmental stages, more species,
more specific cellular features, and more -omics modalities, we
anticipate that this work will reveal exciting insights from single-
cell data. Future work could incorporate genetic lineage tracing to
test developmental origins for postnatal cell types2, could track
cell-type-specific changes in different biological conditions8,9,128,
or could focus deeply on specific spinal cord regions and cell
types10,11,39,40,77,129. Relatedly, the in situ hybridization experi-
ments here are also limited in scope, being specific to the adult
lumbar spinal cord. The failure to detect several genes from the
harmonized analysis could reflect that these genes are no longer
expressed at the adult stage or lumbar region that we analyzed,
that the cell types themselves are not present (being transiently
found in early postnatal stages or only in other spinal cord
regions), or technical issues. We caution users of the SeqSeek
resource to keep this in mind when examining individual data
points.

A second notable caveat that is common to most single-cell
sequencing experiments is that this analysis is population-based.
Data is captured from thousands of individual cells, but the rate
of false-negative data in each cell and the requirement for sta-
tistical power necessitates analyzing many cells of each type and
considering population-level shared patterns. It is likely that by
emphasizing common patterns, this analysis underrepresents true
biological variability, including noisy gene expression and con-
tinua of cell types. For example, three very different methods –
single-cell data clustering, multiplexed in situ hybridization, and
an artificial intelligence neural network – all showed a relatively
weak ability to classify ventral cell types into discrete types and a
relatively strong but still imperfect ability to classify dorsal cell
types. We propose that this reflects some technical limitations but
also a fundamental complexity and diversity in how gene
expression is controlled within individual cells and in cell-type
populations.

Third, as future datasets and technologies become available, we
anticipate an explosion of single-cell data and the opportunity to
periodically supplement, revise, and refine the work presented
here. In this context, the harmonized atlas is both a work in
progress that will continue to evolve over time and the gold
standard that we have now as the most comprehensive and
validated resource available for the mammalian spinal cord.

Finally, it is crucial to note that single-cell/nucleus profiling,
particularly single-cell/nucleus RNA sequencing, produces one
perspective on cell types and it is not yet clear how this will relate
to other core cellular features such as circuit connectivity, elec-
trophysiology, and behavioral function. Re-considering the very
definition of a cell type and identifying the most useful system for
classifying cells is now a fundamental task in understanding
nervous system function. We expect that in each tissue, indeed in
each region of each tissue, there may be different organizing
principles of cell types. In that context, the work here provides a
comprehensive atlas of spinal cord transcriptomic cell types that
can be used as a framework to compare with other cellular
features.

This work brings together the first single-cell studies of the
post-natal mouse spinal cord to create a standard reference set of
spinal cord cell types. It will (1) serve as a unifying resource and
nomenclature for the field, (2) provide a validated and combi-
natorial set of markers that can be used to translate this rich
sequencing data back into tissue-based studies, (3) be a template
for the computational analysis of single-cell data from complex
neural tissue, and (4) facilitate the community-wide use of single-
cell data through a web-based resource. We hope that this work
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will facilitate the design and interpretation of cell-based studies of
behavior and will open up opportunities for many discoveries.

Methods
Mice. Animal experiments were performed in accordance with institutional
guidelines and approved (protocol #1384) by the National Institute of Neurological
Disorder and Stroke’s Institutional Animal Care and Use Committee. An even
balance of male and female mice that were 9 weeks old and of mixed C57BL/6 J and
BALB/cJ background were used for single nucleus sequencing (four mice) and
validation studies (two groups of three mice).

Published data acquisition. Published data were downloaded from the NCBI
Sequence Read Archive (SRA) and are available in Supplementary Table 7. Raw
datasets were used instead of investigator-provided count matrices so that we could
align all sequences to the same genome and apply uniform data filtering. All raw
datasets were pre-processed using technique-specific pipelines. For data from
Sathyamurthy et al. (DropSeq, GEO: GSE103892, SRA: SRP117727), data were
downloaded in fastq format from SRA. A count matrix was created following the steps
in the McCarroll lab DropSeq cookbook130. For data from Hayashi et al. (GEO:
108788, SRA: SRP128071), Zeisel et al. (SRA: SRP135960), and Baek et al. (GEO:
GSE130312), 10X sequence data were download from SRA in BAM format then
converted to cell ranger-compatible fastq files using the 10X-provided bamtofastq tool.
Count matrices were created using the 10X cell ranger count tool. Data from Haring
et al. (C1 Fluidigm, GEO: GSE103840, SRA: SRP117627) were downloaded from SRA.
Each cell had its own fastq file for a total of 1545 files. We followed the UMI tools
single-cell tutorial to remove the UMI and process the sequences (https://github.com/
CGATOxford/UMI-tools/blob/master/doc/Single_cell_tutorial.md). For the Rosen-
berg et al. data (SplitSeq, GEO: GSE110823, SRA: SRP133097), data were downloaded
in fastq format. Count matrices were made using the split-seq-pipeline tool
developed by the Seelig Lab (https://github.com/yjzhang/split-seq-pipeline). The STAR
alignment tool within cell range (v020201) was used to align the sequences from each
dataset to a reference genome that was custom built to include all introns and exons,
based on mm10, GRCm38 updated on 2016-01 (NCBI: GCA_000001635.6).
Reference: https://support.10xgenomics.com/single-cell-gene-expression/software/
downloads/2.0/. Genome: https://cf.10xgenomics.com/supp/cell-exp/refdata-
cellranger-mm10-1.2.0.tar.gz.

Merged analysis and integration. Count matrices for each dataset were merged
to obtain the full data file and we then applied uniform data filtering across the
merged file. We analyzed all cells and nuclei with at least 200 detected genes (to
exclude low quality or empty barcodes) and with less than 5% of transcripts being
mitochondrial (to exclude lysing cells or mitochondria-nuclei doublets). This
yielded over one hundred thousand total cells/nuclei. Of note, by starting with the
raw data and setting relatively relaxed thresholds for data inclusion, we analyzed
more cells/nuclei from several of the original studies than were analyzed in the
corresponding published datasets.

The merged data were analyzed using Seurat v323,131. The main integration was
performed using Seurat version 3.0 Standard Workflow (CCA) Integration131 such
that data were LogNormalized and scaled to 10,000 counts. Highly variable genes
were found using the default var.mean.plot method, a mean cutoff at 0.0125 and 3
and a dispersion cutoff at 0.5. The data were then scaled with a linear model and
while regressing out the number of counts and the percent mitochondria. The top
100 PCs were calculated. Integration anchors were calculated using 20 PCs and
used to integrate the data. This integration was compared to three independent
methods (Harmony25, Conos26, and LIGER27). In the case of Harmony integration,
SCTransform normalization was used prior to performing the integration.
Annotations from Seurat integration were then overlapped on the integrated
UMAP projections obtained from other integration methods and the cell type
clusters were compared for reproducibility. The neurons specific population of cells
was pulled out from Seurat integration results and integrated using Harmony
integration, in order to compare neuronal subclasses from two integration
protocols.

Clustering. Clustering was performed in three phases on (1) all cell types, (2) all
neurons, (3a) presumptive ventral neurons, and (3b) motor neurons. For phase 1,
data integration was performed by study, 2,000 highly variable genes were detected,
and the most significant principal components were identified by elbow plot and
manual inspection of the contributing gene lists and 28 PCs were used for clus-
tering. To select cluster resolution, a range of values were tested from 0.2–8 and
cluster evolution or clustree plots were used to determine when cluster splitting
stabilized, and resolution 1.2 was selected. For phase 2, raw data from all cells in
neuronal clusters was used, re-scaled, re-normalized, and re-integrated, the top
4000 highly variable genes were detected and the top 40 PCs were selected (using
the approach described above as well as statistical jackstraw and elbow plot ana-
lysis, see Supplementary Fig. 4). In analyzing neuronal diversity, we favor an
approach of using a higher resolution, as long as clusters are still robust, and then
examining whether pairs of clusters should be merged, as we described in a recent
paper132. Here, the range of resolutions were examined by (1) the range of average
silhouette scores for the clusters, (2) visual inspection of UMAP cluster

distribution, and, most importantly (3) comparison of cluster markers with known
markers and with known co-expression patterns in the literature. (Supplementary
Fig. 4). The third phase of targeted sub-clustering was done because mid/ventral
and motoneuron sub-types did not separate well in preliminary neuron analysis.
Indeed, the robustness scores for mid/ventral cell types were very low until they are
analyzed in a focused principal component space (Supplementary Fig. 2). For phase
3a, presumptive ventral neurons were identified by markers and by coalescence on
UMAP into a central blob and for phase 3b, motorneurons were identified by
expression of classic markers (Chat, Isl1, Prph). In each case, the procedures
described above were used to sub-divide these cell types and the following para-
meters were used: 3a: 40 PCs, resolution 4; 3b 7 PCs, resolution 0.6.

For all three phases, each cluster was analyzed for candidate marker genes and
excluded if the cluster met either of the following criteria. Clusters were considered
low-quality if they had fewer than three significant markers relevant to cell type,
particularly if they showed very low nGene. Clusters were considered doublets if
they had significant markers for multiple unrelated cell types and a barnyard plot
of the top ten markers of each cell type showed that individual cells in the cluster
displayed both sets of markers. For all three phases, we used the following method
to determine whether candidate pairs of clusters should be merged: a dendrogram
based on mean gene expression and UMAP location were used to systemically
identify closely related clusters and we then probed for differential gene expression
(for example, see Supplementary Fig. 4). Pairs with fewer than three genes enriched
in each cluster (six total) were merged unless a classic marker gene from the
literature was one of five differentially expressed genes. Cell type annotations for
the non-neuronal cell types were based on the presence of well-established marker
genes (Supplementary Table 1) and on the gene expression patterns in the Allen
in situ hybridization database (for meningeal, ependymal, Schwann cell, and
peripheral glia clusters).

The meta-data (and associated final cell labels) are available in Supplementary
Table 7.

Cell type relationships, comparison with prior studies, and differential gene +

GO analysis. To examine the relationship between the 69 neuronal clusters in the
harmonized analysis, the centroid of each cluster was calculated by grouping the
cells by their labels and determining the mean of each PC. Then, the pairwise
Euclidean distance between each cluster was calculated using 50 PCs. This was
passed to the stats::hclust function using method = “complete”. The final den-
drogram was plotted using the graphics::plot function.

To examine the distribution of the original Haring and Sathyamurthy clusters
amongst the harmonized clusters, the frequency of each pair-wise combination of
original and harmonized clusters was counted. These data were then pivoted to
wide form to produce the matrix with harmonized clusters along the x-axis and
original clusters along the y-axis. Finally, the data was row-normalized, so that the
color represents the fraction of the original label occurring in each harmonized
cluster.

To examine the distance between the original Haring and Sathyamurthy
clusters in harmonized PC space, the pairwise distance between the centroids of the
original clusters was calculated as above. Small distances, representing close
clusters, are displayed with hot colors, while large distances, representing far apart
clusters, are displayed with cold colors.

To examine the correlation between PC distance and the expression of the 500
most highly variable genes in the harmonized data, the average expression of these
genes was calculated for each original cluster, which yielded two matrices: one a
gene by cluster matrix of the Haring data, and the other a gene by cluster matrix of
the Sathyamurthy data. The correlation of gene expression in each cluster between
these matrices was calculated using the lineup::corbetw2mat function (CRAN
version 0.37.11). These correlation scores were then plotted against the PC
distances calculated above. Linear regression with 95% confidence intervals
is shown.

Differential gene expression for the dorsal/ventral and excitatory/inhibitory
analysis was performed using the ROC test in Seurat, with genes in >30% of each
class and with a log FC > 0.25. Genes with a ROC > 6 were compiled into lists and
analyzed using default parameters in GO DAVID, with molecular function and
biological process GO terms selected, as well as KEGG pathway terms.

RNA In situ hybridization, Immunofluoresence, and WFA staining. For high
content RNA in situ hybridization, 14 µm fresh frozen spinal cord sections from
segment L4 were placed on Leica Apex slides and sets of 97 RNAScope HiPlex
probes were used (Supplementary Table 3) from ACDBio, according to the man-
ufacturer’s instructions. Images for each set were registered using RNAscope
HiPlex Image Registration Software and brightness/contrast were adjusted using
Adobe Photoshop. Counting of cells was done by first using a general class marker
in each panel of probes (such as Slc17a6 or Slc6a5) to focus counting on neurons of
a particular neurotransmitter status and by considering one region at a time
(dorsal, mid, or ventral). In addition, the following guides were used. Set 1: All Chat
+ cells in any laminae. Set 2: Any dorsal cell that expressed any of Cpne4, Maf, or
Prkcg. Set 3: Any cell in the dorsal horn with any of Slc17a6, Rreb1, Reln, or Car12.
In addition, Gbx2 cells were counted separately amongst any cell in the deep dorsal
horn with Slc17a6. Set 4: Any cell in the dorsal horn with any of Col5a2, Enpp1,
Sox5, Tac1, Tac2, Nmu, Megf11, Mdga1, Pmfbp1, or Onecut2. Set 5: Any cell in
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laminae 1-4 with any of Slc6a1, Gad2, or Kcnip2. Set 6: Any cell in the dorsal horn
with any of Mlxipl, Pdyn, Gal, Npy, Qrfpr, Sstr2, or Rspo3. Set 7: Any cell in
laminae 4-6 with any of Slc17a6, Adamts2, Lmx1b. Set 8: Any cell in laminae 4-6
with either Slc6a5 or Gad2. Set 9: Any cell in laminae 6-8 with Slc17a6. Set 10: Any
cell in laminae 6-8 with any of Pax2, Slc6a5, or Gad2. The number of cells counted
in each set are listed in Supplementary Table 3 and were from one section per
animal, though multiple sections per animal were inspected for expression pattern
consistency. Sections from three animals (2 male and 1 female or 2 female and 1
male) were counted for each set. For Fig. 3c, e, V2 RNAScope probes were used
(also from ACDBio, according to the manufacturer’s instructions). For immuno-
fluorescence and lectin staining, animals were perfused, and 50 µm sections of the
frozen section were cut and stained. To detect CAMK2α, Millipore 905-532 was
used (1:500). For perineuronal net WFA-lectin staining, fluorescent lectin (Vector
Laboratories, FL-1351-2) was used according to the manufacturer’s instructions.

Single nucleus sequencing. Nuclei were obtained as previously described133 and
were processed for single-cell sequencing using the 10X Genomics Chromium
Single Cell 3′ Kit (v3 chemistry) and sequenced at a depth of approximately 50,000
reads per nucleus. Clustering was performed as described above and cluster
identities were determined using the combinatorial marker code in Table 1 where
possible (known clusters). Clusters that could not be identified in this manner were
analyzed for neurotransmitter status and given a placeholder identification
(unknown clusters).

Computational classification
Label transfer. Label transfer analysis was performed using Seurat v3(.1.5). For both
coarse cell types and clean neurons, 10% of cells were withheld as the query dataset,
whilst the remaining were used as the reference dataset. Broadly, label transfer
consists of two steps. First, the transfer anchors are identified using the Find-
TransferAnchors function. Second, these anchors are then used to transfer cluster
labels to the query dataset with the TransferData function.

For label transfer of coarse cell types, FindTransferAnchors was called with
reduction= “pcaproject”, dims= 1:28, and npcs=NULL to project the previously
calculated PCA onto the query data using the same dimensions as were used in
clustering the reference data. Transfer data was also called with dims= 1:28 for the
same reason.

Label transfer of clean neurons was performed in a two-step process. First, all
cells in mid- or ventral-clusters were grouped as one cluster. Then, the dorsal-
clusters were transferred along with one mid/ventral cluster. Second, those cells
classified as mid/ventral were labelled using only neurons from mid- or ventral-
neuron clusters. In each case, a new reference object was created from the
appropriate cells – all neurons for step 1 and mid-/ventral-neurons only for step
2–via integration, as previously discussed in the Merged Analysis and Clustering
section. Label transfer was run as described for coarse cell types, with the exception
that dims= 1:100 was set for all neurons, and dims= 1:30 was set for mid-/ventral-
neurons.

In the final two-tier analysis, label transfer was performed as discussed for
coarse cell types. Any cells labelled neuron, motor neuron, or doublets were passed
to the neural network for further classification. The decision to include doublets for
further classification was founded on the observation that a non-trivial number of
neurons were misclassified as doublets at the coarse cell-type level.

Support vectror machine. Support vector machine analysis was performed using
scikit-learn version 0.22.2.post1. Count matrices were taken from the default Seurat
RNA assay count slot as sparse matrices. Cluster labels were numerically encoded
with LabelEncoder(). To preserve sparsity for reduced training time, these counts
were scaled with MaxAbsScaler(copy= False). As LinearSVC() is known to be
faster and more scalable than SVM(kernel= “linear”), it was selected for use
(https://scikit-learn.org/0.22/modules/svm.html#svm-classification and https://
scikit-learn.org/0.22/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.
LinearSVC). As the number of samples was significantly greater than the number
of features, the dual parameter was set to “False”. Finally, to help ensure con-
vergence, the max_iter parameter was increased from the default of 1000 to 10000.
This pipeline achieved an overall accuracy of 80% on the validation data. Though
this performance could likely be improved by hyperparameter tuning, given the
performance of alternative models, the support vector machine was not selected for
further use.

Neural networks. Count Matrices were taken out of the default Seurat RNA assay
count slot as sparse matrices. Genes with no counts were dropped. The counts
were log x+1 transformed then scaled by the maximum number of counts for any
gene in a cell. The data were converted into TensorFlow sparse tensors for input
into neural networks define via the Keras interface to TensorFlow. Hyperpara-
meters were initially set to default values, with a network structure consisting of
direct connections between the input and output nodes. This simple linear model
was the baseline. We added additional layers from 1 to 4 hidden layers, at various
widths from 16 nodes to 512 nodes in a layer. The optimizer we switch from the
default “Adam” optimizer to singular gradient descent (sgd). L1, L2, and dropout
regularization were attempted. Additionally, various batch sizes were tested.

Initially, networks trained for coarse analysis used a batch size of 128 to speed
training. Whereas the training was faster, validation accuracy improved by
around 5% when we lowered the batch size to 32. No additional improvement was
seen at a batch size of 16, so the batch size was set to 32 for the rest of the study.
In general, we used the learning curves to guide the changing of
hyperparameters134.

For the analysis of coarse cell types (Fig. 5a), a model with two hidden layers of
512 nodes each and L2 regularization was used. For the analysis of the neuronal
subtypes (Fig. 5b), seven models were tested: (1.1) a linear model with no
regularization (1.2) a linear model with L2 regularization (learning rate 0.001) (1.3)
a neural network with two hidden layers of 512 nodes each (1.4) an ensemble-like
neural network with one hidden layer (128 nodes and L2 regularization) and two
hidden layers that were concatenated, (1.5) a neural network model with three
hidden layers (512, 256, 128 and L2 regularization on the 512 nodes hidden layer
(1.6) a neural network model with 3 layers (128, 128, 128 and L2 regularization on
the first hidden layer) and (1.7) a linear model with no regularization with an SGD
optimizer. Interestingly, the baseline model had the largest validation accuracy.
Since the training accuracy is 100% as compared to 85% in the validation set, the
model is clearly overfitting the training data. Adding regularization helped to lower
the gap between the training and validation accuracy, but the overall validation and
test accuracies are still lower suggesting that the overtrained model will perform
better on unseen data. Additional work to improve this model is needed and
adding more data from further experimental studies in the future will help improve
the validation accuracy. For the analysis and training of neurons and doublets
together (Tier 2), five models were tested: (2.1) a linear model with no
regularization (2.2) a linear model with L2 regularization (2.3) a neural network
model with one hidden layer of 128 nodes (2.4) a neural network model with one
hidden layer of 128 nodes and SGD optimizer, and (2.5) a neural network model
with one hidden layer of 256 nodes and SGD optimizer. The final model (2.5) was
selected for Tier 2.

In the analysis of unknown clusters (Fig. 5f), individual nuclei were identified if
(1) they were from an unknown cluster and were classified into a harmonized true
cell type (not junk or doublets) and (2) at least 80% of the total nuclei from their
cluster of origin were classified into the same single harmonized cell type.

For the two-tier classification method, Tier 1 was run on an Apple MacBook
Pro Core i9 2.3 GHz, 32 GB, 1TB Radeon Pro, and took approximately 20 min. Tier
2 was run on Google Colab (the CPU was not guaranteed but was Intel® Xeon®

CPU @2.20 GHz 2 CPU, 13 GB RAM, 107 GB disk. The runtime was 16 s to read in
14 MB of test data and 1 s to run the neural network.

Supplementary Analysis Notes

1. Consideration of the decision to include formalin and rotarod experimental
samples as part of the Sathyamurthy et al. dataset: To ensure that the
inclusion of these samples would not bias the clustering or the gene
expression patterns, we performed the following analysis. First, we analyzed
the neuronal cluster distribution of each experimental condition. Overall,
nuclei from the formalin and rotarod conditions accounted for 11.0% of the
total neuronal cells/nuclei and also represented 11.1% (±0.7 standard error)
of each cluster. The only clusters that had >16% contribution from an
experimental condition were in the mid/ventral regions of the spinal cord
(in which the Sathyamurthy dataset is somewhat overrepresented in
general). Therefore, we concluded that the cluster contribution is not
biased by experimental conditions. Second, we analyzed whether the gene
expression of the clusters could be biased by the inclusion of the
experimental conditions in two ways. We used the original set of nuclei
from the Sathyamurthy dataset and tested whether any genes were
differentially expressed between the experimental conditions. The only
gene that was significantly different (ANOVA, corrected p-value < 0.05) was
the immediate early gene Fos. This is not unexpected because the formalin
and rotarod samples in the Sathyamurthy dataset were collected five
minutes after the intervention, a very short time window that makes major
changes in gene expression or cell composition exceedingly unlikely. Next,
we performed a more refined analysis and compared genes that were
differentially expressed (Wilcox test) within each cluster, between nuclei
from an experimental condition and all naïve cells/nuclei from any dataset.
Although there were genes that were different in many of the clusters, this
likely reflects the general differences in sample age and technique between
the studies. Only one differentially expressed gene was an immediate early
gene (Homer1a was found in a higher fraction of cells/nuclei from the
experimental condition in cluster Inhib-8 but also had a lower expression
level per cell/nucleus). Therefore, we concluded that the gene expression
profiles are not biased by the inclusion of these nuclei. In fact, the broadly
elevated levels of immediate early genes in the Haring and Zeisel datasets
(Supplementary Figs. 1 and 3) likely washes out any small effect of the
behavioral conditions from the Sathyamurthy dataset.

2. Examination of cell vs. nuclei gene expression differences: To explore
systematic differences in the gene expression profiles between studies that
used cells and those that used nuclei, we performed the following analysis.
First, we note that overall, the number of genes per cell/nucleus, the
expression of immediate early genes, and the expression of stress-related
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genes were all different based on technique (Supplementary Fig. 3). In
examining cluster composition, we found that only studies that used nuclei
contributed to MN-alpha, MN-gamma, or PGC cells as well as Excit-7 and
most ventral neuronal clusters (Supplementary Table 2). We next compared
differential gene expression within each neuronal cluster for studies that
used cells or nuclei (Wilcox, minimum FC= 0.25, minimum percent of cells
expression= 10%), selected the top 30 genes ranked by adjusted p-value,
and removed duplicates. We found that 484 unique genes were differentially
expressed and of these, 482 (99.6%) were enriched in cells compared to
nuclei. GO analysis revealed that all of the enriched gene annotation clusters
were associated with basic cell metabolism terms such as the ribosome,
metabolic pathways, and proton transport (Supplementary Table 8). To
further probe genes that were enriched in nuclei compared to cells, we
sorted all significant genes in each cluster by the average log fold change,
selected genes with a value > 2 (nuclei > cells), and identified a list of 10
protein-coding genes and 3 lncRNAs (Supplementary Table 8). In summary,
the major differences that we observed were that ventral cell types were
mainly detected in studies that used nuclei compared with cells, (which may
reflect a differential vulnerability of ventral cells to stressful cell dissociation
methods), and that general metabolism genes were enriched in studies that
used cells (which may reflect increased detection of genes that have low
levels of expression).

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The raw sequencing data generated in this study have been deposited in the NCBI

database under accession code GSE158380 (https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE158380). In addition, the publicly available data utilized in this study are

available at: Sathyamurthy: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE103892 Hayashi: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE108788 Zeisel: https://www.ncbi.nlm.nih.gov/sra/SRP135960 Haring: https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103840 Rosenberg: https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE110823 Baek: https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE130312 Blum: https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE161621 Alkaslasi: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE167597 Delile: https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7320/

files) A searchable version of all processed data from the harmonized analysis is available

www.seqseek.ninds.nih.gov.

Code availability
The code associated with this study is available at https://github.com/ArielLevineLabNINDS.

Specific code for the full SeqSeek classifier is available at DOI: 10.5281/zenodo.5081263. Code

for the neuron neural network only is available at DOI: 10.5281/zenodo.5081268. Sample data

for running the classifier is available at DOI: 10.5281/zenodo.5081266.
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