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ABSTRACT

Consumer Internet of Things (IoT) devices are extremely popular,

providing users with rich and diverse functionalities, from voice

assistants to home appliances. These functionalities often comewith

significant privacy and security risks, with notable recent large-

scale coordinated global attacks disrupting large service providers.

Thus, an important first step to address these risks is to know what

IoT devices are where in a network. While some limited solutions

exist, a key question is whether device discovery can be done by

Internet service providers that only see sampled flow statistics. In

particular, it is challenging for an ISP to efficiently and effectively

track and trace activity from IoT devices deployed by its millions

of subscribersÐall with sampled network data.

In this paper, we develop and evaluate a scalable methodology

to accurately detect and monitor IoT devices at subscriber lines

with limited, highly sampled data in-the-wild. Our findings indi-

cate that millions of IoT devices are detectable and identifiable

within hours, both at a major ISP as well as an IXP, using passive,

sparsely sampled network flow headers. Our methodology is able

to detect devices from more than 77% of the studied IoT manufac-

turers, including popular devices such as smart speakers. While our

methodology is effective for providing network analytics, it also

highlights significant privacy consequences.
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1 INTRODUCTION

The number of IoT devices deployed within homes is increasing

rapidly. It is estimated that at the end of 2019, more than 9.5 billion

IoT devices were active, and the IoT population will increase to 20

billion by 2025 [1]. Such devices include virtual assistants, smart

home control, cameras, and smart TVs. While users deploy some

IoT devices explicitly, they are often unaware of the security threats

and privacy consequences of using such devices [2]. Major Internet

Service Providers (ISPs) are developing strategies for dealing with

the large-scale coordinated attacks from these devices.

Existing solutions focus on instrumenting testbeds or home en-

vironments to collect and analyze full packet captures [3ś5], lo-

cal search for IoT anomalies [6, 7], active measurements [8, 9], or

data from antivirus companies running scan campaigns from users

homes [7]. In isolation, these data sources do not provide enough

insights for preventing network-wide attacks from IoT devices [10].

Detecting IoT devices from an ISP can help to identify suspicious

traffic and what devices are common among the subscriber lines

generating that traffic.

In this paper, we present a methodology for detecting home IoT

devices in-the-wild at an ISP, and an Internet Exchange Point (IXP),

by relying on passive, sampled network traces and active probing

experiments. We build on the insight that IoT devices typically

rely on backend infrastructure hosted on the cloud to offer their

services. While contacting such infrastructure, they expose infor-

mation, including their traffic destinations, even when a device is

not in use [4]. One of the challenges of detecting IoT devices at

scale is the poor availability and low granularity of data sources.

The available data is often in the form of centrally-collected aggre-

gate and sampled data (e.g., NetFlow [11], IPFIX traces [12]). Thus,

we need a methodology that (a) does not rely on payload and (b)

handles sparsely sampled data.

87

This work is licensed under a Creative Commons Attribution International 4.0 License

https://doi.org/10.1145/3419394.3423650
https://doi.org/10.1145/3419394.3423650
https://creativecommons.org/licenses/by/4.0/


IMC ’20, October 27–29, 2020, Virtual Event, USA Saidi et al.

Another challenge is traffic patterns diversity, across IoT devices

and their services.1 We note that some devices, e.g., cameras, will

generate significant continuous traffic; others, e.g., plugs, can be

expected to be mainly passive unless used. Moreover, many devices

offer the same service, e.g., the Alexa voice assistant [13] is available

on several brands of smart speakers as well as on Amazon Fire

TV devices. Here, the traffic patterns may depend on the service

rather than the specific IoT device. Some services rely on dedicated

backend infrastructures, while others may use shared ones, e.g.,

CDNs. Thus, we need a methodology that identifies which IoT

services are detectable from the traffic and then identifies a unique

traffic pattern for each IoT device and associated services.

Our key insight is that we can address these challenges by fo-

cusing our analysis only on the types of destinations contacted by

IoT devices. Even with sparsely sampled data, the set of servers

contacted by an IoT device over time can form a reasonably unique

signature that is revealed in as little as a few hours. However, this

approach has limitations, for example we cannot use it to detect

devices or services that use a shared infrastructure with unrelated

services (e.g., CDNs).

To understand the detectability of IoT devices in the above-

mentioned environment, we focus on the possible communication

patterns of end-user IoT services and the types of destinations they

contact. Figure 1 shows three possible communication patterns on

top of a typical network topology. This includes three households,

an ISP, as well as a dedicated infrastructure and a CDN that hosts

multiple servers. Device A is deployed by two subscribers, and only

contacts one server in the dedicated infrastructure. Device B is de-

ployed by a single subscriber and contacts both a dedicated server,

as well as a CDN server. Device C is deployed by two subscribers

and contacts only CDN servers. We observe that, using NetFlow

traces at the ISP edge, it is possible to identify subscriber lines host-

ing devices of type A and B. Devices of type C are harder to detect

given the sampling rates and header-only nature of NetFlow.

In this paper, we use a unique testbed and dataset to build a

methodology for detecting and monitoring IoT devices at scale (see

Figure 2). We first use controlled experiments, where we tunnel the

traffic of two IoT testbeds with 96 IoT devices to an ISP. This pro-

vides us with ground truth IoT traffic within this ISP (Section 2). We

confirm the visibility of the ground truth IoT traffic using the Net-

Flow ISP data (Section 3). Next, we identify backend infrastructures

for many IoT services, from the observed ISP IoT traffic (Section 4).

We augment this base information with data from DNS queries,

web certificates, and banners. Next, we use the traffic signatures to

identify broadband subscriber lines using IoT services at the ISP,

as well as an IXP (Section 6). Finally, we discuss our results, their

significance, and limitations in Section 7, related work (Section 8),

and conclude with a summary in Section 9.

Our main contributions are as follows:

• We develop a methodology for identifying IoT devices, by classi-

fying domains and IP addresses of the backend infrastructure. To

this end we derive distinct signatures, in terms of IP/domain/port

destinations, to recognize IoT devices. With our signatures we

1Here we refer to IoT services as the set of protocols and destinations that are part of
the operations of an IoT device.
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Figure 1: Simplified IoT communication patterns.

were able to recognize the presence of devices from 31 out of 40

manufacturers in our testbed.2

• We show that it is possible to detect the presence of IoT devices

at subscriber lines, using sparsely sampled flow captures from

a large residential ISP, and a major IXP, even if the device is

idle, i.e., not in active use. Specifically, we were able to recognize

that 20% of 15 million subscriber lines used at least one of the 56

different IoT products in our testbed.

• We highlight that our technique scales, is accurate, and can iden-

tify millions of IoT devices within minutes, in a non-intrusive

way from passive, sampled data. In the case of the ISP, we were

able to detect the presence of devices from 72% of our target

manufacturers within 1 hour, sometimes minutes.

Based on our findings, we also discuss why some IoT devices are

faster to detect, how to hide an IoT service, as well as how the

detectability can be used to improve IoT services and network

troubleshooting.

2 IOT ś CONTROLLED EXPERIMENTS

We need ground truth traffic from IoT devices, as observed both in a

testbed and in the wild, for developing and testing our methodology.

In this section, we describe our data collection strategy (see point

1 of Figure 2).

2.1 Network Setting

We utilize two vantage points, namely a large European ISP, and a

major European IXP.

ISP (ISP-VP). The ISP is a large residential ISP that offers Internet

services to over 15 million broadband subscriber lines. The ISP uses

NetFlow [11] to monitor the traffic flows at all border routers in

its network, using a consistent sampling rate across all routers.

Figure 3 shows where NetFlow data is collected.

IXP (IXP-VP). The IXP facilitates traffic exchange between its

members. At this point, it has more than 800 members, including

international, with peak traffic exceeding 8 Tbps. The IXP uses

IPFIX [12] to collect traffic data across its switching fabric at a

consistent sampling rate, which is an order of magnitude lower

than the one used at the ISP. Figure 4 illustrates where the IPFIX

data is collected.

2To foster further research in the area of IoT privacy and security, we make all the
signatures available at https://moniotrlab.ccis.neu.edu/imc20/
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Ethical considerations ISP/IXP.Neither the ISP nor the IXP flow

data contain any payload data, thus no user information. We distin-

guish user IPs from server IPs and anonymize by hashing all user

IPs, following the method described in [5]. The address space of

the ISP residential users is known. We call an IP a server IP if it

receives or transmits traffic on well-known ports or if it belongs to

ASes of cloud or CDN providers. The ports include, e.g., web ports

(80, 443, 8080), NTP (123), DNS (53). Moreover, we do not have any

specific user activity and can only access and report aggregated

statistics in accordance with the policies of the ISP and IXP.

Subscriber line (Home-VP) Network setup. In order to ingest

ground truth traffic into the network, we need privileged access to

a home subscriber line. For this, we use the ISP-VP, but rather than

deploying all IoT devices directly within the home, we placed a

VPN endpoint with an IP out of the /28 subscriber’s prefix and used

it to ingest IoT traffic tunneled to the server from two IoT testbeds,

one in Europe, one in the US, see Figure 3. The measurement points

within the ISP will also capture this traffic. We simply excluded this

traffic from our dataset, as the VPN tunnel endpoints are known

to us and for each experiment we use the default DNS server for

the ISP. Importantly, since the /28 prefix is used explicitly for our

experiments, there was no other network activity other than that

of the IoT devices.

Ethical considerationsśHome-VP setting. With the coopera-

tion of the ISP, we were able to use a reserved /28 allocated to this

specific subscriber line (Home-VP) (with signed explicit consent)

out of a /22 prefix reserved for residential users. Thus, the analysis

in this paper only considers traffic explicitly ingested by the ground

truth experiments and does not involve any user-generated traffic.

2.2 Ground Truth Traffic Setting

The IoT testbeds used here consist of 96 devices from 40 vendors.

We selected the devices to provide diversity within and between

different categories: surveillance, smart hubs, home automation,

video, audio, and appliances. Most of these are among the most

popular devices, according to Amazon, in their respective region.

Our testbed includes multiple instances of the same device (56

different products), so that we can see the destinations that each

product contacts in different locations. For a list of the IoT devices

Category Device Name

Surveillance Amcrest Cam, Blink Cam, Blink Hub, Icsee Doorbell, Lefun Cam,
Luohe Cam, Microseven Cam, Reolink Cam, Ring Doorbell,
Ubell Doorbell, Wansview Cam, Yi Cam, ZModo Doorbell

Smart Hubs Insteon, Lightify, Philips Hue, Sengled, Smartthings, SwitchBot,
Wink 2, Xiaomi

Home Automation D-Link Mov Sensor, Flux Bulb, Honeywell T-stat, Magi-
chome Strip, Meross Door Opener, Nest T-stat, Philips Bulb,
Smartlife Bulb, Smartlife Remote, TP-Link Bulb, TP-Link Plug,
WeMo Plug, Xiaomi Strip, Xiaomi Plug

Video Apple TV, Fire TV, LG TV, Roku TV, Samsung TV
Audio Allure with Alexa, Echo Dot, Echo Spot, Echo Plus,

Google Home Mini, Google Home
Appliances Anova Sousvide, Appkettle, GE Microwave, Netatmo Weather,

Samsung Dryer (idle), Samsung Fridge (idle), Smarter Brewer,
Smarter Coffee Machine, Smarter iKettle, Xiaomi Rice Cooker

Table 1: IoT devices under test. idle indicates that we capture the

traffic just for idle periods because the experiments could not be

automated.

and the category of each device, we refer to Table 1. We redirect all

IoT traffic to the Home-VP within the ISP, and we capture all the

traffic generated by the IoT devices (see 1 in Figure 2).

Most of the selected IoT devices are controlled using either a

voice interface provided by a voice assistant (such as Amazon Alexa)

or via a smartphone companion application. We use the voice inter-

face to automate active experiments by producing voice commands

using a Google Voice synthesizer. For IoT devices that support a

companion app, we use Android smartphones, and we rely on the

Monkey Application Exerciser for Android Studio [14] for automat-

ing simulated interactions between the user and the IoT device.

2.3 Active and Idle IoT Experiments

Our experiments can be classified into idle and active experiments.

Idle experiments. We define as idle the experiments during which

the devices are just connected to the Internet without being actively

used. We generate idle traffic for three days (November 23rd-25th,

2019) from both testbeds.

Active experiments. We define as active the experiments involv-

ing automated interactions. We perform two types of automated

interactions, each one repeated multiple times: (i) power interac-

tions, since in a previous study [4] it was reported that many IoT

devices generate significant traffic when they are powered off and
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Figure 5: Home-VP vs. ISP-VP.
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on. We manage the power status of the devices through several

TP-Link smart plugs that we can control programmatically, fol-

lowed by two minutes of traffic capture; (ii) functional interactions,

by automatically controlling the main functionality of the devices

(i.e., the act of switching on/off the light for a smart bulb) via voice

(either directly or through a smart speaker) or via a companion app

running on a separate network with respect to the IoT device (to

force the communication to happen over the Internet rather than

locally). Unfortunately, some interactions for some devices cannot

easily be automated (devices with idle in Table 1). For these devices,

we consider only idle experiments. In total, we perform 9,810 active

experiments between November 15th and 18th, 2019.

3 IOT TRAFFIC ś VISIBILITY

In this section, we aim to understand (i) to which extent the IoT

related traffic of a single subscriber line reaches a diverse set of

servers in the Internet, and (ii) whether the low sampling rate of

NetFlow limits the subscriber/device visibility. For this, we rely

on the ground truth traffic for the Home-VP. More specifically, we

monitor the IoT traffic at both vantage points: the Home-VP, as well

as the border routers of the ISP-VP (see 1 and 2 of Figure 2).

We first focus on the number of IP addresses that are contacted

in each hour during the idle and the active experiments by the

IoT devices, as stated in Section 2.3. We explicitly exclude DNS

traffic, since it is not IoT-specific. From Figure 5(a), we see that

during the active experiments, the IoT devices contact between 500

and 1,300 service IPs per hour when monitored at the Home-VP.

Due to sampling, not all of this traffic is visible at the ISP-VP. We

define service IPs as the sets of IPs associated with the backend

infrastructures that support the IoT services. Indeed, the number of

observed service IPs per hour in the ISP-VP decreases to an average

of 16%. Overall, during our idle experiments, the total number

of contacted service IPs is lower, but the average percentage of

observed service IPs remained at 16.5%.

The spikes in the active experiments are partially due to power

and the functional interactions. This can be seen on the idle experi-

ments, where the spike indicates the action of starting the device

(only at the beginning). Note that these spikes are also visible in

the sampled ISP NetFlow data.

At first glance, 16% sounds like a very small percentage. However,

we note that the visibility of popular service IPs is significantly
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high. Figure 6 shows the fraction of service IPs that are visible for

the servers contacted the most, according to byte count. For the

top 10% of the service IPs, more than 75% are visible, rising up to

90% during some experiments. For less popular service IPs, e.g., the

top 20% and top 30%, the visibility is only reduced to 70% and 60%

in the active experiment, and a bit lower for the idle experiment.

If we consider the entire period of our experiments, the percent-

age of visible service IPs is more than 34% and 28% for idle and

active experiments. Overall, at the daily level, more than 95% of

service IPs are visible for the top 20%. Although we cannot observe

all IoT devices activity at the ISP-VP, a significant subset is visible.

While any specific service IPmay not matter that much for an IoT

service, its communications with a server domain name that may be

hosted on multiple service IPs is essential. From the Home-VP, we

know which service IPs correspond to which domain. Thus, we can

determine which observed service IPs at the ISP-VP belong to which

domain. This information is relevant for our methodology because

in the ISP NetFlow data only IPs are visible. Figure 5(b) shows the

number of observed Fully Qulified Domain Names (FQDNs, we

will refer to them as domains or domain names for the rest of the

paper) at the Home-VP and the ISP-VP. Many domains are hosted

at multiple service IPs, hence we see that the number of observed

service IPs is higher than the number of observed domains.

Figure 5(d) shows the number of observed IoT devices per hour

from the ground truth IoT traffic. We observe a device when at

least one packet from that device is seen within an hour. Note,

For active mode, the experiments on devices from Testbed 1 (see

figure 3), are initiated after Testbed 2. Therefore, all devices are not

active during the same period. The average percentages of devices

visible at ISP-VP, during active and idle experiments are 67% and

64% respectively.

Next, we separate the observable network activity by ports. More

specifically, we consider Web Services (ports 443, 80, 8080), NTP

services (port 123), and other services (the rest of the ports), and we

show the cumulative number of service IPs contacted. The resulting

plot, Figure 5(c), shows that (i) the trend of observable service IPs at

the Home-VP is mirrored at the ISP-VP, evenwhen different services

are considered, and (ii) the number of service IPs converges over

time.

We also checked if any of the traffic from the Home-VP is visible

at the IXP. However, neither during the active, nor during the idle

experiments, we observe traffic at the IXP. This is expected as the

ISP is not a member of the IXP. Rather it peers directly (via private

interconnects) with a large number of content and cloud providers

as well as other networks.

In summary, our analysis of the ground truth IoT traffic shows

that, despite the low sampling of NetFlow, popular domains, service

IPs, and ports of a single subscriber line (the Home-VP) are visible

at the ISP.

4 IOT DEVICE DETECTION METHODOLOGY

In this section, we outline our methodology for the detection of IoT

devices in-the-wild. IoT services typically rely on a backend support

infrastructure (see Figure 1) for user interactions. From our ground

truth experiments, we noticed that this backend infrastructure is

often also used for keep-alives, heartbeats, updates, maintenance,
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Figure 7: IoT Traffic detection methodology overview.

storage, and synchronization. This observation is consistent with

previous works [4, 15].

We focus on identifying which Internet backend infrastructure is

supporting each of the IoT devices that we deployed in our testbeds

(see 3 in Figure 2). When we refer to Internet backend infrastruc-

ture, we use two different abstractions: (i) sets of IP addresses/ports

combinations as observable from the Internet vantage points, and

(ii) sets of DNS domains. We focus also on domains because they

are the primary indirect way for the devices to access their backend

infrastructure. While domain names are typically part of the per-

manent programming of the devices, IP addresses are discovered

during DNS resolution, and may change over time.

A naive approach for identifying the backend infrastructure

would be to use the ground truth traffic to identify which domains,

and as a consequence, which service IPs are being contacted by

each device. However this is not sufficient for the following reasons:

Limited relevance of some domains: Not all domains are essen-

tial to support the services, or are useful for classification; for ex-

ample, some domains may be used for advertisements or generic

services, e.g., time.microsoft.com or wikipedia.org, see Sec-

tion 4.1.

Limited visibility of IP addresses: Since the ground truth data

is captured at a single subscriber line only and DNS to IP mapping

is rather dynamic, just looking at this traffic is not sufficient, see

Section 4.2.1.

Usage of shared infrastructure: Not all IoT services are supported

by a dedicated backend infrastructure. Some rely on shared ones,

such as CDNs. In the former case they can still have dedicated

IP addresses; in the latter cases they use shared IP addresses, see

Section 4.2.1.

Churn: DNS domain to IP address mappings are dynamic, see

Section 4.2.1.

Common programming APIs: Multiple IoT services may use

the same common programming API or may be used by different

manufacturers; as a result, they often rely on the same infrastruc-

ture. This is the case for relatively generic IoT services such as

Alexa voice service. While this IoT service is available on dedi-

cated devices, e.g., Amazon Echo, it can also be integrated into

third-party hardware, e.g., fridges and alarm clocks [13]. We cannot

easily distinguish these from network traffic observations.

Below we tackle these challenges one by one. The outcome is an

IoT dictionary that contains mappings for individual IoT services

to sets of domains, IP addresses, and ports. Based on IoT services,

we generate rules for IoT device detection. For an overview of the

resulting methodology, see Figure 7.

91



IMC ’20, October 27–29, 2020, Virtual Event, USA Saidi et al.

1

10

100

1k

Avg # Packet/H

(log10)

a
m

a
z
o

n
 d

o
m

a
in

2
3

a
m

a
z
o

n
 d

o
m

a
in

1
8

a
m

a
z
o

n
 d

o
m

a
in

1
4

a
m

a
zo

n
 d

o
m

a
in

1
7

a
m

a
zo

n
 d

o
m

a
in

1
1

am
az

o
n
 d

o
m

ai
n
20

am
az

o
n
 d

o
m

ai
n
3

am
az

on
 d

om
ai

n5

am
az

on d
om

ai
n9

am
azo

n d
om

ain
13

amazon domain21

amazon domain7

amazon domain10

amazon domain22

amazon domain15

amazon domain19

amazon domain2
amazon domain8amazon domain16

amazon domain1

amazon domain12

amazon domain4

am
azon dom

ain6

ap
p
le d

o
m

ain
7

a
p
p
le

 d
o
m

a
in

6

a
p

p
le

 d
o

m
a
in

3

a
p

p
le

 d
o

m
a
in

4

a
p

p
le

 d
o

m
a
in

8

a
p

p
le

 d
o

m
a
in

1
0a

p
p

le
 d

o
m

a
in

9

a
p

p
le

 d
o

m
a
in

1
1

a
p

p
le

 d
o

m
a
in

1

a
p

p
le

 d
o

m
a
in

2

a
p
p
le

 d
o
m

a
in

5

blin
k 

dom
ai

n1blin
k d

om
ain

2

mero
ss domain1

netatm
o domain1

philip
s domain4

philips domain1philips domain2
philips domain3

platform2 domain1

platform1 domain2

platform1 domain1

smartthings domain1

smartthings domain2

smartthings domain3

sousvide dom
ain1

tplink dom
ain1

xiaom
i dom

ain1

xiao
m

i d
o
m

ain
2

yi cam
era d

o
m

ain
3

y
i c

a
m

e
ra

 d
o
m

a
in

1
y
i c

a
m

e
ra

 d
o

m
a
in

2

Gossiping

Devices

Gossiping

Devices

Laconic

Devices

Device

Apple TV

Blink Hub

Echo Dot

Meross
Door Opener
Netatmo
Weather
Station

Philips Hub

Smarter Brewer

Smartlife Bulb

Smartthings Hub

Sous vide

TP−Link Bulb

Xiaomi Hub

Yi Camera

Figure 8: Home-VP: Circular bar plot of average # of packets/hour

per domain (log y-scale). The domains belong to 13 IoT devices and

separated into three groups: one for laconic and two for gossiping

devices (Echo Dot and Apple TV).

4.1 Classifying IoT Domains

The amount and frequency of network traffic that an IoT device

exchanges with its backend infrastructure varies from device to

device, depending on the complexity of its services, its implemen-

tation specifics, and the usage of the device. This is highlighted in

Figure 8, where we show the average number of packets per device

and per domain (using a log y-scale) for 13 different devices (subset

of devices) in their idle mode. The first observation is that most

devices are supported by their own set of domains and for many

IoT services, this is a small set containing less than 10 domains. We

refer to these as small domain sets as they correspond to laconic

devices. Other devices gossip and have sizable domain sets. Figure 8

shows the domains of two example gossip devices (Apple TV in

gray and Echo Dot in orange) and several laconic devices (rest of

the colors). Having a sizable domain set often indicates the usage

of a larger infrastructure, which may not be dedicated to a specific

IoT service. We find that most of these domains are mapped via

CNAMEs to other domains. For the two gossiping examples con-

sidered in Figure 8, the domains of Echo Dot are mostly mapped to

its own infrastructure. However, the ones of Apple TV are mainly

mapped to a CDNÐin this case, AkamaiÐthat offers a variety of

services.

Based on these observations from our ground truth data, we

classify the domains as follows:

IoT-Specific domains. Grouped into (i) Primary domains: regis-

tered to an IoT device manufacturer or an IoT service operator;

and (ii) Support domains: that are not necessarily registered to IoT

device manufacturers or service operators, but offering complemen-

tary services for IoT devices, i.e., samsung-*.whisk.com for Samsung

Fridges, here whisk.com is a service that provides food recipes and

images of food.

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

1 10 100 1k 10k

Avg # of packets/h per device and domain(log10)

E
C

D
F

Experiment ●Active Idle

Figure 9: Home-VP: ECDF of average # of packets/hour for all IoT-

Specific domains, per device, (idle and active experiments).

Generic domains. Domains registered to generic service providers

that are heavily used by non-IoT devices as well, e.g., netflix.com,

wikipedia.org, and public NTP servers.

We classify each domain name from our idle and active experi-

ments using pattern matching, manual inspection, and by visiting

their websites and those of the device manufacturers. Since the

Generic domains cover non-IoT traffic, we do not further consider

them. Rather, we focus on the IoT-Specific domains. As a result, we

classify 415 out of the 524 domains as Primary and 19 as Support

domains.

Next, we explore the volume of traffic that the IoT devices ex-

change with all domains. Figure 9 shows the ECDF of the average

number of packets per hour per domain for all IoT-Specific domains

for both the idle and the active experiments. First, we note that

almost all devices and domains , except for one device in its idle

mode, are exchanging at least 100 packets per hour, and this may

not suffice for detecting them in any given hour in the wild due

to sampling. However, during the active experiments, we see that

some domains are only used when the device is active or other

domains receive significantly more traffic, up to and exceeding 10K

packets, which may suffice for detection. These latter domains may

be ideal candidates for detecting such devices in the wild.

4.2 Identifying Dedicated Infrastructures

Once we have a list of IoT-Specific domains (FQDNs) with their

associated service IP addresses and port mappings from the ground

truth experiments, we need to understand whether they have a

shared or dedicated backend infrastructure. The reason is that, if

we want to identify IoT services and consequently IoT devices in

the wild by using network traces such as NetFlow, we can only

observe standard network level features such as src/dst IP and port

numbers without packet payload. Therefore, if a service IP belongs

to a shared infrastructure such as a CDN or a generic web hosting

service, this service IP can serve many domains, and it is impossible

for us to exactly know which domain was actually contacted. To

this end, the purpose of this section is two-fold. First, to expand

the candidate service IPs beyond those directly observed in the

ground truth experiments (to mitigate that we are focusing on a

single subscriber line). Second, to classify domains into those that

use backend services hosted on dedicated infrastructure service

IPs vs. those that rely on shared infrastructure service IPs. We do

this by relying on DNSDB [16], Censys [9], and applying additional

filters.
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4.2.1 From IoT-Specific Domains to Service IPs: DNSDB. We use

IoT-Specific domains to identify the backend infrastructure that

is hosting them. To this end, we leverage the technique in [17],

and use these domain names to identify all associated service IPs

on which these domains are hosted during the time period of our

experiments. We use both the ground truth experiments, and ex-

ternal DNS databases, including DNSDB [18]. We found that the

specific IP addresses mapping to specific domains can change of-

ten. However, DNSDB provides information for all domains served

by an IP address in a given time period and vice versa, hence it

mitigates the issues caused by this churn. DNSDB also provides all

records, including CNAMEs that may have been returned in the

DNS response, for a given domain. Thus, we use DNSDB to check

if a service IP address is exclusively used for a specific IoT service,

or if it hosts additional domains. We say a service IP is exclusively

used if it only serves domains from a single łsecond-levelž domain

(SLD) and its CNAMEs. However, we note that the CNAMEs may

not involve the same second-level domain. Let us consider an exam-

ple: the domain devA.com is mapped via a chain of CNAMEs such

as devA-VM.ec2compute.amazonaws.com to IP a.b.c.d. This IP

only reverse maps to devA-VM.ec2compute.amazonaws.com and

its associated CNAME devA.com. Since this is the only CNAME

associated with the IP, we may consider this IP a direct mapping

for the domain. Yet, at the same time, we find support that public

IP addresses assigned to a cloud resource such as a virtual machine

in AWS EC2, that is occupied by a tenant, is not shared with other

tenants unless the current resource is released. This is a popular ser-

vice offered by multiple platforms [19ś21]. Let us consider a second

example: domain devB.com. It may use the Akamai CDN. Thus, the

domain devB.com is a CNAME for devB.com.akadns.net. This

domain then maps to IP a.b.c.d. However, in this case, many

other domains, e.g., anothersite.com.akadns.net, also map to

this IP. Thus, we may conclude that this domain is hosted on a

shared infrastructure.

Once we understand if an IP is exclusively used for a specific IoT

service, we can also classify the domains as either using a dedicated

or shared infrastructure. For the former, all service IPs have to be

dedicated to this domain for all days, otherwise we presume that

the domain relies on a shared infrastructure.

Once we apply this methodology to all 434 domain names, we

find that 217 are hosted on dedicated service IPs, while 202 are

relying on a shared backend infrastructure. For 15 of the domains

we did not have sufficient information in DNSDB. We handle them

in the next step.

4.2.2 From IoT-Specific Domains to Service IPs: Censys. Among

the reasons that DNSDBmay not suffice for mapping some domains

to service IPs is that (a) frequent remapping of domains to IPs or, (b)

missing data since the requests for the domains may not have been

recorded by DNSDB, which intercepts requests for a subset of the

DNS hierarchy. To overcome this limitation, we rely on the certifi-

cate and banner datasets from Censys [9], to infer the ownership of

the domains and the corresponding IPs, as long as these are using

HTTPS. For example, we did not find any record for the domain

c.devE.com in the DNSDB dataset. We then check if device E uses

HTTPS to communicate with this domain. This allows us to query

for all service IPs that potentially offer the same web certificate as

the hosts in this domain. For a certificate to be associated with a

domain, we require that the domain name and the Name field entry

in the certificate match at least the SLD or higher, i.e. the Name field

of the certificates matches the pattern c.devE.com or *.devE.com

and that there is no other Subject Alternative Name (SAN) in the

certificate. Next, we query the Censys dataset for all IPs with the

same certificate and HTTPS banner checksum for the domain from

our ground truth dataset within the same period. This allows us

to identify data for 8 out of 15 of the domains which belong to 5

devices.

4.2.3 Removal of Shared IoT Backend Infrastructures. In the last

step of our methodology we filter out devices that use shared back-

end infrastructures. We find that Google Home, Google Home Mini,

Apple TV, and Lefun camera, all have a shared backend infrastruc-

ture. For LG TV, we are left with only one out of 4 domains; for

Wemo Plug andWink-hub, we could not identify sufficient informa-

tion. Because of this, we have excluded these devices from further

consideration.

The result forms our daily list of dedicated IoT services, along

with their associated domains, service IPs and port combinations.

4.3 IoT Services to Device Detection Rules

Once we identified the set of IoT services that can be monitored,

we generate the rules for detecting IoT devices. Depending on the

set of IoT services contacted by the devices we can generate device

detection rules at three granularity levels: (i) Platform-level, (ii)

Manufacturer-level, and (iii) Product-level, from the most coarse-

grained to the most fine-grained, respectively. In this section, first,

we show how we determine the detection level for each device.

Then, we explain how we generate the detection rules for each IoT

device for the detection level that can be supported.

4.3.1 Determining IoT Detection Level.

Platform-level: Some manufacturers use off-the-shelf firmware,

or outsource their backend infrastructure to IoT platform solu-

tion companies such as Tuya [22], electricimp [23], AWS IoT Plat-

form [24]. These IoT platforms can have several customers/manufacturers

that rely on their infrastructure. Therefore, we may not be able to

distinguish between different manufacturers from their network

traffic.

Manufacturer-level: The majority of our studied IoT services

rely on dedicated backend infrastructures that are operated by the

manufacturers themselves. We also observe that many manufac-

turers rely on similar APIs and backend infrastructures to support

their different products and services. This makes distinguishing

individual IoT products from their network traffic more challenging.

Product-level: This is themost fine-grained detection level, where

we are able to distinguish between different products of a manufac-

turer, e.g., Samsung TV, or Amazon Echo vs. Amazon Fire TV. For de-

tection at the product level, we underline the importance of side in-

formation about the purpose associated with a domain. With this in-

formation, we can improve our classification accuracy. For example,

for Alexa Enabled devices, the domain avs-alexa.*.amazon.com

is critical, as it is the base URL for the Alexa Voice Service API [13]

(shown in Figure 8 as amazon domain23). Other examples are the
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Samsung devices that use the domain samsungotn.net to check

for firmware updates [25].

Additionally, some advanced services of the devices often require

additional backend support from manufacturers. These may then

contact additional domains. By considering more specific features

(domains), the capabilities to distinguish products increases. We

leverage these specialized features e.g., to distinguish Amazon Fire

TV, which contacts significantly more domains than other Amazon

products, e.g., Echo Dot.

4.3.2 Generation of Detection Rules. For any of our three lev-

els of detection, we require that a subscriber contacts at least one

IP/port combination associated with a Primary domain of the IoT

service, to claim detectability of IoT activity at the subscriber. How-

ever, if there are many domains, requiring only one such activity

may not have enough evidence. For example, by monitoring a single

domain we can detect all Alexa Enabled devices, but this service can

be integrated into third party hardware as well. Therefore, in order

to detect products manufactured by Amazon, e.g., Amazon Echo,

it is essential to monitor additional domains that are contacted

by the Amazon Echo devices. For this, we introduce the detection

threshold D. If an IoT service has N IoT-Specific domains, we re-

quire to observe traffic involving k IP/port combinations that are

associated withmax(1, ⌊D × N ⌋) of the N domains. To determine

an appropriate value for this threshold, we rely on our ground truth

dataset, see Section 5.

We start with 96 devices in our testbeds. We have multiple copies

of a same device deployed in different continents. This reduces the

set of devices to 56 unique products. Of these, many are from the

same manufacturer, e.g., a Xiaomi rice cooker, a Xiaomi plug, and

a Xiaomi light bulb. Since these devices are often supported by

the same backend infrastructure of the manufacturer, the list of

domains has significant overlap and often fully overlaps. In our

methodology we can detect 3 different IoT platforms, the coarsest

level, as 4 of our products rely on them. Moreover, we generated

rules for the detection of 29 IoT devices at the manufacturer level.

We had a diverse range of products from Amazon and Samsung

in our testbed that allowed us an in-depth analysis, and cross-

examination of domains contacted by different products. Therefore,

for devices using Alexa voice service (i.e., Alexa Enabled), and for

Samsung IoT devices, we detect the former at the platform level

and the latter at the manufacturer level. For Alexa Enabled and

Samsung IoT devices, we compared the domains across different

devices and obtained enough side information about the purpose

of their domains that allowed us to further divide each of them

into two subclasses at more fine grained levels. For this, we defined

a hierarchy, namely Amazon products, and Fire TV, under Alexa

Enabled devices. Amazon products are detected at manufacturer

level, and include products such as Amazon Echo family and is

superclass of Fire TV. We identified 33 additional domains, besides

the Alexa voice service domain, that were contacted by Amazon

products. Moreover, Fire TV contacts up to 67 domains (34 more

domains than Amazon products). This allows us to establish its

subclass, at product level, under Amazon products. Using side in-

formation [25] and comparing the set of domains across different

Samsung products, we monitor 14 domains in total, but only one

domain is important to detect Samsung IoT devices with Samsung
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Figure 10: Home-VP: Time to detect IoT (per threshold).

firmware (these include a broad range of products, such as fridges,

washing machines and TVs). Samsung TVs contact 16 additional

domains that are not used by any of the other Samsung devices in

our testbed.

Using the above methodology, except for the devices listed

in section 4.2.3, we generated detections rules at different levels

for our testbed devices. We generated rules for the detection of

20 manufacturers, and 11 products that amounts to the 77% of

manufacturers in our testbeds. We generate rules for 4 unique IoT

platforms by monitoring 1 to 4 domains (2 platforms were contacted

by 4 devices, we report them separately). Finally, for 11 products

we consider between 1 to 67 domains. For a detailed number of

domains per IoT device see Figure10.

5 METHODOLOGY: CROSSCHECK

We use our ground truth dataset to check how long it takes for our

methodology (applied to the sampled flow data from the ISP) to

detect the presence of the IoT devices for the idle and the active

experiments (see 4 of Figure 2). For this, we report the time that

it takes to detect an IoT device that is hosted in our ground truth

subscriber line when it is in active mode (Figure 10 left) and idle

mode (Figure 10 right). We only include the ones that are detectable

with our methodology, i.e., those that do not rely exclusively on

shared infrastructures. We also annotate the device name with its

detection levels: Platform (Pl.), Manufacturer (Man.), and Product

level (Pr.).

On average, by requiring the evidence of at least 40% of domains,

we are able to detect 72/93/96% of IoT devices that are detectable

at manufacturer or product level within 1/24/72 hours in the ac-

tive mode. Even in idle mode their the percentage is 40/73/76%

with 1/24/72 hours. For the devices detectable only at product level

(Pr.), with the same required evidence, we detected 63/81/90% of

them within the 1/24/72 hours respectively, in active mode. Note,
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Figure 11: ISP: Per Hour, Subscriber lines with IoT activity (Alexa Enabled, Samsung IoT, and others).
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Figure 12: ISP: Drill down for Amazon and Samsung IoT devicesśper

day.

we are using the sampled ISP data. Indeed, popular products such

as Amazon products (i.e., Echo Dot, Echo Spot) can be almost in-

stantly detected. This is a significant finding and underlines that

it is possible to use sampled flow data within an ISP to accurately

detect the presence of a specific IoT product within a subscriber

line, despite differences in activity and IP churn due to operational

requirements.

A closer look reveals that, in general, it takes longer to detect

an idle IoT device in comparison to when it is active. This is not

surprising, as most IoT devices show more network activity in

active mode. However, this does not mean that the increase will

occur across all of the services contacted by a device, since there

are exceptions that take longer to detect even in active mode, e.g.,

SmartLife, and Nest.

Figure 10 also contains information regarding the number of

monitored domains per IoT device with their detection level. For

9 IoT devices, a single domain is considered. For the others, we

consider many more (up to 67). A threshold determines the fraction

of domains for which we require evidence of network traffic to

claim detection. To understand the impact of such threshold on

detection time, we variate its value from 0.1 to 1 and show the

corresponding detection times. Note, for IoT devices where we

consider only one domain, the variation of the threshold does not

change the detection time, as we always require evidence of at

least one domain. Overall, we note that a larger threshold can

increase the detection time, and some IoT devices may no longer be

detectable. However, it may also increase the false positive rate. We

crosscheck possible false positives by running another experiment

where we only enable a small subset of IoT devices. We then apply

our detection methodology to these traces and do not identify any

devices that are not explicitly part of the experiment. We also try

to avoid false positives by ensuring that the domain sets per device

differ.

Regarding detectability, we notice that 6 IoT devices could not be

detected even after the entire duration of our idle experiments. A

closer investigation shows that for 5 of these, the frequency of traffic

is so small that their likelihood of detection is very low. Indeed,

for this specific time period, they were invisible in the NetFlow

data. This highlights that in order to be able to confidently detect

a device, the device have to either exchange enough packets with

the targeted domains or the sampling rate shall be increased. For

Samsung TV, we require to observe enough domains to confirm

the presence of a Samsung IoT device, before moving forward with

detection. Thus, if we do not see enough Samsung IoT domains, then

we do not claim the detection of Samsung TVs. Nevertheless, the

results look very promising for us to attempt on detecting deployed

IoT devices in the wild.

6 RESULTS: IOT IN THE WILD

In this section, we apply our methodology for detecting IoT activity

in the ISP and IXP data (see 5 in Figure 2). For this we focus on

the two weeks in which we collected the data from the ground truth

experiments to obtain up-to-date mappings of domains to IPs.

6.1 Ethical Considerations and Privacy
Implications

Applying our methodology to traffic data from ISPs and IXPs may

raise ethical concerns as it may be considered as analyzing customer

activities. However, this is not the goal of this paper. The goal here is

to showcase that it is possible to detect and map the penetration of

IoT device usage. As such, this study is not about subscribers’ device

activities, instead it is about detection capabilities and aggregated

usage. Thus, we report on percentages of subscriber lines where

we can observe IoT related activity. Indeed, we are unable to trace

IoT activity back to individuals as the raw data was anonymized
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Figure 13: ISP: Cumulative # of subscriber lines resp. /24s with daily

IoT activity across two weeks.

as per recommendations by [5] and never left our collaborators’

premises. Moreover, we do not analyze any data that is not related

to the detection of IoT presence, e.g., DNS queries [26], or flows

that are not related to IoT backend infrastructures, to eliminate any

user Web visit profiling.

6.2 Vantage Point: ISP

IoT related activity in-the-wild. Figure 11 shows the number

of ISP subscriber lines for which we detect IoT related activity.

The ISP does not operate a carrier-grade NAT. Even if multiple

IoT devices are hosted at an ISP subscriber, we count the hosting

subscriber only once. Thus, the number of subscribers that host

a given IoT device is a lower bound for the number of the given

IoT device in the premises of ISP subscribers. Figure 11(a) and

Figure 11(b) focus on hourly and daily summaries. Since the top

IoT devices detected are Alexa Enabled and Samsung IoT, we show

them separately. We see IoT related activity for roughly 20% of

the subscriber lines. Our results show a significant penetration of

Alexa Enabled devices of roughly 14%. This is slightly more than

estimates of national surveys in the country where the ISP operates,

stating that the market penetration of Alexa Enabled devices, as of

June 2019, is around 12% [27ś29]. Yet, these reports cannot capture

which devices are in active use at any particular day, e.g., Nov. 2019,

contrary to our study. Note, in Figures 11, 12, 14 and 15 we apply

our methodology on each time bin independently.

Daily patterns of IoT related activity. By looking at the hourly

plots in Figure 11(a), we see some significant daily patterns for

Alexa Enabled and Samsung IoT devices. We do not see diurnal

patterns for the other 32 IoT device types. Such diurnal patterns

are correlated with human activities. Typically, during the day, net-

work activity increases as the users interact with the IoT devices

while it decreases during the night when the devices are idle. As

detection likelihood is correlated with network activity, the de-

vices detectability also correlates with this diurnal pattern. We note

that the patterns for Alexa Enabled does not differ from those for
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Figure 14: ISP: Drill down of IoT activity for 32 different IoT device

types with their popularity in the ISPs country.

Samsung. The reason is that many of the Alexa Enabled and Sam-

sung IoT (Samsung TVs) class may be used more for entertainment,

which is why their activity is higher in the evenings. Samsung

IoT devices have a small spike in the mornings before gradually

reaching their peak around 18:00 (ISP timezone).

For the drill down for Samsung IoT devices see Figure 12. Even

with the presence of a diurnal variation for Alexa Enabled, there

is a significant baseline during the night. This is expected as IoT

devices often have traffic even when they are idle and are thus

detectable. Over the course of a day, the diurnal variation is rather

low compared with the typical network activity driven by human

activity. This explains the low variance of the observed number of

subscriber lines for Alexa Enabled devices.

Aggregation per day. We observed in Section 5 that, while it

is often possible to detect Alexa Enabled devices within an hour,

the same is not always true for Samsung IoT devices. Therefore,

Figure 11(b) reports the same data but this time using an aggregation

period of a day.3 We see that the total number of observed subscriber

lines does not change drastically from day to day. However, we

also note that the number of subscriber lines with Alexa Enabled

devices roughly doubled, while those with Samsung increased by

a factor of 6. The reason is that detecting Samsung IoT devices is

more challenging because they are contacting their Primary domain

less frequently than Alexa Enabled devices. Thus, their detection is

heavily helped by the increase in the observation time period. For

the other IoT devices we see these effects, whereby the increase is

correlated to the expected time for detection. Note, certain Samsung

3Most subscriber lines are not subject to new address assignments within a day. Most
addresses remain stable as the ISP offers VoIP services.
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Figure 15: IXP: Number of Samsung IoT, Alexa Enabled, and Other

32 IoT device types IPs observed/day.
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15-11-2020.

domains are contacted by both Samsung IoT and Non-IoT devices.

In our analysis, we only consider domains that are exclusively

contacted by Samsung IoT devices. By adding those domains, the

number of detected Samsung devices will be increased at least by a

factor of two, but this also adds false positives to our results.

Detecting specific devices. So far, we have focused on the su-

perclass of Alexa Enabled and Samsung IoT devices. However, by

adding more specialized features, our methodology allows us to

further differentiate them. For example, some subsets of domains

are only contacted by specific products. Thus, in Figure 12 we show

which fraction of the Alexa Enabled IoT devices are confirmed

Amazon products and which fraction of these are Fire TVs using a

conservative detection threshold of 0.4. For Samsung IoT devices,

we show howmany of them are Samsung TVs. Again, the number of

subscriber lines with such IoT devices is quite constant across days.

As expected, the specialized devices only account for a fraction of

the devices of both manufacturers.

Subscriber lines churn. While the ISP’s overall churn of sub-

scriber line identifier is pretty low (as was also confirmed by the

ISP operator), some changes are possible and may bias our results.

Possible reasons for such changes are: unplugging/rebooting of the

home router, regional outages, or daily re-assignment of IPs for

privacy reasons. Yet, as most IoT devices are detectable within a

day (recall Section 5), the churn should not bias our results. Still, to

check for such artifacts, we move to larger time windows: see the

upper panel of Figure 13, which plots the cumulative number of sub-

scriber lines with detected Alexa Enabled and Samsung IoT devices,

respectively, for up to two weeks. Here, we see that the fractions

increase. However, we may have substantial double counting due

to identifier rotation. To underline this conclusion, we consider

penetration at the /24 prefix aggregation level, see the lower panel

in Figure 13. The penetration lines stabilize smoothly, but at dif-

ferent levels and with different speed. The latter is related to the

popularity of an IoT device. If it is already popular, the likelihood

of moving from a known to an unknown subscriber line identifier

is lower with respect to less popular IoT devices.

Detecting other IoT devices in-the-wild. Figure 14 reports the

detected number of the IoT devices that are neither Alexa Enabled

nor Samsung IoT. We report them using a heatmap, where each

column corresponds to a day and each row to an IoT device anno-

tated with its detection level. The color of each entry shows the

number of subscribers lines during that day. Our first observation

is that the number of subscriber lines for each device class is very

stable across the duration of our study. Next, we point out that

our experiments include popular devices from both the European

as well as the US market. For a reference, we report the relative

popularity of each IoT device in the Amazon ranking for that device,

in the country where the ISP operates. If a ranking of a device is not

available, we categorize them as łother.ž Popular devices are more

prominent than unpopular ones or the ones that are not available

in the country’s market. For example, on the one hand there are

Philips devices that are popular and in heavy use with more than

100K subscription lines on a daily basis. On the other hand there

is Microseven camera that is not in the country’s market. Yet, we

can still observe some deployments, these results highlight that our

methodology is able to detect both popular and unpopular IoT de-

vices when the domains and associated service IPs that IoT devices

visit can be extracted.

6.3 Vantage Point: IXP

Next, we apply our detection methodology at the IXP vantage

point. Here, we have to tackle a few additional challenges: First,

the sampling rate at the IXP is an order of magnitude lower than at

the ISP. Second, the vantage point is in the middle of the network,

which means that we have to deal with routing asymmetry and

partial visibility of the routes. Third, while the ISP does aggressive

spoofing prevention, e.g., with reverse path filtering, this is not

possible at the IXP. Spoofing prevention is the responsibility of

individual IXP members. Thus, we require TCP traffic to see at

least one packet without flags, indicating that a TCP connection

was successfully established. While this may reduce visibility, it

prevents us from over-estimating the presence of IoT traffic.

While the IXP offers network connectivity for every ASes, only

a few member ASes are large eyeballs [30]. It is not that surprising

that we did not observe any activity of the ground truth experi-

ment, recall Section 3. Still, we are able to detect significant IoT

activity. Figure 15 shows the number of IPs for which we detected

IoT activity per day for our two-week study period (November

15th-28th, 2019). We are able to detect roughly 90k Samsung de-

vices, 200k Alexa Enabled devices, and more than 100k of other

IoT devices. This underlines that our methodology, which is based

on domains and generalized observations from a single subscriber
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line, is successful. Most IXP members are non-eyeball networks.

As such, we expect that the detected IoT activity is concentrated on

these members. Figure 16 shows an ECDF of the distribution of IoT

activity per AS for one day (November 15th, 2019) and three IoT

device types, namely, Samsung IoT, Alexa Enabled, and the other

IoT devices. The distributions are all skewedÐa small number of

member ASes are responsible for a large fraction of the IoT activity.

Manual checks showed that these are all eyeball ASes. Yet, we also

see a fairly long tail. This underlines that some IoT devices may not

only be used at home (and, thus, send their traffic via a non-eyeball

AS).

7 DISCUSSION

7.1 Device Usage Detection

A natural question is whether sampled flow data also allows one

to distinguish if an IoT device is in active use. Our results indicate

that the answer is positive. First, our ground truth experiments

show that for some devices, the domain sets used during the idle

experiments differ from those during active experiments. Hence we

can use these domains to determine the mode (active/idle) of an IoT

device. Second, the amount of traffic also varies depending on the

mode. To highlight this, Figure 17 shows the number of observed

packets at the Home-VP for a single Alexa Enabled device, as well

as the ISP-VP for both modes. Activities cause spikes above 1K at

the home vantage points and above 10 at the ISP-VP. These ranges

are never reached during the idle experiments.

When using the first insight for, e.g., devices from TP-link (TP-

link Dev.), we are able to capture active use for only 3.5% of the

devices. The reason is that these are plugs, which have a total traffic

volume so low that it limits the detectability due to the low sampling

rate at the ISP. When using the second insight for Alexa Enabled

devices, we find that we can detect significant activity. Figure 18

shows both the subscriber lines with Alexa-enabled devices per

hour, per day as well as the subscriber lines with active Alexa-

enabled devices. Based on the above-mentioned observations, we

used the threshold of 10 for packet counts per hour to filter out

subscribers that actively used Alexa-enabled devices in a given hour.

Based on this threshold, we see that the number of actively used

devices reaches 27,000 during the day and weekends (November

23rd-24th, 2019), following the diurnal pattern of human activity.

The ability to distinguish active from idle usage of IoT devices

in the wild may raise ethical/privacy concerns. However, the goal

of this paper is not to analyze user behavior, but rather to point out

the privacy concerns associated with having these IoT devices at

home [3].

7.2 Potential Security Benefits

The ability to detect IoT services can be used in a constructive

manner or even as a service by ISPs. For example, if there are

known security problems with an IoT device, the ISP/IXP can block

access to certain domains/IP ranges or redirect their traffic to benign

servers. The methodology can also be used for troubleshooting,

incident investigation, and even incident resolution. For example,

an ISP can use our methodology for redirecting the IoT devices

traffic to a new backend infrastructure that offers privacy notices or

security patches for devices that are no longer supported by their

manufacturers.

Moreover, if an IoT device is misbehaving, e.g., if it is involved

in network attacks or part of a botnet [31], our methodology can

help the ISP/IXP in identifying what devices are common among

the subscriber lines with suspicious traffic. Once identified, their

owner can be notified in a similar manner, as suggested by [32],

and it may be possible to block the attack or the botnet control

traffic [33].

7.3 Limitations

Our methodology has some limitations.

Sample devices.We need to have sample devices in order to ob-

serve which domains are being contacted.

Superclass detection. We mostly check for false negatives and

limitedly for false positives as we only have traffic samples from a

subset of IoT devices, but not for all possible IoT devices. If an IoT

device relies on a shared backend infrastructure or common IoT

APIs, we only detect the superclass, e.g., at the manufacturer level.

Network activity. We rely on the network activity of IoT devices.

As such, if the traffic volume is very low detectability decreases,

and detection time increases.

Shared infrastructures.We cannot detect IoT services that rely

on shared infrastructures. If the IoT devices change their backend

infrastructure, e.g., after an update, we may have to update our

detection rules too.
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7.4 Lessons Learned

Our analysis could be simplified if an ISP/IXP had access to all DNS

queries and responses as they do in [34] and [26]. Even having

a partial list, e.g., from the local DNS resolver of the ISP, could

improve our methodology. Yet, this raises many privacy challenges.

An increasing number of end-users rely on technologies like DNS

over TLS [35], or public DNS resolvers, e.g., Google DNS, OpenDNS,

or Cloudflare DNS, rather than the local ISP DNS server [36]. Yet,

this also points to another potential privacy issueÐthe global data

collection and analysis engines at these DNS operators, which can

identify IoT devices at scale from the recorded DNS logs using our

insights. Capturing DNS data from the network itself would require

deep packet inspection and thus, specialized packet capture, which

is beyond the scope of this paper.

The subscriber or device detection speed varies depending not

only on the device and its traffic intensity, but also on the traffic

capture sampling rates. The lower this rate, the more time it may

take to detect a specific IoT device. Moreover, identifying the rele-

vant domains for each IoT device does require sanitization, which

may involve manual work, e.g., studying manuals, device docu-

mentation, vendor web sites, or even programming APIs. Given

that we are unable to identify IoT services if they are using shared

infrastructures (e.g., CDNs), this also points out a good way to hide

IoT services.

7.5 Future Directions

We can use our insights to develop signatures that allow an ISP to

identify households that use specific IoT services. If such services

are, e.g., subject to security concerns they can use such signatures to

notify the corresponding customer of the potential problem and fix.

This is also possible if the IoT service is no longer supported or needs

end-user manual upgrades, e.g., to mitigate threats. Such signatures

may also be used to move from DDoS attacks towards identifying

culprits. Our approach is potentially scalable further using MUD

profiles [37], where devices will signal to the network what sort of

domains, access and network functionality they require to properly

function. It is also possible to extend the list of signatures of IoT

devices using crowdsourcing [38].

8 RELATED WORK

There have been some recent papers in understanding home IoT

traffic patterns and identifying devices based on their signatures,

trackers, and network traffic [39]. These approaches often rely on

testbed data [4, 40], or tools for the active discovery of the household

devices and their network traffic [41]. The authors in [40] use a

broad range of network features from packet captures, including

domain names to train a machine learning model and detect IoT

devices in a lab environment. However, they do not further study the

backend infrastructure supporting IoT devices. There have also been

a few early attempts at mitigating against these device discoveries

using traffic padding [42] or blocking techniques [33].

A number of recent efforts focused on inferring IoT device types

from network traffic [6, 43]. In [15] the authors used instrumented

home gateways to look at IoT traces from over 200 households

in a US city. Their analysis revealed that while the IoT space is

fragmented, few popular cloud and DNS services act as a central

hub for the majority of the devices and their data.

Generally, many IoT devices periodically connect to specific

servers on the Internet. Authors in [26] and [34] proposed a method

to identify IoT devices by observing passive DNS traffic and unique

IP addresses that the device connects to. Unfortunately, many IoT

devices rely on shared infrastructures and often different IoT de-

vices from the same vendor connect to the same servers, therefore

detection at the scale of ISP/IXP, based on the IP addresses and

port numbers without considering the important role of shared

infrastructures, cannot be very reliable.

Complementing the approaches based on testbeds and home

gateways, there have been efforts in understanding IoT traffic pat-

terns using data from transit networks [44], though it has been

challenging to successfully validate the derived signatures. Similar

works relied on specific port numbers [45] that may also be used

for specialized industrial IoT systems [46], though the approach

used cannot be easily extended to general-purpose IoT devices and

smart home systems that utilize popular ports, e.g., 443, 80.

These related works indicate that often, neither data from core

networks subject to sampling and middleboxes, nor data from few

devices using home gateways or testbeds are enough for rapidly and

accurately detecting IoT devices, and understanding their anomalies

and misconfigurations [10].

In this paper, for the first time we have complemented detailed

ground truth data from testbeds and a particular subscriber, with

large-scale data from an ISP and an IXP, to reveal the aggregate

behavior of these devices, alongside the ability to isolate and identify

specific subscriber devices using sampled data at an ISP.

9 CONCLUSION

Home IoT devices are already popular, and their usage is expected

to grow further. Thus, we need to track their deployment without

deep packet inspection or active measurements, both intrusive

and unscalable methods for large deployments. Our insight is that

many IoT devices contact a small number of domains, and, thus, it

is possible to detect such devices at scale from sampled network

flow measurements in very large networks, even when they are in

idle mode. We show that our method is able to detect millions of

such devices in a large ISP and in an IXP that connects hundreds of

networks.

Our technique is able to detect 4 IoT platforms, 20 manufacturers

and 11 productsśboth popular and less popular onesśat vendor level

and in many cases even at product granularity. While this detection

may be useful to understand the penetration of IoT devices at home,

it raises concerns about the general detectability of such devices

and the corresponding human activity.

In light of our alarming observations, as part of our future work,

we would like to investigate how to minimize the harm of potential

attacks and surveillance using IoT devices. We also want to use our

insights to help ISPs to tackle security and performance problems

caused by IoT devices, e.g., by detecting them, redirecting their

traffic, or blocking their traffic.
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