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1. Introduction

Let  be a filtered probability space satisfying the usual conditions on which aÐ ß ß ß T ÑH Y Y>

standard Brownian motion  is defined;  is the natural filtrationÖF à ! Ÿ > Ÿ "× Ð Ñ> > !Ÿ>Ÿ"Y
generated by  and augmented with -null sets.  It is well known [9, 13] that, if  is aÐF Ñ T Q> >

Y Y> > >-square integrable martingale, then there exists an -adapted process  satisfying,L
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I ± L ± .>  ∞ Q œ IÒQ Ó  L .F Þ   such that – —' '         " >

! !
> > ! > >

#

 If the martingale  is given by the conditional expectation of some Brownian functionalQ>

Q œ IÒPÐFÑÎ Ó P ÐÒ!ß "ÓÑs> >Y V, where  is a Frechet differentiable functional defined on  then

Clark [4] has given an explicit representation of the process , namelyL
L œ IÒ ÐÐ>ß "Óß FÑÎ Ó Ð.?ßFÑ> >

P P- Y - where,  denotes the signed measure associated with the

Frechet derivative of .  He also uses this formula to solve a stochastic nonlinear filterings PÐFÑ
problem.  Haussmann [6] has extended this integral formula to functionals of Ito processes

with smooth causal coefficients

.\ œ ,Ð>ß\Ñ.>  Ð>ß\Ñ.F5

and established the following integral representation

PÐ\Ñ œ I Ð.?ß\Ñ Ð?Ñ Ð>ÑÎ Ð>ß\Ñ.F' 'H Ÿ    "

! Ð>ß"Ó

P "
> > - F F Y 5

where  denotes the unique solution of the equation of first variation associated to .FÐ?Ñ \
The proof is based on Cauchy-Maruyama approximation.  The last formula has been applied

to stochastic control problems [8].  Later in [7], the author gave another proof of this result

based on Girsanov's theorem.  Note also that this formula played a key role in Bismut's

version of Malliavin calculus [1].  Ocone [12] recovered the Haussmann-Clark formula by

using Malliavin calculus techniques, and extended it to the class of functionals  which areP
weakly -differentiable.  See Davis [5] for a proof using potential theory techniques.L
 The common assumption in all previous works is the differentiability of the coefficients

,ß \5 with respect to the state variable.  This assumption allows one to show that  admits aB
>

derivative with respect to initial condition, at least in the  sense.  In this paper we drop thisP#

hypothesis.  We suppose that  are only Lipschitz continuous in the state variable.  We,ß5
establish an integral representation formula in which  is defined by means of generalizedFÐ?Ñ
derivatives of the coefficients .  This is done in the nondegenerate, as well as in the,ß5
degenerate case.  The main idea in the proof is to show that even when the coefficients are

merely Lipschitz, it is possible to associate to the diffusion process  a unique linearized\B
>

version defined as the distributional derivative of  with respect to the initial condition.  In\B
>

the case where the matrix  is nondegenerate, our proof is carried out by using5 5Ð>ß BÑ Ð>ß BÑ‡

an approximation procedure and Krylov's inequality.  Roughly speaking, this inequality says

that the law of the random variable  is absolutely continuous with respect to Lebesgue\B
>

measure.  This property allows us to define a unique linearized version of the stochastic

differential equation (2.3).  That is, if we choose two versions of the generalized derivatives

of  and , then the corresponding transition matrices are equal., 5
 The method performed in the previous case is no longer valid in the degenerate case, and

the sort of derivative (with respect to the initial condition) defined will   have no sense.  In

this case, we make use of a result of Bouleau and Hirsch [2, 3] to define a generalized

derivative of the process defined on an enlarged probability space.  The idea is to consider a

slightly different stochastic differential equation defined on an enlarged probability space,

where the initial condition  will be taken as a random element.  This allows us to performB
operations outside negligible sets (in , which are not possible for the initial equation.  TheBÑ
method is inspired from result [2, 3], where the authors proved an absolute continuity result,

extending the well known Malliavin calculus methods.
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2.  Assumptions and Preliminaries

Let  be a probability space on which is defined a -dimensional Brownian motionÐ ß ß T Ñ .H Y
ÐF Ñ ÖF à ! Ÿ = Ÿ >× T> > =, and let  be the -algebra generated by  completed with -null sets ofY 5
Y V ‘.  Let  be the space of -valued continuous functions defined on , equippedÒ!ß X Ó Ò!ß X Ó.

with the topology of uniform convergence.   denotes its Borel -field.U V 5Ð Ñ
 Let  be a functional satisfying,PÀ Ò!ß X Ó ÄV ‘

P s is a measurable, polynomially growing, Frechet differentiable functional

in , with differential GÒ!ß X Ó P ÐBÑCÞ Ð#Þ"Ñ:

P ÀGÒ!ß X Ó Ä G Ò!ß X Ó Ð#Þ#Ñw ‡  is continuous and grows polynomially.

 According to the Riesz theorem, there exists a right continuous function .BÐ>Ñ œ
Ð Ð>Ñß Ð>Ñßá ß Ð>ÑÑ. . ." # .

B B B  of bounded variation such that,

P ÐBÑC œ . Ð>ÑCÐ>Ñw
"

!
B'    . .

 Consider the stochastic differential equation

œ .\ œ ,Ð>ß\ Ñ.>  Ð>ß\ Ñ.[
\ œ B

Ð#Þ$Ñ
B B B
> > > >

B
!

5

whose coefficients are Borel measurable functions satisfying  such thatbQ  !
aÐ>ß Bß CÑ − ‚ ‚‘ ‘ ‘

. .

± Ð>ß BÑ  Ð>ß CÑ ±  ± ,Ð>ß BÑ  ,Ð>ß CÑ ± Ÿ Q ± B  C ± Ð#Þ%Ñ5 5

± Ð>ß BÑ ±  ± ,Ð>ß BÑ ± Ÿ QÐ"  ± B ± ÑÞ Ð#Þ&Ñ5

 The assumptions (2.4) and (2.5) guarantee the existence and uniqueness of a strong

solution for equation (2.3), such that for any , sup .  Since the:  ! IÒ ± B ± Ó  ∞>ŸX >
:

functions  (the th column of the matrix  are Lipschitz continuous in the state variable,,ß 4 Ñ5 54

then according to the Rademacher theorem they are differentiable almost everywhere in the

sense of Lebesgue measure.  Let us denote by ,  any Borel measurable functions such,B
4
B5

that

`,
`B Bœ , Ð>ß BÑ .B      a.e.

`
`B

4
B

54

œ Ð>ß BÑ .B5      a.e.

 It is clear that these generalized derivatives are bounded by the Lipschitz constant .Q
 Let us recall Krylov's  inequality which will play a key role in the next section.
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   (Krylov [10])  Theorem 2.1: Let  be a filtered probability space,  a -Ð ß ß ß T Ñ ÐF Ñ .H Y Y> >

dimensional Brownian motion, ,  bounded adapted,À ‚ Ä À ‚ Ä ŒH ‘ ‘ 5 H ‘ ‘ ‘ 
. . .

processes such that:

b  ! a −   ± ±- 0 ‘ 0 55 0 - 0,  .. ‡ ‡ #

Let  be an Ito process.  Then for every Borel function\ œ B  ,Ð>ß Ñ.>  Ð>ß Ñ.F> >
> >

! !
' '= 5 =

0À ‚ Ä Ò!ß X Ó ‚ FÐ!ßQÑ‘ ‘ ‘
.  with support in  the following inequality holds:

I ± 0Ð>ß B Ñ ± .> Ÿ O ± 0Ð>ß BÑ ± .> .B     – — – —' ' '        X X

! !
>

FÐ!ßQÑ

."

"Î."

where  is a constant and  stands for the ball of center  and radius .O FÐ!ßQÑ ! Q

3.  The Nondegenerate Case

Assume that the hypothesis in the last section hold and suppose that the diffusion matrix

5Ð>ß BÑ satisfies the uniform ellipticity condition:

b  ! a − ß Ð>ß BÑ   ± ± Ð$Þ"Ñ- 0 ‘ 0 5 0 - 0,   . ‡ #

 Let us denote by  the solution of the following first variation equation associatedFÐ=ß >Ñ
with \B

>

H
�. Ð=ß >Ñ œ , Ð=ß\ Ñ Ð=ß >Ñ.=  Ð=ß\ Ñ Ð=ß >Ñ.[

Ð>ß >Ñ œ M
Ð$Þ#Ñ

F F 5 F

F

B
B 4 B 4
> B > =

"Ÿ4Ÿ.

.

where ,  are generalized derivatives of ., ,ßB
4 4
B5 5

 The main result of this section is the following:

   Theorem 3.1: Under assumptions ,  and , it holds thatÐ#Þ%Ñ Ð#Þ&Ñ Ð$Þ"Ñ

PÐ\ Ñ œ IÒ Ð>ÑÎ Ó Ð>ß\ Ñ.[ IÒPÐ\ ÑÓ Ð$Þ$ÑB B B
"

!
> >> >

'   - Y 5

where .- . FÐ>Ñ œ Ð.=ß\ Ñ Ð=ß >Ñ' "

>
B

 Proof:  Let  be a  nonnegative function defined on , with support in the unit ball: V ‘∞ .

such that .  For , define the following smooth functions': ÐCÑ.C œ " 8 − ‡

, Ð>ß BÑ œ 8 ,Ð>ß B  CÑ Ð8CÑ.C8 .' :

5 5 :4ß8 . 4Ð>ß BÑ œ 8 Ð>ß B  CÑ Ð8CÑ.CÞ'
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 It is a classical fact that the functions ,  are Borel measurable functions, Ð>ß BÑ Ð>ß BÑ8 4ß85
and -Lipschitz continuous in  such that:Q B

± , Ð>ß BÑ  ,Ð>ß BÑ ±  ± Ð>ß BÑ  Ð>ß BÑ ± Ÿ GÎ8 œ8 4ß8 4
85 5 &

54ß8 8 "Ð>ß BÑ , Ð>ß BÑ G B > − Ò!ß X Ó,  are  functions in , and for each ,

lim  and lim   -a.e.
8 Ä ∞

Ð>ß BÑ œ Ð>ß BÑ , Ð>ß BÑ œ , Ð>ß BÑ .B
8 Ä ∞

5 54ß8 4 8
B B B B

 Consider the sequence of stochastic differential equations

œ .\ œ , Ð>ß\ Ñ.>  Ð>ß\ Ñ.F[
\ œ BÞ

Ð$Þ%Ñ
8 8 8 8 8
> > > >

8
!

5

 The approximating coefficients ,  satisfying the conditions (2.4), (2.5),, Ð>ß BÑ Ð>ß BÑ8 4ß85
moreover they are smooth in  with bounded derivatives.  Therefore we are in a position toB
apply the Haussmann representation formula for the functional  (see [4]) which givesPÐ\ Ñ8

PÐ\ Ñ œ IÒ Ð>ÑÎ Ó Ð>ß\ Ñ.[ IÒPÐ\ ÑÓ Ð$Þ&Ñ8 8 8 8 8
"

!
> >> >

'   - Y 5

where  and- . F8 8 8"

>Ð>Ñ œ Ð.=ß\ Ñ Ð=ß >Ñ'

H
�. Ð=ß >Ñ œ , Ð=ß B Ñ Ð=ß >Ñ.=  Ð=ß\ Ñ Ð=ß >Ñ.[

Ð>ß >Ñ œ M
Ð$Þ'Ñ

F F 5 F

F

8 8 8 8 4ß8 8 8 4
B = B = =

"Ÿ4Ÿ.
8

..

 The continuity and the polynomial growth condition satisfied by  guarantee theP
convergence of  and  to  and  respectively.  Condition (2.2)PÐ\ Ñ IÒPÐ\ ÑÓ PÐ\Ñ IÒPÐ\ÑÓ8 8

ensures the convergence of  to  in .  It remains to show that. .Ð.=ß B Ñ Ð.=ß BÑ G Ò!ß X Ó8 ‡

F F F8Ð=ß >Ñ Ð=ß >Ñ Ð=ß >Ñ converges uniformly in probability to , and  does not depend on Borel

versions of the generalized derivatives of  and  .  This will be the subject, Ð4 œ "ß #ßá ß .Ñ54

of the next two lemmas.

 Lemma 3.2:   is well defined and does not depend on Borel versions of theFÐ=ß >Ñ
generalized derivatives of  and  up to  a.s. equality., T5
 Proof:  Let  be two Borel versions of the derivative of  at .  That is, for each, ß , , B" #

B B

> − Ò!ß X Ó , Ð>ß BÑ œ , Ð>ß BÑ .B ß,   a.e.  Let  defined similarly." # 4ß" 4ß#
B B B B5 5

 Denote by  (resp.  the solution of (3.2) corresponding to   (resp.F F 5" # " 4ß"
B BÐ=ß >Ñ Ð=ß >ÑÑ , ß

, ß Ñ# 4ß#
B B5 .  Then by Gronwall's inequality, we have

I ± Ð=ß >Ñ  Ð=ß >Ñ ± Ÿ O I ± , Ð>ß\ Ñ  , Ð>ß\ Ñ ± .>
> Ÿ = Ÿ X

    sup    – — – —H 'F F" # # " B # B #
X

!
B > B >
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Ÿ� – —' I ± Ð>ß\ Ñ  Ð>ß\ Ñ ± .>
"Ÿ4Ÿ.

X

!

4ß" B 4ß# B #
B > B >    

    

5 5

œ OÖM  M ×Þ" #

Since for , sup , we have lim sup:  ! I ± \ ±  ∞ TÒ ± \ ± c d>ŸX QÄ∞ >ŸX
B : B
> >

QÓ œ !Þ
 Therefore without loss of generality, we may suppose that  have compact, ß , ß ß" # 4ß" 4ß#

B B B B5 5
support .  By applying Krylov's inequality (thanks to condition (3.1)), weÒ!ß X Ó ‚ FÐ!ßQÑ
obtain

M Ÿ R ² ,  , ² œ !Þ" ."ßQ
# #
B B

The fact that  can be proved using similar arguments.M œ !#

 Equation (2.5) satisfies the Lipschitz conditions, due to the boundedness of the coefficients

,B
4
B and .  Hence it has a unique strong solution.5

 Lemma 3.3:  Let  resp.  be the solution of  resp. .  Then theF F8Ð=ß >Ñ Ð Ð=ß >ÑÑ Ð$Þ'Ñ Ð Ð$Þ#ÑÑ
following estimate holds

I ± Ð=ß >Ñ  Ð=ß >Ñ ± Ä !Þ
= Ÿ > Ÿ X 8 Ä ∞

    sup      – —F F8 #

 Proof:  Using the Burkholder-Davis-Gundy, Schwarz and Gronwall inequalities, we

obtain

I ± Ð=ß >Ñ  Ð=ß >Ñ ± Ÿ QI ± Ð=ß >Ñ ±
= Ÿ > Ÿ X = Ÿ > Ÿ X

    sup      sup– — – —F F F8 # 8 %

"Î#

‚ I ± , Ð>ß\ Ñ  , Ð>ß\ Ñ ± .>

Ú
ÛÜ – —'  

    X

!

8 8 B %
B > >B

"Î#

 I ± Ð>ß\ Ñ  Ð>ß\ Ñ ± .>

Þ
ßà� – —'

"Ÿ4Ÿ.

X

!

4ß8 8 4 B %
B > B >

"Î#

  .
    

5 5

 Since the coefficients in the linear stochastic differential equation (3.6) are bounded,

F8 :Ð=ß >Ñ >Ñ P :   " is uniformly (in  bounded in  for each .  Therefore, the first term in the

right hand side is finite.  To derive the desired result, it is sufficient to prove the following:
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M œ I ± , Ð>ß\ Ñ  , Ð>ß\ Ñ ± .> Ä ! 8 Ä ∞8 8 8 B %
"

X

!
B > >B   as – —'    

M œ I ± Ð>ß\ Ñ  Ð>ß\ Ñ ± .> Ä ! 8 Ä ∞ß4ß8
"

X

!

4ß8 8 4 B %
B > B >   as – —'    5 5

where .4 œ "ß #ßá ß .
 Let us prove the first one.  Let  be a fixed integer, then it holds that:8   "!

lim lim sup   
8 Ä ∞

M Ÿ Q I , Ð>ß\ Ñ  , Ð>ß\ Ñ ± .>
8 Ä ∞

8 8 8 8 8 %
" "

X

!
B > B >H – —'    !

I ± , Ð>ß\ Ñ  , Ð>ß\ Ñ ± .>  – —'    X
!

8 8 8 B %
B > B >
! !

I ± , Ð>ß\ Ñ  , Ð>ß\ Ñ ± .> Ÿ– —'   
    X

!

8 B B %
B > >B
!

œ Q ÐN  N  N Ñ"
8 8 8
" # $ .

 Let  be a continuous function such that  if  and .AÐ>ß BÑ AÐ>ß BÑ œ ! >  B   " AÐ!ß !Ñ œ "# #

Then for , we haveQ  !

lim sup   
8 Ä ∞

N Ÿ RQ I "  A ß .>8
" "

X

!

>
Q Q

BH – —' ˆ ‰ˆ ‰    
>

 I A ß ± , Ð>ß B Ñ  , Ð>ß B Ñ ± .>
8 Ä ∞

lim sup   .Ÿ– —' ˆ ‰    X

!

>
Q Q

B 8 8 8 8 %
B > B >

> !

 Applying Krlov's inequality we obtain

lim sup   
8 Ä ∞

N Ÿ RQ I Ð"  A ß .>8
" "

X

!

>
Q Q

BH– —8 9' ˆ ‰    
>
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R ² ,  , ²
8 Ä ∞
 lim sup .8 8

B B ."ßQ
! Ÿ

 Note that we have used the fact that the diffusion matrix  satisfies the58Ð>ß BÑ
nondegeneracy condition with the same constant  as .  According to the fact that - 5Ð>ß BÑ ,8B
converges to , -a.e., the last expression in the right hand side tends to  as  tends to, .B ! 8B !

∞ Q ∞ AÐ>ß BÑ.  Next, letting  go to  and using properties of the function  we conclude

that lim sup .  We use the continuity of  in  and the convergence in8Ä∞
8 8
$ BN œ ! , B!

probability (uniformly in  of  to  to see that lim   in>Ñ \ \ , Ð>ß\ Ñ œ , Ð>ß\ Ñ8 B 8 8 8 B
> > B > B >8Ä∞

! !

probability.  Using the dominated convergence theorem we show that lim sup .8Ä∞
8
#N œ !

Hence lim .8Ä∞
8
MM œ !

 By the same arguments, one can prove that for each , lim   ,4 œ "ß #ßá ß . M œ !8Ä∞
4ß8
#

which completes the proof.

   Suppose that for each , the law of  is absolutely continuous withRemark 3.4: >   ! \B
>

respect to Lebesgue measure.  Assume moreover that the family  of densitiesÖ: Ð>ß CÑß 8   "×8

of the approximating processes  is equi-integrable.  Then formula (3.3) remains valid.\8
>

4.  The Degenerate Case

Throughout this section, the reference probability space is the usual Wiener space.  We

assume that the coefficients  and the functional  satisfy the hypotheses of the last section,ß P5
except condition (3.1) on the uniform ellipticity of .5 5Ð>ß BÑ Ð>ß BÑ‡

 Let us recall some preliminaries and notations which will be applied in this section to

establish the Haussmann-Clark representation formula.  See [2, 3] for details and proofs.

 Let  be the space of continuous functions  such that , endowedH V ‘ ‘ = =œ Ð ß Ñ Ð!Ñ œ !! 
.

with the topology of uniform convergence on compact subsets of .  Let  be the Borel -‘ Y 5

field over ,  be the Wiener measure on  and , the filtration of coordinatesH H Y YT Ð ß Ñ Ð Ñ> > !

augmented with -null sets of .T Y
 Let us define the canonical process , for all .F Ð Ñ œ Ð>Ñ >   !> = =
Ð ß ß Ð Ñ ß T ßF ÑH Y Y> > ! >  is then a Brownian motion.

 Let  be a continuous positive function on  such that  and2 2ÐBÑ.B œ "‘. '' ± B ± 2ÐBÑ.B  ∞ H œ Ö0 − P Ð2.BÑ − P Ð2.BÑ# # #`0
`B.  Define the space , such that ,

4

4 œ "ßá ß .×, where  denotes the derivative in the sense of distributions.
`0
`B4

 Equipped with the norm

² 0 ² œ 0 2.B  2.B ÞH
#

"Ÿ4Ÿ.

`0
`B

#
"Î#

– —' '� Š ‹
4

H H is a Hilbert space, which is a classical Dirichlet space [2, 3].  Note also that  is a subset

of the Sobolev space .L Ð Ñ" .
loc ‘

 Let  the Borel -field over  and .H ‘ H Y 5 H
µ µ

œ ‚ ß T œ 2.B Œ T
µ µ.

 Let ,  be the natural filtration of  augmented with -negligibleF ÐBß Ñ œ F Ð Ñ F T
µ µ µ µ

> > > >= = Y

sets.  It is clear that  is a Brownian motion.Ð ß ß Ð Ñ ß T ßF Ñ
µ µ µ µ µ
H Y Y > > ! >

 Let us define the Hilbert space  which is a general Dirichlet space see [3])H Ð
µ
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H œ
µ ?À Ä ß b? À Ä ? œ ? ßT

µ µµ µ µ

aÐBß Ñ − ß > Ä ?ÐB  >/ ß Ñ
µH ŸH ‘ H ‘

= H =

 Borel measurable such that -a.e. and

 is locally absolutely continuous.3

 Let  be the process defined on the enlarged space , which is\ Ð ß ß Ð Ñ ß T ßF Ñ
µ µ µ µ µµ

> > > ! >H Y Y
the solution of the following SDE

H .\ œ ,Ð>ß\ Ñ.>  Ð>ß\ Ñ.F
µ µ µ µ

\ œ BÞ
µ Ð%Þ"Ñ> > > >

!

5

 Since the coefficients  are Lipschitz continuous and grow at most linearly, (4.1) has a,ß5

unique, continuous, -adapted solution.  Note that equations (2.3) and (4.1) are almost theY
µ

>

same except that uniqueness for (4.1) is slightly weaker.  One can easily prove that the

uniqueness implies that for each , , -a.s.>   ! \ œ \ T
µ µ

> >

   (Bouleau-Hirsch [2, 3]   Theorem 4.1: Ñ For -almost every T =
  For all , .Ð3Ñ >   ! \ Ð Ñ − H § ÐL Ð ÑÑ>

. " . .
69-= ‘

  There exists a -adapted, -valued continuous process  such thatÐ33Ñ KP Ð Ñ Ð Ñ
µ µ
Y ‘ F> . >

for -almost every T À=

a>   !ß Ð\ Ð ÑÑ œ ÐBß Ñ .B
µ`

`B
B
> >= F = , -a.e.

where  denotes the derivative in the sense of distributions.`
`B

   As a consequence of the last theorem, the image measure of  by the mapRemark 4.2: T
µ

\
µ

> is absolutely continuous with respect to Lebesgue measure.

 Lemma 4.3:  The distributional derivative  is the unique solution of the linearF
µ

>

stochastic differential equation

Ú
ÛÜ

�. Ð=ß >Ñ œ , Ð=ß\ Ñ Ð=ß >Ñ.=  Ð=ß\ Ñ Ð=ß >Ñ.F
µ µ µ µ µ µ

µ
Ð>ß >Ñ œ M

Ð%Þ#Ñ
F F 5 F

F

B = =
"Ÿ4Ÿ.

4
B =

4

.

where  and  are versions of the almost everywhere derivatives of  and ., ,B
4 4
B5 5

 Proof:  Since the image measure of  by the map  is absolutely continuous withT \
µ µ

>

respect to Lebesgue measure,  is well defined and does not depend on the versions ofF
µ

Ð=ß >Ñ

the Borel derivatives , .  Moreover, since the coefficients  and  are, , Ð=ß\ Ñ Ð=ß\ Ñ
µ µ

B B = =
4 4
B B5 5

bounded, equation (4.2) satisfy Lipschitz conditions and has a unique -adapted continuousY
µ

>

solution.  The fact that  satisfies equation (4.2) is based on the absolute continuity ofF
µ

Ð=ß >Ñ

the law of  and on the approximation of the coefficients  and  by smooth ones.  See [2]\ ,
µ

> 5
for details.

 The main result of this section is the following.

 Theorem 4.4:  Assume that the coefficients  and the functional  satisfy  hypotheses,ß P5
Ð#Þ"Ñ Ð#Þ&Ñ À- .  Then the following martingale representation formula holds
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PÐ\ Ñ œ IÒ Ð>ÑÎ Ó Ð>ß\ Ñ.F  I ÒPÐ\ ÑÓ T
µ µ µ µ µ µ µµ'    "

!
> > >- Y 5    -a.s.

where  and  is the distributional derivative of  with- . F F =
µ

Ð>Ñ œ Ð.=ß\ Ñ Ð=ß >Ñ Ð=ß >Ñ \ Ð Ñ
µ µ µ' "

>
B
>

respect to .B
  The proof of Theorem 4.4 is based on the next two lemmas.

 Lemma 4.5:  Let  be the smooth functions defined in the last section.  Let the, ß5 4ß55

processes ,  be defined on  by the stochastic] Ð=ß >Ñ Ð ß ß Ð Ñ ß T ßF Ñ
µ µ µ µ µ µµ5 5

> > > ! >G H Y Y
differentials

H .] œ , Ð>ß\ Ñ.>  Ð>ß\ Ñ.F
µ µ µ µ

] œ B
µ Ð%Þ$Ñ

5

>
5 5

> > >
5

!

5

ÚÝÛÝÜ
�. Ð=ß >Ñ œ , Ð=ß\ Ñ Ð=ß >Ñ.=  Ð=ß\ Ñ Ð=ß >Ñ.F

µ µ µ µ µ µ

µ
Ð=ß >Ñ œ M

Ð%Þ%Ñ
G F 5 F

G

5 4
5 4ß5
B B == =

"Ÿ4Ÿ.

5

..

Then,

lim     sup
5 Ä ∞

I ± ] \ ± œ !
= Ÿ > Ÿ X

µ µ– —5

> >
#

and

lim     sup
5 Ä ∞

I ± Ð=ß >Ñ  Ð=ß >Ñ ± œ !Þ
= Ÿ > Ÿ X

µ µ– —G F
5

#

 Proof:  To prove that  we use the fact that for each , , (resp.] Ä \ >   ! , Ð>ß BÑ
µ µ5

> >
5

5 55Ð>ß BÑÑ ,Ð>ß BÑ Ð>ß BÑÑ converges uniformly to  (resp.  and apply the dominated convergence

theorem.  Applying the standard arguments of stochastic differential equations yields

I ± Ð=ß >Ñ  Ð=ß >Ñ ± Ÿ QI ± Ð=ß >Ñ ±
= Ÿ > Ÿ X = Ÿ > Ÿ X

µ µ µ
    sup     sup– — – —G F F5

# %

"Î#

‚ I ± , Ð>ß\ Ñ  , Ð>ß\ Ñ ± .>
µ µ

Ú
ÛÜ – —'   

    X

!

5 %
B > B >

"Î#
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 I ± Ð>ß\ Ñ  Ð>ß\ Ñ ± .> Þ
µ µ

Þ
ßà� – —'

"Ÿ4Ÿ.

X

!

4ß5 4 %
B B> >

"Î#

    
     

5 5

 Clearly sup .  Let us prove thatIÒ ± Ð=ß >Ñ ± Ó  ∞
µ

=Ÿ>ŸX
%F

I ± , Ð>ß\ Ñ  , Ð>ß\ Ñ ± .> ! 5 Ä ∞Þ Ð%Þ% Ñ
µ µ

    converges to  as – —'    X
!

5 % w
B > B >

Let  be the density of  with respect to Lebesgue measure.  Then: Ð>ß CÑ \µ µ
>

I ± , Ð>ß\ Ñ  , Ð>ß\ Ñ ± .> œ ± , Ð>ß CÑ  , Ð>ß CÑ ± : Ð>ß CÑ.>.CÞ
µ µ µ – —' ' '        X X

! !

5 % 5 %
B B> B > B

‘.

 Since  and  are bounded by the Lipschitz constant and , , a.e., follows, , Ð%Þ% Ñ , Ä ,5 w 5
B BB B

from the dominate convergence theorem.  Using the same technique, we prove that for each

4 œ "ßá ß .,

lim   
5 Ä ∞

I ± Ð>ß\ Ñ  Ð>ß\ Ñ ± .> œ !Þ
µ µ– —'   X

!

4ß5 4 %
B B> >5 5

 Lemma 4.6:  Let  and  be the unique solutions of the following stochastic\ Ð=ß >Ñ
µ µ5 5

> F
differential equationsÀ

H .\ œ , Ð>ß\ Ñ.>  Ð>ß\ Ñ.F
µ µ µ µ

] œ B
µ Ð%Þ&Ñ5 >>

5 5
5 5

> >
5

!

5

ÚÝÛÝÜ
�. Ð=ß >Ñ œ , Ð=ß\ Ñ Ð=ß >Ñ.=  Ð=ß\ Ñ Ð=ß >Ñ.F

µ µ µ µ µ µ

µ
Ð=ß >Ñ œ M Þ

Ð%Þ'Ñ
F F 5 F

F

5 5 5 5 5 4
5 4ß5
B > B > =

"Ÿ4Ÿ.

5

.

Then as 5 Ä ∞

I ± \ \ ± Ä ! I ± Ð=ß >Ñ  Ð=ß >Ñ ± Ä !Þ
= Ÿ > Ÿ X = Ÿ > Ÿ X

µ µ µ µ
    sup  and     sup– — – —5 5

> >
# #F F
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   Similar to the proof of the previous lemma.Proof:

   Since  and  are smooth functions,Proof of Theorem 4.4: ,5 55

PÐ\ Ñ œ IÒ Ð>ÑÎ Ó Ð>ß\ Ñ.[ IÒPÐ\ Ð † ÑÑÓ8 8 [ 8 8 8
"

!
> > >'   - Y 5

where ,  and  are given by equations (3.4) and- . F F8 8 8 8 8"

>Ð>Ñ œ Ð.=ß\ Ñ Ð=ß >Ñ \ Ð=ß >Ñ'
(3.6). Since  and , -a.s.,\ œ \ Ð=ß >Ñ œ Ð=ß >Ñ T

µ µ µ8 8
8

8
F F

PÐ\ Ñ œ I Ò ÑÎ Ó Ð>ß\ Ñ.F  I ÒPÐ\ Ð>ÑÑÓ
µ µ µ µ µ µµ8 8"

!

8

> > >
8

>
'     - Y 5

where

- . F
µ

Ð>Ñ œ Ð.=ß\ Ñ Ð=ß >ÑÞ
µ µ8 "

>

8 8'    

 According to Lemmas 4.5 and 4.6 and the continuity of , one can pass to the limit.Ð.=ß † Ñ
in the last formula and obtain the desired result.  Note that we have proved the convergence in

P P :   ## :, but in fact this convergence is valid in  for each .

 Corollary 4.7:  Assume that for each , the law of  is absolutely continuous with>   ! \B
>

respect to Lebesgue measure.  Then the Hausmann-Clark formula given in Theorem  holds%Þ%
on the probability space .Ð ß ß ß T ÑH Y Y>

 Proof:  Consider the sequence of processes

œ .\ œ , Ð>ß\ Ñ.>  Ð>ß\ Ñ.F
\ œ B

8 8 B 8 B
> > > >

8
!

5

H
�. Ð=ß >Ñ œ , Ð=ß\ Ñ Ð=ß >Ñ.=  Ð=ß\ Ñ Ð=ß >Ñ.F

Ð>ß >Ñ œ M

F F 5 F

F

8 8 B 4ß8 B 4
B > B > =

"Ÿ4Ÿ.
8

.

where  is the unique solution of the linear SDEFÐ=ß >Ñ

H
�. Ð=ß >Ñ œ , Ð=ß\ Ñ Ð=ß >Ñ.=  Ð=ß\ Ñ Ð=ß >Ñ.F

Ð>ß >Ñ œ M Þ

F F 5 F

F

B
B 4 B 4
> B > =

"Ÿ4Ÿ.

.
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 Note that since the law of  is absolutely continuous with respect to Lebesgue measure,\B
>

FÐ=ß >Ñ is well defined (the proof is performed as in Lemma 3.2).  Now apply the Hausmann-

Ocone formula for  (see [11]) to obtainPÐ\ Ñ8

PÐ\ Ñ œ IÒPÐ\ ÑÓ  IÒH PÐ\ ÑÎ Ó.[8 8 8
"

!
> > >'    Y

where  denotes the Malliavin derivative of , given byH PÐ\ Ñ PÐ\ Ñ>
8 8

H PÐ\ Ñ œ Ð.=ß\ ÑH Ð\ Ñ> >
8 8 8

"

>
=

'    .

and .H Ð\ Ñ œ Ð=ß >Ñ Ð>ß\ Ñ>
8 8 8 B
= >F 5

 We conclude by observing that sup  andIÒ ± \ \ ± Ó Ä !=Ÿ>ŸX
8 #
> >

I ± Ð=ß >Ñ  Ð=ß >Ñ ± Ä ! 5 Ä ∞Þ
= Ÿ > Ÿ X

    sup  as – —F F8 #

   In particular, the absolute continuity assumption is satisfied in the oneRemark 4.8:

dimensional case and the coefficients  are time independent such that  for some,ß ÐBÑ Á !5 5
initial condition.
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