
Informatica 30 (2006) 33–44 33

A Survey of Programming Languages and Platforms for Multi-Agent Systems

Rafael H. Bordini
University of Durham, UK
E-mail: R.Bordini@durham.ac.uk, http://www.dur.ac.uk/r.bordini

Lars Braubach
Universität Hamburg, Germany
E-mail: braubach@informatik.uni-hamburg.de, http://vsis-www.informatik.uni-hamburg.
de

Mehdi Dastani
Utrecht University, The Netherlands
E-mail: mehdi@cs.uu.nl, http://www.cs.uu.nl/~mehdi

Amal El Fallah Seghrouchni
University of Paris 6, France
E-mail: Amal.Elfallah@lip6.fr, http://www-poleia.lip6.fr/~elfallah

Jorge J. Gomez-Sanz
Universidad Complutense de Madrid, Spain
E-mail: jjgomez@sip.ucm.es, http://grasia.fdi.ucm.es/jorge

João Leite
Universidade Nova de Lisboa, Portugal
E-mail: jleite@di.fct.unl.pt, http://centria.di.fct.unl.pt/~jleite

Gregory O’Hare
University College Dublin, Ireland
E-mail: Gregory.OHare@ucd.ie, http://www.cs.ucd.ie/staff/gohare

Alexander Pokahr
Universität Hamburg, Germany
E-mail: pokahr@informatik.uni-hamburg.de, http://vsis-www.informatik.uni-hamburg.de

Alessandro Ricci
Università di Bologna, Italy
E-mail: aricci@deis.unibo.it, http://lia.deis.unibo.it/~ari

Keywords: Multi-Agent Systems, Programming Languages, Platforms

Received: April 1, 2005

This paper surveys recent research on programming languages and development tools for Multi-Agent
Systems. It starts by addressing programming languages (declarative, imperative, and hybrid), followed
by integrated development environments, and finally platforms and frameworks. To illustrate each of these
categories, some systems were chosen based on the extent to which European researchers have contributed
to their development. The current state of these systems is described and, in some cases, indications of
future directions of research are given.

Povzetek: Podan je pregled jezikov in orodij za MAS.

1 Introduction

Research in Multi-Agent Systems (MAS) has recently led
to the development of practical programming languages
and tools that are appropriate for the implementation of
such systems. Putting together this new programming
paradigm is fast becoming one of the most important top-

ics of research in multi-agent systems, in particular because
this is an essential requirement for an eventual technology
transfer.

Surveying the MAS literature will reveal a large number
of different proposals for agent-oriented languages, rang-
ing from purely declarative, to purely imperative, and var-
ious hybrid approaches. Some are designed from scratch,



34 Informatica 30 (2006) 33–44 Bordini et al.

directly encoding some theory of agency, while others ex-
tend existing languages to suit the peculiarities of this new
paradigm. Using these languages, instead of more conven-
tional ones, proves useful when the problem is modelled as
a multi-agent system, and understood in terms of cognitive
and social concepts such as beliefs, goals, plans, roles, and
norms.

Most agent programming languages have some under-
lying platform which implements its semantics. However,
agent frameworks exist that are not tightly coupled with
one specific programming language. Instead, they are con-
cerned with providing general techniques for relevant as-
pects such as agent communication and coordination. The
most mature languages will be accompanied by some In-
tegrated Development Environment (IDE), intended to en-
hance the productivity of programmers by automating te-
dious coding tasks. Typically these will provide function-
alities such as project management, creating and editing
source files, refactoring, build and run process, and testing.

Despite the large number of languages, frameworks, de-
velopment environments, and platforms recently proposed,
implementing MAS is still an often daunting task. To ad-
dress the problem of managing the inherent complexity of
MAS and helping the structuring of their development, the
research community has produced a number of methodolo-
gies [4]. Nevertheless, even if MAS practitioners follow
such methodologies during the design phase, they still find
great difficulties in the implementation phase, partly due to
the lack of maturity of both methodologies and program-
ming tools. Among others, such difficulties can be traced
to the lack of specialised debugging tools; to the lack skills
that are necessary in mapping analysis/design concepts to
programming languages constructs; to the lack of profi-
ciency in dealing with the specific characteristics of differ-
ent agent platforms; and also to the lack of understanding
of the very foundations as well as practical characteristics
of the agent-oriented approach to programming.

Even though most of the languages and tools developed
so far have not been tried yet in large-scale, industrial-
strength applications, much progress has been achieved in
the last few years. This is, therefore, an appropriate time
for a reality check and a bird’s eye view of the field, help-
ing to consolidate existing achievements and guide future
developments. To this end, this paper surveys some of the
existing approaches situated in the MAS Programming area
of research, from programming languages to development
infrastructures, chosen in part according to the extent to
which European researchers have contributed to their de-
velopment.

The first part of the paper is devoted to the presenta-
tion of agent-oriented programming languages, structured
according to the existing paradigm on which they build.
In Section 2, we present declarative agent-oriented lan-
guages, while Section 3 covers the imperative languages
and Section 4 some hybrid languages. The second part will
cover various implementations of software infrastructure
for agents. These will be structured according to whether

they are development environments for MAS, in Section 5,
or MAS platforms and frameworks, in Section 6. The paper
ends with some reference to further readings on this subject
in Section 7, and some final remarks in Section 8.

2 Declarative Languages

Declarative languages are partially characterised by their
strong formal nature, normally grounded on logic. This is
the case with most of the declarative languages described
here: FLUX, Minerva, Dali, and ResPect. Other declara-
tive languages are also grounded on other formalisms, such
as CLAIM which finds parts of its roots in the ambient cal-
culus. Declarative languages that allow for easy integration
with imperative code will be reviewed in Section 4 below.

CLAIM (Computational Language for Autonomous,
Intelligent and Mobile Agents [23]) is a high-level declar-
ative agent-oriented programming language. It is part of
an unified framework called Himalaya [25] (Hierarchical
Intelligent Mobile Agents for building Large-scale and
Adaptive sYstems based on Ambients). It combines
the main advantages of agent-oriented programming lan-
guages, for representing cognitive aspects and reasoning,
with those of concurrent languages based on process alge-
bra, for representing concurrency and agent mobility.

The CLAIM language is inspired by ambient calcu-
lus [11] and agents are hierarchically organised, thus
supporting the design of Mobile Multi-Agent Systems
(MMAS) – a set of connected hierarchies of agents – to
be deployed on a network of computers. Every agent (i.e.,
a node of a hierarchy) contains cognitive elements (e.g.,
knowledge, goals, capabilities), processes, and sub-agents
and is also mobile as it can move within its hierarchy or
to a remote one. In addition, an agent can dynamically
acquire intelligent and computational components from its
sub-agents, which can be seen as some sort of inheritance.
The mobility and the inheritance as defined in Himalaya
framework favour a dynamic adaptability and reconfigura-
tion of systems [50] for coping with the increasing com-
plexity of distributed and cooperative applications. The
main elements of CLAIM agents are cognitive, interaction,
mobility, and reconfiguration primitives.

The formal semantics of CLAIM is based on Plotkin’s
[41] structural operational approach consisting of a transi-
tion relation, from an initial state of a program to another
state resulting from the execution of an atomic operation.
At each step of an agent execution, either a message is dealt
with, a running process executed, or a goal processed. For
a detailed presentation of the semantics, we refer the reader
to [24].

As an MMAS within Himalaya is deployed on a set of
connected computers, the language CLAIM is supported
by a distributed platform called SyMPA [51], which offers
all the necessary mechanisms for management of agents,
communication, mobility, security, fault-tolerance, and
load balancing [30]. SyMPA is implemented in Java and



A SURVEY OF LANGUAGES AND PLATFORMS. . . Informatica 30 (2006) 33–44 35

compliant with the specifications of the MASIF [37] stan-
dard from the OMG (Object Management Group). There
is a central system providing management functions. An
agent system is deployed on each computer connected to
the platform.

The Himalaya environment has been used for develop-
ing several complex applications that showed the expres-
siveness of the language and the robustness and strength
of the platform, such as: an application for information
search on the Web [22], several electronic commerce ap-
plications [23, 52], a load balancing and resource sharing
application using mobile agents [30], and an application for
a network of digital libraries.

FLUX [53] is a high-level programming system for cog-
nitive agents, which can be downloaded from http://
www.fluxagent.org. It consists of an implementation
of the Fluent Calculus, an action representation formalism
that provides a basic solution to the classical frame problem
using the concept of state update axioms, while addressing
a variety of aspects in reasoning about actions (hence the
relevance for agents), such as ramifications (i.e., indirect
effects of actions), qualifications (i.e., unexpected action
failure), nondeterministic actions, concurrent actions, con-
tinuous change, and noisy sensors and effectors.

An agent program in FLUX is a logic program consisting
of three parts: the kernel providing the agent with the cog-
nitive ability to reason about its actions and acquired sen-
sor data, a background theory providing an internal model
of its environment, and a strategy which specifies the task-
oriented behaviour in accordance with which the agent rea-
sons, plans, and acts. The full expressive power of logic
programming can be used to design strategies while facil-
itating formal proofs of the correctness of strategies with
respect to a problem-dependent specification.

The use of progression, where a (possibly incomplete)
initial world model is updated upon the performance of an
action, is one of the main characteristics of FLUX. This al-
lows for a computationally efficient solution to the frame
problem and, consequently, an efficient agent implemen-
tation based on the Fluent Calculus. Further information
regarding FLUX can be obtained in [54].

MINERVA [32, 33] is an agent system designed to pro-
vide a common agent framework based on the strengths
of Logic Programming, to allow for the combination of
several existing non-monotonic knowledge representation
and reasoning mechanisms. It uses MDLP and KABUL
to specify agents and their behaviour. A MINERVA agent
consists of several specialised, possibly concurrent, sub-
agents performing various tasks, whose behaviour is speci-
fied in KABUL, while reading and manipulating a common
knowledge base specified in MDLP.

MDLP (Multi-Dimensional Dynamic Logic
Programming) is the basic knowledge representation
mechanism of an agent in MINERVA. MDLP is an
extension of Answer Set Programming (ASP) where
knowledge is represented by logic programs arranged in
an acyclic digraph. In this digraph, vertices are sets of

logic programs, and edges represent the relations between
program. MDLP enjoys the merits of ASP such as default
negation. Default negation allows the definition of non-
monotonic behaviour thus facilitating the representation
of, and reasoning about, incomplete knowledge. MDLP
also allows for the simultaneous representation of several
aspects such as hierarchies and preferences, as well as the
evolution of the represented knowledge.

KABUL (Knowledge And Behavior Update Language),
as its recent evolution EVOLP [1], is a logic-programming
style language that allows the specification of updates to a
knowledge base and to itself. A program in KABUL is a
set of statements, each statement being a type of condition-
action rule that can be seen as encoding an agent behaviour.
The epistemic effects of actions can be either an update to
the knowledge base of the agent, represented by an MDLP
program, or a self update to the KABUL program, thus
changing the behaviour of the agent over time. Condi-
tions range from external observations, epistemic state of
the agent, as well as concurrent execution of other actions.
This allows for a combination of reactive and proactive be-
haviour, in the sense that no external stimuli are needed to
trigger the behaviour of the agent, while these can be com-
bined with the rational features provided by the underlying
MDLP knowledge representation framework and its formal
and precise ASP-based semantics. More information re-
garding MDLP, KABUL, and MINERVA can be found in
[32].

DALI [14] is an Active Logic Programming language
designed for executable specification of logical agents. It
uses plain Horn Clauses and its semantics is based on Least
Herbrand Models. It intends to provide constructs to rep-
resent reactivity and proactivity in an agent by means of
rules. A DALI agent is a logic program that contains re-
active rules, events, and actions aimed at interacting with
an external environment. The reactive and proactive be-
haviour of a DALI agent is triggered by several kinds of
events: external, internal, present, and past events. All the
events and actions are time stamped so as to record when
they occurred. The new syntactic entities, i.e., predicates
related to events and proactivity, are indicated with special
postfixes. When an event occurs in the agent’s “external
world”, the agent can perceive it and decide to react. The
reaction is defined by a reactive rule which has in its head
that external event. The internal events define the behaviour
of a DALI agent, making it proactive independently of the
environment and allowing it to manipulate and revise its
knowledge.

ReSpecT [38] is a logic-based language, with a well-
defined formal semantics, allowing for the definition of re-
actions, expressed in terms of rules. A rule in ReSpecT
consists of a head specifying the communication event that
triggers the reaction and a body specifying which actions
(tuples from the tuple centre) are atomically executed when
the reaction is triggered. When a basic action fails, the re-
action atomically fails and all its effects on the tuple cen-
tre state are rolled back. The coordinating behaviour of



36 Informatica 30 (2006) 33–44 Bordini et al.

tuple centres can be changed and adapted at runtime by
dynamically changing the reactions defined in ReSpecT.
Such a feature is typically exploited to deal with dynamism
and openness of MAS applications. The tuple centre pro-
grammed with these reactions acts as a basic scheduler,
encapsulating the policy adopted to coordinate the vari-
ous (autonomous) agent tasks. By changing the reactions,
the overall coordinating behaviour of the system changes,
without the need to change the agent’s behaviour. This lan-
guage is used within the TuCSoN framework (discussed
below in Section 6).

3 Imperative Languages
Purely imperative approaches to agent-oriented program-
ming are less common, mainly due to the fact that most
abstractions related to agent-oriented design are, typically,
declarative in nature. There are however many program-
mers who still use conventional, i.e. non-agent oriented,
imperative languages for developing multi-agent systems;
as a result, in practice agent notions are often implemented
in an ad-hoc manner. An example of an agent-oriented lan-
guage which is still essentially imperative, while incorpo-
rating agent-specific abstractions, is the language available
with the development environment JACK [57, 26].

The JACK Agent Language (JAL) has been developed
by a company called Agent Oriented Software. JAL is
based on ideas of reactive planning systems resulting from
the work on the BDI agent architecture and is, in this re-
spect, similar to the hybrid languages Jason, 3APL, and
Jadex (discussed below in Section 4). However, instead of
providing a logic-based language, JAL is an extension of
Java (implementing some features of logic languages such
as logical variables). A number of syntactic constructs is
added to Java, allowing programmers to create plans and
belief bases, all in a graphical manner as JAL has a so-
phisticated IDE which provides a tool for such purpose.
In JAL, plans can be composed of reasoning methods and
grouped into capabilities which, together, compose a spe-
cific ability an agent is supposed to have, thus supporting a
good degree of modularisation. Another structuring mech-
anism present in JAL is the ability to use teams of agents, or
agent organisations, a notion that is increasingly important
both in agent-oriented design [4] and because of recent de-
velopments in self-organising systems [47]. Although JAL
has no formal semantics, as a commercial platform, JACK
has extensive documentation and supporting tools. It has
been used in a variety of industrial applications as well as
for research. For evaluation purposes, a free trial license
for JAL can be obtained; more information is available at
http://www.agent-software.com.

4 Hybrid Approaches
Various well-known agent languages combine declarative
and imperative features. In this section we describe agent

programming languages which are declarative while at the
same time providing some specific constructs allowing for
the use of code implemented in some external imperative
language. These constructs serve as a means for the use of
legacy code. The languages chosen to illustrate the hybrid
approach are: 3APL, Jason, IMPACT, Go!, and AF-APL.

3APL (An Abstract Agent Programming Language
“triple-a-p-l”) is a programming language for implement-
ing cognitive agents that have beliefs, goals, and plans
as mental attitudes, can generate and revise their plans to
achieve their goals, and are able to interact with each other
and with the environment they share with other agents. The
first version of 3APL was designed by Hindriks et al. at
Utrecht University [28]. Since its initial design, the 3APL
programming language has been subject to continuous de-
velopment [17, 16].

One of the main features of 3APL consists of program-
ming constructs to implement mental attitudes of an agent
as well as the deliberation process which manipulates them
[15]. In particular, 3APL allows direct specification of
mental attitudes such as beliefs, goals, plans, actions and
reasoning rules. Actions form the basic building blocks of
plans and can be internal mental actions, external actions,
or communication actions. The deliberation-related con-
structs allow the implementation of selection and execution
of actions and plans through which an agent’s belief base
can be updated and through which the shared environment
can be modified. It also allows the selection and applica-
tion of reasoning rules through which the plan base can be
modified.

The 3APL programming language is designed so as to
respect a number of software engineering and program-
ming principles such as separation of concerns, modularity,
abstraction, and reusability. It also supports the integra-
tion of Prolog (declarative) and Java (imperative) program-
ming languages. Interested readers will find in the 3APL
user guide (http://www.cs.uu.nl/3apl) a number
of illustrative toy-problem applications such as the “blocks
world”, Axelrod’s tournament, an English auction system,
and the Contract Net protocol. 3APL has also been applied
to the implementation of the high-level control of mobile
robots. In particular, 3APL is being used for controlling the
behaviour of SONY AIBO robots and to implement small-
device mobile applications.

Jason is an interpreter, implemented by R.Bordini and
J.Hübner, for an extended version of AgentSpeak(L), a
logic-based agent-oriented programming language intro-
duced by A. Rao in [43]. The language is influenced by
the work on the Beliefs-Desires-Intentions (BDI) architec-
ture and BDI logics [44]. The semantics of the extended
language (which we call simply AgentSpeak), given by
Bordini and colleagues, was recently revised and appears
in [55]. The core of the interpreter available with Jason
is in fact an implementation of that operational seman-
tics. Jason is available Open Source under GNU LGPL
at http://jason.sourceforge.net [6]. Although
the documentation is available at that URL, the best mate-



A SURVEY OF LANGUAGES AND PLATFORMS. . . Informatica 30 (2006) 33–44 37

rial for an overview of the work on Jason is [7].
Some of the features available in Jason are: (i) speech-

act based inter-agent communication (and belief annotation
of information sources); (ii) annotations on plan labels,
which can be used by elaborate (e.g., decision-theoretic)
selection functions; (iii) fully customisable (in Java) se-
lection functions, trust functions, and overall agent archi-
tecture (perception, belief-revision, inter-agent communi-
cation, and acting); (iv) straightforward extensibility (and
use of legacy code) by means of user-defined “internal ac-
tions”; (v) a clear notion of a multi-agent environment,
which is implemented in Java (this can be a simulation of a
real environment, e.g., for testing purposes before the sys-
tem is actually deployed). Jason has a simple IDE which
is discussed in Section 5.

IMPACT is a system developed by Subrahmanian et
al. [49], with the main purpose of providing a framework
to build agents on top of heterogeneous sources of knowl-
edge, i.e., to transform legacy code into agents that can
communicate and act. To “agentise” such legacy code, IM-
PACT provides the notion of an agent program written over
a language of so-called code-calls. A code-call can be seen
as an encapsulation of whatever the legacy code is, repre-
sented logically through conditions and queries on the re-
sults produced by such code. These are used in clauses,
that form agent programs, determining constraints on the
actions that are to be taken by agents. Actions in IMPACT
use some deontic notions such as agent actions being, at
a certain time, “obligatory”, “permitted”, “forbidden”, etc.
Such agent programs and their semantics resemble logic
programs extended with deontic modalities. The seman-
tics is given by the notion of a rational status sets, which
are generalisations of the notion of stable models in logic
programming.

The IMPACT platform provides a number of fea-
tures, including agent deployment over a network, reg-
istration of available agent services and yellow-page
facilities. Information on the IMPACT platform is
available at http://www.cs.umd.edu/projects/
impact/. The framework has been extended to support
also temporal or probabilistic reasoning [20]. A recent
overview of the IMPACT language and platform can be
found in [21].

Go! [12] is a multi-paradigm agent programming lan-
guage, with a declarative subset of function and relation
definitions, an imperative subset comprising action proce-
dure definitions, and rich program structuring mechanism.
Based on the symbolic programming language April [36],
Go! extends it with knowledge representation features of
logic programming, yielding a multi-threaded, strongly
typed and higher order (in the functional-programming
sense) language.

Inherited from April, threads primarily communicate
through asynchronous message passing. Threads, execut-
ing action rules, react to received messages using pattern
matching and pattern-based message reaction rules. A
communication daemon enables threads in different Go!

processes to communicate transparently over a network.
Typically, each agent will comprise several threads, each
of which can directly communicate with threads in other
agents. Threads within a single Go! process, hence in the
same agent, can also communicate by manipulating shared
cell or dynamic relation objects. As in Linda tuple stores,
these elements are used to coordinate the activities of dif-
ferent threads within an agent. Go! is strongly typed, which
can often reduce the programmer’s burden, and compile-
time type checking improves code safety. New types can
be declared and thereby new data constructors can be in-
troduced.

The design of Go! took into consideration critical issues
such as security, transparency, and integrity, in regards to
the adoption of logic programming technology. Features
of Prolog that lack a transparent semantics, such as the cut
(‘!’) were left out. In Prolog the same clause syntax is
used both for defining relations, with a declarative seman-
tics, and for defining procedures which only have an op-
erational semantics. In Go!, behaviour is described using
action rules that have a specialised syntax.

Agent Factory Agent Programming Language (AF-
APL) is the core programming language that resides at the
heart of Agent Factory, which will be reviewed in Sec-
tion 5. AF-APL is originally based on Agent-Oriented Pro-
gramming as first put forward by Y.Shoham [48], but was
revised and extended with BDI concepts, such as beliefs
and plans. The syntax and semantics of the AF-APL lan-
guage have been derived from a logical model of how an
agent commits itself to a course of action. Details of this
model can be found in [13, 46]. Specifically, the model
defines the mental state of an agent to be comprised of
two primary mental attitudes: beliefs and commitments.
In AF-APL, the belief set is comprised of a set of decla-
rations about the current state of the environment. Agents
are situated, given that an AF-APL programmer can de-
clare explicitly, for each agent, a set of sensors referred
to as perceptors and a set of effectors known as actuators.
Perceptors are realized as instances of Java classes that de-
fine how to convert raw sensor data into beliefs that may
be added to the belief set of the agent. Similarly, an ac-
tuator is realized as an instance of a Java class, which has
two responsibilities: (1) to define the action identifier that
should be used when referring to the action that is realized
by the actuator, and (2) to contain code that implements the
action. Collectively, these declarations are termed the em-
bodiment configuration of the agent, and they are specified
within the agent program.

5 Integrated Development
Environments

Integrated Development Environments (IDEs), focus on the
programming language level and intend to enhance the pro-
ductivity by automating tedious coding tasks. Looking at
current IDEs from the object-oriented domain it can be



38 Informatica 30 (2006) 33–44 Bordini et al.

seen that such IDEs tend to provide functionalities that
can be classified into five categories: project management,
e.g. organising the project structure according to develop-
ers’ needs; creating and editing source files, e.g. provid-
ing structure views for quick and easy navigation, online
error detection, auto-completion, and so on; refactoring
to enable fast and reliable code restructuring operations;
build and run process allowing the execution of applica-
tions from within the IDE; and testing, e.g. supported by
unit testing with test cases.

In the agent world, the situation differs from conven-
tional programming in that there is no common ground
with respect to agent programming languages and agent ar-
chitectures. Hence, current agent IDEs exist only for agent
languages of specific agent frameworks. Additionally, we
found that only a small proportion of available agent frame-
works offer IDE support at all, considering AgentLink
(http://www.agentlink.org) as a representative
selection of existing agent-related software. From this
small number, we selected some representative examples:
3APL IDE, Jason IDE, JDE, CAFnE, Visual Soar, Agent-
Builder, AgentFactory, and the Living Systems Developer.

The 3APL IDE allows developers to load/edit 3APL
programs that implement individual agents, execute one or
more agent programs in either a step-by-step or continu-
ous fashion, implement and configure the environment that
is shared by the agents, monitor the internal state of in-
dividual agents through an agent property window, moni-
tor the exchange of messages through the sniffer tool, send
an external-user message to an individual agent, and read
the system messages. The 3APL IDE is built on top of
the 3APL multi-agent platform that consists of a direc-
tory facilitator called agent management system, a mes-
sage transport system which delivers agent messages, and
a plugin interface that allows agents to execute actions in
the shared environment. The 3APL platform thus allows
the implementation and concurrent execution of a set of
3APL agents. The 3APL development environment, its
user guide, and further documentation can be found at
http://www.cs.uu.nl/3apl.

Jason [6] is distributed with an IDE which provides a
graphical interface for editing a multi-agent system config-
uration file, as well as AgentSpeak code for the individ-
ual agents. Through the IDE, it is also possible to run and
control the execution mode of a multi-agent system, and
to distribute agents over a network in a very simple way.
The IDE also provides another tool, called “Mind Inspec-
tor”, which allows the user to inspect agents’ internal states
when the system is running in debugging mode. This is
very useful for debugging AgentSpeak MAS, as it allows
the programmer to inspect agents’ mental attitudes across
a distributed system.

The JACK Development Environment (JDE) is a full-
featured commercial IDE for the JACK BDI agent plat-
form [57] developed by Agent Oriented Software Ltd. It
is based on the JACK Agent Language (JAL) which was
presented in Section 3. JDE allows agent developers to or-

ganise their files into projects offering a semantically or-
ganised tree view with respect to the different kinds of con-
tained elements. The editing of agent code is supported
by a rudimentary integrated editor that, for example, pro-
vides syntax highlighting for JAL. More advanced features
such as auto-completion and error-detection are not avail-
able. However, the IDE provides a graphical plan editor
that allows the construction of a plan from visual com-
ponents similar to statecharts. Once the code base for a
project is complete, it is possible to compile and run an
application directly from within the IDE.

The CAFnE (Component Agent Framework for non-
Experts) tool [29] does not represent an IDE in the clas-
sical sense. Its objective is to enable domain experts to
modify an existing agent application. CAFnE has been
conceived to support the development of BDI agents based
on a rather platform-independent BDI component language
adapted from SMART [34]. The rationale of CAFnE is
to hide the agent code layer and provide interactive dia-
logues for the development. Transformer modules can then
be used to generate platform-dependent code from the in-
ternal representation.

Visual Soar is a freely available IDE for the Soar agent
architecture [31]. It supports basic project management
capabilities and mainly facilitates Soar agent program-
ming through syntax highlighting and some consistency
checking functionalities. Additionally, the IDE provides
a connection to a Soar runtime environment allowing Soar
agents to be executed from the IDE.

AgentBuilder is an agent platform directly based Agent-
Oriented Programming (AOP), as originally defined by
Shoham [48], developed by Acronymics Inc. It relies on
the Reticular Agent Language which is an extension of
Shoham’s Agent0. As the used agent language is not in-
tended for direct programming, an agent developer has to
use the AgentBuilder IDE, which consists of a variety of
different tools supporting all aspects of building agent ap-
plications. The IDE is conceived to hide agent code as
much as possible and offers graphical wizards and tools
whenever possible. It provides simple project management
functionalities and integrates with a compiler tool. Suc-
cessfully built agent applications can directly be executed
from the IDE.

The Agent Factory [13] Development Environment of-
fers support for basic project management, editing, and
assembling the different agent constituents. It contains a
cohesive layered framework for the development and de-
ployment of agent-oriented applications. At the centre
of this framework is the Agent Factory Agent Program-
ming Language (AF-APL) described above in Section 4.
The AF-APL interpreter is embedded within the distributed
FIPA-compliant Run-Time Environment (RTE) which can
be seen as a collection of agent platforms. Besides the IDE,
a tool named VIPER [45] allows the composition of Agent
UML Sequence Diagrams that sit at the heart of the Pro-
tocol Model. In addition to the tools that have been pro-
vided to support the development of AF-APL agents, the



A SURVEY OF LANGUAGES AND PLATFORMS. . . Informatica 30 (2006) 33–44 39

Agent Factory Development Environment also includes a
suite of tools that facilitate the testing and debugging of
agent-oriented applications.

The Living Systems Developer is a commercial IDE
for the Living Systems Technology Suite developed by
Whitestein (http://www.whitestein.com). The
underlying agent platform supports Java-based agents,
rather than supporting a specialised agent language.
The IDE is designed as an Eclipse (http://www.
eclipse.org) plug-in, hence providing sophisticated
editing and refactoring functionalities for Java code. In
addition, several agent related aspects such as project man-
agement in accordance to the agent features used have been
added. To facilitate the development process of agent-
based applications, the IDE has been extended to fully sup-
port all phases of ADEM, the Agent Development Method-
ology also created at Whitestein.

6 Agent Platforms and Frameworks

Most languages described in this paper have some un-
derlying platform which implements the semantics of the
agent programming language. However, some imple-
mented frameworks exist that are not so strongly tied to
a particular programming language. Instead, these frame-
works are more concerned with providing support for as-
pects such as agent communication and coordination. In
this Section we focus on such frameworks, having chosen
TuCSoN, JADE, and DESIRE as illustrative examples.

TuCSoN (Tuple Centre Spread over the Network) is
a framework for MAS coordination, based on a model
and a related infrastructure providing general-purpose, pro-
grammable services for supporting agent communication
and coordination [39]. The model is based on tuple centres
as runtime programmable abstractions whose coordinating
behaviour can be dynamically specified with a logic-based
language called ReSpecT. Tuple centres are an example of
coordination artifacts (see the survey on Environment mod-
elling for MAS [56]), i.e, first-class entities (tools) popu-
lating the agent cooperative working environment, shared
and used collectively by the agents to support their coor-
dination. Such abstractions are also used in the SODA
methodology (see the survey on Agent Oriented Software
Engineering [4]) as basic building blocks for designing the
social level and the environment in a MAS.

The TuCSoN technology is available as an open source
project (http://tucson.sourceforge.net). It is
completely based on Java, and is composed of: a runtime
platform to be installed on hosts to turn them into nodes
of the infrastructure; a set of libraries (APIs) to enable
agents access to the services; and a set of tools mainly
to support the runtime inspection and control (monitor-
ing, debugging) of tuple-centres’ state and coordinating be-
haviour. At the heart of the TuCSoN technology is the
tuProlog technology, a Prolog engine fully integrated with
the Java environment, available also as a standalone library

and environment (the tuProlog technology is available at
http://tuprolog.sourceforge.net [19]). Be-
sides being adopted in research projects (e.g., for dis-
tributed workflow management, logistics, and e-learning),
TuCSoN is currently used as one of the reference platforms
for building agent-based systems in academic projects and
thesis developed at the Engineering Faculties in Cesena and
Bologna.

JADE (Java Agent DEvelopment Framework) [2] is a
Java framework for the development of distributed multi-
agent applications. It represents an agent middleware pro-
viding a set of available and easy-to-use services and sev-
eral graphical tools for debugging and testing. One of the
main objectives of the platform is to support interoperabil-
ity by strictly adhering to the FIPA specifications concern-
ing the platform architecture as well as the communication
infrastructure. Moreover, JADE is very flexible and can be
adapted to be used on devices with limited resources such
as PDAs and mobile phones.

JADE has been widely used over the last years by many
academic and industrial organisations (see [2]) ranging
from tutorials for teaching support in agent-related Uni-
versity courses to Industrial prototyping. As an example,
Whitestein has used JADE to construct an agent-based sys-
tem for decision-making support in organ transplant centres
[10].

The JADE platform is open source software, distributed
by TILAB (Telecom Italia LABoratories) under the terms
of the LGPL license and can be obtained at http://
jade.tilab.com. Since May 2003, the International
JADE Board has been responsible for supervising the man-
agement of the project. Currently, the JADE Board consists
of five members: TILAB, Motorola, Whitestein Technolo-
gies AG, Profactor, and France Telecom.

Jadex [42] is a software framework for the creation of
goal-oriented agents following the belief-desire-intention
(BDI) model. The framework is realized as a rational
agent layer that sits on top of a middleware agent infras-
tructure such as JADE [2], and supports agent development
with well established technologies such as Java and XML.
The Jadex reasoning engine addresses traditional limita-
tions of BDI systems by introducing new concepts such
as explicit goals and goal deliberation mechanisms (see,
e.g., [8]), making results from goal-oriented analysis and
design methods (e.g., KAOS and Tropos) more easily trans-
ferable to the implementation phase.

Jadex has been used to build applications in different do-
mains such as simulation, scheduling, and mobile comput-
ing. For example, Jadex was used to develop a multi-agent
application for negotiation of treatment schedules in hospi-
tals [40]. Jadex has also been successfully used in several
software engineering courses at the University of Hamburg.

The Jadex system, developed at the Distributed Systems
and Information Systems group at the University of Ham-
burg, is freely available under the LGPL license and can
be downloaded from http://jadex.sourceforge.
net. Besides the framework and additional development



40 Informatica 30 (2006) 33–44 Bordini et al.

tools, the distribution contains an introductory tutorial, a
user guide, and several illustrative example applications
with source code.

DESIRE (DEsign and Specification of Interacting
REasoning components) is a compositional development
method for multi-agent systems, based on a notion of com-
positional architecture, and developed by Treur et al. [9]
at the Vrije Universiteit Amsterdam. In this approach,
agent design is based on the following main aspects: pro-
cess composition, knowledge composition, and relations
between knowledge and process composition. In this
component-based agent approach, an agent’s complex rea-
soning process is built up as an interaction between the
components representing the subprocesses of the overall
reasoning process [9]. The reasoning process is structured
according to a number of reasoning components that in-
teract with each other. Components may or may not be
composed of other components, where components that
are not further decomposed are called primitive compo-
nents. The functioning of the overall agent system is
based on the functionality of these primitive components
plus the composition relation that coordinates their inter-
action. Specification of a composition relation may in-
volve, for example, the possibilities of information ex-
change among components and the control structure that
activates the components. The DESIRE approach has been
used for applications such as load balancing of electric-
ity distribution and diagnosis systems. Further informa-
tion and documentation of the tools supporting the devel-
opment and implementation of multi-agent systems based
on DESIRE is available at http://www.few.vu.nl/
~wai/demas/tools2.html.

7 Further Reading

This paper should be complemented with related literature.
Besides the references spread throughout the text, point-
ing to more detailed explanations of the systems described,
we recommend the survey on agent programming lan-
guages by Mascardi et al. [35], which provides a detailed
view of ConGolog, Agent-0, IMPACT, DyLog, Concurrent
MetateM, and Ehhf . A reference book on programming
languages for Multi-Agent Systems has been published re-
cently [5]. It contains detailed description of a selection of
practical programming languages and tools which support
MAS programming and implement key MAS concepts in
a unified framework. Another extensive overview of agent
technology is available in [3], which includes a comprehen-
sive collection of papers on technologies, methodologies,
and current research trends in the MAS domain.

As we have mentioned before, the criteria in which we
based our choice of systems was, in part, the extent to
which European researchers have contributed to their de-
velopment. Of course there are various other agent lan-
guages, platforms, and tools besides those referred here. A
good collection of agent-related software can be found in

the AgentLink III website (www.agentlink.org).
Overall, the systems described here focus on the im-

plementation phase. However, current research trends
include the attempt to make implementation easier by
bridging the analysis and design phase directly to im-
plementation [4]. Examples of such research efforts
are INGENIAS and its Development Kit [27] (http:
//ingenias.sourceforge.net), and MaSE and
its AgenTool [18] (http://macr.cis.ksu.edu/
projects/agentTool/agentool.htm).

8 Final Remarks

Programming Multi-Agent Systems is rapidly turning into
a new discipline of its own. Throughout the paper, we have
described several examples of languages and systems cur-
rently being developed in this area. We now draw some
conclusions on the three main topics of this survey, namely
languages, IDEs, and platforms.
Languages. Most research in agent-oriented program-
ming languages is based on declarative approaches. There
are many declarative solutions, most of them logic based.
Purely imperative languages are unusual in the Agents lit-
erature, as in essence they are inappropriate for expressing
the high-level abstractions associated with agent systems
design. On the other hand, as we saw above, agent-oriented
programming languages tend to allow for easy integration
with (legacy) code written in imperative languages. Inter-
estingly, the characteristics of the underlying agent archi-
tectures determine that it is often more appropriate to use
interpreters rather than compilers.
IDEs. The existing IDEs provide basic support for project
management, creating/editing files, and building/running
the systems, but fail to support sophisticated features within
all these categories. In addition, none of the agent IDEs
covers aspects of refactoring and testing of agent applica-
tions. One reason for this is that, except for the Living
Systems Developer, all IDEs have been developed from
scratch and thus do not rely on existing reliable technol-
ogy. In general, IDE support for developing agent-based
systems is rather weak and the existing agent tools do not
offer the same level of usability as state-of-the-art object-
oriented IDEs. One of the main reason for this is the cur-
rently unavoidable tight coupling of agent IDEs and agent
platforms, which results from the lack of agreement on
an unified programming language for multi-agent systems.
Another trend (observable in some of the IDEs), which is
in contrast to object-oriented IDEs, is that they partly try to
abstract away from the underlying programming language
in favour of using graphical means of programming, such
as wizards and statecharts.
Platforms. Closed frameworks such as DESIRE, strongly
based on a platform, provide more complete solutions than
others such as Jadex or TuCSoN. They usually offer an
agent architecture and a system model, very useful for
novel developers, together with the communication infras-



A SURVEY OF LANGUAGES AND PLATFORMS. . . Informatica 30 (2006) 33–44 41

tructure and a range of robust services, such as directory
facilitators, agent management services, and monitoring
facilities. As a drawback, closed frameworks limit the
development. For example, the design approach of the
framework may not fit certain domain problems. Perhaps
that is the reason why most researchers tend to use more
open solutions. Currently, the most popular solution is
to use JADE as underlying agent infrastructure combined
with some other (higher-level) approach to program the
agents’ behaviour. When dealing with more general
frameworks (rather than tied to a platform), their use (i.e.,
defining the agents that will run within it, together with
the required services and resources) should be automated
as much as possible, in part to free the developer from
low-level details (e.g. location of the configuration files,
their concrete syntax, etc.). Despite this, few existing
frameworks have IDE support. Concerning the paradigm
of communication used, there are several on offer, often
being an important issue when choosing which framework
to adopt. TuCSoN is representative of tuple-centred
communication, JADE of message passing, and DESIRE
of data flow among processes.

The various approaches mentioned along this survey in-
dicate that there is still much work to be done. Among the
major challenges faced by this research community are:

– The conception and development of specialised de-
bugging tools, in particular for cognitive agent lan-
guages;

– The integration of agent tools into existing IDEs,
rather than starting from scratch;

– The separation of MAS frameworks from agent plat-
forms, so that each framework can be used for deploy-
ing systems on a variety of platforms.

– The dissemination of the MAS programming
paradigm, so that programmers have a better un-
derstanding of its foundations as well as practical
characteristics.

We believe that the recent developments surveyed here
show a lively interest in this area of research. Despite
the large number of open issues and challenges, we ex-
pect that the experience gathered in developing MAS with
these tools will take us closer to a more mature program-
ming paradigm. Arguably, this is one of the few concrete
ways for allowing wider audiences to use in practice, and in
a systematic way, the various techniques that the MAS re-
search community has developed over the last two decades.

Acknowledgements
We gratefully acknowledge the help and support of
AgentLink III, in particular its Technical Fora, which not
only motivated the authors to work together in producing

this joint survey, but also provided the conditions for much
of the discussion that we used in this paper and indeed that
will guide future work in this area of research. We also
acknowledge the valuable comments and suggestions pro-
vided by the anonymous referees.

References
[1] J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira.

Evolving logic programs. In S. Flesca, S. Greco,
N. Leone, and G. Ianni, editors, Proceedings of the
8th European Conference on Logics in Artificial In-
telligence (JELIA’02), volume 2424 of LNAI, pages
50–61. Springer, 2002.

[2] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi.
JADE — a java agent development framework. In
Bordini et al. [5], chapter 5, pages 125–148.

[3] F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors.
Methodologies and Software Engineering for Agent
Systems. Kluwer, 2004.

[4] C. Bernon, M. Cossentino, and J. Pavon. An overview
of current trends in european aose research. Journal
of Informatica, 2005. In this volume.

[5] R. H. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni, editors. Multi-Agent Programming:
Languages, Platforms and Applications. Number 15
in Multiagent Systems, Artificial Societies, and Sim-
ulated Organizations. Springer, 2005.

[6] R. H. Bordini, J. F. Hübner, et al. Ja-
son, manual, release 0.7 edition, Aug. 2005.
http://jason.sf.net/.

[7] R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and
the Golden Fleece of agent-oriented programming. In
Bordini et al. [5], chapter 1, pages 3–37.

[8] L. Braubach, A. Pokahr, D. Moldt, and W. Lamers-
dorf. Goal representation for BDI agent systems.
In R. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni, editors, Programming Multi-Agent
Systems, second Int. Workshop (ProMAS’04), volume
3346 of LNAI, pages 44–65. Springer Verlag, 2005.

[9] F. Brazier, C. Jonker, and J. Treur. Principles of
compositional multi-agent system development. In
Proceedings of Conference on Information Technol-
ogy and Knowledge Systems, pages 347–360. Aus-
trian Computer Society, 1998.

[10] M. Calisti, P. Funk, S. Biellman, and T. Bugnon. A
multi-agent system for organ transplant management.
In A. Moreno and J. Nealon, editors, Applications
of Software Agent Technology in the HealthCare Do-
main, pages 199–212. Birkhäuser Verlag, 2004.



42 Informatica 30 (2006) 33–44 Bordini et al.

[11] L. Cardelli and A. D. Gordon. Mobile ambients. In
M. Nivat, editor, Foundations of Software Science and
Computational Structures, volume 1378 of LNCS,
pages 140–155. Springer, 1998.

[12] K. Clark and F. McCabe. Go! — a multi-
paradigm programming language for implementing
multi-threaded agents. Annals of Mathematics and
Artificial Intelligence, 41(2–4):171–206, 2004.

[13] R. W. Collier. Agent Factory: A Framework for the
Engineering of Agent-Oriented Applications. PhD
thesis, University College Dublin, 2001.

[14] S. Costantini and A. Tocchio. A logic program-
ming language for multi-agent systems. In S. Flesca,
S. Greco, N. Leone, and G. Ianni, editors, Proceed-
ings of the 8th European Conference on Logics in
Artificial Intelligence (JELIA’02), volume 2424 of
LNAI, pages 1–13. Springer, 2002.

[15] M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer.
Programming agent deliberation: An approach il-
lustrated using the 3APL language. In Proceed-
ings of the Second International Joint Conference
on Autonomous Agents and Multiagent Systems (AA-
MAS’03), pages 97–104. ACM, 2003.

[16] M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-
J. C. Meyer. A programming language for cognitive
agents: goal directed 3APL. In M. Dastani, J. Dix,
and A. El Fallah-Seghrouchni, editors, Programming
multiagent systems, first international workshop (Pro-
MAS’03), volume 3067 of LNCS, pages 111–130,
Berlin, 2004. Springer Verlag.

[17] M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer.
Programming multi-agent systems in 3APL. In Bor-
dini et al. [5], chapter 2, pages 39–67.

[18] S. DeLoach. Analysis and design using MaSE and
agenTool. In Proceedings of Midwest Artificial In-
telligence and Cognitive Science. Miami University
Press, 2001.

[19] E. Denti, A. Omicini, and A. Ricci. Multi-paradigm
Java-Prolog integration in tuProlog. Science of Com-
puter Programming, 2005. In press.

[20] J. Dix, S. Kraus, and V. Subrahmanian. Agents deal-
ing with time and uncertainty. In M. Gini, T. Ishida,
C. Castelfranchi, and W. L. Johnson, editors, Pro-
ceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems (AA-
MAS’02), pages 912–919. ACM Press, 2002.

[21] J. Dix and Y. Zhang. IMPACT: a multi-agent frame-
work with declarative semantics. In Bordini et al. [5],
chapter 3, pages 69–94.

[22] A. El Fallah Seghrouchni and A. Suna. An unified
framework for programming autonomous, intelligent
and mobile agents. In V. Marik, J. Müller, and M. Pe-
choucek, editors, Proceedings of Third International
Central and Eastern European Conference on Multi-
Agent Systems, volume 2691 of LNAI, pages 353–
362. Springer Verlag, 2003.

[23] A. El Fallah Seghrouchni and A. Suna. CLAIM:
A computational language for autonomous, intelli-
gent and mobile agents. In M. Dastani, J. Dix, and
A. El Fallah Seghrouchni, editors, Programming Mul-
tiagent Systems, first international workshop (Pro-
MAS’03), volume 3067 of LNCS, pages 90–110.
Springer Verlag, 2004.

[24] A. El Fallah Seghrouchni and A. Suna. Programming
mobile intelligent agents:an operational semantics. In
Proceedings of the International Conference on In-
telligent Agent Technology, pages 65–71. IEEE Com-
puter Society, 2004.

[25] A. El Fallah Seghrouchni and A. Suna. Hi-
malaya Framework: Hierarchical Intelligent Mobile
Agents for building Large-scale and Adaptive sYs-
tems based on Ambients. In T. Ishida, L. Gasser,
and H. Nakashima, editors, Proceedings of Mas-
sive Multi-Agent Systems workshop, number 3446 in
LNAI, pages 202–216. Springer Verlag, 2005.

[26] R. Evertsz, M. Fletcher, R. Jones, J. Jarvis, J. Brusey,
and S. Dance. Implementing industrial multi-agent
systems using JACKTM. In Programming multiagent
systems, first international workshop (ProMAS’03),
volume 3067 of LNAI, pages 18–48. Springer Verlag,
2004.

[27] J. Gomez-Sanz and J. Pavon. Agent oriented software
engineering with INGENIAS. In V. Marik, J. Müller,
and M. Pechoucek, editors, Proceedings of the Third
International Central and Eastern European Confer-
ence on Multi-Agent Systems, volume 2691 of LNCS,
pages 394–403. Springer Verlag, 2003.

[28] K. Hindriks, F. de Boer, W. van der Hoek, and J.-
J. Ch. Meyer. Agent programming in 3APL. Int.
J. of Autonomous Agents and Multi-Agent Systems,
2(4):357–401, 1999.

[29] G. Jayatilleke, L. Padgham, and M. Winikoff. Com-
ponent agent framework for non-experts (CAFnE)
toolkit. In R. Unland, M. Klusch, and M. Calisti, ed-
itors, Software Agent-Based Applications, Platforms
and Development Kits. Birkhäuser Publishing Com-
pany, 2005.

[30] G. Klein, A. Suna, and A. El Fallah Seghrouchni. Re-
source sharing and load balancing based on agent mo-
bility. In Proceedings of International Conference
on Enterprise Information Systems, pages 350–355.
ICEIS Press, 2004.



A SURVEY OF LANGUAGES AND PLATFORMS. . . Informatica 30 (2006) 33–44 43

[31] J. F. Lehman, J. E. Laird, and P. S. Rosenbloom. A
gentle introduction to Soar, an architecture for human
cognition. In S. Sternberg and D. Scarborough, edi-
tors, An invitation to Cognitive Science, vol. 4. MIT
Press, 1996.

[32] J. A. Leite. Evolving Knowledge Bases, volume 81 of
Frontiers in Artificial Intelligence and Applications.
IOS Press, 2003.

[33] J. A. Leite, J. J. Alferes, and L. M. Pereira. MIN-
ERVA — a dynamic logic programming agent archi-
tecture. In J.-J. Meyer and M. Tambe, editors, Intel-
ligent Agents VIII — Agent Theories, Architectures,
and Languages, volume 2333 of LNAI, pages 141–
157. Springer, 2002.

[34] M. Luck and M. d’Inverno. Understanding Agent Sys-
tems. Springer Series on Agent Technology. Springer,
2nd edition, 2004.

[35] V. Mascardi, M. Martelli, and L. Sterling. Logic-
based specification languages for intelligent software
agents. Theory and Practice of Logic Programming,
4(4):429–494, 2004.

[36] F. McCabe and K. Clark. April — agent process in-
teraction language. In M. Wooldridge and N. Jen-
nings, editors, Intelligent Agents, ECAI-94 Workshop
on Agent Theories, Architectures, and Languages,
volume 890 of LNAI, pages 324–340. Springer, 1995.

[37] D. Milojicic, M. Breugst, I. Busse, J. Campbell,
S. Covaci, B. Friedman, K. Kosaka, D. Lange,
K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran,
and J. White. MASIF, the OMG mobile agent sys-
tem interoperability facility. In Proceedings of Mo-
bile Agents’98, volume 1477 of LNAI, pages 50–67.
Springer, 1998.

[38] A. Omicini and E. Denti. From tuple spaces to
tuple centres. Science of Computer Programming,
41(3):277–294, Nov. 2001.

[39] A. Omicini and F. Zambonelli. Coordination for
Internet application development. Int. J. of Au-
tonomous Agents and Multi-Agent Systems, 2(3):251–
269, 1999.

[40] T. O. Paulussen, A. Zöller, A. Heinzl, A. Pokahr,
L. Braubach, and W. Lamersdorf. Dynamic patient
scheduling in hospitals. In M. Bichler, C. Holtmann,
S. Kirn, J. Müller, and C. Weinhardt, editors, Coor-
dination and Agent Technology in Value Networks.
GITO, Berlin, 2004.

[41] G. Plotkin. A structural approach to operational se-
mantics. Technical Report DAIMI-FN 19, Depart-
ment of Computer Science, Arhaus University, 1981.

[42] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex:
A BDI reasoning engine. In Bordini et al. [5], chap-
ter 6, pages 149–174.

[43] A. S. Rao. AgentSpeak(L): BDI agents speak out in a
logical computable language. In Proceedings of Mod-
elling Autonomous Agents in a Multi-Agent World,
number 1038 in LNAI, pages 42–55. Springer Verlag,
1996.

[44] A. S. Rao and M. P. Georgeff. BDI agents: From
theory to practice. In Proceedings of International
Conference on Multi Agent Systems, pages 312–319.
AAAI Press / MIT Press, 1995.

[45] C. F. B. Rooney, R. W. Collier, and G. M. P. O’Hare.
VIPER: A visual protocol editor. In R. D. Nicola,
G. Ferrari, and G. Meredith, editors, Proceedings of
the International Conference on Coordination Mod-
els and Languages, volume 2949 of LNCS, pages
279–293. Springer Verlag, 2004.

[46] R. Ross, R. Collier, and G. O’Hare. AF-APL:
Bridging principles and practices in agent oriented
languages. In R. Bordini, M. Dastani, J. Dix,
and A. El Fallah Seghrouchni, editors, Program-
ming Multi-Agent Systems, second Int. Workshop
(ProMAS’04), volume 3346 of LNCS, pages 66–88.
Springer Verlag, 2005.

[47] G. D. M. Serugendo, M.-P. Gleizes, and A. Karageor-
gos. Self-organisation and emergence in mas: An
overview. Journal of Informatica, 2005. In this vol-
ume.

[48] Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60(1):51–92, 1993.

[49] V. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus,
F. Özcan, and R. Ross. Heterogenous Active Agents.
MIT-Press, 2000.

[50] A. Suna and A. El Fallah Seghrouchni. Adaptative
mobile multi-agent systems. In Proceedings of Inter-
national Central and Eastern European Conference
on Multi-Agent Systems, LNAI, 2005. To appear.

[51] A. Suna and A. El Fallah Seghrouchni. A mo-
bile agents platform: architecture, mobility and se-
curity elements. In R. Bordini, M. Dastani, J. Dix,
and A. El Fallah Seghrouchni, editors, Programming
Multi-Agent Systems, second Int. Workshop (Pro-
MAS’04), volume 3346 of LNAI, pages 126–146,
New-York, 2005. Springer Verlag.

[52] A. Suna, C. Lemaitre, and A. El Fallah Seghrouchni.
E-commerce using an agent oriented approach.
Revista Iberoamericana de Inteligencia Artifical,
9(25):89–98, 2005.



44 Informatica 30 (2006) 33–44 Bordini et al.

[53] M. Thielscher. FLUX: A logic programming method
for reasoning agents. Theory and Practice of Logic
Programming, 2005. To appear.

[54] M. Thielscher. Reasoning Robots: The Art and Sci-
ence of Programming Robotic Agents, volume 33 of
Applied Logic Series. Springer, 2005.

[55] R. Vieira, A. Moreira, M. Wooldridge, and R. H. Bor-
dini. On the formal semantics of speech-act based
communication in an agent-oriented programming
language. To appear, 2005.

[56] D. Weyns and T. Holvoet. On the role of environ-
ments in multiagent systems. Journal of Informatica,
2005. In this volume.

[57] M. Winikoff. JACKTM intelligent agents: An indus-
trial strength platform. In Bordini et al. [5], chapter 7,
pages 175–193.


