# Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

## LUIS A. CAFFARELLI

## A Harnack inequality approach to the regularity of free boundaries. Part III : existence theory, compactness, and dependence on *X*

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze  $4^e$  série, tome 15, nº 4 (1988), p. 583-602

<http://www.numdam.org/item?id=ASNSP\_1988\_4\_15\_4\_583\_0>

© Scuola Normale Superiore, Pisa, 1988, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## $\mathcal{N}$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

### A Harnack Inequality Approach to the Regularity of Free Boundaries Part III: Existence Theory, Compactness, and Dependence on X

#### LUIS A. CAFFARELLI

#### 1. - Introduction

In this third part of our work on regularity of free boundaries we will show the existence of weak solutions to the Dirichlet problem.

In the meantime, we will have to develop compactness theorems, for solutions (or supersolutions) of our F.B. problem, that will allow us to show regularity results for equations and free boundary conditions exhibiting dependence on X.

We recall our definition of weak solution.

DEFINITION 1. In the unit cylinder  $C_1 = B_1 \times [-1, 1]$  of  $\mathbb{R}^{n+1}$ , we are given a continuous function u satisfying (L a uniformly elliptic operator  $\partial_i(a_{ij}\partial_j u) = 0$ with  $C^{\alpha}$  coefficients):

- (i) Lu = 0 on  $\Omega^+(u) = \{u > 0\},\$
- (ii) Lu = 0 on  $\Omega^- = \{u \le 0\}^0$ ,
- (iii) (The weak free-boundary condition) Along  $F = \partial \{u > 0\}$ , u satisfies the free boundary condition

$$u_{\nu}^+ = G(u_{\nu}^-, X, \nu)$$

in the following sense.

If  $X_0 \in F$ , F has a tangent ball at  $X_0$  from  $\Omega^-$  (resp.  $\Omega^+$ ) (i.e., there exists  $B_{\rho}(Y) \subset \Omega^-$ , such that  $X_0 \in \partial B_{\rho}(Y)$ ), and on  $B_{\rho}(Y)$ 

$$u(X) \leq -eta \langle X - X_0, \nu \rangle^- + o(|X - X_0|),$$
  
(resp.  $u \geq lpha < X - X_0, \nu >^+ + o(|X - X_0|))$ 

Pervenuto alla Redazione il 7 Maggio 1988.

then 
$$u(X) \ge \alpha \langle X - X_0, \nu \rangle^+ + o(|X - X_0|)$$
 on  $\mathcal{C}B_{\rho}$  for any  $\alpha$  such that

$$\alpha \leq G(\beta, X_0, \nu).$$

(resp. 
$$u(X) \leq -\beta < X - X_0, \nu >^- + o(|X - X_0|)$$
).

The basic requirements on G will be strict monotonicity in  $u_{\nu}$  and Lipschitz continuity in all its arguments.

We will basically construct our solution as the infimum of a family of restricted supersolutions.

DEFINITION 2. We will say that w belongs to the class  $\mathcal{F}$  if w is a continuous function in D and satisfies

- (a)  $Lw \leq 0$  on  $\Omega^+(w)$ ,  $\Omega^-(w)$ ;
- (b) The set  $\Omega^+(w) = \{w > 0\}$  has a tangent ball from outside at every point of  $F(w) = \partial \Omega^+$ ;

(c) If 
$$X_0 \in F$$
 and

$$w^+ \geq lpha \langle X - X_0, 
u 
angle + o(|X - X_0|),$$

then, for some  $\varepsilon = \varepsilon(X_0, w) > 0$ ,

$$w^- \geq eta\langle X - X_0, 
u 
angle + o(|X - X_0|)$$

for any  $\beta$  such that

$$lpha+arepsilon\geq G(eta,X_0,
u).$$

(This is a non-uniform strict supersolution condition).

Finally, we will say that  $\underline{u}$  is a strict minorant if  $\underline{u}$  is locally Lipschitz and for any  $X_0$  in  $\partial \Omega^+(\underline{u})$ , we have a tangent ball from  $\Omega^+$  and whenever

$$\underline{u}^- \geq \beta \langle X - X_0, \nu \rangle^- + o(|X - X_0|),$$

then, for some  $\varepsilon = \varepsilon(X_0, \underline{u})$ ,

$$\underline{u}^+ \geq (lpha + arepsilon) \langle X - X_0, 
u 
angle^+ + o(|X - X_0|)$$

for any  $\alpha \leq G(\beta, X_0, \nu)$ .

THEOREM 1. Let  $\Omega$  be a domain with Lipschitz boundary,  $\phi$  a continuous function on  $\partial \Omega$ . If  $\underline{u}$  is a minorant of our F.B.P., with boundary data  $\phi$ , then

$$u = \inf_{\substack{w \in \mathcal{F} \\ \underline{u} < w}} w$$

is a weak solution of our free boundary problem, provided that the family on the right is non-empty.

THEOREM 2. The free boundary  $F = \partial \Omega(u^+)$  has finite (n-1)-dimensional Hausdorf measure. Further

$$H^{n-1}(F \cap B(x)) \leq r^{n-1}$$

for any r, any x, and at  $H^{n-1}$  almost any point of  $F, \Omega^+(u)$  has a normal vector  $\nu$  in the measure theoretic sense. That is

$$\lim_{r \to 0} \frac{|\Omega^+ \cap B_r \cap \{\langle X - X_0, \nu \rangle \ge 0\}|}{B_r} = \frac{1}{2}$$

and

$$\lim_{r\to 0} \frac{|\Omega^- \cap B_r \cap \{\langle X - X_0, \nu \rangle \le 0\}|}{B_r} = \frac{1}{2}.$$

#### 2. - A monotonicity formula

In this section we modify slightly the monotonicity formula from [A-C-F] by letting the operator L depend on X.

LEMMA 1. Let  $u_1, u_2$  be two non-negative continuous subsolutions of  $Lu = D_i(a_{ij}D_ju) = 0$ , in  $B_1$ . Assume further that  $u_1u_2 = 0$  and that  $u_1(0) = u_2(0) = 0$ . About  $a_{ij}$  assume that  $a_{ij}$  is of class  $C^{\alpha}$  and  $a_{ij}(0) = \delta_{ij}$ . Then, the following function is monotone in R

$$ilde{\Phi}(R) = rac{\int\limits_{B_R} (
abla u_1)^2 r \mathrm{d}r \mathrm{d}\sigma \int\limits_B (
abla u_2)^2 r \mathrm{d}r \mathrm{d}\sigma}{g(R)},$$

where

$$g(R) = R^4 e^{-CR^{\alpha}}.$$

PROOF. We may assume  $u_i \equiv 0$  near zero, by replacing  $u_i$  by  $\max\{(u_i - \epsilon), 0\}$ .

We recall, (see [G-T]) that the fundamental solution V, for  $L^* u = 0$  satisfies

$$V = C_0 r^{2-n} + \mathcal{O}(r^{2-n+lpha}),$$
  
 $\nabla V = (2-n)C_0 r^{-n}X + \mathcal{O}(r^{1-n+lpha}).$ 

Then

$$\begin{split} \int_{B_R} (\nabla u_i)^2 \rho \mathrm{d}\rho \mathrm{d}\sigma &\leq (1+CR^\alpha) \int \mathbf{L} \left(\frac{1}{2}u_i^2\right) \ V \mathrm{d}X \\ &\leq (1+CR^\alpha) \left[ (n-2)R^{-n+1}(1+CR^\alpha) \int_{\partial B_R} \frac{1}{2}u^2 a_{ij}\nu_i\nu_j \mathrm{d}s \right] \\ &+ R^{-n+2}(1+CR^\alpha) \int_{\partial B_R} \frac{1}{2}uu_j a_{ij}\nu_i \mathrm{d}s \right] \\ &\leq (1+CR^\alpha) \left\{ \int_{\partial B_R} \left[ \frac{n-2}{2} \ u^2 R^{-n+1} + \frac{1}{2}uu_r R^{-n+2} \right. \\ &+ CR^\alpha u |\nabla_T u| R^{-n+2} \right] \mathrm{d}s \right\}. \end{split}$$

The proof now follows that of Lemma 5.1 in [A-C-F].

The main difference appears in formula 5.3 (in [A-C-F]), since now the r-factor in  $(\tilde{\Phi})'$  satisfies

$$R \; rac{g'}{g} = -4 + lpha C_0 R^lpha.$$

If this last constant  $C_0$  is chosen large, it controls all of the  $CR^{\alpha}$  error terms in the formulas above.

#### 3. - $u^+$ is Lipschitz

In this section we show that  $u^+$  is Lipschitz.

LEMMA 2. Given w in  $\mathcal{F}$ , we may substitute it by another  $\tilde{w} \in \mathcal{F}$ , so that  $\tilde{w}^+ \leq w^+$  and  $(\tilde{w})^- = (w)^-$ ,  $\mathbf{L}\tilde{w} = 0$  in  $\Omega^+(\tilde{w}) \subseteq \Omega^+(w)$ , and furthermore  $F(\tilde{w}) \subset F(w)$ .

PROOF. We solve the Dirichlet problem  $\tilde{w} = w$  on  $\partial \Omega^+(w)$ ,  $L\tilde{w} = 0$  on  $\Omega^+(w)$ , for instance by the method of supersolutions. The continuity of  $\tilde{w}$  is assured by the fact that w and max $(0, \mathbf{u})$  are upper and lower barriers.

Note that  $\Omega^+(w)$  does not necessarily coincide with  $\Omega^+(\tilde{w})$  since  $\tilde{w}$  may become identically zero in some connected components of  $\Omega^+(w)$ . Nevertheless,  $F(\tilde{w}) \subset F(w)$  and, if  $\tilde{w} \ge \alpha \langle X - X_0, \nu \rangle + o(|X - X_0|)$ , since  $w \ge \tilde{w}$ , the upper linear bound, required in Definition 2 for  $\tilde{w}$ , follows.

We next prove

LEMMA 3. Let  $w \in \mathcal{F}$  and  $Lw^+ = 0$  on  $\Omega^+(w)$ . Assume that at  $X_0 \in \partial \Omega^+(w)$ ,  $w^+$  has the asymptotic development

$$w^+ \geq lpha \langle X - X_0, 
u 
angle + o(|X - X_0|).$$

Then, denoting by  $G^{-1}(\alpha) = \inf_{X,\nu} G^{-1}(\alpha, X, \nu)$ ,

(i) 
$$\alpha G^{-1}(\alpha) \leq \frac{C}{h^2} (\|w\|_{L^{\infty}})^2,$$

with  $h = d(X_0, \partial C)$ ;

(ii) for any domain D, compactly contained in  $C_1$ ,  $w^+$  is locally Lipschitz in D with

$$\|w^+\|_{\operatorname{Lip}(\overline{D})}G^{-1}(\|w^+\|_{\operatorname{Lip}(\overline{D})}) \leq C \left(\frac{\|w\|_{L^{\infty}(D)}}{\operatorname{d}(\overline{D},\partial C_1)}\right)^2$$

(*C* depending only on diam  $\overline{D}$ );

(iii) in particular  $\Omega^+(u)$  is open.

PROOF. We recall that from Definition 2, w has the asymptotic development

$$w^- \geq eta \langle X - X_0, 
u 
angle^- + o(|X - X_0|).$$

If  $G^{-1}(\alpha, \cdot, \cdot) = 0$ , then  $\alpha$  is bounded (nothing to prove). If not, we next prove that

$$\lim_{R\to 0} \tilde{\Phi}(R) \geq C(n)\alpha^2 \cdot \beta^2,$$

with C(n) chosen to give equality if w were smooth on both sides of w = 0and  $w_{\nu}^{+} = \alpha$ ,  $w_{\nu}^{-} = \beta$ . We first estimate by below

$$\int\limits_{B_R} (\nabla w^+)^2 \, \mathrm{d}X.$$

Let  $\nu = e_{n+1}$ , X = (x, y). Then

$$\int_{B_R} (\nabla w^+)^2 \ge \int_{|x| \le R} dx \int_{y^2 + |x|^2 \le R^2} (w_y^+)^2 dy$$
$$\ge \int_{|x| \le R} dx \frac{1}{\ell(x)} \left( \int_{y \le \sqrt{R^2 - |x|^2}} w_y^+ dy \right)^2$$
$$\ge \int_{|x| \le R} dx \frac{1}{\ell(x)} \left( \max_{y \le \sqrt{R^2 - |x|^2}} w^+ \right)^2.$$

But the above sequence of inequalities are equalities for  $w^+ = \alpha y$ . Therefore

$$\int_{B_R} (\nabla w^+)^2 \, \mathrm{d}x \geq \int_{B_R} \left[ \alpha^2 - o(1) \right] \, \mathrm{d}x.$$

We now integrate by parts in r,

$$\tilde{\Phi}(R) = C(n) \frac{\int\limits_{0}^{R} \left( \int\limits_{B_r} (\nabla w^+)^2 \, \mathrm{d}x \right) r^{1-n} \, \mathrm{d}r \int\limits_{0}^{R} \left( \int\limits_{B_r} (\nabla w^-)^2 \, \mathrm{d}x \right) r^{1-n} \mathrm{d}r}{g(R)}}{g(R)}$$
$$\geq C(n) \frac{\int\limits_{0}^{R} \left[ \alpha^2 - o(1) \right] r \mathrm{d}r \int\limits_{0}^{R} \left[ \beta^2 - o(1) \right] r \mathrm{d}r}{g(R)}}{g(R)}$$

and the inequality

$$C(n)\alpha^2\beta^2 \leq \lim_{R\to 0} \tilde{\Phi}(R)$$

is proved.

But

$$\Phi(h) \leq rac{C}{h^4} \int\limits_{B_{2h}} (w^+)^2 \ \int\limits_{B_{2h}} (w^-)^2 \leq rac{C}{h^4} \|w\|_{L^\infty}^4.$$

This completes the proof of part (i). To prove part (ii), let now  $X_0 \in \Omega^+(w)$ , with

$$d(X_0,F) = r < h \leq d(X_0,\partial D).$$

By standard a priori estimates

$$|
abla w(X_0)| \leq rac{C}{r} \ w(X_0).$$

We now introduce a family of barriers that we will use rather often.

$$h_{X_0,r} \text{ DEF } \begin{cases} h_{X_0,r}|_{\partial B_r(X_0)} = 0\\ h_{X_0,r}|_{\partial B_{r/2}(X_0)} = 1\\ L(h_{X_0,r}) = 0, \end{cases}$$

L always normalized so that

$$a_{ij}(X_0) = \delta_{ij}.$$

Note that, for the proper choice of C(n),

$$\left| 
abla h - C(n) r^{n-2} rac{X}{|X|^n} 
ight| \leq C r^{lpha - 1}$$

(from the  $C^{\alpha}$ -nature of  $a_{ij}$  and the  $C^{1,\alpha}$  (normalized) a priori estimates).

Since  $w|_{B_{r/2}(X_0)} \sim w(X_0)$ , for C small we get (on  $B_r(X_0) \setminus B_{r/2}(X_0)$ )

$$Cw(X_0)h_{X_0,r}\leq w.$$

In particular, if  $Y_0$  is the contact point of  $B_r(X_0)$  and F(w),

$$w(Y) \geq C \; rac{w(X_0)}{r} \; \langle Y - Y_0, 
u 
angle^+,$$

with  $\nu = \frac{X_0 - Y_0}{|X_0 - Y_0|}$ . Therefore, from Lemma 2,

$$C \; rac{w(X_0)}{r} \; G^{-1} \; \left( rac{w(X_0)}{r}, Y_0, 
u 
ight) \leq rac{C}{h^2} \; \|w\|_{L^\infty}^2$$

or

$$|
abla w(X_0)|G^{-1} \ (C|
abla w(X_0)|) \leq rac{C}{h^2} \ \|w\|_{L^\infty}^2.$$

COROLLARY 1.  $u = \inf_{w \in \mathcal{F}}$ , u satisfies  $u^+$  is Lipschitz, with

$$\|u^+\|_{\operatorname{Lip}(\overline{D})} \ G^{-1} \ \left(C\|u^+\|_{\operatorname{Lip}(\overline{D})}\right) \leq \frac{C}{h^2} \ \|u\|_{L^{\infty}}^2.$$

#### 4. - u is Lipschitz

We next prove that the function u is continuous and in fact  $u^-$  is also Lipschitz, in particular u is Lipschitz. We first point out:

LEMMA 4. If  $w_1, w_2 \in \mathcal{F}$ ,  $w^* = \min(w_1, w_2)$  also belongs to  $\mathcal{F}$ . Next, the main lemma:

LEMMA 5. Given a point  $X_0$ , where  $u(X_0) = \sigma < 0$ , the sequence  $w_n \searrow u$ at  $X_0$  may be taken so that, in a  $\sigma$ -neighbourhood of  $X_0$ ,

- (i)  $w_n$  are equilipschitz,
- (ii)  $Lw_n = 0.$

PROOF. Let n be large so that

$$w_n(X_0) \leq \frac{u(X_0)}{2} < 0.$$

#### LUIS A. CAFFARELLI

On the ball  $B_{\varepsilon\sigma}$  ( $\varepsilon$  to be chosen small) we will replace the boundary values of w and construct a new  $\tilde{w}$  as follows:

- (i) On  $\Omega^+(w) \setminus \overline{B}_{\varepsilon\sigma}(X_0)$ ,  $\mathbf{L}\tilde{w} = 0$  with boundary data  $\tilde{w} = w$ , except on  $\partial B_{\varepsilon\sigma}$ , where  $\tilde{w} = 0$ ;
- (ii) On  $B_{\varepsilon\sigma}$ ,  $\mathbf{L}\tilde{w} = 0$ , with boundary data  $\tilde{w} = -w^-$ ;
- (iii)  $\tilde{w} = w$  otherwise.

We will use this construction often and call it

 $\tilde{w} = R(w, B)$  (the replacement of w on B).

(Note that  $\underline{u}$ , being locally Lipschitz, is strictly negative in  $B_{\varepsilon\sigma}$  for  $\varepsilon$  small, since  $\underline{u}(X_0) \leq \sigma$ . Hence  $\tilde{w} \geq \underline{u}$ ). Let us see that  $\tilde{w} \in \mathcal{F}$ .

- (a) If  $X_1 \in F(\tilde{w})$ , for some  $w(X_1) = 0$ , then  $X_1 \in F(w)$  and since  $\tilde{w} \leq w$ , the asymptotic behavior inequalities follow.
- (b) We now study a point  $X_1 \in F(\tilde{w})$  where  $\tilde{w} = 0$  and w > 0. Hence  $X_1 \in \partial B_{\varepsilon\sigma} \cap F(\tilde{w})$ . Since  $w^+$  is Lipschitz and vanishes at  $X_0$ ,

$$\tilde{w} \leq w \leq C \varepsilon \sigma$$
 on  $B_{2\varepsilon\sigma}(X_0)$ .

Therefore in the ring  $B_{2\varepsilon\sigma}(X_0) \setminus B_{\varepsilon\sigma}(X_0)$ 

$$ilde{w} \leq C arepsilon \sigma ~(1-h_{{X_0},2arepsilon\sigma}).$$

In particular, if

$$ilde{w}(X) \geq lpha \langle X - X_1, 
u 
angle^+,$$

we are forced to have

$$u = rac{X_1 - X_0}{|X_1 - X_0|}$$

and

$$\alpha \leq C$$

On the other hand, coming from inside  $B_{\epsilon\sigma}(X_0)$ , we have

$$ilde{w}(X_0) \leq w(X_0) \leq -rac{\sigma}{2}.$$

Since

$$\tilde{w}|_{B_{\epsilon\sigma}}\leq 0$$

and

$$\mathbf{L}\tilde{w}=0,$$

we get, from Harnack's inequality,

$$\tilde{w}\big|_{B_{\epsilon\sigma/2}}\sim -\frac{\sigma}{2}.$$

Hence

$$\tilde{w}\big|_{B_{\epsilon\sigma}}\leq -C\sigma h_{X_0.\epsilon\sigma}.$$

Therefore, near  $X_1$ , coming from  $B_{\varepsilon\sigma}(X_0)$ ,

$$ilde{w} \leq -rac{C\sigma}{arepsilon\sigma} \, ig\langle X-X_1,
uig
angle$$

(same  $\nu$  as before). That is

$$\beta \geq rac{C}{arepsilon}.$$

This makes of  $\tilde{w}$  a supersolution if  $\varepsilon$  is chosen small.

Finally, from a priori estimates and Harnack's inequality,

$$ig| 
abla ilde wig|_{B_{arepsilon\sigma/2}(X_0)} \leq rac{C}{arepsilon\sigma} ig| ilde w(X_0)ig| hicksim rac{C}{arepsilon}.$$

The equilipschitzianity now follows.

COROLLARY 2. Lu = 0 in  $[\mathcal{C}\Omega^+(u)]^0 = \Omega^-(u)$ , and u is Lipschitz everywhere.

PROOF. By standard replacement techniques, it follows that  $u = \lim \tilde{w}_k$ on say  $B_{\varepsilon\sigma/4}$ . (By definition  $u \leq \lim \tilde{w}_k$ ). If  $u(X_2) < \lim \tilde{w}_k$ , we consider a new sequence  $\tilde{w}_k$  converging to u at  $X_2$ , and replace min  $(\tilde{w}_k, \tilde{w}_k)$  on  $B_{\varepsilon\sigma/2}$ (everything is non-positive on  $B_{3\varepsilon\sigma/4}$  and hence the free boundary inequality is not affected).

Note that it also follows that if u(X) = 0 for a point of  $(\mathcal{C}(\Omega^+))^0$ , then  $u(X) \equiv 0$  on the corresponding connected component of  $(\mathcal{C}(\Omega^+))^0$ .

COROLLARY 3. If K is compactly contained in D, then u is in K the uniform limit of a sequence of functions  $w_k \in \mathcal{F}$ .

If  $\overline{K} \subset [\mathcal{C}(\Omega^+(u))]^0$ ,  $w_k$  may be taken non-positive on  $\overline{K}$ .

PROOF. The first part follows from the fact that  $w^+$  are equilipschitz and the previous substitution lemma. For the second part, let

$$\overline{K}\subset\subset\overline{\overline{K}}\subset\subset [\mathcal{C}(\Omega^+)]^0$$

and assume  $\overline{K}$  and  $\overline{\overline{K}}$  have smooth boundary. Let

$$h = \begin{cases} \mathbf{L}h = 0 & \text{on } \overline{K} \setminus \overline{K} \\ h \equiv 0 & \text{on } \overline{K} \\ h \equiv 1 & \text{on } \partial \overline{\overline{K}}. \end{cases}$$

If  $\varepsilon$  is small

$$arepsilon \left. rac{\partial h}{\partial 
u} 
ight|_{\partial \overline{K}} \leq G(0) = \inf \ G(0,X,
u)$$

Let k be large so that  $w_k \leq \frac{\varepsilon}{2}$  on  $\overline{\overline{K}}$ , and consider

$$\overline{w}_k = \min (w_k, \varepsilon h).$$

#### 5. - $u^+$ is non-degenerate

In this section we use the fact that u is the least supersolution to show that  $u^+$  is non-degenerate.

LEMMA 6. (a) If  $X_0 \in \Omega^+(u)$  and  $d(X_0, \partial \Omega^+(u)) = r$ , then  $u(X_0) \ge Cr$ . (b) If  $X_1 \in F$  and  $\Sigma$  is a connected component of  $\Omega^+(u) \cap [B_r(X_1) \setminus B_{r/2}(X_1)]$ with  $(\overline{\Sigma} \cap \partial B_{r/2} \neq \emptyset$ 

$$\begin{cases} \overline{\Sigma} \cap \partial B_{r/2} \neq 0 \\ \overline{\Sigma} \cap \partial B_r \neq \emptyset, \end{cases}$$

then  $\sup_{\Sigma} u \geq Cr$ .

(c) 
$$\frac{|\Sigma \cap B_r|}{|B_r|} \ge C > 0.$$

Note: (a), (b) and (c) are *interior estimates*. That is, they are valid in any compact subset K of D, and the constants C depend on K.

PROOF. Since by Hopf principle  $\underline{u}$  grows linearly away from  $F(\overline{u})$ , part (a) is clear if

$$d(X_0,\Omega^+(\overline{u})) \leq \frac{r}{2}$$

Indeed, in that case,

$$\sup_{B_{3r/4}(X_0)}\underline{u}\geq Cr,$$

hence

$$\sup_{B_{3r/4}} \underline{u} \geq Cr$$

and by Harnack inequality

$$u(X_0) \geq Cr.$$

We may assume therefore that  $\overline{u} \leq 0$  on  $B_{r/2}(X_0)$ .

Let  $u(X_0) = \sigma \ll r$ . By Harnack's inequality on u, and the uniform convergence of the w's, we may choose  $w \in \mathcal{F}$ ,  $w \leq C\sigma$  on  $B_{r/2}$ .

$$\tilde{w} = \begin{cases} 0 & \text{on } B_{r/4}(X_0) \\ \min(w, M\sigma(1 - h_{X_0, r/w}) & \text{on } B_{r/2} \setminus B_{r/4} \\ w & \text{otherwise.} \end{cases}$$

Then, for *M* large enough (depending only on the *C* of Harnack's inequality)  $\tilde{w}$  is continuous along  $\partial B_{r/2}(X_0)$ . On the other hand, for  $M\sigma \ll r$ ,  $\tilde{w}$  is a

supersolution along  $\partial B_{r/4}$ , since  $|(h_{X_0,r/2})_{\nu}| \sim \frac{C}{r}$ . That completes the proof of part (a).

Part (c) will follow from part (b) and the fact that  $u^+$  is Lipschitz.

Part (b) is a general property of non-degenerate Lipschitz solutions of Lu = 0. We write it as an auxiliary lemma.

LEMMA 7. Let u be a Lipschitz non-degenerate function in  $\overline{\Omega} \cap B_1$  satisfying Lu = 0,  $u|_{\partial\Omega \cap B_1} = 0$  (with, as usual,  $a_{ij}$  uniformly elliptic). Assume further that if  $X_0 \in B_{1/2}$ ,

$$u(X_0) \ge Cd(X_0, \partial \Omega), \qquad 0 \in \partial \Omega.$$

Then, for  $r \leq \frac{1}{4}$ ,

$$\sup_{B_r(0)} u \geq Cr.$$

PROOF. The proof relies on the following observation. Let  $d(X_0, \partial \Omega) = \varepsilon$ , then  $u(X_0) \sim C\varepsilon$ . By the mean value theorem

$$u(X_0) = \int_{\partial B_{\epsilon}(X_0)} u f \, \mathrm{d}\sigma,$$

where f, the Poisson kernel, satisfies

(a) 
$$\int_{\partial B_{\epsilon}(X_0)} f \, d\sigma = 1$$

(since constants are solutions of Lu = 0). (b) For Y on  $\partial B_{\varepsilon}(X_0)$ 

$$\int_{\partial B_{\epsilon}(X_0)} \chi_{B_{\delta \epsilon}(Y)} f \, \mathrm{d}\sigma \geq C(\delta)$$

(C depending only on the ellipticity of  $a_{ij}$ ). Now, by the Lipschitz continuity of u,

$$u \leq rac{u(X_0)}{2} \sim C arepsilon$$

in an ~  $\sigma$ -neighbourhood of  $Y_0 \in \partial B_{\varepsilon} \cap \partial \Omega$ . Therefore

$$u(X_0) \leq \int_{\partial B_{\epsilon}(X_0)} \chi_{B_{\epsilon\delta}(Y_0)} \frac{u(X_0)}{2} f \, d\sigma$$
  
+ 
$$\sup_{\partial B_{\epsilon}(X_0)} u \int_{\partial B_{\epsilon}(X_0)} (1 - \chi_{B_{\epsilon\delta}(Y_0)}) f \, d\sigma.$$

That is,

$$\left(1-rac{\lambda}{2}
ight) \ u(X_0) \leq \sup_{\partial B_{m{arepsilon}}} \ u(1-\lambda)$$

for some  $\lambda \geq C(\delta)$ . That is

$$\sup_{\partial B_{m{arepsilon}}} \ u \geq \left[1 + ilde{C}(\delta)
ight] \ u(X_0)$$

or, for some point  $X_1$  in  $\partial B_{\varepsilon}$ , the following three quantities are comparable:

$$\left\{egin{array}{l} u(X_1)-u(X_0)\ u(X_0)\ |X_1-X_0|. \end{array}
ight.$$

If we repeat this argument *n*-times, we find points  $X_n$  so that

- (i)  $u(X_n) u(X_0) \ge C|X_n X_0|,$
- (ii)  $u(X_n) \ge (1 + \tilde{C})^n u(X_0),$
- (iii)  $|X_n X_{n-1}| = d(X_{n-1}, \partial \Omega).$

Let us start with  $X_0$ , a point very close to 0 (since  $0 \in \partial \Omega$ ). It follows from (ii) that there is a last  $X_n \in B_r$  (since  $u(X_n) \to +\infty$ ). Such an  $X_n \notin B_{r/2}$ . (This would imply  $X_{n+1} \in B_r$ , by (iii)). Therefore, by (i),

$$u(X_n) \ge u(X_0) + C|X_n - X_0| \ge C\left(rac{r}{2} - arepsilon
ight).$$

The proof is complete.

Part (b) of Lemma 6 follows by taking origin at a point of  $\partial \Sigma$  in the annulus

$$B_{3/4}(X_1) \setminus B_{2/3}(X_1)$$

(If such a point does not exist (b) is trivial).

#### 6. - u is a supersolution

In this section we will prove that u is a supersolution (not necessarily in  $\mathcal{F}$ ).

LEMMA 8. Assume that  $u(X_0) = 0$  and

$$u(X)^+ = \alpha \langle X - X_0, \nu \rangle^+ + o(|X - X_0|).$$

Then, if

$$u^-=eta\langle X-X_0,
u
angle^-+o(|X-X_0|),$$

we must have

$$\alpha \leq G(\beta, X_0, \nu).$$

PROOF. Let  $w_k \searrow u$  uniformly. Then  $w_k$  cannot remain strictly positive on a neighbourhood of  $X_0$  (if not, u would be a non-negative solution of Lu = 0). For each  $w_k$ , let

$$B_{m.k} = B_{\lambda_{m.k}} \left( X_0 + \frac{1}{m} \nu \right)$$

be the largest ball (with center  $X_0 + \frac{1}{m} \nu$  and radius  $\lambda_{m,k}$ ) contained in  $\Omega^+(w_k)$  tangent to  $\partial\Omega^+(w'_k)$  at  $X_{m,k}$ , with normal  $\nu_{m,k}$  at such points. Then, for adequate subsequences,

$$\lim_{k \to \infty} \lambda_{m,k} = \lambda_m,$$
$$\lim_{k \to \infty} X_{m,k} = X_m,$$
$$\lim_{k \to \infty} \nu_{m,k} = \nu_m,$$

where  $B_{\lambda_m}\left(X_0 + \frac{1}{m} \nu\right)$  is tangent to  $\partial \Omega^+(u)$  at  $X_m$ , with normal  $\nu_m$ . From the behavior of  $u^+$ ,

$$egin{aligned} |X_m-X_0| &= o\left(rac{1}{m}
ight),\ rac{1}{m} - o\left(rac{1}{m}
ight) &\leq \lambda_m \leq rac{1}{m},\ |
u_m-
u_0| &= o(1). \end{aligned}$$

Now, by definition of supersolution, there exist at  $X_{m,k}$  an  $\alpha_{m,k}$  and a  $\beta_{m,k}$ , with

$$\alpha_{\boldsymbol{m},\boldsymbol{k}} \leq G(\beta_{\boldsymbol{m},\boldsymbol{k}}, X_{\boldsymbol{m},\boldsymbol{k}}, \nu_{\boldsymbol{m},\boldsymbol{k}}),$$

that provide an asymptotic upper barrier for  $w_k$ .

That is, on  $B_{m.k}$ ,

$$\begin{split} & w_k^+ \leq \alpha_{m,k} \langle X - X_{m,k}, \nu_{m,k} \rangle^+ + o(|X - X_{m,k}|), \\ & w_k^- \geq G^{-1}(\alpha_{m,k}, X_{m,k}, \nu_{m,k}) \ \langle X - X_{m,k}, \nu_{m,k} \rangle. \end{split}$$

See Lemma A5 of Part II, adapted to Lu = 0 in the obvious manner. Since  $w_k^+ \ge u^+ \ge \alpha \langle X - X_0, \nu \rangle^+ + o(|X - X_0|)$ ,

$$\underline{\alpha}_m = \lim_{k \to \infty} \alpha_{m,k} \ge \alpha - o(1)$$

(o(1) refers of course to the *m*-variable). Therefore it will suffice to prove that

$$\underline{\beta}_{m} = \underline{\lim}_{k} \beta_{m,k} \leq \beta + o(1).$$

If  $\beta_{m,k} = 0$  there is nothing to prove. If  $\beta_{m,k} \neq 0$ , for any fixed r, from the proof of Lemma 3,

$$\tilde{\Phi}_{m,k}(r) \geq C(n)\alpha_{m,k}^2\beta_{m,k}^2.$$

Also

$$\lim_{k\to\infty} \tilde{\Phi}_{m,k}(r) = \tilde{\Phi}_{X_m,u}(r),$$

since

$$X_{m,k} \to X_m$$

and  $w_k$  converges uniformly to u. For the same reason

$$\lim_m \tilde{\Phi}_{X_m,u}(r) = \tilde{\Phi}_{X_0,u}(r).$$

Finally,

$$\lim_{r\to 0}\tilde{\Phi}_{X_0,u}(r)=C(n)\alpha^2\beta^2,$$

(also from the proof of Lemma 3). Hence, given  $\varepsilon$ , there exists r so that

 $ilde{\Phi}_{X_0,u}(r) \leq C(n) \alpha^2 \beta^2 + \varepsilon,$ 

there exist some m and some k so that

$$ilde{\Phi}_{m.k} = ilde{\Phi}_{X_{m.k},w_k} \leq C(n) \alpha^2 \beta^2 + 2\varepsilon,$$

from where

$$C(n) \alpha_{m,k}^2 \beta_{m,k}^2 \leq C(n) \alpha^2 \beta^2 + 2\varepsilon.$$

Since  $\underline{\lim}_{m,k} \alpha_{m,k} \ge \alpha$ , it follows that  $\underline{\lim}_{m,k} \beta_{m,k} \le \beta$ . The proof is now complete.

#### 7. - u is a subsolution

We are now ready to prove that u is a subsolution.

LEMMA 9. Assume that u has the asymptotic behavior

$$u(X) = lpha \langle X - X_0, 
u 
angle^+ - eta \langle X - X_0, 
u 
angle^- + o(|X - X_0|),$$

with  $\alpha > 0$ ,  $\beta \ge 0$ . Then  $\alpha \ge G(\beta, X_0, \nu)$ .

PROOF. The proof of this lemma requires, as usual, a perturbation argument, showing that, if  $\alpha < G(\beta, X_0, \nu)$  we may construct a function w in  $\mathcal{F}$  smaller than u, contradicting its minimality.

We first note that, even when  $\beta = 0$ , both domains  $\Omega^+(u)$  and  $\Omega^-(u)$  are tangent to  $\{\langle X - X_0, \nu \rangle = 0\}$  at  $X_0$  from the non-degeneracy of  $u^+$ . Our argument will be centered on

$$egin{aligned} u_0(X) &= \lim_{\lambda o 0} \; rac{1}{\lambda} \; u(X_0 + \lambda X) \ &= lpha \langle X, 
u 
angle^+ - eta \langle X, 
u 
angle^-. \end{aligned}$$

Assume

$$\alpha \leq G(\beta, X_0, \nu) - \delta_0,$$

with  $\delta_0 > 0$  and choose  $w_k \to u$ , uniformly, so that  $w_k$  becomes non-positive on any compact set of  $\Omega^-(u)$ . Then for any  $\gamma > 0$  ( $\gamma(\delta)$  to be chosen) we may find  $\lambda$  and k so that  $w_{k,\lambda}(X) = \frac{1}{\lambda} w_k(X_0 + \lambda X)$  satisfies

- (a) If  $\beta > 0$ ,  $w_{k,\lambda}(X)|_{\partial B_1} \le u_0 + \gamma \min(\alpha, \beta)$
- (b) If  $\beta = 0$ ,  $w_{k,\lambda}(X)|_{\partial B_1} \le u_0 + \alpha \gamma$  and  $w_{k,\lambda}(X) \le 0$  on  $\{\langle X, \nu \rangle < -\gamma\} \cap B_1$ . Or equivalently

$$w_{k,\lambda}(X) \leq u_0(X + \gamma \nu), \quad \text{ on } \partial B_1.$$

We now make a standard perturbation on  $u_0$  by changing its free boundary,

$$\begin{cases} u_1 = u_0(X + \gamma \nu) & \text{on } \partial B_1, \\ u_1 = 0 & \text{on } \langle X, \nu \rangle = -\gamma + \varepsilon \varphi(X), \\ L_\lambda u_1 = 0 & \text{on each side of } u_1 = 0, \end{cases}$$

where  $L_{\lambda} = a_{ij}(X_0 + \lambda X)$  and  $\varphi$  is a  $C_0^{\infty}$  function with  $\varphi \equiv 0$  outside  $B_{1/2}$ ,  $\varphi \equiv 1$  inside  $B_{1/4}$ .

From standard perturbation theory, along the new free boundary,

$$egin{aligned} \partial\Omega^+(u_1) &= \{\langle X-X_0, 
u 
angle = -\gamma + arepsilon arphi(X) \} \ & |u^-_{1,
u} - eta|, \ |u^+_{1,
u} - lpha| \leq \mathcal{O} \left(arepsilon + \lambda 
ight); \end{aligned}$$

hence, if  $\varepsilon$ ,  $\lambda$  are chosen small, depending only on  $\delta_0$ ,

$$\overline{w}_{k} = \begin{cases} \min \left( w_{k}, \lambda u_{1} \left( \frac{1}{\lambda} (X - X_{0}) \right) \right) & \text{on } B_{\lambda}(X_{0}), \\ w_{k} & \text{otherwise,} \end{cases}$$

becomes an element of  $\mathcal{F}$ .

Now, if  $\gamma << \epsilon$ , the set

$$\{\langle X, 
u 
angle \leq -\gamma + arepsilon arphi(X)\}$$

contains a neighbourhood of the origin, or equivalently  $X_0$  belongs to  $\Omega^-(w_k)$ , a contradiction.

PROOF OF THEOREM 1. The proof of Theorem 1 is now complete since whenever  $X_0 \in F$  has a tangent ball  $B_{\rho}$  from  $\Omega^+$ , both

$$\left. u^{+} \right|_{B_{\rho}}$$

and

$$u^{-}|_{\mathcal{C}B_{\mu}}$$

have a linear asymptotic behavior (see Lemma A1 of Part II and the comments after Definition 1) and when  $X_0$  has a tangent ball from  $\Omega^-$ , u has a full asymptotic development as follows from the non-degeneracy of  $u^+$ .

REMARK. We have not used yet the fact that  $w_k$  belongs to the restricted subfamily  $\mathcal{F}$ .

We therefore may now state a compactness theorem for weak solutions of our free boundary problems.

THEOREM 4. Let  $u_k$  be a sequence of minimal weak solutions to free boundary problems

$$egin{aligned} \mathbf{L}_k u_k &= 0, \ (u_k)_
u^+ &= G_k((u_k)_
u^-, X, 
u), \ &\underline{u}_k &\leq u_k \leq \overline{u}_k. \end{aligned}$$

Assume that  $L_k \to L$ ,  $G_k \to G$  uniformly in all of its variables,  $\underline{u}_k \to \underline{u}$ uniformly. Assume that the assumptions in  $L_k$ ,  $G_k$  and  $\underline{u}_k$  are satisfied uniformly (in particular the uniform one side regularity of the free boundary of  $\underline{u}_k$ ).

Then, if  $u_k \rightarrow u$  uniformly in a domain D, u is a weak solution of the limiting free boundary problem in D.

PROOF. The proof follows those of Lemmas 8 and 9.

We now start discussing Theorem 2. The proof follows closely the theory developed by Alt and the author (see [A-C]).

LEMMA 10. Let  $X_0 \in \partial \Omega^+$ , then, given  $\varepsilon < \delta$ , the following four quantities are comparable:

- (a)  $\frac{1}{\varepsilon} |\{u^+ < \varepsilon\} \cap B_{\delta}|,$
- (b) Area  $(\partial B_{\delta}) = C\delta^{n-1}$ ,
- (c)  $H^{n-1}(\partial \Omega^+(u) \cap B_{\delta}),$
- (d)  $N \varepsilon^{n-1}$ , where N is the number of any family of balls of radius  $\varepsilon$  with finite overlapping covering  $\partial \Omega^+(u) \cap B_{\delta}$ .

(We recall for the reader that given a compact set in  $\mathbb{R}^n$ , that has associated to each of its points a ball centred at it, we can always extract a countable subcovering such that the balls of the covering overlap a finite number of times m, depending only on the dimension, that is  $\Sigma \chi_{B_{ak}(X_k)} \leq m(n)$ ).

A HARNACK INEQUALITY APPROACH TO THE REGULARITY OF FREE BOUNDARIES 599

PROOF. Let  $u_{\varepsilon,s} = \max(s, \min(u, \varepsilon))$ . Then  $(0 < s < \varepsilon)$ 

$$0 = -\int_{B_1(X_0)} u_{\varepsilon,s} L u^+$$
  
= 
$$\int_{0 < s < u < \varepsilon} a_{ij} D_i u_{\varepsilon,s} D_j u + \int_{\partial B_1(X_0)} u_{\varepsilon,s} a_{ij} D_j u \nu_i dA.$$

But  $D_i u_{\varepsilon,s} = D_i u \chi_{s \le u \le \varepsilon}$ . Hence

$$\int_{0 < s < u < \varepsilon} (\nabla u)^2 \leq \int_{\partial B_1(X_0)} C\varepsilon \, \mathrm{d}A.$$

Letting s go to zero

$$\int_{0 < u < \epsilon} (\nabla u)^2 \le C \varepsilon \text{ Area } (B_1).$$

Now, on any ball  $B_{\sigma}$  centred at the free boundary we have  $\sup u^+ \sim \sigma$ , inf  $u^+ = 0$ . Hence  $(u^+ \text{ being Lipschitz})$ 

$$\int_{B_{\sigma}} (\nabla u)^2 \sim \text{ Vol } (B_{\sigma}).$$

Consider now a finite overlapping covering of  $\partial \Omega^+ \cap B_{1-\varepsilon}$  by balls  $B_{\varepsilon}(X_j)$ . Then,

$$\begin{split} & \int_{\cup B_{\varepsilon}(X_{j})} |\nabla u|^{2} \sim \sum_{B_{\varepsilon}(X_{j})} |\nabla u|^{2} \\ & \sim \sum \text{ Vol } (B_{\varepsilon}(X_{j})) \sim N \varepsilon^{n} \sim \sum \text{ Vol } B_{2\varepsilon}(X_{j}) \\ & \geq \text{ Vol } \mathcal{H}_{\varepsilon}(\partial \Omega^{+}) \cap B_{1} \geq C \int_{\cup B_{\varepsilon}(X_{j})} (\nabla u)^{2}. \end{split}$$

Hence, all of these quantities are comparable and controlled by

$$\varepsilon$$
 Area  $(B_1)$ .

Since u is Lipschitz and non-degenerate we may add

$$|\{0 < u^+ < \varepsilon\} \cap B_1| \sim \mathrm{Vol} \ \mathcal{N}_{\varepsilon}(\partial \Omega^+) \cap B_1$$

since, up to constants, one is contained in the others.

Next, let V be the solution of

.

$$\begin{cases} \mathbf{L}V = -\frac{1}{|B_{\sigma}(X_0)|} \chi_{B_{\sigma}(X_0)} & \text{in } B_1(X_0), \\ V = 0 & \text{on } \partial B_1(X_0). \end{cases}$$

From the behavior of the Green function for L (see [L-S-W]),  $V \leq C\sigma^{2-n}$  outiside of  $B_{\sigma}$  and  $V_{\nu} \sim C$  on  $\partial B_1$ .

We next write

$$\int_{\partial B_1} V_{\nu} \ \frac{u \ u_{\varepsilon}}{\varepsilon} = \int_{B_{\sigma}} (\mathbf{L}V) \ \frac{u \ u_{\varepsilon}}{\varepsilon} - \int_{B_1} V \mathbf{L} \ \frac{u \ u_{\varepsilon}}{\varepsilon}$$

The integral on the left is of order C independently of  $\sigma$ . On the right,

$$\left| \int_{B_{\sigma}} (\mathbf{L}V) \, \frac{u \, u_{\varepsilon}}{\varepsilon} \right| \leq \int_{B_{\sigma}} u \leq \overline{C}\sigma < \frac{C}{2}$$

for  $\sigma$  small. Hence

$$\int V \mathbf{L} \left(\frac{u \ u_{\varepsilon}}{\varepsilon}\right) \geq \frac{C}{2}.$$

That is

$$C\sigma^{2-n}rac{1}{arepsilon}\int\limits_{0< u$$

Therefore  $\epsilon$  Area $(B_1)$  is actually comparable to all other quantities.

Finally, we compare with  $H^{n-1}(\partial \Omega^+ \cap B_1)$ . Let  $B_{\varphi_k}$  be a finite covering of  $\partial \Omega^+ \cap \overline{B_{1-\epsilon}}$  by balls, with  $\varphi_k < \epsilon$ , that approximates  $H^{n-1}(\partial \Omega \cap B_{1-\epsilon})$ .

Let  $\varphi < \inf \varphi_k$  and  $B_{\varphi}(X_j^k)$  a finite overlapping covering for  $\partial \Omega^+ \cap B_{\varphi_k}$ . Then, on one hand

$$\sum A(B_{\varphi}) \leq C \ A(B_1),$$

by the discussion above with  $\varepsilon = \varphi$ . On the other hand

$$\sum_j A(B_{\varphi}(X_j^k)) \ge A(B_{\varphi_k}),$$

also by the discussion above after a  $\varphi$  dilatation of k. Hence the last equivalence is established.

The next observation is that for any w,  $\nabla w$  is a continuous vector field in  $\Omega^+(u)$ , since  $\Omega^+(u)$  is locally compactly contained in  $\Omega^+(w)$ .

COROLLARY 4. The reduced boundary of  $\Omega^+$  in the sense of De Giorgi (see [G]) has uniformly positive density in  $H^{n-1}$ -measure at any point of  $\partial \Omega^+$ .

PROOF. We will prove that, if  $X_0 \in F(u)$ ,  $H^{n-1}(\partial_{\text{red}}\Omega \cap B_r) \geq C r^{n-1}$ .

By scaling

$$u_r=\frac{1}{r} u(r(X-X_0)),$$

it is enough to prove it for r = 1. We use the same auxiliary function V, and since  $\nabla w$  is a continuous vector field in  $[\overline{\Omega^+(u)}]$ , we may write

$$\int_{\Omega^+\cap B_1} V \mathbf{L}w - w \mathbf{L}V = \int_{\partial_{\text{red}}\Omega^+\cap B_1} [V a_{ij}\partial_i w \nu_j - w \ a_{ij}\partial_j V \nu_i] dA$$
$$- \int_{\partial B_1} w \ a_{ij}\partial_j \nu_i dA.$$

That is,

$$\left|\int\limits_{B_{\sigma}} w + \int\limits_{\partial B_{1}} w V_{\nu^{*}} \mathrm{d}A\right| \leq C \sigma^{1-n} H^{n-1} (\partial_{\mathrm{red}} \Omega^{+}).$$

We let w converge uniformly to u, and choose  $\sigma$  small so that

$$\int\limits_{B_{\sigma}} u \sim C\sigma$$

cannot compete with

$$\int\limits_{\partial B_1} u \ V_{\nu^*} \sim - \int\limits_{\partial B_1} u \sim -C$$

and the corollary is proved.

We finally point out the regularity of the free boundary.

LEMMA 11. If  $X_0 \in \partial_{\text{red}} \Omega^+(u)$ , u has at  $X_0$  the asymptotic development

$$u=lpha\langle X-X_0,
u
angle^+-eta\langle X-X_0,
u
angle^-+o(|X-X_0|)$$

with

$$\alpha = G(\beta, X_0, \nu).$$

PROOF. From the compactness theorem (Theorem 4), the sequence  $u_{\lambda} = \frac{1}{\lambda} u(\lambda(X - X_0))$  converges to a solution  $u_0$  of the free boundary problem

$$\Delta u^0 = 0 \qquad \text{in } \Omega^+(u^0), \ \Omega^-(u^0)$$

and

$$\alpha = G(\beta, X_0, \nu).$$

Furthermore, since  $X_0 \in \partial_{\text{red}} \Omega^+(u^0)$ , it follows from the non-degeneracy of  $u^+$  that

$$\Omega^{-}(u^{0})\supset \{\langle 
u,X
angle < 0\}.$$

We now refer to Parts I and II (see [C,I] and [C,II]).

Since  $u_0^+$  is Lipschitz and non-degenerate, it follows from Lemma A1 of Part II that at infinity  $u_0^+$  behaves non-tangentially like  $\alpha \langle X, \nu \rangle + o(|X|)$ .

Shrinking back,

$$u_{00} = \lim_{\lambda o \infty} \;\; rac{1}{\lambda} \;\; u(\lambda X) = lpha \langle X, 
u 
angle^+ - eta \langle X, 
u 
angle^-$$

with

$$\alpha = G(\beta, \nu).$$

Therefore  $u_0$  falls under the hypothesis of Theorem 3 of Part II and Theorem 2 of Part I for large balls  $B_M$   $(M \to \infty)$ . Hence

$$u_0=lpha\langle X,
u
angle^+-eta\langle X,
u
angle^-.$$

In turn, this says that, if  $L = \Delta$ , *u* itself falls under the hypothesis of those theorems for small enough balls around  $X_0$ . Therefore

THEOREM 5. If  $X_0 \in \partial_{\text{red}}(\Omega^+)$  and  $\mathbf{L} = \Delta$ ,  $\partial \Omega^+$  is a  $C^{1,\alpha}$  surface in a neighbourhood of  $X_0$ .

#### REFERENCES

- [A-C] H.W. ALT L.A. CAFFARELLI, Existence and Regularity for a minimal problem with a free boundary, J. Reine Angew. Math 325 (1981), 105-144.
- [A-C-F] H.W. ALT L.A. CAFFARELLI A. FRIEDMAN, Variational problems with two phases and their free boundaries, T.A.M.S. 282 No. 2 (1984), 431-461.
- [C,I] L.A. CAFFARELLI, A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are  $C^{1,\alpha}$ , Revista Matematica Iberoamericana, to appear.
- [C,II] L.A. CAFFARELLI, A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz, to appear.
- [L-S-W] W. LITTMAN G. STAMPACCHIA H. WEINBERGER, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. di Pisa (3) 17 (1963), 43-77.
- [G] E. GIUSTI, *Minimal Surfaces and Functions of Bounded Variation*, Monographs in Mathematics, 1984.
- [G-T] GILBARG TRUDINGER, *Elliptic* P.D.E. of Second order, 2nd Ed., Springer, New York, 1983.

Department of Mathematics University of Chicago Chicago, IL 60637