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A Harnack Inequality Approach to the
Regularity of Free Boundaries

Part III: Existence Theory, Compactness, and Dependence on X

LUIS A. CAFFARELLI

1. - Introduction

In this third part of our work on regularity of free boundaries we will
show the existence of weak solutions to the Dirichlet problem.

In the meantime, we will have to develop compactness theorems, for

solutions (or supersolutions) of our F.B. problem, that will allow us to

show regularity results for equations and free boundary conditions exhibiting
dependence on X.

We recall our definition of weak solution.

DEFINITION 1. In the unit cylinder C1 = Bl x [-1,1] of we are given
a continuous function u satisfying (L a uniformly elliptic operator ai(aiiaiu) = 0
with Ca coefficients):

(i) Lu = 0 on n+ (u) = {u &#x3E; OJ,
(ii) Lu = 0 on n- = lu  o)O,
(iii) (The weak free-boundary condition) Along satisfies the

free boundary condition

in the following sense.
If Xo E F, F has a tangent ball at Xo from n’ (resp. 0+) (i.e., there
exists Bp (Y) c f] -, such that Xo E and on Bp(Y)
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then 1 on C B p for any a such that

The basic requirements on G will be strict monotonicity in uv and Lipschitz
continuity in all its arguments.

We will basically construct our solution as the infimum of a family of
restricted supersolutions.

DEFINITION 2. We will say that w belongs to the class 1 if w is a

continuous function in D and satisfies

then, for some F

for any B such that

(This is a non-uniform strict supersolution condition).
Finally, we will say that u is a strict minorant if u is locally Lipschitz

and for any Xo in we have a tangent ball from n+ and whenever

then, for some

for any

THEOREM 1. Let n be a domain with Lipschitz boundary, 0 a continuous
function on an. If u is a minorant of our F.B.P., with boundary data ~, then

is a weak solution of our free boundary problem, provided that the family on
the right is non-empty.
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THEOREM 2. The free boundary F = an(u+) has finite (n - 1) -dimensional
Hausdorf measure. Further

for any r, any x, and at Hn-1 almost any point of F,O+(u) has a normal
vector v in the measure theoretic sense. That is

and

2. - A monotonicity formula

In this section we modify slightly the monotonicity formula from [A-C-F]
by letting the operator L depend on X.

LEMMA 1. Let u1, U2 be two non-negative continuous subsolutions of
Lu - 0, in B1. Assume further that u1 u2 - 0 and that

U1(0) = u2 (0) = 0. About aij assume that aij is of class C’ and aij (0) = 8ij.
Then, the following function is monotone in R

where

PROOF. We may assume u$ _ 0 near zero, by replacing ui by
max I (ui - ~), 0~.

We recall, (see [G-T]) that the fundamental solution V, for L* u = 0
satisfies
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Then

The proof now follows that of Lemma 5.1 in [A-C-F].
The main difference appears in formula 5.3 (in [A-C-F]), since now the

r-factor in (~) I satisfies

If this last constant Co is chosen large, it controls all of the CRa error terms
in the formulas above.

3. - u+ is Lipschitz

In this section we show that u+ is Lipschitz.

LEMMA 2. Given w in 7, we may substitute it by another w E 7, so that
t7v+  w+ and (u~) - - (w) -, Lw = 0 in C 0+ (w), and furthermore

c F(w).
PROOF. We solve the Dirichlet problem L6 = 0 on

fl+(w), for instance by the method of supersolutions. The continuity of w is
assured by the fact that w and max(0, u) are upper and lower barriers.

Note does not necessarily coincide since w may
become identically zero in some connected components of ~+ ( w ) . Nevertheless,
F(6) c F(w) and, if +o(IX-Xol), since w &#x3E; tu, the upper
linear bound, required in Definition 2 for W, follows.

We next prove
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LEMMA 3. Let w E 1 and Lw+ = 0 on ~+ (w) . Assume that at

has the asymptotic development

Then, denoting by ~ I

with h

(ii) for any domain D, compactly contained in Cl, w+ is locally Lipschitz in
D with

(C depending only on diam D);
(iii) in particular fl+ (u) is open.

PROOF. We recall that from Definition 2, w has the asymptotic development

If G -I (a, ., .) = 0, then a is bounded (nothing to prove).
If not, we next prove that

with C(n) chosen to give equality if w were smooth on both sides of w = 0
and wu = a, w§ = Q. We first estimate by below

Let i , Then
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But the above sequence of inequalities are equalities for w+ = a y. Therefore

We now integrate by parts in r,

and the inequality

is proved.
But

This completes the proof of part (i).
To prove part (ii), let now Xo with

By standard a priori estimates

We now introduce a family of barriers that we will use rather often.

L always normalized so that
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Note that, for the proper choice of C ( n ) ,

(from the ca-nature of aii and the c11a (normalized) a priori estimates).
Since w(Xo), for C small we get (on Br(Xo)BBr/2(XO)

In particular, if ~o is the contact point of B, ( Xo ) and F(w),

with Therefore, from Lemma 2,

or

COROLLARY 1. u = inf, u satisfies u+ is Lipschitz, with
wE’7

4. - u is Lipschitz

We next prove that the function u is continuous and in fact u- is also

Lipschitz, in particular u is Lipschitz. We first point out:

LEMMA 4. If W1, W2 E 7, w* = min(wi , W2) also belongs to 1.
Next, the main lemma:

LEMMA 5. Given a point Xo, where u(Xo) = Q  0, the sequence u

at Xo may be taken so that, in a a-neighbourhood of Xo,

(i) wn are equilipschitz,
(ii) LWn = 0.

PROOF. Let n be large so that
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On the ball B,, (e to be chosen small) we will replace the boundary values of
w and construct a new 6 as follows:

(i) On 0+ (W)BBêU(XO), Lw = 0 with boundary data t7v = w, except on 8Bêu,
where w = 0;

(ii) On Bêu, Lt7v = 0, with boundary data w = - z,v - ;
(iii) 6 = w otherwise.

We will use this construction often and call it

(Note that u, being locally Lipschitz, is strictly negative in Bca for e small,
since 0’. Hence y). Let us see that tu E F.

(a) If X 1 E F ( w ) , for some iu(Xi) = 0, then Xi E and since w  w,

the asymptotic behavior inequalities follow.

(b) We now study a point Xi E F (6) where w - 0 and w &#x3E; 0. Hence

X 1 E n F(iu). Since w+ is Lipschitz and vanishes at Xo,

Therefore in the ring

In particular, if

we are forced to have

and

On the other hand, coming from inside we have

Since

and

we get, from Harnack’s inequality,
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Hence

Therefore, near Xi , coming from 

(same v as before). That is

This makes of w a supersolution if e is chosen small.

Finally, from a priori estimates and Hamack’s inequality,

The equilipschitzianity now follows.

COROLLARY 2. Lu = 0 in , and u is Lipschitz
everywhere.

PROOF. By standard replacement techniques, it follows that U = lim 6k
on say ~~Q~4 . (By definition u  lim 6k)- If u ~X2 )  lim Wk, we consider a

new sequence llk converging to ~c at X2, and replace min (6k, wk) on B,,,/2
(everything is non-positive on B3e« /4 and hence the free boundary inequality
is not affected).

Note that it also follows that if u ( X) - 0 for a point of (C(11+))O, then
u(X) =- 0 on the corresponding connected component of (C(O+))o.

COROLLARY 3. If K is compactly contained in D, then u is in K the

uniform limit of a sequence of functions Wk E 7- _

If K c c [C(11+(u))]O, wk may be taken non-positive on K.

PROOF. The first part follows from the fact that w+ are equilipschitz and
the previous substitution lemma. For the second part, let

and assume K and K have smooth boundary. Let

If e is small
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Let K be large so that on K, and consider2

5. - u+ is non-degenerate

In this section we use the fact that u is the least supersolution to show
that u+ is non-degenerate.

LEMMA 6. (a) If Xo E O+(u) and = r, then u(Xo) &#x3E; Cr.
(b) If X 1 E F and E is a connected component ofO+(u)n B,, ~ X 1 ), Br ~ 2 ( X 1 ) ~ ]
with 

_ , «/ -;,-z - - -1 

then sun u &#x3E; Cr.t, 
-

Note: (a), (b) and (c) are interior estimates. That is, they are valid in any
compact subset K of D, and the constants C depend on K.

PROOF. Since by Hopf principle u grows linearly away from F(ii), part
(a) is clear if _

Indeed, in that case,

hence

and by Hamack inequality

We may assume therefore 0 on Br/2(XO).
Let u (Xo) « r. By Hamack’s inequality on u, and the uniform

convergence of the w’s, we may choose w e 7, C7 on 

Let 
, - ...." "., I

Then, for M large enough (depending only on the C of Harnack’s inequality)
w is continuous along On the other hand, for M 0’   r, w is a
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supersolution along a B,. I 4, since v ~ I ,-..,¡ C . That completes the proof
of part (a). 

’

Part (c) will follow from part (b) and the fact that u+ is Lipschitz.
Part (b) is a general property of non-degenerate Lipschitz solutions of

Lu = 0. We write it as an auxiliary lemma.

LEMMA 7. Let u be a Lipschitz non-degenerate function in nnB1 satisfying
Lu = 0, 0 (with, as usual, a;; uniformly elliptic). Assume further
that if Xo E Bl/2,

Then, for

PROOF. The proof relies on the following observation.
Let = e, then u(Xo) - Ce. By the mean value theorem

where f, the Poisson kernel, satisfies

(since constants are solutions of Lu = 0).

(C depending only on the ellipticity of 
Now, by the Lipschitz continuity of u,

in an - a-neighbourhood of Yo E ail. Therefore



594

That is,

for some A &#x3E; C(6). That is

or, for some point Xl in 8Bs, the following three quantities are comparable:

If we repeat this argument n-times, we find points X~ so that

Let us start with Xo, a point very close to 0 (since 0 E an). It follows from

(ii) that there is a last Xn E Br (since u(Xn) - +cxJ). Such an Br/2.
(This would imply Br, by (iii)). Therefore, by (i),

The proof is complete.
Part (b) of Lemma 6 follows by taking origin at a point of 9E in the

annulus

(If such a point does not exist (b) is trivial).

,

6. - u is a supersolution

In this section we will prove that u is a supersolution (not necessarily in
.

LEMMA 8. Assume that u ( Xo ) = 0 and

Then, if
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we must have

PROOF. Let wk "B. u uniformly. Then wk cannot remain strictly positive on
a neighbourhood of Xo (if not, u would be a non-negative solution of Lu = 0).
For each Wk, let

/1B

be the largest ball (with center Xo and radius am, k contained in

tangent to at Xm1k, with normal at such points. Then,
for adequate subsequences,

where Xo + £ w ) is tangent to 8Q+ (u) at Xm, with normal 
From the behavior of u+ ,

Now, by definition of supersolution, there exist at X,,,, k an and a
with

that provide an asymptotic upper barrier for wk .
That is, on 

See Lemma A5 of Part II, adapted to Lu = 0 in the obvious manner.
Since 

(0(1) refers of course to the m-variable). Therefore it will suffice to prove that
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If ,Qm,k = 0 there is nothing to prove. If 0, for any fixed r, from the

proof of Lemma 3,

Also

since

and wk converges uniformly to u. For the same reason

Finally,

(also from the proof of Lemma 3). Hence, given e, there exists r so that

there exist some m and some k so that

from where

Since lim 0., it follows that lim ,Q,n,k  {3. The proof is now complete.
m.k 

’ 

m1k 
’

7. - u is a subsolution

We are now ready to prove that u is a subsolution.

LEMMA 9. Assume that u has the asymptotic behavior

with ). Then

PROOF. The proof of this lemma requires, as usual, a perturbation
argument, showing that, if a  we may construct a function u;

in 7 smaller than u, contradicting its minimality.
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We first note that, even when p = 0, both and 11 - (u)
are tangent to {(X - Xo, v) = 0} at Xo from the non-degeneracy of u + . Our

argument will be centered on

Assume

with So &#x3E; 0 and choose wk - u, uniformly, so that Wk becomes non-positive
on any compact set of n’(n). Then for any 1 &#x3E; 0 (-y (6) to be chosen) we may
find A and k so that = + AX) satisfies1B

(a) If 0 &#x3E; 0, uo + -1 min (a, fi)
(b) If (3 =  Uo + 0."1 and  0 on  -7} n B1.

Or equivalently 
~ 

’

We now make a standard perturbation on uo by changing its free boundary,

where La - + AX) and p is a Co function with p m 0 outside

Bl/2’ inside B1/4.
From standard perturbation theory, along the new free boundary,

hence, if e,.À are chosen small, depending only on So,

becomes an element of F.
Now, if 7   ~, the set

contains a neighbourhood of the origin, or equivalently Xo belongs to 0- 
a contradiction.
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PROOF OF THEOREM 1. The proof of Theorem 1 is now complete since
whenever Xo E F has a tangent ball Bp from {1+, both

and

have a linear asymptotic behavior (see Lemma Al of Part II and the comments
after Definition 1) and when Xo has a tangent ball has a full

asymptotic development as follows from the non-degeneracy of u+.

REMARK. We have not used yet the fact that Wk belongs to the restricted
subfamily 1.

We therefore may now state a compactness theorem for weak solutions of
our free boundary problems.

THEOREM 4. Let uk be a sequence of minimal weak solutions to free
boundary problems 

-

Assume that Lk --· L, Gk --; G uniformly in all of its variables, uk - u
uniformly. Assume that the assumptions in Lk, Gk and uk are satisfied uniformly
(in particular the uniform one side regularity of the free boundary of uk).

Then, if u uniformly in a domain D, u is a weak solution of the
limiting free boundary problem in D.

PROOF. The proof follows those of Lemmas 8 and 9.
We now start discussing Theorem 2. The proof follows closely the theory

developed by Alt and the author (see [A-C]).

LEMMA 10. Let Xo E ao+, then, given e  6, the following four quantities
are comparable:

(d) N en-1, where N is the number of any family of balls of radius e with
finite overlapping covering (u) n B6.

(We recall for the reader that given a compact set in Rn, that has associated
to each of its points a ball centred at it, we can always extract a countable
subcovering such that the balls of the covering overlap a finite number of times
m, depending only on the dimension, that  m(n)).
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PROOF. Let = max (s, min

But Hence

Letting s go to zero

Now, on any ball Bo centred at the free boundary we have sup
inf u+ = 0. Hence (u+ being Lipschitz)

Consider now a finite overlapping covering by balls .
Then,

Hence, all of these quantities are comparable and controlled by

Since u is Lipschitz and non-degenerate we may add

since, up to constants, one is contained in the others.
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Next, let V be the solution of

From the behavior of the Green function for L (see [L-S-W]), V  
outiside of Bo and Vv - C on (9B,.

We next write

The integral on the left is of order C independently of Q. On the right,

for 0’ small. Hence

That is

Therefore eArea (Bi ) is actually comparable to all other quantities.
Finally, we compare with Let B~ ~ be a finite covering

of 8Q+ by balls, with pk  e, that approximates n Bi-~).
Let p  inf pk and B~ (X~ ) a finite overlapping covering for 8Q+ n Brpk.

Then, on one hand

by the discussion above with e = p. On the other hand

also by the discussion above after dilatation of k. Hence the last equivalence
is established.

The next observation is that for any w, Vw is a continuous vector field
is locally compactly contained 

COROLLARY 4. The reduced boundary of fl+ in the sense of De Giorgi
(see [G]) has uniformly positive density in Hn-1-measure at any point of an+.

PROOF. We will prove that, if Xo E F ( u ) , Br ) &#x3E; C 
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By scaling

it is enough to prove it for r = 1. We use the same auxiliary function V, and
since Vw is a continuous vector field we may write

That is,

We let w converge uniformly to u, and choose cr small so that

cannot compete with

and the corollary is proved.
We finally point out the regularity of the free boundary.

LEMMA 11. If Xo E aredil+(u), u has at Xo the asymptotic development

with

1 
PROOF. From the compactness theorem (Theorem 4), the sequence ua =

A Xo ) ) converges to a solution uo of the free boundary problem

and

Furthermore, since Xo c follows from the non-degeneracy of u+
that
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We now refer to Parts I and II (see [C,I] and [C,II]).
Since U6 is Lipschitz and non-degenerate, it follows from Lemma Al of

Part II that at infinity u6 behaves non-tangentially like 
Shrinking back,

with

Therefore uo falls under the hypothesis of Theorem 3 of Part II and Theorem
2 of Part I for large balls B M M -; oa ) . Hence

In turn, this says that, if L = A, u itself falls under the hypothesis of those
theorems for small enough balls around Xo. Therefore

THEOREM 5. If Xo E ared(n+) and L = 0, 8Q+ is a c1.a surface in a
neighbourhood of Xo.
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