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P
recision oncology—in which treatment is informed by the 
mutational profile of a cancer—requires concise, standardized 
and searchable clinical interpretations of detected variants. 

Interpretations of biomarker–disease associations can be diagnostic, 
prognostic, therapeutic (predictive of favorable or adverse response 
to therapy) and/or predisposing (germline variants that increase 
risk of developing cancer). Many have curated the biomedical litera-
ture to collect and formalize these interpretations into knowledge-
bases1–12. These isolated efforts have resulted in disparate knowledge 
representation, and exchange of these biomarker–disease asso-
ciations remains a difficult challenge13. Consequently, stakeholders 
interested in the effects of somatic cancer variants are faced with 
the following trade-off: (1) reconciling multiple representations and 
interpretations across knowledgebases; or (2) potentially omitting 

clinically significant interpretations that are not universally cap-
tured. Manual aggregation of information across knowledgebases 
to interpret the variant profile for each patient is an unsustainable 
approach at scale. Moreover, the lack of an integrated resource has 
precluded the ability to easily assess the current state of precision 
treatment options. Published reports14–17 have relied on individual, 
often highly discordant knowledgebases. Interoperability and auto-
mated aggregation are required to make a comprehensive approach 
to cancer precision medicine tractable and to establish consensus 
across knowledgebases.

The current diversity and number of ‘knowledge silos’ and the 
associated difficulties of coordinating these disparate knowledge-
bases have led to an international effort to maximize genomic 
data sharing18,19. The Global Alliance for Genomics and Health 
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(GA4GH) has emerged as an international cooperative project to 
accelerate the development of approaches for responsible, voluntary 
and secure sharing of genomic and clinical data20,21. The Variant 
Interpretation for Cancer Consortium (VICC; cancervariants.org) 
is a Driver Project of GA4GH, established to co-develop standards 
for genomic data sharing (https://www.ga4gh.org/how-we-work/
driver-projects/ga4gh.org/howwework/driver-projects.html). 
Specifically, the VICC is a consortium of clinical variant interpreta-
tion experts addressing the challenges of representing and sharing 
curated interpretations across the cancer research community.

Somatic variants in cancer-relevant genes are evaluated from 
multiple partially overlapping perspectives (Supplementary Note). 
The Association for Molecular Pathology, the American Society of 
Clinical Oncology and the College of American Pathologists (AMP/
ASCO/CAP) have published structured somatic variant clinical 
interpretation guidelines that specifically address diagnostic, prog-
nostic and therapeutic implications22. These guidelines do not pro-
vide systematic and comprehensive procedures to classify somatic 
variant oncogenicity, as has been published in the American College 
of Medical Genetics and Genomics (ACMG)/AMP guidelines23 for 
pathogenicity interpretation of germline variants.

Another common difference between somatic and germ-
line classification is the frequent use of variant representations 
that are defined by multiple alternative genomic alterations, 
including protein variants such as NP_004295.2:p.F1174L (ALK 
F1174L; caused by either NC_000002.11:g.29443695G>T or 
NC_000002.11:g.29443695G>C), and categorical variants24, such 
as ‘loss-of-function mutations’ or ‘activating mutations’ (the use of 
the word ‘mutations’ in these variant names is a somatic-specific 
nomenclature that is common across these knowledgebases). This 
represents an important distinction from the interpretation of 
germline variants, which are typically described by singular and 
specific DNA variants, and only rarely in broader terms. A primary 
challenge of this work was to handle the complexity of these somatic 
variant representations.

We leveraged the VICC member expertise to aggregate cancer 
variant interpretations from six distinguished constituent knowl-
edgebases: the Cancer Genome Interpreter Cancer Biomarkers 
Database (CGI), Clinical Interpretation of Variants in Cancer 
(CIViC), Jackson Laboratory Clinical Knowledgebase (JAX-CKB), 
MolecularMatch (MMatch), OncoKB and the Precision Medicine 
Knowledgebase (PMKB) (Supplementary Table 1)1,5,9–11. From a 
larger survey of published and available knowledgebases of clini-
cal interpretations of genomic variants (Supplementary Table 1), 
these knowledgebases were selected for their similarity in somatic 
disease focus. The institutions leading each constituent knowledge-
base agreed upon a core set of principles describing minimal data 
licensing and structure requirements (http://cancervariants.org/
principles/ and Supplementary Note).

Our cooperative effort developed a framework for structuring 
and harmonizing clinical interpretations across these knowledge-
bases. Specifically, we defined key elements of variant interpreta-
tions (genes, variants, diseases, drugs and evidence), developed 
strategies for harmonization and implemented this framework to 
consolidate interpretations into a single, harmonized meta-knowl-
edgebase (freely available at search.cancervariants.org).

Results
Aggregating and structuring interpretation knowledge. A review 
of the constituent somatic knowledgebases of the VICC (Fig. 1 and 
Supplementary Table 1)1,5,9–11 showed dramatic differences in the 
components of variant interpretations, which were often a mixture 
of concepts with standardized (such as Human Gene Nomenclature 
Committee (HGNC) gene symbols25, Human Genome Variation 
Society (HGVS) variant nomenclature26), externally referenced 
(identified elements of an established ontology or database) or 

knowledgebase-specific (shorthand, internal identifier) represen-
tations (Fig. 1). Representations of an element could vary within 
a knowledgebase, such as with the use of shorthand for diseases, 
including both standardized representations (for example, ‘CLL’ and 
‘ALL’ are both listed synonyms in the NCI Thesaurus27) and internal 
representations (for example, ‘G’ (glioma), ‘L’ (lung cancer) or ‘OV’ 
(ovarian cancer)).

We harmonized variant interpretations from each of these 
knowledgebases by mapping all data elements in each knowledge-
base to established standards and ontologies describing genes, 
variants, diseases and drugs (Fig. 1 and Supplementary Note). 
Briefly, genes were harmonized using the HGNC gene symbols. 
Variants were harmonized through a combination of knowledge-
base-specific rules, matching to the Catalog of Somatic Mutations 
in Cancer (COSMIC)3, and use of the ClinGen Allele Registry 
(reg.clinicalgenome.org)28. Diseases were harmonized using the 
European Bioinformatics Institute (EBI) Ontology Lookup Service 
(OLS; www.ebi.ac.uk/ols/index) to retrieve Disease Ontology (DO) 
terms and identifiers. Drugs were harmonized through queries to 
the Mychem.info API (mychem.info), PubChem29 and ChEMBL30. 
Details for each of these harmonization strategies are described in 
Methods and Extended Data Fig. 1.

Due to the knowledgebase-specific nature of describing an 
interpretation evidence level (Fig. 1), harmonization required 
manual mapping of evidence levels to a common standard. The 
AMP/ASCO/CAP somatic classification guidelines were released 
after (and partially informed by) the design of the VICC knowl-
edgebases. These guidelines are compatible with (but not identical 
to) the existing evidence levels of these knowledgebases. We con-
structed a mapping of evidence levels provided by each knowledge-
base to the evidence levels constituting AMP/ASCO/CAP tier I and 
II variants (Table 1).

The landscape of variant interpretation knowledge. The meta-
knowledgebase v.0.10 release contained 12,856 harmonized inter-
pretations (hereafter referred to as the core dataset; Methods) 
supported by 4,354 unique publications for an average of 2.95 
interpretations per publication. Notably, 83% of all publications 
were referenced by only one knowledgebase, and only one publica-
tion31 was referenced across all six knowledgebases (Extended Data 
Fig. 2a). Gene symbols were almost universally provided; the few 
interpretations lacking gene symbols (<0.01%) were structural vari-
ants that were not associated with an individual gene. In contrast 
to publications, the genes curated by the cancer variant interpre-
tation community are much more frequently observed in multiple 
knowledgebases. We observed that 23% of genes (97/415) with at 
least one interpretation were present in at least half of the knowl-
edgebases, compared to only 5% of publications (203/4,354; odds 
ratio, OR = 1.6 × 10−1, P = 4.7 × 10−34; Fisher’s exact test, two-sided; 
Extended Data Fig. 2b).

Variants had little overlap across the core dataset (Fig. 2a). Of 
the constituent 3,439 unique variants, 76.6% were described by 
only one knowledgebase, and <10% were observed in at least three  
(Fig. 2b). This lack of overlap was partially due to the complexity of 
variant representation. For example, the representation of an ERBB2 
variant as described in nomenclature defined by the HGVS26 is 
NP_004439.2:p.Y772_A775dup, and yet it is referenced in multiple 
different forms in the biomedical literature. p.E770delinsEAYVM32, 
p.M774insAYVM33 and p.A775_G776insYVMA34 all describe an 
identical protein kinase domain alteration, although they appear  
to identify different variants (Fig. 2c). Despite having a standard 
representation by the HGVS guidelines, these alternative forms con-
tinue to appear in the literature. Consequently, a researcher looking 
to identify a specific match to NP_004439.2:p.E770delinsEAYVM 
may find no direct matches, although several exist under various  
alternate representations. This component of variant harmonization  
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was addressed through the use of the ClinGen Allele Registry 
(Methods). Some differences in the scale and structure of 
these knowledgebases may be attributed to curation strategies 
(Supplementary Note).

To illustrate the challenges of searching across multiple variant 
representations, we surveyed all interpretations describing the pre-
viously discussed ERBB2 variant (NP_004439.2:p.Y772_A775dup) 
using the web interfaces provided by each knowledgebase (Table 2 
and Supplementary Table 2). Each knowledgebase represented this 

variant differently. Two did not have specific interpretations for 
this variant, although they did have relevant categorical variants 
(for example, ‘exon 20 insertions’; Table 2). Most of the knowledge-
bases had a single internal representation of the variant, although 
the majority of these representations did not match across knowl-
edgebases. The evidence describing these interpretations varied 
considerably in form, as each used knowledgebase-specific nomen-
clature (for example, evidence described as ‘level 3A’ in OncoKB is  
equivalent to ‘level 1B’ from MolecularMatch, or ‘level B’ from 

Variant interpretation knowledgebases

Harmonization Results

Query: BRAF V600E

Level A 4 interpretations Level B 13 interpretations

Level C 8 interpretations

Level D 20 interpretations

Variant

Gene

Disease

Drugs

Evidence

Reference-linked

Standardized

Resource-specific

Harmonized

Information available only in free-form text

Skin melanoma, predicts sensitivity,

vemurafenib

Skin melanoma, predicts sensitivity,

trametinib + dabrafenib (combination)

Colorectal cancer, poor prognosis

NSCLC, predicts sensitivity,

dabrafenib + trametinib (combination)

1

PMKBOncoKBMolecularMatchJAX-CKBCIViC
Cancer Genome

Interpreter

ClinGen Allele Registry

HGNC genes

Disease Ontology

ChEMBL drugs

AMP/ASCO/CAP

classification

2 n1 1 2 n2 1 2 n3 1 2 n4 1 2 n5 1 2 n6

Fig. 1 | Creation of a harmonized meta-knowledgebase. Six variant interpretation knowledgebases of the VICC (top panel) and representative symbolic 

interpretations from each (colored columns) are illustrated. Interpretations are split across five different elements: gene, variant, disease, drugs and 

evidence, and are colored to indicate their originating knowledgebase. Reference-linked elements correspond to unique identifiers from established 

authorities for that element (for example, the use of Entrez or Ensembl gene identifiers). Standardized elements correspond to immediately recognizable 

formats or descriptions of elements, but are not linked to an authoritative definition. Resource-specific elements are described by terminology unique to 

the knowledgebase. These elements are each harmonized (bottom left panel) to a common reference standard (shown here is the use of HGNC for genes, 

ChEMBL for drugs, AMP/ASCO/CAP guidelines for evidence, Disease Ontology for diseases and ClinGen Allele Registry for variants). This harmonized 

meta-knowledgebase allows for querying across interpretations from each of the constituent VICC knowledgebases (bottom right panel, example query 

BRAF V600E), returning aggregated results, which are categorized and sorted by evidence level.

Table 1 | Mapping knowledgebase-specific evidence codes to AMP/ASCO/CAP guidelines

Evidence 
level

Defining characteristics CIViC OncoKB JAX-CKB CGI MMatch PMKB

Level A 
(tier I)

Evidence from professional guidelines or FDA-approved 
therapies relating to a biomarker and disease.

Level A Level 
1/2A /R1

Guideline/FDA 
approved

Clinical 
practice

Level 1A Tier 1

Level B 
(tier I)

Evidence from clinical trials or other well-powered 
studies in clinical populations, with expert consensus.

Level B Level 3A Phase III Clinical trials 
III–IV

Level 1B

Level C 
(tier II)

Evidence for therapeutic predictive markers from case 
studies, or other biomarkers from several small studies. 
Also, evidence for biomarker therapeutic predictions 
for established drugs for different indications.

Predictive 
level C

Level 2B, 
level 3B

Clinical study/
phase I/phase II

Clinical trials 
I–II, case 
reports

Level 2C Tier 2

Level D 
(tier II)

Preclinical findings or case studies of prognostic or 
diagnostic biomarkers. Also includes indirect findings.

Nonpredictive 
level C/level 
D/level E

Level 4 Phase 0, 
preclinical

Preclinical 
data

Level 2D
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CIViC; Tables 1 and 2). Of the 19 unique publications describing  
the collected evidence, only three were observed in more than 
one knowledgebase, and none were observed in more than two. 
Interestingly, the curated interpretations from these shared publi-
cations varied by knowledgebase in disease scope (‘advanced solid 
tumor’ compared to ‘non-small cell lung cancer’ (NSCLC)35; ‘breast 
cancer and NSCLC’ compared to ‘cancer’36). A review of the interpre-
tations showed some that are present in most of the knowledgebases 
(for example, ‘use of afatinib, trastuzumab or neratinib in NSCLC’; 
Table 2), and others that are present in only one or two (for example, 
‘use of lapatinib in lung adenocarcinoma’ and ‘use of afatinib and 
rapamycin in combination in NSCLC’; Table 2). Importantly, this 
includes sparse interpretations that describe conflicting evidence 
(for example, ‘no benefit from neratinib in NSCLC’; Table 2) or neg-
ative evidence (for example, ‘does not support sensitivity/response 
to dacomitinib in NSCLC’; Table 2). Collectively, these data illus-
trate the diversity in knowledgebase structure, content, terminology 

and curation methodology. Consequently, utilizing a subset of these 
knowledgebases would likely result in differing interpretations 
before the harmonization performed in this study.

Harmonization improves consensus across interpretations. To 
test the effect of our harmonization methods on generating con-
sensus, we evaluated the overlap of unique interpretation elements 
from each knowledgebase of the core dataset in comparison to 
unharmonized (but aggregated) data (Methods). As noted above, 
genes from each resource used HGNC gene symbols, resulting in 
very little gain from harmonization; 45% of genes across knowl-
edgebases overlapped without harmonization, compared to 46% 
with harmonization. This is in contrast to variants (8% overlap-
ping unharmonized, 26% overlapping harmonized), diseases (27% 
unharmonized, 34% harmonized) and drugs (20% unharmonized, 
36% harmonized) (Supplementary Table 3). None of the evidence 
levels were consistent across resources when unharmonized, and all 

a

b c d
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G V GI L D E A Y V M AA Y V M
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Standard HGVS: NP_004439.2:p.Y772_A775dup
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Fig. 2 | Representation of genomic variants across interpretation knowledgebases. a, UpSet plot46 of variants across six cancer variant interpretation 

knowledgebases (KBs). Sets of variant interpretation knowledgebases with shared variants are indicated by colored dots in the lower panel, with color 

indicating set size (for example, yellow dots indicate only the single designated knowledgebase in the set, green dots indicate two knowledgebases in 

the set, etc.). Objects are attributed to the largest containing set; thus, a variant described by all six knowledgebases is attributed to the dark blue set 

with eight variants. b, Pie chart visualizing overall uniqueness of variants, with categories indicating the number of knowledgebases describing each 

variant. Nearly 77% of variants are unique across the knowledgebases, with only 0.2% ubiquitously represented. The eight variants present in all six 

knowledgebases are listed on the right. c, A comparison of element uniqueness across knowledgebases. Despite having the greatest degree of overlap 

across all elements, approximately 61% of genes are unique across the knowledgebases. Literature cited to support interpretations has the smallest degree 

of overlap across all elements, with 83% of publications remaining unique across the knowledgebases. *Drugs are not evaluated for PMKB, which does 

not formally represent this concept. d, Multiple syntactically valid representations of an identical protein product can lead to confusion in describing the 

change in the literature and in variant databases. The wild-type protein sequence (dark blue with orange lettering) is represented for ERBB2 (top). Two  

(of many) possible representations of an inframe insertion (orange with dark blue lettering) are shown (bottom). A nonstandard HGVS expression 

describes a five-amino-acid insertion replacing one glutamate residue (middle). At the bottom, the HGVS standard representation shows an identical 

protein product from a four-amino-acid duplication. A search for one representation against a database with another (nonoverlapping) representation may 

lead to omission of a clinically relevant finding.
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Table 2 | Comprehensive assessment of the NP_004439.2:p.Y772_A775dup variant across clinical interpretation knowledgebases

Resource ERBB2 variant 
name

Evidence Document ID Interpretation

CIViC M774INSAYVM Level B, 2-star PMID: 25899785 Does not support sensitivity/response to dacomitinib in NSCLC

M774INSAYVM Level C, 4-star PMID: 26559459 Supports sensitivity/response to afatinib in lung adenocarcinoma

M774INSAYVM Level C, 3-star PMID: 22325357 Supports sensitivity/response to afatinib in lung adenocarcinoma

M774INSAYVM Level C, 3-star PMID: 25789838 Supports sensitivity/response to trastuzumab emtansine in lung 
adenocarcinoma

M774INSAYVM Level D, 3-star PMID: 19122144 Supports sensitivity/response to afatinib and rapamycin 
(combination) in NSCLC

Kinase domain 
mutation

Level C, 4-star PMID: 26598547 Supports sensitivity/response to trastuzumab in lung 
adenocarcinoma

Kinase domain 
mutation

Level C, 3-star PMID: 22325357 Supports sensitivity/response to afatinib in lung adenocarcinoma

OncoKB Exon 20 insertions Level 4 10.1158/1538-7445.
AM2016-2644

Supports response to AP32788 in NSCLC

Oncogenic 
mutations

Level 3A PMID: 23220880 Supports response to neratinib in breast cancer and NSCLC

10.1158/1538-7445.
AM2017-CT001

CGI inframe insertion 
A775YVMA

Early trials 10.1200/
JCO.2017.35.15_
suppl.8510

Responsive to ado-trastuzumab emtansine in lung cancer

inframe insertion 
A775YVMA

Early trials 10.1158/1538-7445.
AM2017-CT001

Responsive to neratinib in cancer

proximal exon 20 Early trials PMID: 26598547 Responsive to afatinib, neratinib, lapatinib or trastuzumab in lung 
adenocarcinoma10.1200/

JCO.2017.35.15_
suppl.9071

PMKB exon(s) 20 
insertion

Tier 2 PMID: 22761469 Associated with sensitivity to some ERBB2 inhibitors in lung 
adenocarcinomaPMID: 16818618

PMID: 25152623

JAX-CKB Y772_A775dup Clinical study PMID: 26964772 Conflicting response to afatinib in lung adenocarcinoma

Y772_A775dup Phase II PMID: 29420467 Predicted sensitive to neratinib in Her2-receptor-negative breast 
cancer

Y772_A775dup Phase II PMID: 29420467 Predicted resistant to neratinib in urinary bladder cancer and NSCLC

Y772_A775dup Preclinical PMID: 26545934 Sensitive to afatinib in lung cancer

Y772_A775dup Preclinical PMID: 26545934 No benefit to gefitinib in lung cancer

Y772_A775dup Preclinical PMID: 28363995 Sensitive to neratinib in advanced solid tumor

exon 20 insertion Clinical study PMID: 28167203 Predicted sensitive to afatinib or trastuzumab in NSCLC

exon 20 insertion Clinical study PMID: 26964772 Predicted sensitive to afatinib in lung adenocarcinoma

exon 20 insertion Phase II PMID: 29420467 Predicted sensitive to neratinib in Her2-receptor-negative breast 
cancer

exon 20 insertion Phase II PMID: 29420467 No benefit to neratinib in NSCLC

exon 20 insertion Preclinical 10.1158/1538-7445.
AM2016-2644

Sensitive to AP32788 in advanced solid tumor

MolecularMatch Y772_A775dup Level 1B PMID: 22325357, 
26964772

Confers sensitivity to afatinib in patients with neoplasm of lung

Y772_A775dup Level 2C PMID: 26598547 Confers sensitivity to trastuzumab in patients with neoplasm of lung

Y772_A775dup Level 2D PMID: 22325357 Confers sensitivity to afatinib in patients with neoplasm of breast

A775_
G776insYVMA

Level 1A PMID: 26559459, 
22325357, 26545934

Confers sensitivity to afatinib in patients with neoplasm of lung

A775_
G776insYVMA

Level 2C PMID: 23610105, 
26964772, 22908275

Confers sensitivity to afatinib in patients with neoplasm of breast

A775_
G776insYVMA

Level 2D PMID: 17311002, 
22908275

Confers sensitivity to neratinib in patients with neoplasm of breast
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are consistent with a common standard (Table 1) after harmoniza-
tion, which is a primary contribution of this work.

Notably, in some cases, harmonization dramatically increased 
the number of elements to be considered. For example, CGI had an 
increase in variant count from 283 (unharmonized) to 1,600 (har-
monized) due to the expansion of ambiguous categorical variants 
(for example, ‘oncogenic mutation’) to the set of variants considered 
oncogenic by CGI (through extraction and mapping of the CGI 
Catalog of Validated Oncogenic Mutations). As mentioned above, 
the PMKB does not have a formalized ‘drug’ field for interpretations, 
so there is no reasonably accessible data for aggregating or harmoniz-
ing drugs for that resource. Drugs and variants both had a relatively 
greater benefit from normalization compared to the other interpre-
tation elements, which was likely driven by the diverse and numer-
ous synonymous representations of these concepts in use. While the 
complexities of variant representation have been discussed above, 
the complexity of drug labeling in these resources is driven by the 
multiple synonyms given to drugs in their numerous formulations 
and brands, which change relatively frequently over time.

Harmonization increases findings of clinical significance. 
Evaluation of patient variants for strong clinical significance 
requires an assessment of these variants in the appropriate dis-
ease context. When grouped to the nearest top-level disease term 
(Supplementary Table 4 and Supplementary Note), five major can-
cer group terms each accounted for over 5% of all interpretations in 
the core dataset: lung cancer (24%), breast cancer (13%), hemato-
logic cancer (11%), large intestine cancer (9%) and melanoma (6%) 
(Fig. 3a and Supplementary Table 5). Notably, the most common 
interpretations mirror top-level terms that have both high incidence 
(Fig. 3b) and high mortality (Fig. 3c) as reported by the American 
Cancer Society (Supplementary Table 6)37: lung cancer, breast can-
cer and hematologic cancer. The ‘large intestine cancer’ term con-
tains numerous interpretations describing colorectal cancers, which 
are closely related to colon cancer (a top-five cancer in both inci-
dence and mortality; Supplementary Table 7). Evaluation of these 
terms across the core dataset showed significant differences in the 
distribution of common cancer types constituting each knowledge-
base, illustrating the value of aggregating knowledgebases for a 
more comprehensive landscape of interpretations (Extended Data 
Fig. 3 and Supplementary Table 8).

To further test the value of harmonized interpretation knowledge, 
we evaluated the 38,207 patients of the AACR Project Genomics 
Evidence Neoplasia Information Exchange (GENIE)38. We first que-
ried the 237,175 moderate- or high-impact variants from GENIE 
using a broad search strategy (Methods and Extended Data Fig. 4). 
Notably, 11% (4,355) of patients lacked any variants to search before 
filtering on predicted impact, and 12% (4,543) after. This search 
yielded 2,316,305 interpretation search results for an average of 9.8 
interpretations per variant query. For a point mutation, these inter-
pretations included matches to alternate alleles at the same position, 
associated amino acid changes, the exon or functional domain or 
gene-level interpretations such as overexpression, gain/loss-of-
function or simply mutations. Restricting to a positional match (and 
thus excluding gene-level interpretations; Extended Data Fig. 4)  
showed an interpretation result set dominated by a few common 
GENIE point mutations in variants each with a large number of 
interpretations, including BRAF NP_004324.2:p.V600E, KRAS 
NP_004976.2:p.G12 mutations and both NP_006209.2:p.E545K and 
NP_006209.2:p.H1047R mutations in PIK3CA (Extended Data Fig. 
5). This is congruent with our observation that the interpretations of 
the core dataset for the most common diseases are highly focused on 
these and other specific genes (Fig. 3d), including tier I interpreta-
tions (Fig. 3e). Examining our results at the patient level showed that 
a focused, variant-level search resulted in at least one interpretation 
(in any cancer type with any level of evidence) for 57% of patients 

in the GENIE cohort, compared to the average 33% obtained when 
using each constituent knowledgebase individually (Fig. 3f). We 
observed that broadening the search scope to include any regional 
match (Extended Data Fig. 4) increased the cohort coverage to 86% 
of patients (compared to an average of 68% per individual knowl-
edgebase). However, it is prudent to keep in mind that the increase 
in matching percentage using regional match instead of exact match 
would be partly due to nononcogenic passenger variants.

A key component in determining the clinical relevance of an 
interpretation is whether the tumor type reported in the interpreta-
tion matches the patient’s tumor type (see ‘Defining characteristics’ 
in Table 1). Restricting patient search results to those interpreta-
tions that are of matching grouped disease terms (Extended Data 
Fig. 4 and Supplementary Note) resulted in 29% of patients with at 
least one clinical interpretation (compared to an average individual 
knowledgebase match rate of 13%), and 18% of patients with at least 
one tier I clinical interpretation (compared to an average 6% per 
individual knowledgebase) (Fig. 3f). Patients with rare diseases were 
disadvantaged in this analysis, as automated mapping of their dis-
ease terms to DO was less likely to succeed (Supplementary Note). 
Allowing matching to any ancestor or descendant term and allow-
ing partial variant overlaps improves matches to 60% (compared 
to an average of 35% per individual knowledgebase). This broader 
strategy, however, requires contextual re-evaluation of assigned 
AMP/ASCO/CAP evidence levels, which are designated for a pre-
cise match to variant and disease context. Consequently, evidence 
level or tier filtering can only be used with an exact search strategy. 
We evaluated an alternative, highly permissive search strategy that 
matches sample variants to any interpretation in the gene (Extended 
Data Fig. 6). The resulting match profile across the knowledgebases 
is comparable to findings from the overlapping variant strategy, 
indicating that many of the commonly mutated genes have gene-
level interpretations (which would be a match by either strategy).

A comparison of interpretations across the previously described 
common cancers (with proportion >5% in Supplementary Table 5)  
showed that the use of grouped terms instead of exact terms for 
matching interpretations to patients’ cancers varies dramatically 
by cancer type, with some cancers (for example, lung cancer and 
melanoma) showing little increased interpretation breadth, while 
others have enormous effect (for example, breast cancer and large 
intestine cancer; Fig. 3g). This is primarily due to the specific nature 
by which patients are classified with certain diseases, versus the 
aggregate nature by which interpretations are ascribed to diseases. 
Interestingly, 56% of GENIE patient samples (6,196/11,149) have 
disease-matched interpretations across the frequently observed 
cancers, compared to only 40% (5,430/13,724) of patient samples 
across all other cancers (OR = 1.9, P = 3.9 × 10−140; Fisher’s exact test, 
two-sided). These numbers are reduced to 44% (4,881/11,149) and 
18% (2,438/13,724), respectively, when considering only tier I inter-
pretations (OR = 3.6, P < 2.2 × 10−308; Fisher’s exact test, two-sided).

A resource for searching variant interpretation knowledge. We 
have developed and hosted a public web interface for exploring the 
VICC meta-knowledgebase, freely available at search.cancervari-
ants.org. This interface retrieves the most recent data release from 
an ElasticSearch index. Searching the knowledgebase is performed 
by specifying filters for any term or entering free text or compound 
(for example, and/or logic) queries in the search box at the top 
of the page (Fig. 4a). Panels with data distribution visualizations 
describe the current result set (Fig. 4b). These interactive panels 
provide additional information about specific subsets and may be 
used to create additional filters (for example, clicking on a level in 
the ‘evidence_level’ panel filters results throughout the page to dis-
play only those interpretations with the designated evidence level). 
This allows investigators to see the distribution of interpretations 
by evidence level, disease, gene and drug, and to filter according 
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to their interests. Tabulated results are provided at the bottom of 
the page (Fig. 4c), and are expandable with all details, including 
the (unharmonized) record provided by the original knowledge-
base for each interpretation. These search tools are available via 
both the web interface and an application programming interface 
(API) search endpoint (Methods), in addition to a GA4GH bea-
con on beacon-network.org. Additionally, a Python interface and  
analysis workbook have been developed to enable reproduction 

(and additional exploration) of the data presented in this paper, 
as well as full downloads of the underlying data (Methods). Usage 
documentation and example queries for this resource may be found 
at docs.cancervariants.org.

Discussion
In this study, we aggregated, harmonized and analyzed clinical inter-
pretations of cancer variants from six major knowledgebases1,5,9–11. 
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Our analysis uncovered highly disparate content in curated knowl-
edge, structure and primary literature across these knowledgebases. 
Specifically, we evaluated the unique nature of the vast majority of 
genomic variants reported across these knowledgebases and demon-
strated the challenge of developing a consensus interpretation given 
these disparities. These challenges are exacerbated by nonstandard 
representations of clinical interpretations, in both the primary lit-
erature and curated knowledge of these resources. It is encouraging 
that the curators of these knowledgebases have, without coordi-
nation, independently curated diverse literature and knowledge 
sources. However, this reflects an enormous curation burden gener-
ated from the increasingly employed molecular characterizations of 

patient tumors and the related expansion of the primary literature 
describing them. Even at the gene level, for which there is the high-
est degree of overlap across any element of an interpretation, 61% of 
genes with interpretations are observed in only one knowledgebase. 
Our findings thus highlight the need for a cooperative, global effort 
to curate comprehensive and thorough clinical interpretations of 
somatic variants for robust practice of precision medicine.

We observed that harmonization improved concordance between 
interpretation elements across resources (Supplementary Note), and 
as a result we were able to achieve at least one specific (position-
matched) harmonized variant interpretation for 57% of the patients 
in the GENIE cohort. In the most stringent searches, we required 
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a precise variant match to a tier I interpretation also matching the 
patient’s cancer; in these cases, 18% of the cohort had a finding of 
strong clinical significance. Notably, these findings were substan-
tially higher in patients with more common cancers, with 39% of the 
common cancer samples variant matching at least one tier I inter-
pretation, compared to 15% of other cancer samples. These findings 
are concordant with observations of matched therapy rates in pre-
cision oncology trials, including 15% from IMPACT/COMPACT15, 
11% from MSK-IMPACT14, 5% from the MD Anderson Precision 
Medicine Study16 and 23% from the NCI-MATCH trials17.

Collectively, our results portray a confluence of knowledge 
describing the most common genomic events relevant to the most 
frequent cancers, with highly disparate knowledge describing less 
frequent events in rare cancer types. The differing content of these 
knowledgebases may be a result of research programs targeted at 
frequent cancers, highlighting a need for a broader focus on less 
common cancers. This sparse landscape of curated interpretation 
knowledge is exacerbated by paucity in cross-references between 
ontologies describing disease, highlighting the importance of bridg-
ing this gap39. Similarly, complexities in variant representation have 
elucidated a need for sophisticated methods to harmonize genomic 
variants; harmonization with the ClinGen Allele Registry28 is suited 
to point mutations and indels, but the representation and harmo-
nization of complex and nongenomic (for example, expression or 
epigenetic) variants remains a challenge.

Our harmonized clinical interpretation meta-knowledgebase 
represents a significant step forward in building consensus that 
was previously unattainable due to a lack of harmonization ser-
vices, such as the Allele Registry, and expert standards and guide-
lines, such as those recommended by AMP/ASCO/CAP. This 
meta-knowledgebase serves as an open resource for evaluating 
interpretations from institutions with distinct curation structure, 
procedures and objectives. Potential uses include expert-guided 
therapy matching, supporting FDA regulatory processes associated 
with laboratory-developed genomic tests for guiding therapy and 
identification of diseases and biomarkers that warrant future study. 
The meta-knowledgebase web application is available at search.
cancervariants.org, with usage documentation and examples at 
docs.cancervariants.org. The content of this meta-knowledgebase 
is dynamic, as we routinely poll the constituent knowledgebases 
for their associations between variants and clinical interpretations, 
which primarily comprise predictions of somatic variant effect on 
disease response to a therapy. Unlike the recently FDA-recognized 
ClinGen Expert Curated Human Variant Data40,41, this resource 
is not meant to be used to directly annotate clinical reports, but 
rather to serve as a search tool for existing knowledge pertaining to 
observed genomic variation.

While our initial efforts provide a structure by which variant 
interpretation knowledgebases can contribute to a broader and 
more consistent set of interpretations, much work remains to be 
done. In particular, VICC members contribute to GA4GH Work 
Streams to develop and integrate new and existing42–45 standards 
for the representation of variant interpretations and the evidence 
that describe them. Our web interface is being redesigned to a full-
scale web service and user interface to concisely represent the most 
relevant interpretations for one or more variants. Specifically, we 
plan to add visual elements depicting the distribution of diseases 
corresponding to a searched variant, search modes specific to user 
intent (for example, disease-focused search, gene-focused search 
or multivariant search) and restyled result summaries. These and 
other planned changes are tracked on our central repository at git.
io/metakb (Supplementary Note for other planned improvements).

In conclusion, there is a great need for a collaborative effort 
across institutions to build structured, harmonized representations 
of clinical interpretations of cancer genomic variants to advance the 
implementation of precision medicine. Our work has illustrated the 

diversity of variant interpretations available across resources, lead-
ing to inconsistency in interpretation of cancer variants. We have 
assembled a framework and recommendations for structuring and 
harmonizing such interpretations, from which the cancer genom-
ics community can improve consensus interpretation for cancer 
patients. We have also developed and released open-source (MIT-
licensed) and freely available aggregated knowledge resources (web 
application, data downloads and API) and associated analysis tools. 
Our working group and open-source software development envi-
ronment are open to all and we welcome participation from anyone 
with an interest in learning about, utilizing, augmenting, improving 
or proposing new directions for this community-based project, for 
the benefit of cancer patients.
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Methods
Collecting cancer variant interpretation knowledge. OncoKB, the CGI and 
JAX-CKB all contain complementary knowledge of variant oncogenicity. While 
valuable, knowledge of a variant’s potential role in driving tumorigenesis is 
structured di�erently than clinical interpretations of genomic variants, and is 
therefore outside of the scope of this manuscript. While omitted from the analyses 
presented in this paper, we do aggregate these annotations due to their potential 
utility in clinical research. ClinGen, ACMG, AMP, ASCO, VICC and CAP are 
working on developing guidelines to enable consistent and comprehensive 
assessment of oncogenicity of somatic variants. In the future, variant oncogenicity 
interpretations based on such guidelines can be incorporated into meta-
knowledgebases and should help to improve the harmonization of related 
interpretations.

Exact code for collecting and harmonizing each of the VICC knowledgebases 
may be found at https://github.com/ohsu-comp-bio/g2p-aggregator. The cancer 
biomarker database from CGI was collected from the cgi_biomarkers_per_variant.
tsv file from the biomarkers download at https://www.cancergenomeinterpreter.
org/data/cgi_biomarkers_latest.zip. CIViC content was collected via the gene and 
variant API endpoints documented online at https://docs.civicdb.org/en/latest/api.
html. JAX-CKB content of the publicly available 86 genes was collected from an 
unpublished API endpoint (collecting code at https://github.com/ohsu-comp-bio/
g2p-aggregator/blob/v0.10/harvester/jax.py#L145-L147). MolecularMatch content 
was collected via an authorized API key for use in the aggregated knowledgebase 
(collecting code at https://github.com/ohsu-comp-bio/g2p-aggregator/blob/v0.10/
harvester/molecularmatch.py). OncoKB content was collected via a combination 
of the levels, genes, variants and variants/lookup API endpoints documented at: 
http://oncokb.org/#/dataAccess. PMKB content was provided as a JSON file by the 
knowledgebase, which we are hosting at: https://s3-us-west-2.amazonaws.com/
g2p-0.7/unprocessed-files/pmkb_interpretations.json.

Harmonizing genes. Gene symbols were matched to the table of gene symbols 
from HGNC, hosted at the EBI47: ftp://ftp.ebi.ac.uk/pub/databases/genenames/
new/json/non_alt_loci_set.json. This table was used to construct an ‘aliases’ 
table comprised of retired and alternate symbols for secondary lookup if the 
interpretation gene symbol was not found among the primary gene symbols 
from HGNC. If an alias used by a knowledgebase was shared between two genes, 
omitted by the knowledgebase or failed to match either the primary or alias table, 
the gene was omitted from the normalized gene field.

Harmonizing variants. Variants collected from each knowledgebase were 
first evaluated for attributes specifying a precise genomic location, such as 
chromosome, start and end coordinates, variant allele and an identifiable reference 
sequence. Variant names were queried against the Catalog of Somatic Mutations 
in Cancer (COSMIC)3 v.81 to infer these attributes in knowledgebases that did 
not provide them. Custom rules were written to transform some types of variants 
without clear coordinates (for example, amplifications) into gene coordinates. All 
variants were then assembled into HGVS strings and submitted to the ClinGen 
Allele Registry (http://reg.clinicalgenome.org) to obtain distinct, cross-assembly 
allele identifiers, if available.

Harmonizing diseases. Diseases were matched to the DO48, through lookup 
with the EBI OLS47, unless a preexisting ontology term for a different ontology 
existed (98.7% of interpretations map to DO). We downloaded the March 
2018 release of the TopNode terms from https://github.com/DiseaseOntology/
HumanDiseaseOntology/blob/master/src/ontology/subsets/TopNodes_
DOcancerslim.json and mapped our interpretation diseases to this list, assigning 
each disease to its nearest TopNode ancestor (Supplementary Table 4 and 
Supplementary Note). We assigned remaining interpretation diseases to the 
nonspecific term of DOID:162 (cancer) if the disease was a descendant of this 
term, but not a descendant of one of the TopNode terms.

Harmonizing drugs. Drug names were first queried against the biothings API49 
for harmonization (documented at https://mychem.info/v1/api) and if not found 
were subsequently queried against the PubChem Compounds29, PubChem 
Substances and ChEMBL30 web services (see https://github.com/ohsu-comp-bio/
g2p-aggregator/blob/v0.10/harvester/drug_normalizer.py for details).

Harmonizing evidence level. Evidence levels were standardized to the AMP/
ASCO/CAP guidelines as outlined in Table 1.

Comprehensive evaluation of ERBB2 duplication. Public web portals for the 
six VICC knowledgebases were manually searched for interpretations for variants 
describing the alteration detailed in Fig. 2c. The MolecularMatch resource 
changed its data access policy after peer review of this manuscript, and is no longer 
accessible to the public. The web portals for the remaining resources are freely 
available online without registration at the following URLs:

•	 CGI: https://www.cancergenomeinterpreter.org/biomarkers
•	 CIViC: https://civicdb.org/search/variants/
•	 JAX-CKB: https://ckb.jax.org/geneVariant/�nd

•	 OncoKB: http://oncokb.org
•	 PMKB: https://pmkb.weill.cornell.edu

Evaluating nonharmonized aggregate content. To evaluate the gains provided  
by our harmonization methods, we collected and minimally formatted 
interpretation elements from each knowledgebase without using any 
harmonization routines. We selected the set of unique elements for each resource 
and calculated the overlap across the union of those sets (Supplementary Table 
3). We then repeated this procedure for harmonized elements and compared total 
element count and percentage overlap between harmonized and nonharmonized 
elements. Calculations for the specific fields of that table are provided in the 
Supplementary Note.

Project GENIE. GENIE data were downloaded from the v.3.0.0 data release 
available at: https://www.synapse.org/#!Synapse:syn7222066/files/. Variants 
were extracted from ‘data_mutations_extended.txt’, and clinical data from ‘data_
clinical_sample.txt’. Variants were filtered on predicted consequence of medium 
or high impact. This classification was based upon the VEP consequence table 
(http://useast.ensembl.org/info/genome/variation/prediction/predicted_data.
html#consequences) and resulted in exclusion of variants classified as Silent, 
3′Flank, 3′UTR, 5′Flank, 5′UTR, Intron or Splice_Region. Patients without any 
variants after filtering were included in all calculations. Oncotree cross-references 
were obtained from their API at http://oncotree.mskcc.org/api/tumorTypes  
(data version, oncotree_2018_05_01) and cross-references were then mapped  
to DO terms where they matched. In cases where one-to-many mappings  
occurred, manual review of those mappings was performed to select the most 
appropriate mapping.

Variant intersection search. Variant coordinates were used to search genomic 
features via coordinate intersection. A complete intersection of query and target 
is considered a ‘positional match’, or a more specific ‘exact match’ if the alternate 
alleles also match. A ‘focal match’ is reported if the intersection fraction is less than 
complete, but over 10% overlapping (reciprocally). A ‘regional match’ is reported if 
there is any intersection, but the match is of no other type (Extended Data Fig. 4a).

Disease TopNode search. Disease searching returns a distance of the number 
of ancestor or descendant TopNode terms between the queried disease and the 
matching target (see Supplementary Note for more on TopNode terms). Two 
diseases sharing a TopNode term (for example, DOID:3008, invasive ductal 
carcinoma, and its parent term DOID:3007, breast ductal carcinoma, are both 
members of DOID:1612, breast cancer) would have a distance of 0. However, if 
two diseases share a TopNode term but do not have a direct lineage, they are not 
a match. For example, DOID:0050938, ‘breast lobular carcinoma’, does not match 
to DOID:3007, ‘breast ductal carcinoma’, even though they share a TopNode term 
(DOID:1612, ‘breast cancer’), as they are sibling concepts and do not have an 
ancestor/descendant relationship (Extended Data Fig. 4b).

Enrichment testing for GENIE Oncotree diseases that map to DO TopNode 
was performed by comparing the count of a given disease term across the GENIE 
patients, and then splitting these counts into two groups: those diseases that 
mapped to DO in our analysis, and those that did not. This set of counts was 
ranked and compared by group using the Mann–Whitney U-test. The sets of 
counts (as well as the statistical test) may be found in cell 208 of the analysis 
notebook accompanying this study.

Gene intersection search. To assess cohort interpretability (Extended Data Fig. 6)  
when considering only matching a variant to a gene, we used the assigned gene 
symbols for each GENIE variant and compared them to interpretation gene 
symbols. Patients with at least one variant matching an interpretation gene symbol 
were considered a match. Matches were subsequently filtered by broad disease 
matching and by interpretation tier; no adjustment was made to the evidence level 
and tier to account for this imprecise aggregation strategy.

ElasticSearch API and web front end. Collectors create ‘Association’ documents 
segmented by the source field. Documents are posted to an ElasticSearch v.6.0 
instance provisioned by AWS elasticsearch service.

On top of ElasticSearch, we built web services using the Flask web framework. 
The search.cancervariants.org endpoint provides two simple REST-based 
web services: an association query service and a GA4GH beacon service. The 
association query service allows users to query for evidence using any combination 
of keywords, while the beacon service provisions G2P associations into the 
GA4GH beacon network (beacon-network.org) enabling retrieval of associations 
on the basis of genomic location. OpenAPI (swagger) documentation is provided 
to accelerate development and provide API integration scaffolding. Client 
applications can use the API to create higher level sets of queries driven by cohort 
allele sets (for example, MAF/VCF files) with varying genomic resolutions and 
disease/drug combinations. The API server and nginx proxy are described by 
Docker configurations and deployed colocated within a t2.micro instance.

The user interface is a customized Kibana dashboard that enhances Lucene-
based full-text search of associations with interactive aggregation heat maps, 
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tables and other components. The API documentation is available at: search.
cancervariants.org/api/v1/ui/.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Analyzed harmonized data from the aggregated knowledgebases are available for 
bulk download at https://s3-us-west-2.amazonaws.com/g2p-0.10/index.html. 
Data are made available according to the data sharing principles and data sharing 
agreement provided by the VICC (cancervariants.org/join). In accordance with 
these principles, all content is available for academic research. The CIViC, CGI 
Biomarkers and PMKB knowledgebases provide content with no restrictions 
on reuse; however, commercial use of content from other knowledgebases is 
restricted—see individual knowledgebases for current content licensing.

Code availability
The Python 3.6 interface package and Jupyter analysis notebook to generate these 
results are available online at http://git.io/vicckb, and are freely available for reuse 
under the MIT license. Code for the generation of Supplementary Table 8 and 
associated statistical tests is available online at https://github.com/ahwagner/
vicckb/blob/master/supporting_scripts/VICCdisease_graphs_by_database.R. 
Docker containers and source code for the meta-knowledgebase are hosted online 
at https://github.com/ohsu-comp-bio/g2p-aggregator, and are freely available for 
reuse under the MIT license.
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Extended Data Fig. 1 | Harvesting and harmonizing records. Harvested interpretation records (left column) from each knowledgebase vary in structure, 

a consequence of how they are represented and exported by their parent knowledgebase. Knowledgebase-specific rules are written to select data 

from harvested records for harmonization across a suite of element-specific harmonizers (center column). Colors represent different elements of an 

interpretation, which are each harmonized independently: genes (green), variants (cyan), diseases (red), drugs (purple), and evidence (yellow). Outputs 

from these harmonizers are assembled into normalized records (right column).
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Extended Data Fig. 2 | Knowledgebase overlap. a, Upset plot of publications supporting clinical interpretations of variants. The overwhelming majority of 

publications are observed in only 1 of 6 resources. b, Upset plot of genes described by clinical interpretations of variants. Compared to other interpretation 

elements, genes are much more commonly shared between resources.
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Extended Data Fig. 3 | Knowledgebase disease enrichment. Relative distribution of interpretations describing diseases across the VICC resources. Several 

resources are strongly enriched for one or more diseases compared to the entire dataset (see related Supplementary Table 8).
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Extended Data Fig. 4 | Search strategies. a, A variant intersection search strategy. Variants that match at position and allele are referred to as “exact” 

(blue box), variants matching at position only as “positional” (green box), variants that largely (but not completely) intersect are considered “focal” 

(orange box), and variants that overlap only a small amount are considered “regional” (red box). The left column shows matched results for a query 

(search box, top), based on the intersection of coordinates in the right column. b, TopNode disease search strategy. Shown are a subset of disease nodes 

that all map to the parent TopNode DOID:1612, ‘Breast Cancer’. A query for DOID:3007 would return 44 interpretations (blue) from the queried term, its 

direct ancestors (DOID:3459, ‘Breast Carcinoma’ and DOID:1612, ‘Breast Cancer’) and descendants (DOID:3008, ‘invasive ductal carcinoma’), but no 

interpretations (red) from indirectly related terms (DOID:0050938, ‘breast lobular carcinoma’ and DOID:3457, ‘invasive lobular carcinoma’).
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Extended Data Fig. 5 | Commonality of observed mutations and their interpretations. Interpretation count (x-axis) by number of queries (y-axis). Focal 

(yellow) and positional (green) searches provide a benefit to interpretability over exact matching. Notably, several high interpretation spikes are observed, 

due to variants that have both a large number of interpretations and are often observed in the GENIE cohort. These include KRAS G12 mutations, BRAF 

V600E, and several mutations in PIK3CA.
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Extended Data Fig. 6 | Gene intersection search. Percentage of Project GENIE cohort with at least one interpretation from the indicated knowledgebase 

that matches patient variant genes (left group), patient variant genes and disease (center group), or patient variant genes, disease, and a Tier I evidence 

level (right group). This very broad match strategy is incompatible with the ASCO/AMP/CAP evidence guidelines.
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in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Exact code for harvesting and harmonizing each of the VICC knowledgebases may be found online at https://github.com/ohsu-comp-bio/

g2p-aggregator. The cancer biomarker database from CGI was harvested from the cgi_biomarkers_per_variant.tsv file from the 

biomarkers download at https://www.cancergenomeinterpreter.org/data/cgi_biomarkers_latest.zip. CIViC content was harvested via the 

gene and variant API endpoints documented online at http://griffithlab.org/civic-api-docs/. JAX-CKB content of the publically available 86 

genes were harvested from an unpublished API endpoint (harvester code online at https://github.com/ohsu-comp-bio/g2p-aggregator/

blob/v0.10/harvester/jax.py#L145-L147). MolecularMatch content was harvested via an authorized API key for use in the aggregated 

knowledgebase (harvester code online at https://github.com/ohsu-comp-bio/g2p-aggregator/blob/v0.10/harvester/molecularmatch.py). 

OncoKB content was harvested via a combination of the levels, genes, variants, and variants/lookup API endpoints documented online at: 

http://oncokb.org/#/dataAccess. PMKB content was provided as a JSON file by the knowledgebase, which we are hosting online at: 

https://s3-us-west-2.amazonaws.com/g2p-0.7/unprocessed-files/pmkb_interpretations.json 

 

Gene symbols were matched to the table of gene symbols from HGNC, hosted at the European Bioinformatics Institute (EBI): ftp://

ftp.ebi.ac.uk/pub/databases/genenames/new/json/non_alt_loci_set.json. This table was used to construct an “Aliases” table comprised 

of retired and alternate symbols for secondary lookup if the interpretation gene symbol was not found among the primary gene symbols 

from HGNC. If an alias used by a knowledgebase was shared between two genes, omitted by the knowledgebase, or failed to match 

either the primary or alias table, the gene was omitted from the normalized gene field. 

 

Variants harvested from each knowledgebase were first evaluated for attributes specifying a precise genomic location, such as 

chromosome, start and end coordinates, variant allele, and an identifiable reference sequence. Variant names were queried against the 

Catalog of Somatic Mutations in Cancer (COSMIC) v81 to infer these attributes in knowledgebases that did not provide them. Custom 

rules were written to transform some types of variants without clear coordinates (e.g. amplifications) into gene coordinates. All variants 

were then assembled into HGVS strings and submitted to the ClinGen Allele Registry (http://reg.clinicalgenome.org) to obtain distinct, 

cross-assembly allele identifiers, if available. 

 

Diseases were matched to the Disease Ontology (DO), through lookup with the European Bioinformatics Institute (EBI) Ontology Lookup 

Service (OLS), unless a pre-existing ontology term for a different ontology existed (98.7% of interpretations map to DO). We downloaded 
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the March 2018 release of the TopNode terms from https://github.com/DiseaseOntology/HumanDiseaseOntology/blob/master/src/

ontology/subsets/TopNodes_DOcancerslim.json and mapped our interpretation diseases to this list, assigning each disease to its nearest 

TopNode ancestor (Table S4). We assigned remaining interpretation diseases to the non-specific term of DOID:162 - Cancer if the disease 

was a descendent of this term, but not a descendant of one of the TopNode terms. 

 

Drug names were first queried against the biothings API for harmonization (http://c.biothings.io/v1/query) and if not found were 

subsequently queried against the PubChem Compounds (https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/), PubChem Substances 

(https://pubchem.ncbi.nlm.nih.gov/rest/pug/substance/), and ChEMBL (https://www.ebi.ac.uk/chembl/api/data/chembl_id_lookup/

search) web services. 

 

GENIE data were downloaded from the 3.0.0 data release available online at: https://www.synapse.org/#!Synapse:syn7222066/files/. 

Variants were extracted from “data_mutations_extended.txt”, and clinical data from “data_clinical_sample.txt”. Variants were filtered on 

predicted consequence of medium or high impact. This classification was based upon the VEP consequence table (http://

useast.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences) and resulted in exclusion of variants 

classified as Silent, 3’Flank, 3’UTR, 5’Flank, 5’UTR, Intron, or Splice_Region. Patients without any variants after filtering were included in 

all calculations. Oncotree xrefs were obtained from their API at http://oncotree.mskcc.org/api/tumorTypes (data version 

oncotree_2018_05_01), and xrefs were then mapped to DO terms where they matched. In cases where 1-to-many mappings occurred, 

manual review of those mappings was performed to select the most appropriate mapping. 

Data analysis Data analysis was central to this work, and described throughout the manuscript. All custom software used to generate and display these 

findings are publicly available online at github.com/ohsu-comp-bio/g2p-aggregator (website) and git.io/vicckb (python interface and 

analysis notebook).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 

We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Analyzed harmonized data from the aggregated knowledgebases are available for bulk download online at https://s3-us-west-2.amazonaws.com/g2p-0.10/

index.html. Data are made available according to the data sharing principles and data sharing agreement provided by the VICC (online at: cancervariants.org/join). 

In accordance with these principles, all content is available for academic research.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size A set of 12,856 aggregate interpretations covering 3,437 unique variants in 415 genes, 357 diseases, and 791 drugs were aggregated and 

harmonized from six publicly available sources. GENIE data were downloaded from the 3.0.0 data release available online at: https://

www.synapse.org/#!Synapse:syn7222066/files/. We collected 237,175 moderate or high impact variants from 

“data_mutations_extended.txt” and clinical data of all 38,207 patients from “data_clinical_sample.txt”.

Data exclusions No collected data was excluded from the study.

Replication All experiments can be reproduced by cloning the VICCkb repository (git.io/vicckb) through the shared Jupyter analysis workbook 

(analysis.ipynb).

Randomization Content from each knowledgebase was generated independently and without coordination.

Blinding The statistical analyses of this study were blind to the source knowledgebase, except for cases where the analysis was specifically describing 

characteristics of each individual knowledgebases (e.g. Figure S3, Table S8).
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