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Abstract

To infer human gaze from eye appearance, various methods have been proposed.

However, most of them assume a fixed head pose because allowing free head motion adds

6 degrees of freedom to the problem and requires a prohibitively large number of training

samples. In this paper, we aim at solving the appearance-based gaze estimation problem

under free head motion without significantly increasing the cost of training. The idea

is to decompose the problem into subproblems, including initial estimation under fixed

head pose and subsequent compensations for estimation biases caused by head rotation

and eye appearance distortion. Then each subproblem is solved by either learning-based

method or geometric-based calculation. Specifically, the gaze estimation bias caused by

eye appearance distortion is learnt effectively from a 5-seconds video clip. Extensive

experiments were conducted to verify the effectiveness of the proposed approach.

1 Introduction

Gaze intuitively plays an essential role in representing human attention, feeling, and de-

sire et al. [13]. Therefore, research into human gaze tracking has attracted much attention in

recent years. Commercial systems have already been used in specific areas such as market

research, driver/pilot training, and helping people with disabilities. However, these systems

require expensive and cumbersome hardware, which stops them from being used in con-

sumer applications. With the development of computer vision technology, it is hoped that

gaze will be able to be estimated via much fewer devices, or even a single camera.

According to recent surveys [4, 8], there exist two main categories of computer vision-

based methods, namely feature-based and appearance-based methods. Feature-based meth-

ods extract small scale features from eye images, such as corneal infrared reflections, pupil

centre [14], and iris contour [16]. These features are used along with 3-D eye models to

determine the gaze direction independently of head pose. Beymer and Flickner [2] proposed

generating and detecting corneal reflections via stereo pan-tilt units equipped with zoom-in

cameras and infrared LEDs. Also, two additional wide range stereo cameras are used for

eye position tracking. Similar methods were also introduced by Brolly and Mulligan [3],

Nagamatsu et al. [9], and Zhu and Ji [20]. Villanueva and Cabeza [15] suggested reducing

the number of cameras while using more infrared LEDs for geometric calculation. Yoo and
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Chung [19] proposed a novel method based on cross-ratio that avoids the explicit computa-

tion of the 3-D positions of the eye, cameras, and screen. Kang et al. [5] further improved

this method by considering the differences between individual eye parameters.

Disadvantages of feature-based methods mainly include 1) to extract small eye features

via high resolution infrared imaging, special cameras/lights are always required that are not

robust enough in uncontrolled environments, and 2) the accuracy of geometric-based calcu-

lation depends heavily on system calibrations that are often too difficult for ordinary users.

On the other hand, appearance-based methods work with only a single webcam under

natural light and regard the entire eye image as a high-dimensional input. Baluja and Pomer-

leau [1] proposed a neural network trained by 2000 labelled training samples. Xu et al. [18]

also used a similar method. Tan et al. [12] proposed to utilize the local linearity of the eye ap-

pearance manifold and collected 252 training samples for interpolation. Williams et al. [17]

introduced a semi-supervised method based on Gaussian Process regression to reduce the

number of labelled training samples. Recently, Sugano et al. [11] proposed obtaining train-

ing samples via automatically generated saliency maps from a video clip to make the user

unaware of the calibration. Lu et al. [6] introduced adaptive linear regression to further

reduce the number of training samples for high accuracy gaze inferring.

The limitation of these methods lies in that they all assume a fixed head pose. To our

knowledge, one exception was proposed by Sugano et al. [10]. However, its estimation

accuracy is low (around 4◦) even after obtaining up to 1000 training samples.

1.1 Motivation

We focus on the problem of appearance-based human gaze estimation under free head motion

using a single webcam. This problem is high-dimensional because the head motion has 6

degrees of freedom. Therefore directly solving the problem requires a prohibitively large

number of training samples. To effectively solve this problem while significantly reduce the

training cost, we propose a novel approach with characteristics as follows:

1. A decomposition scheme is introduced to decouple the original problem into subprob-

lems, namely initial estimation and subsequent compensations.

2. Geometric priors are introduced in appearance-based estimation. Specifically, the

combination of 3-D geometric-based and learning-based methods reduces the num-

ber of required training samples.

3. The gaze estimation bias caused by eye appearance distortion is learnt effectively using

training samples obtained from a 5-seconds video clip.

The rest of the paper is organized as follows. Sec. 2 overviews the proposed approach

and explains the decomposition scheme. Sec. 3 describes the proposed methods in detail.

Sec. 4 shows the experimental results and Sec. 5 concludes the paper.

2 Overview of the approach

2.1 Problem statement

Table 1 defines some important notations. The generalized appearance-based gaze estimation

problem can be formulated as using training data T to map the eye appearance feature êee to
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Notation Description

eee ∈ R
m Eye appearance feature vector extracted from an eye image

rrr = [rx,ry,rz]T ∈ R
3 3-D head rotation vector1

ttt = [tx, ty, tz]T ∈ R
3 3-D head translation vector

ggg = [gx,gy,gz]T ∈ R
3 Unit vector for gaze direction under world coordinate system

{êee, r̂rr, t̂tt, ĝgg} Data for test input

T e = {eeei|i = 1, · · · ,n} Collection of appearance features of training samples

T r = {rrri|i = 1, · · · ,n} Collection of head rotations of training samples

T t = {ttt i|i = 1, · · · ,n} Collection of head translations of training samples

T g = {gggi|i = 1, · · · ,n} Collection of gaze directions of training samples

T = {T e,T r,T t ,T g} Dataset including all training samples

rrr0, ttt0 Constant values of fixed head rotation and translation

T0 = {T e
0 ,T

r
0 ,T

t
0 ,T

g
0 }

Subset of T consisting of training samples

whose rrr j = rrr0 and ttt j = ttt0

Table 1: Definitions of notations used in this paper.
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Figure 1: Gaze direction unit vector ĝgg = [ĝx, ĝy, ĝz]T under the world coordinate system.

the gaze direction unit vector ĝgg under head pose (r̂rr, t̂tt):

ĝgg =M(êee, r̂rr, t̂tt|T ) (1)

Typically, conventional feature-based methods assume a fixed head pose. Thus they are

actually focused on a simplified version of the problem:

ĝgg2 =Mrrr0,ttt0
(êee|T e

0 ,T
g

0 ) (2)

while in this paper, we solve the original problem in Eq. (1) for the gaze direction vector

ĝgg = [ĝx, ĝy, ĝz]T under the world coordinate system (WCS), as shown in Fig. 1.

2.2 Proposed decomposition approach

The problem in Eq. (1) is about mapping eye appearance features to gaze direction vectors.

This problem can be solved directly by collecting enough training samples under variant

1In our implementation, values of rx and ry are calculated as the angles made by the projections of the face

normal nnn and the Z′ axis in the planes Y ′O′Z′ and Z′O′X ′ (similar to the angles in Fig. 1), while rz is the rotation

angle around nnn (yaw).
2In practice, conventional methods usually estimate the 2-D gaze position on the screen instead of 3-D gaze

direction vector for convenience because under a fixed head pose, their values directly correspond to each other.
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Figure 2: 2-D illustration of relationship between gaze direction and head pose. (a) Under a

fixed head pose (rrr0, ttt0), gaze direction α can be estimated from appearance by Eq. (2). (b)

To obtain α under another head pose (r̂rr, t̂tt), the estimated α ′ by Eq. (2) should be corrected

because of captured eye appearance distortion. (c) Under head pose (r̂rr, t̂tt), gaze direction

under WCS should be further compensated for head rotation β .

head poses in T for regression, as proposed by Sugano et al. [10]. However, as data in T
has 6 degrees of freedom for head poses, even when a large number (e.g. 103) of training

samples are obtained, the accuracy is still insufficient.

We propose first solving the problem in Eq. (2) by assuming a fixed head pose (rrr0, ttt0)
as shown in Fig. 2(a) and then compensating for the estimation bias by taking into account

the true head pose (r̂rr, t̂tt). The bias under WCS mainly depends on two factors: 1) the esti-

mation error caused by eye appearance distortion (see α ′ and α in Fig. 2(b)) in accordance

with specific capture direction; and 2) the eye orientation variation in accordance with head

rotation (see β in Fig. 2(c)). In fact, the problem in Eq. (1) is decomposed into:

ĝgg ≃Mrrr0,ttt0
(êee|T e

0 ,T
g

0 )⊗CD
rrr0,ttt0

(r̂rr, t̂tt|T )⊗CR
rrr0
(r̂rr) (3)

where the operator ‘⊗’ indicates the manipulation in gaze direction vector via a series of

specified rotations, and ⊗CD
rrr0,ttt0

(r̂rr, t̂tt|T ) and ⊗CR
rrr0
(r̂rr) denote the compensations for eye ap-

pearance distortion and head rotation. Similar to Sugano et al. [10], we obtain the required

head rotation and translation values via a computer vision-based head tracker.

2.3 Gaze estimation procedures

We implemented a head pose-free gaze tracking system based on the proposed approach.

Only single camera was used. In general, the estimation includes the following steps.

Obtaining training data. Training data T = {T e,T r,T t ,T g} are obtained via calibra-

tion. The user is asked to sit in front of the screen and gaze at certain positions on the screen

(i.e. calibration points). A single camera is used to capture the user’s appearances. Then, the

inner eye corners are detected using edge maps and serve as landmark points for rectangu-

lar eye region alignment and extraction. Finally, these extracted eye regions are rescaled and

raster-scanned into eye appearance features {eeei}. The head poses {rrri} and {ttt i} are calculated

from the raw data provided by a vision-based head pose tracker [7]. The gaze positions {xxxi}
on the screen are saved to calculate the gaze direction vectors {gggi}. Specifically, training

samples in T0 are collected under a fixed head pose (rrr0, ttt0), whereas the others are obtained

from a short video clip that is introduced later in Sec. 3.3.

Gaze estimation. Any test data {êee, r̂rr, t̂tt} are obtained similarly to the training data. With

the training data T , gaze direction vector ĝgg is estimated from {êee, r̂rr, t̂tt} by Eq. (3). Each

procedure in Eq. (3) is introduced in detail in the following sections.
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3 Proposed methods

The decomposition-based approach for head pose-free gaze estimation was introduced in

Sec. 2.2. In this section, we explain each step for solving the decomposed problem in Eq. (3).

3.1 Estimation under fixed head pose by Mrrr0,ttt0
(êee|T e

0 ,T
g

0 )

The training data T0 = {T e
0 ,T

r
0 ,T

t
0 ,T

g
0 } obtained under a fixed head pose (rrr0, ttt0) are used.

We obtain the training samples sparsely, meaning that gaze positions are selected with large

intervals on the screen to avoid a tedious calibration stage. Let m-D vector eee j ∈T e
0 denote the

eye appearance feature generated from j-th eye image and ggg j ∈ T g
0 denote the corresponding

gaze direction vector, where j = 1, · · · ,n0. The head pose is fixed at (rrr0, ttt0) and thus not

considered. We seek a mapping eee j 7→ ggg j from the m-D feature space to the 3-D gaze direction

vector space.

It has proven that in such cases, interpolation methods using pre-selected local training

samples are effective [10, 12]. Unlike them, we propose directly solving the problem using

all the samples in T e
0 and T g

0 :

Mrrr0,ttt0
(êee|T e

0 ,T
g

0 ) : ĝgg = ∑
n0

j=1
w jggg j subject to {w j}= argmin∥êee−∑

n0

j=1
w jeee j∥

2 (4)

It has not been mentioned by the previous methods that under the condition of sparse sam-

pling and m ≫ n0, solving Eq. (4) automatically selects a small number of local training

samples with weights w j > 0. Therefore, it becomes unnecessary to pre-select the ’local

samples’. We demonstrate in Sec. 4 that estimation by Eq. (4) achieves high accuracy.

3.2 Compensation for head rotation by CR
rrr0
(r̂rr)

In this step, we ignore the eye appearance distortion and only focus on compensation for head

rotation. For a test sample, we initially estimate the gaze direction vector ĝgg0 by assuming

head rotation rrr0 and then apply a series of rotations to the head coordinate system so that

rrr0 ⇒ r̂rr, which simultaneity rotates ĝgg0 to the final result ĝgg under rrr. This procedure is used to

compensate for head rotation and denoted as

ĝgg = ĝgg0 ⊗CR
rrr0
(r̂rr) =R(ĝgg0,rrr0, r̂rr) (5)

where the function aaa =R(aaa0,rrr0,rrr) finds the local coordinate system rotations starting from

rrr0 to rrr and computes aaa from the initial vector aaa0 simultaneity by using the same rotations.

The calculation is provided in the Appendix. A.

3.3 Learning CD
rrr0,ttt0

(r̂rr, t̂tt|T ) from a short video clip taken with varying

head poses

While the eye orientation varies relatively to the camera, distortion exists in the captured

eye image. In the eye coordinate system (ECS), this orientation is depicted by the capture

direction that is calculated by a vector pointing to the camera centre. In this section we

investigate the relationship between the changes of capture directions and the biases of gaze

estimations caused by eye appearance distortions under ECS.

The capture direction unit vectors are denoted as vvvc ∈ R
3 and vvvc,0 ∈ R

3 under head

poses (rrr, ttt) and (rrr0, ttt0). Then the capture direction variation is ∆vvvc = vvvc − vvvc,0. Also, the
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(a) (b) (c) (d) (e) (f)

Figure 3: Eye images from video clip. Green/red arrows indicate capture direction vec-

tors/eye (face) normals. Note that in (a) and (e), capture directions are similar under ECS,

thus their appearance distortions and gaze direction biases are also similar.

initially estimated gaze direction vector from a distorted eye image is denoted as gggd,0 =
Mrrr0,ttt0

(eee|T e
0 ,T

g
0 ) and the ground truth as ggg0 = ggg⊗ (CR

rrr0
(rrr))−1 =R(ggg,rrr,rrr0), where ggg is the

true gaze direction vector under WCS. Then the gaze direction bias is represented by a 2-D

rotation ∆φφφ = [∆φ x,∆φ y] that rotates gggd,0 to ggg0. The calculations of vvvc and ∆φφφ are shown in

the Appendix. B and C. We predict the gaze direction bias of any test sample via the mapping

of ∆vvvc 7→ ∆φφφ , which is learnt by regression.

Training the regression needs adequate training samples with different ∆vvvc. Note that

there is no requirement of specified gaze positions or head poses for the training samples.

Thus we propose an unconventional calibration process that captures a short video clip while

the user is gazing at a fixed but arbitrarily assigned position on the screen and moving his/her

head (just rotating is effective). As there is no change of gaze positions and the user’s head

motion is free, the procedure can be done within several seconds while obtaining sufficient

training samples. Therefore, a tedious calibration is avoided. Fig. 3 shows examples of eye

images from a captured video clip and visualizes their camera directions under ECS.

For every obtained training sample {eeei,rrri, ttt i,gggi}, we calculate ∆φφφ i and ∆vvvc
i as described

above, and then the regression is performed on the basis of a Gaussian Process (GP) model.

Note that {∆φφφ i} ∈ R
2 has two degrees of freedom, so we utilize two 1-D regressions. If the

first dimension {∆φ x
i } is taken as an example, the regression function is denoted as follows:

∆φ x
i = fx(∆vvvc

i )∼ GP(m(∆vvvc
i ),kω(∆vvvc

i ,∆vvvc
j)) (6)

where the mean function and covariance function are defined by

m(∆vvvc
i ) = 0, kω(∆vvvc

i ,∆vvvc
j) = κ exp(−∥∆vvvc

i −∆vvvc
j∥

2/2l2)+σ2δi j (7)

where σ2 comes from the observation noise. The training procedure uses the above obtained

training data yyy = [∆φ x
1 , · · · ,∆φ x

i , · · · ,∆φ x
n ]

T and V = [∆vvvc
1, · · · ,∆vvvc

i , · · · ,∆vvvc
n]

T to optimize the

hyperparameters ω = {κ , l,σ2} by minimizing the log marginal likelihood function

log p(yyy|V,ω) =−
1

2
yyyT(Kω(V,V )+σ2I)−1yyy−

1

2
log |Kω(V,V )+σ2I|−

n

2
log2π (8)

where Kω(V,V ) is the covariance matrix whose element in (i, j) is kω(∆vvvc
i ,∆vvvc

j). With these

hyperparameters, the predicted ∆φ̂ x from ∆v̂vvc of a test sample is given by

∆φ̂ x = Kω(∆v̂vvc,V )(Kω(V,V )+σ2I)−1yyy (9)

cov(∆φ̂ x) = 1−Kω(∆v̂vvc,V )(Kω(V,V )+σ2I)−1Kω(V,∆v̂vvc) (10)

After regression for both ∆φ̂ x and ∆φ̂ y, the bias caused by appearance distortion can be

compensated for by ĝgg0 = ĝggd,0 ⊗CD
rrr0,ttt0

(r̂rr, t̂tt|T ), which rotates ĝggd,0 by ∆φ̂ x and ∆φ̂ y.
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Figure 4: Gaze positions on

screen for training samples.

Method Error Training samples

Proposed 000...888555◦ 333333

S3GP+edge+filter [17] 0.83◦
16 labelled and

75 unlabelled

Tan et al. [12] 0.5◦ 252

Baluja et al. [1] 1.5◦ 2000

Xu et al. [18] 1.5◦ 3000

Table 2: Comparison of estimation accuracy under

fixed head pose.

4 Experimental verification

The performance of the proposed method was evaluated via extensive experiments. A system

was built upon a desktop PC with a 22-inch LCD monitor and a VGA resolution webcam,

which are about 50cm from the user. The estimation errors were measured in degrees. The

entire assessment includes three stages: 1) evaluation of gaze estimation accuracy under

fixed head pose; 2) verification of eye appearance distortion compensation via a short video

clip; and 3) the overall assessment of estimation accuracy under free head motion.

4.1 Evaluation of estimation accuracy under fixed head pose

We first focused on the conventional problem in Eq. (2), which assumes a fixed head pose.

The user was requested to gaze at each point displayed on the screen as shown in Fig. 4,

while the eye appearance and other data were collected for training samples. Then test

samples were obtained similarly. Finally, gaze directions of the test samples were estimated

by the training samples using the method introduced in Sec. 3.1.

Table 2 compares the estimation accuracy of the proposed method with those of existing

appearance-based methods. Our method obviously achieves a good trade-off between easy

calibration (it requires only 33 training samples) and high precision.

4.2 Verification of eye appearance distortion compensation

We examined the ability of the method proposed in Sec. 3.3 to compensate for eye appear-

ance distortion. The training data were obtained from a 5-seconds video clip of the eye

appearances recorded while the user was gazing at the same position on the screen and rotat-

ing his head as shown in Fig. 5(a). The range of the corresponding capture angles is given in

Table 3. The regression that maps the capture direction variation to gaze direction estimation

bias was obtained using the method introduced in Sec. 3.3. Fig. 5(b) plots the regression

curve with error bars that indicate a 90% confidence interval.

To verify the effectiveness of the proposed compensation technique, leave-one-out ex-

periments were conducted. Each training sample was selected as a test sample for once

while the other samples were used to train the regression. Then the estimation bias of the

test sample was obtained via regression and then used in compensation. Fig. 6 plots the esti-

mation errors, and Table 4 gives their averages. These results demonstrate that the proposed

regression-based method effectively compensates for eye appearance in gaze estimation.
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Figure 5: Regression for appearance distortion compensation. (a) Distorted eye images

captured under head motion and fixed gaze position from short video clip as training samples.

(b) Regression results for ∆φ x
i and ∆φ

y
i . The shaded region shows 90% confidence interval.

Figure 6: Results of leave-one-out experiments

with/without appearance distortion compensation.

Rotation angle range

around x −13.90◦ ∼ 30.17◦

around y −30.65◦ ∼ 38.62◦

Table 3: Angle ranges of capture direc-

tions {vvvc
i } for all training samples from

video clip.

Compensation Average error

With 1.65◦

Without 10.85◦

Table 4: Average results with/without

appearance distortion compensation.

4.3 Overall assessment of estimation accuracy under free head motion

The gaze estimation efficacy under free head motion is evaluated. Experiments are done with

4 subjects, three of whom are non-experienced users of any gaze tracker. Training samples

are first collected as introduced before. Then test samples are obtained for the experiments.

Table 5 shows the head motion ranges covered by the test samples from subject S1, which

are sufficiently large for a 22-inch screen user. Fig. 7 illustrates curves of estimation er-

rors with/without the proposed compensation methods, which demonstrate that only if the

compensations are fully applied, the estimation becomes accurate. Table 6 gives all the es-

timation errors and also compares our results to those of the method by Sugano et al. [10],

which is one of the very few previously known head pose-free appearance-based methods.

The proposed method obviously achieves higher accuracy and requires much less calibration

effort. In fact, the average estimation accuracy of 2.38◦ is comparable to the feature-based

methods [3, 9, 15, 19, 20], which commonly report accuracies of 1∼ 3◦ by utilizing complex

devices such as infrared/stereo cameras/lights and pan-tilt units.

5 Conclusion and discussion

We have presented a novel appearance-based gaze estimation approach that allows free

head motion. The high-dimensional original problem is decomposed into subproblems.
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Type Range

x-translation
−30.91mm

∼ 107.89mm

y-translation
10.18mm

∼ 50.14mm

z-translation
533.78mm

∼ 599.58mm

x-rotation 3.89◦ ∼ 19.39◦

y-rotation −13.41◦ ∼ 12.21◦

z-rotation −8.51◦ ∼ 3.49◦

Table 5: Head motion ranges of

test samples from subject S1.

Figure 7: Final results of gaze estimation under free

head motion for subject S1. Comparisons are provided

with/without proposed compensations.

Subject Full comp. Dist. comp. Rot. comp. No comp. Training samples

S1 1.70◦ 7.97◦ 5.34◦ 5.68◦

33 training samples

and

5-seconds video clip

S2 2.49◦ 4.28◦ 5.44◦ 4.09◦

S3 2.74◦ 6.01◦ 3.81◦ 7.86◦

S4 2.57◦ 4.14◦ 2.94◦ 6.31◦

Average 222...333888◦ 5.60◦ 4.38◦ 5.99◦

Sugano et al. [10] 4◦ ∼ 5◦ ≈ 103

Table 6: Estimation accuracy under free head motion. S2-S4 are non-experienced users.

Then initial estimation and subsequent compensations are done by either learning-based or

geometric-based methods. Experimental results demonstrate two major benefits: 1) high es-

timation accuracy is achieved, and 2) the number of training samples is significantly reduced.

To our knowledge, the proposed method is the most accurate appearance-based method

under free head motion and is comparable to the feature-based methods. On the other hand,

difficulty still exists in aligning and extracting the deformed eye images under different head

poses, which is the major problem we plan to solve in the future.

Appendix: Calculations of aaa =R(aaa0,rrr0,rrr), vvvc, and ∆φφφ

A. Let the initial vector aaa0 be rotated along with the local coordinate system by rrr0 ⇒
[0,0,rz

0]
T ⇒ [0,0,rz]T ⇒ rrr, then we have

aaa =R(aaa0,rrr0,rrr)

=

[

1 0 0
0 cosθ x

2 −sinθ x
2

0 sinθ x
2 cosθ x

2

][

cosθ
y
2 0 sinθ

y
2

0 1 0
−sinθ

y
2 0 cosθ

y
2

][

cosθ z
12 −sinθ z

12 0

sinθ z
12 cosθ z

12 0

0 0 1

][

cosθ
y
1 0 sinθ

y
1

0 1 0
−sinθ

y
1 0 cosθ

y
1

][

1 0 0
0 cosθ x

1 −sinθ x
1

0 sinθ x
1 cosθ x

1

]

aaa0

(11)

where θ x
1 =−rx

0, θ
y
1 =−arctan(tanr

y
0 · cosrx

0), θ z
12 = rz − rz

0, θ
y
2 = arctan(tanry · cosrx), and

θ x
2 = rx.

B. The capture direction unit vector vvvc under ECS is determined by both head translation



10 LU, OKABE, SUGANO, SATO: A HEAD POSE-FREE APPROACH

and head rotation. It can be geometrically computed by

vvvc =R([−tx
i ,−t

y
i ,−tz

i ]
T/(tx

i
2 + t

y
i

2
+ tz

i
2)

1
2 ,rrr, [0,0,0]T) (12)

C. The bias ∆φφφ = [∆φ x,∆φ y] rotates gggd,0 to ggg0, thus can be obtained by solving

ggg0 =

[

cos∆φ y 0 sin∆φ y

0 1 0
−sin∆φ y 0 cos∆φ y

][

1 0 0
0 cos∆φ x −sin∆φ x

0 sin∆φ x cos∆φ x

]

gggd,0 (13)

whose solution is

∆φ x
i = arctan(g0,y/−g0,z)− arctan(gd,0,y/−gd,0,z) (14)

∆φ y = arctan(g0,x
i /g0,z)+ arctan(gd,0,x/(1− (gd,0,x)2 − (g0,y)2)

1
2 ) (15)
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