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Abstract. We study the incompressible limit of the porous medium equation with a right hand
side representing either a source or a sink term, and an injection boundary condition. This model
can be seen as a simplified description of non-monotone motions in tumor growth and crowd motion,
generalizing the congestion-only motions studied in recent literature ([AKY14], [PQV14], [KP18],
[MPQ17]). We characterize the limit density, which solves a free boundary problem of Hele-Shaw
type in terms of the limit pressure. The novel feature of our result lies in the characterization of
the limit pressure, which solves an obstacle problem at each time in the evolution.

1. Introduction

The porous media equation is a nonlinear evolution equation which is commonly used to model
many natural phenomena involving diffusion or heat propagation. In its simplest form, it consists
of a continuity equation with a flux given by Darcy’s law:

(1.1) ∂tρ− div (ρ∇p) = 0, p =
m

m− 1
ρm−1, m > 1.

The exponent m > 1 describes the anti-crowd tendency of the density motion, where the diffusion
is larger at higher density ([BGHP84], [BH86], [Mur07], [Wit97]). Due to the degeneracy of the
diffusion at lower densities, it is well-known that the density stays compactly supported if initially
so (see for example [V0́7, Chapter 1]).

In this paper, we consider the porous media equation with a source term:

(1.2) ∂tρ− div (ρ∇p) = λρ in Ω× R+,

set in the (exterior) domain Ω = Rn \K, where K is a bounded subset of Rn with smooth boundary
and supplemented with the “injection” boundary condition,

(1.3) ρ(x, t) = f(x, t)
1

m−1 > 0 on ∂K.

as well as the initial data ρ(t = 0) = ρ0
m ≥ 0. Importantly we will assume that the function λ(x, t)

is bounded but can take both positive or negative values. When λ < 0, the term λρ is an absorption
term which is competing with the injection at ∂K. Assumptions on the initial and boundary data
are given in Section 2.1. Classically, (1.2) can also be written as the following equation for the
pressure p(x, t):

(1.4) ∂tp = (m− 1)p(∆p+ λ) + |∇p|2.

Our interest is with the incompressible limit of this equation, that is the limit m→∞. Heuris-
tically speaking, if (ρm, pm) denotes a sequence of solution of (1.2), then – provided there is an
actual limit in a good enough sense – the limits ρ∞ and p∞ should satisfy

(1.5) ∂tρ∞ − div (ρ∞∇p∞) = λρ∞ in Ω× R+, p∞ = f on ∂K, ρ∞(·, 0) = ρ0,
1
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and taking the limit in the relation pm = m
m−1ρ

m−1
m , we may guess that in the limit ρ∞ and p∞ are

connected by what is known as the Hele-Shaw graph

(1.6) p∞ ∈ P∞(ρ∞) :=


0 if 0 ≤ ρ∞ < 1

[0,∞) if ρ∞ = 1

∞ if ρ∞ > 1.

In particular, the pressure can be viewed as a Lagrange multiplier for the constraint ρ∞ ≤ 1
([MRCS10]). In our framework, as in many of the related works discussed below, a priori estimates
(under appropriate assumptions on f and on the initial data) will allow us to make the derivations
of (1.5)-(1.6) rigorous.

Equations (1.5)-(1.6) fully characterize the evolution of ρ∞ (see the uniqueness result, Proposition
2.5). However, one would like to give a more geometrical description of the evolution of ρ∞, and
in particular of the evolution of the “saturated region”

Σ(t) := {ρ∞(t) = 1}.
Classically, such a description is provided by a Hele-Shaw type free boundary problem. Indeed,

formally at least, we can pass to the limit in (1.4) to get the so-called complementarity condition:

p∞(∆p∞ + λ) = 0 in Ω× R+(1.7)

which implies that p∞(·, t) solves −∆p∞ = λ in the set {p∞(·, t) > 0}, and equation (1.5) implies
(in a weak form) that the normal velocity of the interface ∂Σ(t) is proportional to |∇p∞|. However,
the derivation of (1.7) is less straightforward than that of (1.5)-(1.6) in general (see for instance
[DP21]), and it is not obvious that we should always have {p∞(·, t) > 0} = Σ(t).

Incompressible limits were first studied for equation (1.1) (that is when λ = 0). In the absence of
K, there are classical works starting by Bénilan and Crandall [BC81], followed by results with more
general initial data by Caffarelli and Friedman [CF87] and numerical studies describing the shape
of the limit by Elliot et al [EHKO86] (also see [GQ03] for its rigorous justification). In [BKM09] a
similar weak formulation for the Hele-Shaw problem (still without right hand side) is derived as a
”mesa” limit from the Stefan problem. The last decade has seen significant advances in the study of
these asymptotics when the right hand side is monotone increasing in ρ – corresponding to the case
λ > 0 in our framework. The convergence as m → ∞ and characterization of the limit as a Hele-
Shaw type flow has been achieved for models of congested crowd motion [AKY14, KPW19] and of
tumor growth [PQV14, MPQ17, KP18]. It is important to note that monotonicity properties are
present in the systems studied in these papers and are essential for proving that {p∞(·, t) > 0} =
Σ(t). For instance, the monotonicity of the density was a key feature in characterizing the limiting
problem in [MPQ17, KP18]. In [AKY14, KPW19] which features a drift field, the monotonicity of ρ
along the streamline was crucial to characterize the limiting problem in terms of viscosity solutions.

In our work, the function λ(x, t) is not necessarily positive so that one no longer expects ρ∞ to
be monotone in time thus complicating the analysis. Moreover, a Hele-Shaw type problem with
a single phase is typically monotone in time, suggesting that the lack of monotonicity should be
reflected by having some modification of the one-phase Hele-Shaw model in the limit. One of the
main contribution of this paper is to identify the pressure p∞(·, t) for all time t > 0 by showing
that it solves an obstacle problem in the set Σ(t) and might thus be such that {p∞(·, t) > 0} ( Σ(t)
(see Theorem 2.7), causing the saturated set Σ(t) to shrink. Though our result appears to be new,
its proof is relatively simple and can be generalized to problems with nonlinear source terms. As
an illustration of this latter point, we apply these ideas to a tumor growth model which involves
nonlinear terms (see Appendix A). Even in the monotone cases mentioned above, our result provides
a new approach to the derivation of the complementarity condition (1.7).
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Equation (1.2) is simple but it allows us to study a very general and important behavior. Indeed,
the monotonicity in the aforementioned works is characteristic of systems with only congestive ef-
fects. However, it is clear that de-congestion effects are important for applications. In [PQV14],
a model for tumor growth which takes into account the evolution of the density of nutrients is
introduced and studied. In that case, the tumor cells decrease their density in the event of insuf-
ficient nutrient, which yields to ”de-congestion” or recession of the tumor cells. The consequent
lack of monotonicity significantly complicates the analysis: The derivation of the complementarity
condition was only achieved recently [DP21] and the geometric description of the tumor growth
still remains to be understood. Similarly, the study of congested crowd motion that involve de-
congestion phenomena is of great interest (see [MRCS10],[San18]).

Our interest in studying the toy problem (1.2) is thus to better understand such behavior. By
allowing λ to take both positive and negative value, we generate a motion that consists of both
congestion and de-congestion. The presence of a fixed boundary condition on ∂K is by no mean
necessary for our analysis (there is no K in the tumor growth model studied in Appendix A), but
such injection boundary conditions are a classical feature of Hele-Shaw problems. In the context of
crowd motion, our model describes a congested crowd coming out of the door (∂K) to the outdoors
(Rn \ K). In the context of the classical Hele-Shaw flow (with λ = 0) the boundary condition
describe the injection of the fluids.

In our setting it seems natural to expect that p∞, which acts against congestion, may vanish even
when the density is fully saturated. Indeed we will see that when λ is not necessarily positive the
support of the pressure p∞(t) may be a strict subset of Σ(t). In general, p∞(t) must be found by
solving an obstacle problem in Σ(t). As a result, while Σ(t) will expand according to a Hele-Shaw
type law when |∇p∞| > 0 along ∂Σ(t), it might recede when |∇p∞| = 0. Formally, the motion law
of Σ(t) can be written as

(1.8) |∇p∞| = (1− ρE)V on ∂Σ(t),

where V denotes the outer normal velocity of ∂Σ(t) and ρE is the trace of the“external density”,
namely the trace of ρ∞ on ∂Σ(t) from {ρ∞ < 1} (this is well defined if ∂Σ(t) smooth since ρ∞ is
in BVloc(Rn \K)).

The velocity law (1.8) can be formally justified from the weak equation (1.5) as follows (where
ν denotes the inward normal unit vector on ∂K):∫
∂K

ρ∇p · ν dS +

∫
Ω
λρ dx =

d

dt

∫
Ω
ρ dx =

d

dt

[∫
Σ(t)

ρ dx+

∫
Ω\Σ(t)

ρE dx

]

=

∫
Σ(t)

∂tρ dx+

∫
Ω\Σ(t)

∂tρ
E dx+

∫
∂Σ(t)

V (1− ρE) dS

=

∫
Σ(t)

div (ρ∇p) + λρ dx+

∫
Ω\Σ(t)

λρE dx+

∫
∂Σ(t)

V (1− ρE) dS

=

∫
∂K

ρ∇p · ν dS +

∫
∂Σ(t)

ρ∇p · ν dS +

∫
Ω
λρ dx+

∫
∂Σ(t)

V (1− ρE) dS,

from which we deduce (since ρ = 1 in Σ(t)) that

∫
∂Σ(t)

[∇p · ν + V (1− ρE)]dS = 0.

We note that our motion law is different from [KPW19] where the free boundary can move back
and forth under the action of a force field. Here the receding and advancing behavior of the free
boundary takes place via completely different mechanisms. The motion law (1.8) is closer to the one
obtained in [KM14] in the context of liquid drops sliding down on inclined plane. In this context, at
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the receding end of the drop, the contact angle between the liquid drop and the plane may vanish.
In that moment the nature of the velocity law suddenly changes: it is no longer dictated by the
local value of the pressure, but rather by the bulk behavior of the liquid via an obstacle problem.

Finally, we believe that our approach developed for the model problem (1.2) is quite general and
is of independent interest. To illustrate this point we prove in Appendix A that it can be applied
to the tumor growth problem with nutrient, considered in [PQV14, DP21].

Here is a brief outline of the paper. In Section 2 we collect and discuss implications of our
results. In Section 3 we show convergence of the density and pressure variables. In section 4 we
derive the novel characterization of the pressure via an obstacle problem. Section 5 introduces the
comparison principle, as well as the uniqueness, of the limit problem, which will be used in the
rest of the paper. Section 6 - 8 describes the motion law of the saturated region, starting with
the measure theoretic representation in Section 6. An alternative characterization, in the flavor of
viscosity solutions, is given in Sections 7-8.

1.1. Acknowledgements. The authors would like to acknowledge the generous support of the
National Science Foundation. Inwon Kim was partially supported by National Science Foundation
grant DMS-1900804 and Antoine Mellet was partially supported by National Science Foundation
grant DMS-2009236.

2. Notations and main results

2.1. Assumptions. Throughout the paper, we denote by (ρm, pm) the solution of the following
initial boundary value problem:

(2.1)


∂tρm − div (ρm∇pm) = λρm in Q, pm = m

m−1ρ
m−1
m ,

ρm(x, t) = f(x, t)
1

m−1 on ∂K × R+

ρm(0, x) = ρ0
m(x) in Ω

where we denote
Ω := Rn \K, Q := Ω× R+, QT := Ω× (0, T ].

Below are the main assumptions to be used throughout our analysis:

Assumption 2.1. There is a constant Λ > 0 such that
(i) The function λ(x, t) satisfies

(2.2) |λ(x, t)| ≤ Λ ∀(x, t) ∈ Q,

(2.3) λ ∈ BVloc(Ω× R+).

(ii) The boundary data f(x, t) satisfies

(2.4) 0 < Λ−1 ≤ f ≤ Λ, |∇f | ≤ C, |∂tf | ≤ C on ∂K × R+.

In order to write the assumptions on the initial condition ρ0
m, we first introduce appropriate

barriers. Given 0 ≤ R < R, we consider ϕ(x) and ϕ(x) solutions of

(2.5) −∆ϕ = Λ + 1 in BR \K, ϕ = f
m
m−1 on ∂K, ϕ = 0 on ∂BR

and

(2.6) −∆ϕ = −Λ in BR \K, ϕ = f
m
m−1 on ∂K, ϕ = 0 on ∂BR,

where we assume that ϕ > 0 in BR \K (if necessary we can replace BR by a smaller set sufficiently
close to K).
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Assumption 2.2.
(i) The initial condition ρ0

m(x) satisfies

(2.7) ϕ(x)
1
m ≤ ρ0

m(x) ≤ ϕ
1
m (x) ∀x ∈ Ω

(2.8) ‖∆(ρ0
m
m

) + λρ0
m‖L1(Ω) + ‖∇ρ0

m‖L1(Ω) ≤ C

(ii) The sequence {ρ0
m}m≥1 converges in L1(Ω) to ρ0.

Condition (2.8) may seem restrictive, but the following result shows that a wide range of initial
condition ρ0 can fit into this framework:

Lemma 2.3. Let Σ ⊃ K be a bounded open set with C2 boundary in Rn and let ρ0(x) be given by

ρ0 := χΣ + ρEχΣC in Ω,

where ρE ∈ C1,1
c (Ω) satisfies 0 ≤ ρE < 1. Then there exists a sequence ρ0

m satisfying Assumption
2.2.

The construction is simple, so we give it here: First, we define the pressure p0 by

−∆p0 = 0 in Σ \K with p0 = 0 on ∂Σ and p0 = f on K.

We clearly have p0 ≥ 0 in K and |∇p0| 6= 0 on ∂Σ. We can then define

ρ0
m := max{p1/m

0 , (ρE − am)+},

where am is a nonnegative sequence such that am → 0 and (1− am)m → 0 as m→∞ (for instance
am = (lnm)−1). Note that with this definition (2.7) holds for sufficiently large m. To check (2.8),

first note that p
1/m
0 is in BV , since

‖Dp1/m‖L1 =

∥∥∥∥∥p
1
m
−1

m
Dp

∥∥∥∥∥
L1

≤ C sup
p≥1/m

|Dp|+ o(1),

for sufficiently large m, where we have used the fact that p grows at most linearly near the regular
boundary ∂Σ. Lastly, note that

(ρ0
m)m = max{p0, (ρ

E − am)m},

which is a maximum of two C2 functions. Moreover for large m we have ∇(p0 − (ρE − am)m) 6= 0
where they coincide, since ∇p0 6= 0 due to the regularity of ∂Σ and ∇(ρE−am)m uniformly vanishes
as m grows. This nondegeneracy yields the regularity of the set Γ := {p0 = (ρE−am)m}. Collecting
the facts we conclude (2.8), where ∆ρ0

m
m

is interpreted as a measure.

2.2. Limit and weak formulation of the limiting problem. By generalizing classical a priori
estimates to our equation, we will first establish the convergence of ρm and pm and prove the
following result:

Theorem 2.4. Under Assumptions 2.1 and 2.2 and up to a subsequence, the density ρm and
pressure pm solution of (2.1) converge strongly in L1(QT ) for all T > 0 to limits ρ∞ and p∞ which
satisfy

ρ∞, p∞ ∈ BV (QT ),

ρ∞ ∈ Cs([0,∞);H−1(Ω)) ∀s < 1/2, p∞ ∈ L2(0, T ;H1(Ω)),

0 ≤ p∞(x, t) ≤ C a.e. (x, t) ∈ Q, 0 ≤ ρ∞(x, t) ≤ 1 a.e. x ∈ Ω, ∀t > 0
5



and

(2.9)


∂tρ∞ = ∆p∞ + λρ∞ in D′(Ω× R+), p∞ ∈ P∞(ρ∞);

p∞(x, t) = f(x, t) on ∂K × R+;

ρ∞(x, 0) = ρ0(x) in Ω,

where P∞ is the Hele-Shaw graph (1.6).

Following [PQV14], we can prove the following result which shows that the result above fully
characterizes the function ρ∞:

Proposition 2.5. Suppose λ ∈ L2([0, T ];H1(Ω)), then equation (2.9) has at most one solution
(ρ, p) ∈ X := L∞(Ω× (0, T ])× L2(0, T ;H1(Ω)).
Furthermore, if (ρ1, p1) and (ρ2, p2) are respectively sub and super-solutions of (2.9) in X satisfying
ρ1(·, 0) ≤ ρ2(·, 0) and p1|∂K ≤ p2|∂K , then ρ1 ≤ ρ2 in Ω× R+.

Remark 2.6. This uniqueness result implies in particular that any subsequence of (ρm, pm) con-
verges to the same limit, and thus the entire sequence converges to (ρ∞, p∞).

When λ = 0, equation (2.9) implies that the saturated region Σ(t) = {ρ∞(t) = 1} coincides with
the set {p∞(t) > 0}, and Σ(t) evolves according to the classical Hele-Shaw free boundary problem:{

∆p∞ = 0 in Σ(t), p∞ = f on ∂K, p∞ = 0 on ∂Σ(t);

V = |∇p∞| on ∂Σ(t),

where V denotes the outer normal velocity of the interface ∂Σ(t) ([Kim03], [QV99]). This provides a
simple geometric description of the evolution of the set {ρ∞ = 1}. As explained in the introduction,
our goal in this paper is to provide a similar characterization when λ 6= 0.

2.3. The pressure p∞(t). Our first task is to determine how the pressure p∞(t) depends on
the set {ρ∞ = 1}. An important and new feature in our framework is that that we may have
{p∞(t) > 0} ( {ρ∞(t) = 1}. Indeed we prove that p∞(t) is determined by solving an obstacle
problem in the set {ρ∞ = 1}.

First, we note that for all t0 ≥ 0 we have p∞ ∈ BV (Ω× (t0, T )) and so we can define the trace of
the function p∞ on {t = t0}. The interested reader might consult Giusti’s book [Giu84, Chapter 2]
for a thorough discussion on traces of BV functions (it is worth emphasizing that p∞ is of bounded
variation in space and time). We denote this trace p+(x, t0) since it is defined as a limit as t→ t+0 .
It satisfies in particular

(2.10)
1

δ

∫ t0+δ

t0

∫
Ω
|p∞(x, t)− p+(x, t0)| dx dt ≤

∫ t0+δ

t0

∫
Ω
|∂tp∞| dx→ 0 as δ → 0.

and (by Lebesgue differentiation theorem) p∞(x, t) = p+(x, t) almost everywhere. Since λ ∈ BV ,
we can similarly define the trace λ+(·, t) for all t > 0. We then prove:

Theorem 2.7. Under the conditions of Theorem 2.4 and for all t ≥ 0, p+(·, t) is the unique solution
of the minimization problem

(2.11) min
v∈Et

∫
Ω

1

2
|∇v|2 − λ+(·, t)v dx

where Et denotes the functional space

Et =
{
v ∈ H1(Ω) ∩ L1(Ω) ; v = f on ∂K, v ≥ 0 in Ω, 〈v, 1− ρ∞(t)〉H1,H−1 = 0

}
.
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Equivalently, p+(·, t) is the unique solution of the variational inequality

(2.12)

p ∈ Et∫
Ω
∇p · ∇(p− u)− λ+(·, t)(p− u) dx ≤ 0 ∀u ∈ Et.

If the set Σ(t) = {ρ∞(·, t) = 1} is a smooth enough subset of Ω, then (2.11) is a classical obstacle
problem in Σ(t) with Dirichlet boundary conditions p = f on ∂K, p = 0 on ∂Σ(t). The proof of this
result is surprisingly simple and quite flexible (see Section 4). It does not require any additional a
priori estimates besides the ones already used to prove Theorem 2.4. It can easily be adapted to
more complicated models, such as the tumor growth model with nutrient, as we show in Appendix
A (see Proposition A.2).

By using the approach developed in [MRCS10], it is also possible to show that for any weak
solutions of (2.9), the pressure p∞(·, t) satisfies, for a.e. t > 0∫

Ω
∇p · ∇u− λu dx = 0, ∀u ∈ Et.

So the pressure p∞(·, t) solves the equation ∆p + λ = 0 in the set {ρ∞(t) = 1} for almost every
time. As explained in the introduction, we cannot expect this to hold for all time, since either λ or
the set {ρ∞(t) = 1} may evolve discontinuously over time. In the event where the solution of the
obstacle problem (2.12) has its support strictly smaller that {ρ∞(t) = 1}, the set {ρ∞(t) = 1} will
shrink instantaneously. The result of [MRCS10] does not see these instantaneous collapses (which
can happen over a large set of time, albeit one of measure zero). Our characterization of p∞, which
holds for all time t > 0, identifies how such collapses take place.

When λ = 0, Theorem 2.7 provides a simple proof of the harmonicity of p∞ in {ρ∞(·, t) = 1}.
In the general case, it implies in particular the so-called complementarity condition:

p∞(∆p∞ + λ) = 0 in D′(Ω× (0,∞))

which is readily obtained by taking u = p(1 ± εϕ) in (2.12) with ϕ ∈ D(Ω × (0,∞)) and ε small
enough so that 1± εϕ ≥ 0.

This complementarity condition is proved for the tumor growth model in [PQV14] (model without
nutrient) and in [DP21] (model with nutrient). In both cases, the derivation relies on further
estimates on the pressure (in particular the Aronson-Bénilan estimate or some variant of it). Our
result thus provides an alternative derivation of this condition that does not require any of these
additional estimates.

Given the interest for the complementarity condition in the literature, it is worth noting that it
is equivalent to the obstacle problem formulation in the following sense:

Proposition 2.8. Let (ρ, p) ∈ L∞(0, T ;L1(Ω) ∩ L∞(Ω)) × L2(0, T ;H1(Ω)) be a solution of (2.9)
with p ∈ BVloc(Ω× R+). If p satisfies the complementarity condition

p(∆p+ λ) = 0 in D′(Ω× (0,∞))

then for every t > 0 the trace p+(·, t) (as defined in (2.10)) is the unique solution of problem (2.11).

Note that given a weak solution of (2.9), we are not able to prove directly that it satisfies
the obstacle problem formulation of Theorem 2.7) or the complementarity condition, but this
proposition shows that these two properties are equivalent.

In general little is known on the boundary regularity of the set {ρ∞(·, t) = 1}, including whether
its boundary has measure zero. Thus for pointwise characterization of the pressure p∞, we define
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the support of the measure 1− ρ∞ by

Supp (1− ρ∞(t)) :=

{
x0 ∈ Ω ;

∫
Br(x0)

(1− ρ∞)(·, t) dx > 0 for all r > 0

}
.

While it may differ from the set {ρ∞ < 1} by a measure zero set, this set has the advantage of being
closed by its definition. Then the solution of the obstacle problem (2.11) has the usual properties
in the open set

(2.13) O(t) := Ω \ Supp (1− ρ∞(t)) =

{
x0 ∈ Ω :

∫
Br(x0)

(1− ρ∞)(·, t) = 0 for some r > 0

}
which can be seen as the “interior” of the set {ρ∞(·, t) = 1}. More precisely, we have:

Proposition 2.9. The function p∗, solution of the minimization problem (2.11), is in C1,1
loc (O(t))

and satisfies

(2.14) −∆p∗ = λχ{p∗>0} in O(t).

2.4. Velocity law: Measure theoretic results. In view of Theorem 2.7, we can redefine p∞
a.e. so that for each time t > 0 the function p∞(·, t) is the unique solution of the obstacle problem
(2.11). We would now like to characterize the evolution of the saturated region. We start with the
following proposition:

Proposition 2.10. For all t > 0, P(t) := {p∞(·, t) > 0} the positivity set of the solution of the
obstacle problem (2.11). Then the density equation in (2.9) can be rewritten as

(2.15) ∂tρ∞ = µt + λρ∞(1− χP),

here µt := ∆p∞(·, t)+λ(·, t)χP(t), which is a non-negative Radon measure supported in ∂P(t)\O(t).

When λ ≤ 0, Equation (2.15) shows that the growth of ρ∞ can only occur when the measure µ
is non zero (thus only on ∂P(t) \ O(t)) while the density can only decay when ρ∞(1− χP(t)) > 0.
Growth and decay thus take place according to different mechanisms. One is dictated by a singular
measure, the other by an L∞ function. Note that P(t) is almost the saturated set Σ(t), in the sense
that their parabolic closures coincide (see Theorem 2.11.)

Heuristically, (2.15) can have a geometric interpretation as follows. Since ρ∞ = 1 in P(t), we
can always write

ρ∞(x, t) = χP(t)(x) + ρE(x, t)(1− χP(t)(x))

for some function ρE . Splitting the singular and regular part of (2.15), we get the following:

(2.16)

{
(1− χP(t)(x))(∂tρ

E − λρE) = 0;

(1− ρE(x, t))∂tχP(t) = µ.

The first equation determines the value of ρ∞ outside of the congested set (∂tρ
E = λρE when

p(x, t) = 0, supplemented by the condition that ρE = 1 when p(x, t) > 0).

Formally, we have µ = |∇p|dS, where S is the surface measure on ∂P(t), so if |∇p(x0, t0)| 6= 0, the
second equation in (2.16) gives (1−ρE)V (x0, t0) = |∇p(x0, t0)| (expansion of the congested region),
while if |∇p(x0, t0)| = 0, then either ∂tχP(t) = 0 or ρE(x0, t0) = 1. The later can only happen if

χP(t)(x0) = 1 as t → t−0 and so ∂tχP(t) ≤ 0 (retraction of the congested region). Altogether, this
gives the free boundary condition (1.8), assuming that the boundary of P(t) coincides with Σ(t).
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t

x

p > 0

p > 0

p = 0

(ρE)t = λρE

Figure 1. The external density ρE has boundary values on red and blue parts of
the boundary: ρE = 1 on the red parts, and ρE = ρ0 on the blue part.

Making these statement rigorous in the classical framework would require the development of a
regularity theory which is not the topic of the present paper. Instead, in what follows, we will use
the comparison principle to make sense of this in the spirit of viscosity solutions.

2.5. Velocity law: barrier approach. We define the external density ρE in the set {p = 0} by
solving the first-order equation ∂tρ = λρ with appropriate boundary condition. More precisely,
given x, the open set Int({t ; p(x, t) = 0}) can be written as ∪i∈I(ai, bi) and ρE(x, t) for t ∈ (ai, bi)
is the solution of the first order ODE ∂tρ = λρ with initial condition

ρE(x, ai) =

{
ρ0(x) if ai = 0

1 if ai > 0

See Figure 1 above for an illustration.
With this definition of ρE , and using the comparison principle for the limiting problem (Propo-

sition 2.5), we obtain the following description on the motion of the congested zone {ρ∞ = 1}:

Theorem 2.11. Let (ρ, p) ∈ L∞(Q) × L2
loc(0,∞;H1(Ω)) be a weak solution of (2.9) with initial

data 0 ≤ ρ0(x) ≤ 1. Then the following holds:

(a) If λ ∈ C(QT ) ∩ L2(0, T ;H1(Ω)), then we have, in the sense of comparison with barriers,

(2.17) (1− ρE)V = |∇p| on ∂{ρ = 1}.

(b) ρE coincides with ρ a.e. outside of {ρ = 1}.
(c) If λ is negative, then for any T > 0

{p > 0} ∩QT = {p > 0} ∩QT = {ρ = 1} ∩QT .

The barriers used to make sense of (2.17) are local smooth sub- and super-solutions of (2.9).
Their description can be found in in section 7. Such comparison property is akin to the viscosity
solutions approach taken by [KP18] for λ > 0. We do not touch upon the issue of whether the
barrier properties are enough for a complete characterization of the limit solution: see [KPW19]
and [KP18] for analysis in this direction.

Part (c) in above theorem says that when λ is negative, the closure of the pressure support
coincides with that of {ρ = 1}, and that the congested zone {ρ = 1} cannot all of a sudden expand.
This is not true when λ is positive, due to the nucleation of the congested zone generated by the

9



growth of the external density. The set {ρ = 1} certainly can discontinuously shrink. For instance
if λ decreases over time, the pressure decreases and the set {ρ = 1} may start shrinking. While
shrinking, if a component of the set gets disconnected at t = t0 from K, the pressure in this region
will drop to zero and ρ will immediately decrease below one after t0. Such scenario makes it difficult
to describe ρE in an explicit way, except when λ only increases over time.

Theorem 2.12. Suppose that λ ∈ C(Ω × [0, T ]) ∩ L2(0, T ;H1(Ω)) is non-decreasing over time,
and let (ρ, p) be the weak solution of (2.9) with initial data ρ0 ∈ BV . Then the set {p(·, t) > 0} is
monotone increasing in time. Moreover for all t ≥ 0

ρ(·, t) = χΣ(t) + ρEχRn\Σ(t), where ρE(x, t) := ρ0(x) exp
∫ t
0 λ(x,s)ds .

In particular Σ(t) = {ρ(·, t) = 1} for all t > 0.

If ρ0 is a characteristic function and Σ0 = {ρ0 = 1} = {ρ0 > 0}, then ρ remains a characteristic
function for all positive times.

Note that we may initially have {p(·, 0) > 0} as a strict subset of {ρ0 = 1}. In this case this last
theorem states that {ρ = 1} experiences an initial discontinuous shrinkage.

2.6. Numerical examples. Figure 2.6 shows the evolution of the density and pressure in a simple
framework to illustrate the receding and expanding motion of the free boundary. We consider the
one dimension porous media equation

∂tρ− ∂x(ρ∂xp) = λ(t)ρ in (0,∞)× (0, T ), p =
m

m− 1
ρm−1

with the boundary condition ρ(0) = 1 and m = 40 (so we are close to the limiting problem. In
particular, the density is close to, but not equal to 1 when p > 0). The coefficient λ(t) is independent
of x but changes value discontinuously in time:

(2.18) λ(t) =


−1 if t ∈ [0, .75)

−5 if t ∈ [.75, 1)

−1 if t ≥ 1.

The set {p(t) > 0} is expanding with finite speed for t ∈ (0, .75) (first row) and receding instanta-
neously at t = .75+. The density is then decreasing for t ∈ [.75, 1) in the region where p = 0 since
∂tρ = −5ρ in that region (second row). Finally, for t > 1 (third row) the set {p(t) > 0} is again
expanding with finite speed.

3. Proof of Theorem 2.4

The proof of this theorem uses many classical techniques (see in particular [PQV14]), though we
have to be careful with the two main differences between our framework and that of [PQV14]: the
lack of sign of λ and the presence of the fixed boundary ∂K.

3.1. Notion of solutions for (2.1). First, we recall some well known facts about the porous media
equation (2.1) (we refer the interested reader to [V0́7], Chapters 5 (Definition 5.5 and Theorem
5.14).

Definition 3.1. For ρ0 ∈ L1(Ω), g ∈ L2(0, T ;H1(Ω)) and λ ∈ L1(QT ), we say that a non-negative

function ρ ∈ L1(QT ) is a weak solution of (2.1) with ρ0
m = ρ0 and f := g1−1/m if

(i) ρm ∈ L2(0, T ;H1(Ω)) with its trace on ∂K × [0, T ] equal to g;
(ii) ρ ∈ L2(QT );

10



Figure 2. Graph of the density (upper curve) and pressure (lower curve) when
m = 40 and λ given by (2.18). The functions are shown at time t = 0+, t = 0.35,
t = 0.75−, t = 0.75+, t = 0.9, t = 1−, t = 1+, t = 1.2 and t = 1.8

(iii) ρ satisfies the identity∫ ∫
QT

(ρ∂tψ −∇ρm · ∇ψ + λψ)dxdt = −
∫

Ω
ρ0
m(x)ψ(x, 0)dx

for any function ψ ∈ C1(QT ) which vanishes on ∂K × [0, T ] and for t = T .

Existence of a weak solution can be established by approximation with smooth functions, which
either solves the porous media equation with strictly positive initial data or solves a regularized
equation with strictly positive diffusion (see Theorem 5.14 of [V0́7]). Uniqueness of the weak
solution is a consequence of the following comparison principle, which we will use often in our
analysis.

Lemma 3.2. Let ρ and ρ̃ be two weak solutions of (2.1) with initial data ρ0
m, ρ̃

0
m and fixed boundary

data f and f̃ . If ρ0
m ≤ ρ̃0 a.e. and f ≤ f̃ a.e., then ρ ≤ ρ̃ a.e.

3.2. Maximum principle: L∞ bounds for ρm and pm and ∇pm · ν|∂K .

Lemma 3.3. Under conditions (2.2), (2.4) and (2.7), and for all T > 0, there exists a constant
C = C(T ) > 0 independent of m such that the following holds:

11



For sufficiently large m (depending on T ) the pressure pm satisfies:

(3.1) 0 ≤ pm(x, t) ≤ C for all (x, t) ∈ QT ,

and

(3.2) − C ≤ ν(x) · ∇pm(x, t) ≤ C for all x ∈ ∂K, 0 ≤ t ≤ T.

Moreover,

(3.3) ρm(x, t)→ 1, locally uniformly in U × R+

for some neighborhood U of K and

(3.4) supp ρm(·, t) ⊂ BR+C(T ) for all t ∈ (0, T ).

Remark 3.4. Note that by (3.3), ρm stays uniformly positive and solves a uniformly parabolic
equation in U . It is thus smooth, a fact we will use repeatedly when dealing with the boundary data
on ∂K.

Proof. We fix T > 0. This lemma follows from the maximum principle for the pressure pm, which,
we recall solves

∂tp = (m− 1)p(∆p+ λ) + |∇p|2.
In view of (2.6), ϕ(x) satisfies ∆ϕ+λ = Λ +λ ≥ 0 and is therefore a subsolution for this equation.
Assumption (2.7) thus implies

pm(x, t) ≥ ϕ(x) ∀(x, t) ∈ Ω× R+.

For the upper barrier, we define the function ū(x, t) as follows: For all t > 0, the function
x 7→ ū(x, t) solves

−∆v = Λ + 1 in BR(t) \K, v = f
m
m−1 on ∂K, v = 0 on ∂BR(t)

where R(t) := R +

∫ t

0
M(s)ds, with M(s) := 2 supx∈∂BR(t)

|∇ū(·, t)|. The function ū is extended

by 0 outside BR(t). Since R(t) depends on ū(x, t), the function ū can be constructed for instance
by discrete-time approximation. We note that (2.5) implies in particular that ū(x, 0) = ϕ(x)

We claim then ū is a supersolution for the pressure equation for sufficiently large m. To see this,
note first that when ū ≥ (m− 1)−1/2 we have

∂tū ≥ 0 ≥ (m− 1)ū(∆ū+ λ) + |∇ū|2 if m ≥ sup
0≤t≤T

|∇ū|4(·, t).

On the other hand, since ∂tū ≥ 2|∇ū|2 > 0 on its zero level set ∂BR(t), it is clear that for small

enough ε = ε(T ) we have ∂tū ≥ |∇ū|2 in 0 ≤ ū ≤ ε. Our claim follows if m is large enough
(depending on T ).

The comparison principle for the pressure equation now yields:

ϕ(x) ≤ pm(x, t) ≤ ū(x, t) ∀(x, t) ∈ QT .

The results now follow: (3.1) follows from upper bound, while the lower bound together with the

fact that ρm ∼ p
1

m−1
m implies (3.3). The fact that ū is supported in BR(t) implies (3.4) and since

ϕ(x) = pm(x, t) = ū(x, t) on ∂K, we get

−C ≤ ν(x) · ∇ϕ(x) ≤ ν(x) · ∇pm(t, x) ≤ ν(x) · ∇ū(x, t) ≤ C ∀x ∈ ∂K, t ∈ (0, T ].

�
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3.3. L1 bounds for ρm and pm.

Lemma 3.5. For all T > 0, there exists a constant C(T ) depending on Λ and T such that

(3.5) ‖ρm(t)‖L1(Ω) ≤ ‖ρ0
m‖L1(Ω)e

ΛT + C(T )

and

(3.6) ‖pm(t)‖L1(Ω) ≤ C‖ρ0
m‖L1(Ω)e

ΛT + C(T )

for t ∈ [0, T ] and m ≥ 2.

Proof. Integrating (2.1) on Ω yields

d

dt

∫
Ω
ρm(t) dx =

∫
Ω
λ(t)ρm(t) dx+

∫
∂K

ρm∇pm · ν dS

≤ Λ

∫
Ω
ρm(t) dx+ C,

where we used (3.1), (3.2). The bound (3.5) follows by a Gronwall argument. The bound (3.6)
then follows from (3.5) and (3.1) since pm = m

m−1ρ
m−1
m ≤ m

m−1Cρm. �

3.4. Bounds on the derivatives of ρm and pm. For δ > 0, we define

Ωδ := {x ∈ Rn ; dist(x,K) > δ}.

Lemma 3.6. For any δ > 0, there exists a constant Cδ independent on m such that

‖∂tρm(t)‖L1(Ωδ) ≤ Cδ ∀t > 0(3.7)

‖∂xiρm(t)‖L1(Ωδ) ≤ Cδ ∀t > 0(3.8)

Similarly, denoting by BR the ball of radius R, we have the following bounds:

‖∂tpm‖L1((0,T )×Ωδ∩BR) ≤ Cδ,R,T(3.9)

‖∂xipm‖L1((0,T )×Ωδ∩BR) ≤ Cδ,R,T(3.10)

Proof. Proceeding as in [PQV14], we differentiate the first equation in (2.1) with respect to time
and multiply it by sign(∂tρm) and use Kato’s inequality to obtain

(3.11) ∂t|∂tρm| −∆(mρm−1
m |∂tρm|) ≤ λ|∂tρm|+ ρm|∂tλ| in Ω.

We cannot simply integrate this equation over Ω because of the boundary condition on ∂K. Instead,
given a large ball BR such that K ⊂ BR, we introduce the function ϕ such that ϕ = 0 on ∂K,
ϕ = 1 on ∂BR, ∆ϕ = 0 in BR \ K and we extend this function by 1 outside BR. This function
satisfies

ϕ|∂K = 0, ∆ϕ ≤ 0 in Ω, ϕ > 0 in Ω.

Multiplying (3.11) by ϕ and integrating over Ω, and using the fact that ϕ|∂K = 0 andmρm−1
m |∂tρm| =

m
m−1f

1
m−1∂tf on ∂K, we deduce

d

dt

∫
Ω
|∂tρm|ϕdx ≤

∫
Ω
mρm−1

m |∂tρm|∆ϕdx−
∫
∂K

mρm−1
m |∂tρm|∇ϕ · ν dS

+

∫
Ω
λ|∂tρm|ϕdx+

∫
Ω
ρm|∂tλ|ϕdx

≤ C + Λ

∫
Ω
|∂tρm|ϕdx+

∫
Ω
ρm|∂tλ|ϕdx.
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Since ∂tρm(0) = ∆ρmin + λρ0
m, the bound (2.8) implies ‖∂tρm(0)‖L1(Ω) ≤ C and using (3.4), we

deduce

‖∂tρm(t)ϕ‖L1(Ω) ≤ C(T ) + C

∫ T

0
eΛ(T−t)

∫
BR0+CT

|∂tλ(x, s)| dx dt

and (3.7) follows from (2.3) and the fact that minΩδ ϕ > 0 for all δ > 0 (by the strong maximum
principle).

To get an estimate on ∂tpm, we want to take advantage of the term
∫

Ωmρ
m−1
m |∂tρm|∆ϕdx in

the inequality above. We thus define, for η > 0, ϕη such that ϕη = 0 on ∂K, ϕη = 1 on ∂BR,
∆ϕη = −η in BR \K and we extend this function by 1 outside BR.

Given R, we claim that ∆ϕη ≤ 0 in Ω if η is sufficiently small (depending on R). Indeed, Hopf’s
Lemma implies x · ∇ϕ0 > 0 on ∂BR, so the C1-convergence of ϕη to ϕ0 implies x · ∇ϕη ≥ 0 on
∂BR.

Proceeding as above, we get:

d

dt

∫
Ω
|∂tρm|ϕη dx+ 4η

∫
Ω
mρm−1

m |∂tρm| dx ≤ C(T )

Integrating in t, we deduce that for all δ > 0, R > 0 and T , there exists Cδ,R,T such that∫ T

0

∫
Ωδ∩BR

mρm−1
m |∂tρm| dx dt ≤ Cδ,R,T .

Finally, we write∫ T

0

∫
Ωδ∩BR

|∂tpm| dx dt =

∫ T

0

∫
Ωδ∩BR

mρm−2
m |∂tρm| dx dt

≤
∫ T

0

∫
Ωδ∩BR∩{ρm<1/2}

m(1/2)m−2|∂tρm| dx dt

+ 2

∫ T

0

∫
Ωδ∩BR∩{ρm>1/2}

mρm−1
m |∂tρm| dx dt

≤
∫ T

0

∫
Ωδ
|∂tρm| dx dt+ Cδ,R,T

which gives (3.9).

We proceed similarly for the bound on ∂xiρm. The only difference is that we do not have
∂xiρm|∂K = 0, so we have an additional boundary term to worry about. More precisely, differenti-
ating the first equation in (2.1) with respect to xi, multiplying it by sign(∂xiρm) and using Kato’s
inequality, we obtain

(3.12) ∂t|∂xiρm| −∆(mρm−1
m |∂xiρm|) ≤ λ|∂xiρm|+ |∂xiλ|ρm in Ω.

With the same cut-off function ϕ as above, we get

d

dt

∫
Ω
|∂xiρm|ϕdx ≤

∫
Ω
mρm−1

m |∂xiρm|∆ϕdx−
∫
∂K

mρm−1
m |∂xiρm|∇ϕ · ν dS

+

∫
Ω
λ|∂xiρm|ϕdx+

∫
Ω
|ρm||∂xiλ| dx

≤
∫
∂K

ρm|∂xipm||∇ϕ · ν| dS + Λ

∫
Ω
|∂xiρm|ϕdx+

∫
Ω
|ρm||∂xiλ| dx

To conclude, we thus note that the estimate (3.2) gives a bound on the normal derivative of pm on
∂K, while the condition pm|∂K = m

m−1f together with the regularity assumptions (2.4) implies that
14



the tangential derivatives of pm are uniformly bounded on ∂K. We deduce that |∂xipm||∂K ≤ C
and so (using (2.8), (3.4) and (2.3)):

d

dt

∫
Ω
|∂xiρm|ϕdx ≤ C(T ) ∀t ∈ (0, T ).

Hence
‖∂xiρm(t)ϕ‖L1(Ω) ≤ ‖∂xiρm(0)‖L1(Ω) + C(T ),

and (3.8) now follows from (2.8).
�

3.5. Passing to the limit. We denote

Ωk := {x ∈ Ω ; dist(x,K) > 1/k, |x| ≤ k}.
Lemma 3.6 implies that ρm and pm are bounded in BV(R+ × Ωk) for all k and thus converge (up
to a subsequence) strongly in L1([0, k] × Ωk). By a diagonal extraction process, we can thus find
subsequences (still denoted ρm and pm) and functions ρ∞, p∞ such that ρm (resp. pm) converges
to ρ∞ (resp. p∞) strongly in L1

loc(R+ × Ω).

Next, we note that

ρm pm =

(
m− 1

m

) 1
m−1

p
m
m−1
m

passing to the limit (using the a.e. convergence) yields ρ∞p∞ = p∞ and thus

(3.13) (ρ∞ − 1)p∞ = 0 a.e. R+ × Ω,

which gives the Hele-Shaw condition p∞(x, t) ∈ P∞(ρ∞(x, t)) a.e. in R+ × Ω.

Similarly, we have

ρmm =

(
m− 1

m
pm

) m
m−1

→ p∞ a.e. R+ × Ω.

Since ρmm is bounded in BV(R+ × Ωk), the convergence holds in L1
loc as well. Rewriting (2.1) as

∂tρm = ∆pm + λρm

and passing to the limit, we deduce

∂tρ∞ = ∆p∞ + λρ∞ in D′(R+ × Ω).

3.6. Bounds on the gradient of pm and convergence of ρm.

Lemma 3.7. There exists a constant C independent of m such that

(3.14)

∫ ∫
QT

|∇pm|2 dx dt ≤ CT.

Furthermore, {ρm}m∈N is relatively compact in Cs(0, T ;H−1(Ω)) for all s ∈ (0, 1/2).

Proof. Integrating the equation for the pressure (1.4) yields

d

dt

∫
Ω
pm dx = −(m− 2)

∫
Ω
|∇pm|2 dx+ (m− 1)

∫
∂K

pm∇pm · νdS + (m− 1)

∫
Ω
λpm dx.

Using (3.2) and the fact that pm = m
m−1f on ∂K we deduce∫

Ω
|∇pm|2 dx ≤ −

1

m− 2

d

dt

∫
Ω
pm dx+

m− 1

m− 2
C.

Integrating in time and using (3.6) we deduce (3.14). Using (2.1), we deduce that

∂tρm is bounded in L2(0, T ;H−1(Ω)).
15



Since ρm is bounded in L∞(0, T ;L1(Ω)) and in L∞(0, T ;L∞(Ω)), we also have

ρm is bounded in L∞(0, T ;L2(Ω)).

Since H−1(Ω) is compactly embedded in L2(Ω), Lions-Aubin Lemma (see for example [Lio69,
Ama00]) implies that {ρm} is relatively compact in

Cs(0, T ;H−1(Ω)) for all s ∈ (0, 1/2).

�

Estimate (3.14) implies in particular that ∇p∞(·, t) ∈ L2(Ω) for a.e. t > 0: it will be useful in
the proof of Theorem 2.7.

The compactness of {ρm}m∈N in Cs(0, T ;H−1(Ω)) implies ρ∞ ∈ Cs([0,∞);H−1(Ω)). Further-
more, (3.1) and (3.5) implies that ρm(t) is bounded in L1(Ω) ∩ L∞(Ω) and thus converges, up to
a subsequence, weakly in L∞(Ω) to ρ∞ ∈ [0, 1]. We will see later in Section (5) that the limit
density is unique (Proposition 5.1), which implies that the whole original subsequence converge to
ρ∞ weakly in L∞(Ω).

4. Proof of Theorem 2.7 and Proposition 2.8, 2.9

In this section, we use the notation ρm and pm even though we are only considering convergent
subsequences. Let us first introduce a lemma to be used in the proof of Theorem 2.7.

Lemma 4.1. For all t0 ≥ 0, p+(·, t0) ∈ H1(Ω) and∫
Ω
|∇p+(x, t0)|2 dx ≤ lim inf

δ→0

1

δ

∫ t0+δ

t0

∫
Ω
|∇p∞|2 dx dt.

Proof. First, using (4.5) with a nonnegative test function v ∈ H1(Ω) supported in U (see (3.3))
and satisfying the boundary condition on ∂K, we get:

1

δ

∫ t0+δ

t0

∫
Ω
|∇p∞|2 dx dt ≤ C,

for some constant C independent of δ and so the lim inf exists and is finite. Given T (x) ∈ (D(Ω))n,
we can write

1

δ

∫ t0+δ

t0

∫
Ω
p∞div T dx dt = −1

δ

∫ t0+δ

t0

∫
Ω
∇p∞ · T dx dt ≤

(
1

δ

∫ t0+δ

t0

∫
Ω
|∇p∞|2 dx dt

)1/2

‖T‖L2(Ω),

and we can pass to the limit δ → 0, using (2.10), to get∫
Ω
p+(x, t0)div T (x) dx ≤

(
lim inf
δ→0

1

δ

∫ t0+δ

t0

∫
Ω
|∇p∞|2 dx dt

)1/2

‖T‖L2(Ω),

and the result follows. �

Proof of Theorem 2.7. Given t0 ≥ 0 and a function v(x) in Et0 , and using the equation for the
pressure (1.4) and density (2.1) we can write, in D′(R+),∫

Ω
∇pm · ∇pm − ρm∇pm · ∇v − λ(pm − v) dx

= − 1

m− 1

[
d

dt

∫
Ω
pm dx−

∫
Ω
|∇pm|2 dx

]
+
d

dt

∫
Ω
vρm dx−

∫
Ω
λ(·, t)v(ρm − 1) dx

+

∫
∂Ω

[pm − ρmv]∇pm · ν dS.(4.1)
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Formally at least, it is not difficult to see that the variational formulation of the obstacle problem
(2.12) follows by passing to the limit m → ∞ and taking t = t0 in (4.1). The rest of the proof is
devoted to making this limit rigorous to derive (2.12) (for all t0 > 0).

First, using the boundary condition, we note that the last term is equal to∫
∂Ω

[
m

m− 1
f(x, t)− f(x, t)

1
m−1 f(x, t0)

]
∇pm · ν dS

and thus satisfies (using (2.4)):

lim sup
m→∞

∣∣∣∣∫
∂Ω

[pm − ρmv]∇pm · ν dS
∣∣∣∣ ≤ C ∫

∂Ω
|f(x, t)− f(x, t0)| dS

≤ C|t− t0|.(4.2)

Next, it is clear that our a priori estimates do not allow us to pass to the limit in (4.1) pointwise
in time. So, given δ > 0, we integrate (4.1) with respect to t ∈ (t0, t0 + δ) and pass to the limit
m→∞. The left hand side of (4.1) satisfies

lim inf
m→∞

∫ t0+δ

t0

∫
Ω
∇pm · ∇pm − ρm∇pm · ∇v − λ(pm − v) dx dt

≥
∫ t0+δ

t0

∫
Ω
|∇p∞|2 −∇p∞ · ∇v − λ(p∞ − v) dx dt,

where we used in particular the fact that ρm∇pm is bounded in L2(QT ) by (3.14) and thus converges
weakly to ∇p∞ (since ρm∇pm = ∇ρmm converges to ∇p∞ in D′(QT )). Using (3.14) and (3.6) to
control the first term in the right hand side of (4.1) and (4.2) for the last term, we deduce∫ t0+δ

t0

∫
Ω
|∇p∞|2 −∇p∞ · ∇v − λ(p∞ − v) dx dt

≤ lim inf
m→∞

∫
Ω
v(x)[ρm(x, t0 + δ)− ρm(x, t0)] dx+

∫ t0+δ

t0

∫
Ω
λ(·, t)v(x)(1− ρ∞(x, t)) dxdt+O(δ2).

(4.3)

Formally, the first term in the right hand side is non-positive because vρ∞(·, t0 + δ) ≤ v while
vρ∞(·, t0) = v (this is where we use the fact that v ∈ Et0). In order to make this rigorous, we first
note that

d

dt

∫
Ω
v(x)ρm(x, t) dx = −

∫
Ω
ρm∇pm · ∇v dx+

∫
∂K

ρmv∇pm · ν dS +

∫
Ω
λ(·, t)ρmv dx

and so (using the fact that ρm−1
m |∂K = v|∂K = f):∣∣∣∣ ddt

∫
Ω
v(x)ρm(x, t) dx

∣∣∣∣ ≤ ∫
Ω
|∇pm(x, t)||∇v(x)| dx+

∫
∂K

f
1

m−1 (x, t)f(x, t0)|∇pm·ν|dS+Λ

∫
Ω
ρmv(x) dx.

The first term in the right hand side is bounded in L2(0, T ) (using (3.14)), and the second term
is bounded in L∞(0, T ) (using (3.2)). We deduce that the function t 7→

∫
Ω vm(x)ρm(x, t) dx is

bounded in H1(0, T ) ⊂ C1/2[0, T ] and thus converges (up to a subsequence) uniformly in [0, T ].
Since

∫
Ω v(x)ρm(x, t) dx converges to

∫
Ω v(x)ρ∞(x, t) dx in D′(R+), we have∫

Ω
v(·)ρm(·, t) dx→

∫
Ω
v(·)ρ∞(·, t) dx locally uniformly in R+.

Consequently

lim inf
m→∞

∫
Ω
v(x)[ρm(x, t0 + δ)− ρm(x, t0)] dx =

∫
Ω
v(x)[ρ∞(x, t0 + δ)− ρ∞(x, t0)] dx ≤ 0,
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where we used the fact that v(x)ρ∞(x, t0) = v(x) (since v ∈ Et0) and ρ∞ ≤ 1.
Going back to (4.3), we deduce (using the fact that v(x)(1− ρ∞(x, t)) ≥ 0) :

∫ t0+δ

t0

∫
Ω
|∇p∞|2 −∇p∞ · ∇v − λ(p∞ − v) dx dt ≤ Λ

∫ t0+δ

t0

∫
Ω
v(x)(1− ρ∞(x, t)) dxdt+O(δ2),

(4.4)

To prove the result, it remains to divide by δ and pass to the limit δ → 0. We first use Young’s
inequality to rewrite (4.4) as:

1

δ

∫ t0+δ

t0

∫
Ω

1

2
|∇p∞|2 − λp∞ dx dt

≤ 1

δ

∫ t0+δ

t0

∫
Ω

1

2
|∇v|2 − λ(·, t)v dx dt+

Λ

δ

∫ t0+δ

t0

∫
Ω
v(x)(1− ρ∞(x, t)) dxdt+O(δ)

≤
∫

Ω

1

2
|∇v|2 −

∫
Ω

(
1

δ

∫ t0+δ

t0

λ(·, t)dt
)
v dx+

Λ

δ

∫ t0+δ

t0

〈1− ρ∞(x, t), v(x)〉H−1,H1dt+O(δ).

(4.5)

Since ρ∞ ∈ C([0,∞);H−1(Ω)) and v ∈ Et0 , we have

lim
δ→0

1

δ

∫ t0+δ

t0

〈1− ρ∞(x, t), v(x)〉H−1,H1dt = 〈1− ρ∞(x, t0), v(x)〉H−1,H1 = 0 ∀t0 ≥ 0

and we can use (2.10) (and a similar inequality for λ) to pass to the limit in the terms involving λ.

From Lemma 4.1, we deduce that∫
Ω

1

2
|∇p+(x, t0)|2 − λ+(x, t0)p+(x, t0) dx ≤

∫
Ω

1

2
|∇v(x)|2 − λ+(x, t0)v(x) dx ∀t0 > 0,

which implies that p+(·, t) is indeed a solution of (2.11) for every t ≥ 0.

The derivation of (2.12) is classical (given u ∈ Et and ε > 0, take v = p+ ε(u− p) in (2.11) and
pass to the limit ε→ 0). The uniqueness of p∗ follows from (2.12): if p1 and p2 are two solutions,
then by plugging in each other as test functions we obtain∫

Ω
|∇(p1 − p2)|2dx = 0,

and thus p1 = p2. �

Proof of Proposition 2.9. For any ball Br(x0) ∈ O(t), we have 〈ϕ, (1 − ρ∞(t)〉 = 0 for any ϕ ∈
D(Br(x0)), and so p solves the classical obstacle problem in Br(x0). The usual theory (see [Caf98])
implies that p ∈ C1,1(Br/2(x0)) and satisfies ∆p = λχ{p>0} in Br/2(x0). The proposition follows.

�

5. Uniqueness of the limit solution and comparison principle

In this section we establish the uniqueness for the limit problem in a general bounded domain
D of Rn (with smooth boundary): Given a continuous function g ≥ 0 defined on ∂D × [0, T ] and
ρ̄ ≥ 0 a nonnegative function in D satisfying 0 ≤ ρ̄ ≤ 1, we consider the problem

(5.1)


∂tρ = ∆p+ λρ, in D × (0, T ], p ∈ P∞(ρ) a.e. in D × (0, T ];

p = g on ∂D × [0, T ];

ρ(t = 0) = ρ̄ in D.
18



A weak solution of (5.1) is a set of functions (ρ, p) ∈ L∞(D× (0, T ])×L2(0, T ;H1(D)) satisfying
(5.1) in the sense of distribution.

In particular, the condition p ∈ P∞(ρ) implies that 0 ≤ ρ ≤ 1 and p(1− ρ) = 0 a.e. in D× (0, T ]
and for any smooth, compactly supported test function ψ : Ω → R with ψ(·, T ) = 0 and ψ = 0 on
∂D × [0, T ] we have

(5.2)

∫
D×[0,T ]

(ρψt + p∆ψ + λρψ)dxdt = −
∫
D
ρ(·, 0)ψ(·, 0)dx+

∫ T

0

∫
∂D

g∂νψdSdt.

We then have the following result, which implies in particular Proposition 2.5:

Proposition 5.1. Suppose λ ∈ L2([0, T ];H1(D)), then there is at most one weak solution (ρ, p) of
(5.1).

Furthermore, if (ρi, pi) for i = 1, 2 are two pairs of weak solutions of (5.1) with boundary data gi
and initial data ρ̄i and if ρ̄1 ≤ ρ̄2 in D and g1 ≤ g2 on ∂D× [0, T ], then ρ1 ≤ ρ2 a.e. in D× [0, T ].

Proof. To show the uniqueness we follow the Hilbert dual argument developed in [PQV14]. Since
the proof is largely parallel, we will only remark on necessary modifications due to the presence of
the fixed boundary ∂K.

Suppose ψ is a nonnegative test function. Let us denote DT := D×(0, T ). Taking the differences
of the weak formulation (5.2) for (ρi, pi) for i = 1, 2, we have∫ ∫

DT

[(ρ1 − ρ2)∂tψ + (p1 − p2)∆ψ + λ(ρ1 − ρ2)]

= −
∫
D

(ρ̄1 − ρ̄2)(x)ψ(x, 0)dx+

∫ T

0

∫
∂D

(g1 − g2)∂νψdSdt

≥
∫ T

0

∫
∂D

(g1 − g2)∂νψdSdt.

Thus

(5.3)

∫ ∫
DT

(ρ1 − ρ2 + p1 − p2)[A∂tψ +B∆ψ + λAψ]dxdt ≥
∫ T

0

∫
∂D

(g1 − g2)∂νψdSdt.

where ν denotes the outward normal at ∂D and

A =
ρ1 − ρ2

ρ1 − ρ2 + p1 − p2
, B =

p1 − p2

ρ1 − ρ2 + p1 − p2
.

As in [PQV14] we define A = 0 whenever ρ1 = ρ2 (even when p1 = p2) and B = 0 when p1 = p2

(even when ρ1 = ρ2). Note that A,B ∈ [0, 1] due to the fact that ρ(1− p) = 0.

Let now G be a compactly supported and nonnegative smooth function in D × [0, T ]. As in
[PQV14] the idea is to solve the dual problem

(5.4)

 A∂tψ +B∆ψ + λψ = −AG in D × [0, T );
ψ = 0 on ∂D × [0, T ];
ψ(·, T ) = 0. in D.

If A and B were strictly positive, by backward-in-time maximum principle, one can verify that ψ
is nonnegative. Thus it follows that ∂νψ ≤ 0 on ∂D × [0, T ]. Thus going back to (5.3) and using
the fact that g1 ≤ g2, it follows that

(5.5)

∫ ∫
DT

(ρ1 − ρ2)(−AG) ≥ 0.

Since G is arbitrary nonnegative smooth function, we conclude that ρ1 ≤ ρ2 a.e. in D × [0, T ].
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However, A and B can be degenerate, so the argument requires the approximation of the dual
problem (5.4), by a regularized uniformly parabolic, Dirichlet boundary value problem (see [PQV14]
for detailed description of this approximation). As in [PQV14], we then pass to the limit in the
regularization to deduce (5.5). The assumption λ ∈ L2([0, T ];H1(D)) is necessary to ensure that
the regularized problem produces small errors.

To show uniqueness, suppose that (ρi, pi) are two solutions of (5.1) with the same boundary
condition f and initial condition g. Then ρ1 = ρ2 follows from the density ordering property
obtained above. Once we have this, the difference of the weak equations yield∫ ∫

Dt

(p1 − p2)∆ψdxdt = 0.

Now as in [PQV14] we can choose ψ to approximate p1 − p2 to conclude that p1 = p2 a.e. in DT .
�

Remark 5.2. It is not immediately clear that the pressure satisfy the ordering property (i.e. p1 ≤ p2

in Proposition 5.1). However, the characterization of the pressure given in Proposition 2.9 implies
that the pressure ordering follows from the density ordering.

Now let us state two consequences of this proposition, based on the comparison principle for (2.1).
First let us discuss our original problem with Ω := Rn \K. Recall that from Lemma 3.3 that the
support of ρm lies in BR+C(T ) for given time range 0 ≤ t ≤ T . Therefore, setting R(T ) := R+C(T ),

their limit solution (ρ∞, p∞) is a weak solution of (5.1) with D := BR(T ) \K, g = f on ∂K and
g = 0 on ∂BR(T ). Therefore we have the following corollary:

Corollary 5.3. Given T > 0, any weak solution of (5.1) with D := BR(T ) \ K, g = f on ∂K,

g = 0 on ∂BR(T ) and initial data ρ̄ = ρ0 is the L1(QT )- limit of the functions (ρm, pm) solutions of
(2.1). In particular, it follows that the pressure ordering property is true in this setting.

The next observation will be useful, when we construct radial limit solutions with explicit free
boundary motion laws.

Corollary 5.4 (Comparison Principle). Let (ρ∞, p∞) be the limit solution of (2.1) in Ω× [0, T ]. If
D is a domain with smooth boundary that does not intersect K and if (ρ1, p1) is a weak solution of
(5.1) in D × [t1, t2]., then the following holds: If p∞ ≤ p1 on ∂D × [t1, t2] and ρ∞ ≤ ρ1 on t = t1,
then p∞ ≤ p1 and ρ∞ ≤ ρ1 in D × [t1, t2].

Proof. Since D does not intersect K, it is easy to check that (ρ∞, p∞) is a weak solution of (5.1)
in D × [t1, t2] with initial data ρ∞(·, t1) and fixed boundary data given as the trace of p∞ on
∂D × [t1, t2] (such trace exists a.e. in time since p∞(·, t) is in H1(D) a.e. t > 0). Now we can
conclude from Proposition 5.1.

�

6. Proof of Proposition 2.10

In the sequel, we write p(t) instead of p∞(t) for the unique solution of the obstacle problem
(2.11). We also recall that P(t) = {p(t) > 0}. We first show that suppµt ⊂ ∂P(t) \ O(t): For all
smooth test functions ϕ ∈ D(Ω), by definition of µt we have

µt(ϕ) =

∫
Ω

(−∇p · ∇ϕ+ λ(·, t)χP(t)ϕ) dx.

Clearly, if ϕ is supported in {p(·, t) = 0}, the fact that p ∈ H1(Ω) implies that ∇p = 0 a.e. in
{p = 0} and thus µt(ϕ) = 0. And if ϕ is supported in O(t), (2.14) implies

µt(ϕ) = 0.
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Since O(t) is an open set, we deduce that

supp (µt) ∩ Int({p(t) = 0}) = ∅, supp (µt) ∩ O(t) = ∅.

On the other hand note that Int(P(t)) ⊂ O(t). Indeed if p(t) > 0 in Bδ(x0), then 1− ρ∞(t) = 0
a.e. in Bδ(x0) and so

∫
Bδ(x0)(1 − ρ∞(t)) dx = 0. It follows that x0 ∈ O(t). Thus we can conclude

that µt is supported in ∂P(t) \ O(t) as claimed in Proposition 2.10.

Next we show that µt is nonnegative. Define the function

Qδ(s) :=

{
s
δ if s ∈ [0, δ];

1 if s ≥ δ.

For any test function ϕ ∈ D(Ω) satisfying 0 ≤ ϕ(x) ≤ 1, we write

µt(ϕ) =

∫
Ω
−∇p · ∇ϕ+ λχP(t)ϕdx

=

∫
Ω
−∇p · ∇(ϕQδ(p)) + λϕQδ(p) dx+ 〈∆p, ϕ(1−Qδ(p))〉+

∫
Ω
λχP(t)ϕ(1−Qδ(p)) dx.

Using (2.12) with u = p − δϕQδ(p) (which satisfies p ≥ u ≥ p(1 − ϕ) ≥ 0 and is thus admissible)
the first integral is non-negative. Next note that

〈∆p, ϕ(1−Qδ(p))〉 =

∫
(∇p · ∇ϕ(Qδ(p)− 1) +∇p · ϕQ′δ(p)∇p)dx.

The second term in above equality is nonnegative since Qδ is increasing. For the first term, we note
that ∇ϕ(Qδ(p)−1) converges a.e. to ∇ϕχ{p=0}. Lebesgue dominated convergence theorem implies

that it converges in L2 and thus the first term converges to zero since ∇p = 0 a.e. in {p = 0}.

Thus

µt(ϕ) ≥
∫

Ω
λχP(t)ϕ(1−Qδ(p)) dx.

Finally, we have χP(t)(1 − Qδ(p)) → 0 a.e. in Ω when δ → 0. Sending δ → 0 and using Lebesgue
dominated convergence theorem, we can conclude that µt(ϕ) ≥ 0 and the result follows.

7. The velocity law

In this section we determine the velocity law of the congested zone {ρ∞ = 1} for the limit
solution (ρ∞, p∞) by using comparison principle and barriers, as in the usual viscosity solutions
approach. First we will define the relevant notion of barriers and prove that the usual comparison
with barriers holds for our limit solution (ρ∞, p∞) (see Corollary 7.3-7.4). In Section 7.2 we show
that in the radial symmetric case, the barriers we construct are indeed classical solutions.

7.1. Comparison with barriers. The difficulty in making (2.16) rigorous is the lack of regularity
of the pressure or density interface (∂P or ∂Σ) and the lack of monotonicity of its motion. In this
section, we construct sub- and super-solutions of the limiting problem (2.1) to be used as barrier
in a viscosity solution type approach.

Let Br be a ball in Ω, and let D be either Ω\Br or Br. For a given time interval [t1, t2] ⊂ [0,∞) we
consider a function (the pressure) φ ∈ Cc(D× [t1, t2]) such that {φ(t) > 0} is monotone (increasing
or decreasing) and an initial density ρ1(x) satisfying ρ1 = 1 in {φ(t1) > 0}. We assume that
{φ(t) > 0} and ρ1(x) are such that the external density ρEφ , defined below, satisfies

(7.1) ρEφ (x, t) < 1 in {φ = 0}.
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This external density ρEφ (x, t) solves the equation ∂tρ = λρ in the (decongestion) set {φ = 0}
together with appropriate boundary conditions. This leads to the following definitions:

If {φ(t) > 0} is increasing (“expanding solution”), then for all x /∈ {φ(t1) > 0}, we define
t(x) = the last time that φ(x, t) = 0 (with t(x) = t2 is φ(x, t2) = 0) and set

ρEφ (x, t) = ρ1(x) exp

(∫ t

t1

λ(x, s) ds

)
for all t < t(x)

(condition (7.1) is satisfied if ρ1(x) is small enough in {φ(t1) = 0}).
If {φ(t) > 0} is decreasing (“contracting solution”), then for all x /∈ {φ(t2) > 0}, we define

t(x) = the first time that φ(x, t) = 0 (with t(x) = t1 is φ(x, t1) = 0) and set

ρEφ (x, t) = ρ1(x) exp

(∫ t

t(x)
λ(x, s) ds

)
for all t > t(x).

(condition (7.1) requires ρ1(x) to be small enough in {φ(t1) = 0}, but since ρ1 = 1 in {φ(t1) > 0},
it also requires exp

(∫ t
t(x) λ(x, s) ds

)
< 1 for x ∈ {φ(t1) > 0}).

In both cases, we define the density in D × (t1, t2) by

(7.2) ρφ(x, t) := χ{φ(t)>0}(x) + ρEφ (x, t)(1− χ{φ(t)>0}(x)) =

{
1 in {φ > 0}
ρEφ (x, t) in {φ = 0}.

We then have:

Proposition 7.1. With the notation above, assume that (ρφ, φ) are such that

(a) φ ∈ C1({φ > 0}) ∩ C2
loc({φ > 0}) and Γ := ∂{φ > 0} is C2 in space and C1 in time.

(b) φ satisfies

(7.3)

{
−∆φ ≤ λ in {φ > 0};
(1− ρEφ )Vφ ≤ |∇φ| on ∂{φ > 0},

where Vφ denotes the normal velocity of the interface ∂{φ > 0}.
Then (ρφ, φ) is a weak subsolution of the limiting problem (5.1) in D × [t1, t2], namely

∂tρφ ≤ ∆φ+ λρφ in D × (t1, t2), φ ∈ P∞(ρφ) a.e. in D × (t1, t2)

where the first equation holds in the sense that for every smooth, compactly supported test function
ψ : D × (t1, t2)→ R with ψ(·, t2) = 0 and ψ(·, t) = 0 on ∂D × [t1, t2] we have

(7.4)

∫
D×[t1,t2]

(ρφψt + φ∆ψ + λρφψ)dxdt ≥ −
∫
D
ρ1(x)ψ(·, t1)dx+

∫ t2

t1

∫
∂B
φ∂νψdSdt.

Similarly, we have

Proposition 7.2. With the notation above, assume that (ρφ, φ) are such that

(a) {φ(·, t) > 0} b Ω for all t, φ ∈ C1({φ > 0}) ∩ C2
loc({φ > 0}) and the interface Γ := ∂{φ > 0} is

C2 in space and C1 in time.
(b) φ satisfies

(7.5)

{
−∆φ ≥ λ in {φ > 0};
(1− ρEφ )Vφ ≥ |∇φ| on ∂{φ > 0}.

Then (ρφ, φ) is a supersolution of the limiting problem (5.1) in D × [t1, t2], namely

∂tρφ ≥ ∆φ+ λρφ in D × (t1, t2), φ ∈ P∞(ρφ) a.e. in D × (t1, t2).

(with the corresponding weak formulation as in (7.4))
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Note that for the contracting barrier, we have Vφ ≤ 0 and ρEφ = 1 on ∂{φ(t) > 0} and so the free

boundary condition reduces to |∇φ| ≥ 0 for subsolution and |∇φ| = 0 for supersolution.

Proof of Proposition 7.1. We denote S(t) := {φ(·, t) > 0} = {ρ(·, t) = 1} and Γ(t) = ∂S(t) ∩ D.
We also denote ν as the outward normal of the boundary of either Γ(t) or ∂D with respect to the
domain S(t). With these notations, we have∫

D
φ∆ψ dx =

∫
S(t)

φ∆ψ dx ≥ −
∫
S(t)

λψ dx−
∫
∂S(t)

ψ∇φ · ν dS +

∫
∂B
φ∂νψdS

≥ −
∫
S(t)

λψ dx+

∫
Γ(t)

ψ|∇φ| dS +

∫
∂B
φ∂νψdS,

where we used the fact that φ = 0 and ∇φ = |∇φ|ν on Γ(t).
Next ∫

D
φψt dx =

∫
S(t)

ψt dx+

∫
D\S(t)

ρEφψt dx

=
d

dt

∫
S(t)

ψ dx−
∫

Γ(t)
Vφψ dS +

∫
D\S(t)

(ρEφψ)t dx−
∫
D\S(t)

(ρEφ )tψ dx

=
d

dt

∫
D
ρφψ dx−

∫
Γ(t)

Vφ(1− ρE)ψ dS −
∫
D\S(t)

(ρEφ )tψ dx

≥ d

dt

∫
D
ρφψ dx−

∫
Γ(t)
|∇φ|ψ dS −

∫
D\S(t)

(ρE)tψ dx

Using the fact that

(7.6) (ρE)t = λρE in {φ = 0},
and the definition of ρφ, we deduce∫

D
(ρφψt + φ∆ψ)dx ≥ −

∫
D
λρφψdx+

d

dt

∫
D
ρψdx+

∫
∂B
∂νψdS,

and we conclude by integrating with respect to t ∈ (t1, t2). �

The proof of Proposition 7.2 is parallel. Note that it is not necessary to work with barriers such
that the set {φ(·, t) > 0} is monotone: we chose to do so because the definition of ρEφ is more
manageable in that case.

Combining Proposition 7.1 with the comparison principle for weak solutions of the limiting
problem (Corollary 5.4) we get:

Corollary 7.3. Let (ρφ, φ) be as in Proposition 7.1 (sub-solution). If
(i) ρ1 ≤ ρ(·, t1) in D, (so in particular {φ(·, t1) > 0} ⊂ {ρ∞(·, t1) = 1});
(ii) φ ≤ p∞ on ∂Br × [t1, t2],
then ρφ ≤ ρ∞ in D × [t1, t2]. In particular

{φ(·, t) > 0} ⊂ {ρ∞(·, t) = 1} for all t ∈ [t1, t2].

Formally, this corollary says that a classical subsolution of the viscosity law (satisfying (7.3))
cannot touch ρ∞ from below. In other words, ρ∞ satisfies the motion law

(1− ρE∞)V∞ ≥ |∇p∞| in a viscosity sense.

Similarly, Proposition 7.2 implies:

Corollary 7.4. Let (ρφ, φ) be as in Proposition 7.2 (super-solution). If
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(i) ρ1 ≥ ρ(·, t1) in D (so in particular {ρ∞(·, t1) = 1} ⊂ {φ(·, t1) > 0})
(ii) φ ≥ p∞ on ∂Br × [t1, t2]
Then ρφ ≥ ρ∞ in D × [t1, t2]. In particular

{φ(·, t) > 0} ⊃ {ρ∞(·, t) = 1} for all t ∈ [t1, t2].

As above, this result should be interpreted as saying that ρ∞ satisfies

(1− ρE∞)V∞ ≤ |∇p∞| in a viscosity sense.

Typically, for free boundary problems such ”barrier property” allows us to introduce a notion
of viscosity solutions which describes the pointwise behavior of the interface via comparison with
barriers (see e.g.[KP18]). It is thus natural to ask whether our weak solutions coincide with viscosity
solutions. While we suspect that viscosity solutions theory can be established for our problem,
answering this question would require a different set-up of function spaces, and we do not pursue
this question here to keep our investigation focused.

7.2. The radial symmetric case. In this section we show that the free boundary velocity law
holds in the classical sense in the radial setting as long as ∂tλ does not change signs too often.
To simplify our discussion we further assume that λ is non-positive, since construction of radial
barriers for positive λ has been carried out in [KP18].

We thus assume that K = B1 and that the boundary data is constant (we can take f = 1
without loss of generality) and for simplicity we take λ = λ(t) ≤ 0 independent of x monotone C1

function of t. The analysis could be extended to radial symmetric functions λ(|x|, t) ≤ 0 such that
∂tλ changes sign a finite number of time in the interval [0, T ].

In this setting, we construct compactly supported, radial sub and super solutions of (2.9) in
QT := {|x| ≥ 1} × [0, T ].

For a given R > 1, let us define φR(·, t) as a solution of the Dirichlet boundary problem in
1 ≤ |x| ≤ R:

(7.7) −∆φ = λ(t) in |x| < R, φ = 0 on |x| = R, and φ = 1 on |x| = 1.

Note that this function will take negative value if R is large (depending on λ).
For a given R0 > 1, we assume that the initial density ρ0 equals 1 on 1 ≤ |x| < R0 and is

strictly less than 1 and Lipschitz in |x| ≥ R0. We assume that R0 is small enough so that the initial
pressure φR0(·, 0) is nonnegative. We then define the external density in the region |x| ≥ R by

ρE(|x|, t) := ρ0(|x|) exp

(∫ t

0
λ(s)ds

)
< 1 in |x| ≥ R0,

then ρE(·, t) is Lipschitz continuous. It is also straightforward to check that the function ∂rφR(R)
is Lipschitz continuous for R0 < R <∞. Thus we can solve the following ODE for 0 ≤ t ≤ T :

(7.8) R′(t) = F (R(t), t), where F (R, t) :=
(∂rφR)−(R, t)

1− ρE(R, t)
, R(0) = R0.

Note that ∂rφR(·, t) ≥ 0 if and only if the function φR(·, t) has a negative minimum in 1 ≤ |x| ≤ R.
Indeed if ∂rφR(R, t) < 0 and φR(·, t) takes negative minimum, from the radial symmetry of φR(·, t)
it follows that the function has a local positive maximum for some x such that 1 < |x| < R, which
contradicts the subharmonicity of φR(·, t).

So as long as φR(t) is a non-negative function, we have ∂rφR(·, t) < 0 and R′(t) > 0 (which
provides is an expanding solution of the limiting problem. and we can show that it happened when
the function t 7→ λ(t) is decreasing.
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Case 1: t→ λ(t) is increasing: In this case, we can define

(7.9) φ(·, t) := φR(t)(·, t) for 0 ≤ t ≤ T
and we claim that φ stays nonnegative for all times.

To show this, suppose that φ(·, t) has a negative minimum at some time t = t0. Then by
continuity of R(t), the same is true for φ(·, s) for s sufficiently close to t0. Hence from above
discussion we have R′(t) = 0 in a small time interval [t0 − ε, t0]. Suppose we choose ε such
that φ(·, t0 − ε) no longer has negative minimum. This must be true at least with ε = t0 due
to our assumption. But since λ(t0 − ε) < λ(t) and R(t0 − ε) = R(t) for s = t0 − ε, we have
φ(x, t0 − ε) ≤ φ(x, t0), which is a contradiction to our choice of ε.

Hence we have shown our claim, and it follows from (7.8) and Propositions 7.1 -7.2 that φ is an
expanding solution of (2.9) for all t ≥ 0.

Case 2: t→ λ(t) is non-increasing: In this case, φ(·, t) might take negative value for some positive
time. We thus define

t∗ := sup{t ∈ [0, T ] : φ(·, t) ≥ 0 in 1 ≤ |x| < R(t)}.
If t∗ = ∞ then we can define φ by (7.9) as above. We thus assume that t∗ < ∞. The same
arguments as above implies that |Dφ| = 0 at (R(t∗), t∗). Since λ is non-increasing, it follows that

φR(t∗)(·, t) turns negative for t > t∗. For t ≥ t∗ we define R̃(t) as the unique boundary point of
{ψ(·, t) > 0}, where ψ(·, t) solves the obstacle problem

−∆ψ = λ(·, t)χ{ψ>0} in 1 < |x| < R(t∗), with ψ = 1 on |x| = 1.

We then define

(7.10) φ(·, t) := φR(t)(·, t) for 0 ≤ t ≤ t∗, φ(·, t) := φR̃(t)(·, t) for t∗ ≤ t ≤ T.

Since λ is non-increasing, so is R̃ and |Dφ|(R̃(t), t) = 0. It follows that φ is a contracting solution
for t∗ ≤ t ≤ T .

Below is the summary of our conclusion:

Lemma 7.5.
If t→ λ(t) is increasing, then the function φ defined by (7.9) is an expanding solution for 0 ≤ t ≤ T .
If t → λ(t) is non-increasing, then the function φ defined in (7.10) is an expanding solution for
0 ≤ t ≤ t∗ and is a contracting solution for t∗ ≤ t ≤ T .

Due to the uniqueness of the limit problem we can now completely characterize the limiting
profile of radial solutions for λ that are monotone C1 function of time.

Proposition 7.6. Assume that K = B1, f = 1 and that t 7→ λ(t) is a monotone C1 function. Let
ρm0 be a radially symmetric function satisfying the conditions of Assumption 2.2. Then the limit
(ρ∞, p∞) given by Theorem 2.4 is radially symmetric and satisfies{

∆p∞ + λ = 0 in {p∞ > 0};
(1− ρE∞)V ≤ |∇p∞| on ∂{p∞ > 0}.

Furthermore

(a) If t 7→ λ(t) is increasing, then {p∞ > 0} is always expanding (ρE∞ < 1, |∇p∞| > 0 and
V > 0 on ∂{p∞ > 0})

(b) If t 7→ λ(t) is non-increasing, then there exists a time t∗ ∈ [0, T ] such that {p∞ > 0} is
expanding for 0 ≤ t ≤ t∗ and contracting for t∗ ≤ t ≤ T (ρE∞ = 1, |∇p∞| = 0 and V ≤ 0 on
∂{p∞ > 0})
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7.3. Continuous expansion of the congested zone. As an application of comparison principle
(Corollary 5.4) with a radial barrier, we show that the congested zone does not expand discontin-
uously over time. Note that it may shrink discontinuously even if λ is smooth, for instance due to
topological changes. Note also that if λ is nonnegative, the expansion may not be continuous due
to the nucleation of congested zones created by the growth of external densities.

Corollary 7.7. If (ρ, p) is a limit solution in Ω × [0, T ] and λ ∈ C(QT ) ∩ L2([0, T ];H1(Ω)) is
negative, then

(7.11) {p > 0} ∩QT = {p > 0} ∩QT = {ρ = 1} ∩QT for any T > 0.

Proof. We denote

S1 := {p > 0} ∩QT , S2 := {p > 0} ∩QT .
Since S1 ⊂ S2 by definition, we only need to show that S2 ⊂ S1 in order to prove the first equality.

Given x0 /∈ S1 there exists r > 0 such that

B2r(x0)× [T − r, T ) ⊂ {p = 0}.

We claim that Br/2(x0) lies in {p(·, T ) = 0}. This proves that (x0, T ) /∈ S2, hence S2 ⊂ S1.

To show that Br(x0) ⊂ {p(·, T ) = 0}, we use a barrier argument in Σ := Br(x0)× [T − ε, T ) for a
sufficiently small ε > 0 as follows. Due to Proposition 2.10 we have ρt = λρ in B2r(x0)× [T − r, T ),
and thus

ρ < a(λ, r) < 1 in B2r(x0)× [T − r/2, T ).

Let us construct an expanding supersolution in Σ as follows. Let φ0 solve

−∆φ0 = Λ in {r < |x| < 2r}, φ0 = 0 on {|x| = r}, and φ0 = M := ‖p‖L∞(Ω×[0,T ]) on {|x| = 2r},

and let φ(·, t) := φR(t) defined by (7.7) with λ = Λ where R(t) solves

R′(t) =
|Dφ|(R(t), t)|
1− a exp(Λt)

for 0 ≤ t ≤ ε, with R(0) = r.

Then φ is an expanding supersolution in Σ with fixed boundary data M on ∂B2r(x0) and initial
data ρ0 = χr<|x|<2r + aχ|x|≤r. Corollary 5.4 now applies to show that p(·, T ) ≤ φ(·, T ). Choosing
ε = ε(M,a) sufficiently small so that R(T ) ≤ R(0) + r

2 , it follows that φ(·, T ) = 0 in Br/2(x0) and
we can conclude.

It remains to show the second equality of the Corollary. Note that we have {p > 0} ⊂ {ρ = 1},
and thus their closures are also ordered. On the other hand we showed above that if x0 lies outside
of {p > 0} then ρ is strictly less than one in a small neighborhood of x0, and thus it is outside of

{ρ = 1}. The result follows.
�

8. Monotone increasing solutions

In this section we suppose that λ ∈ L2([0, T ];H1(Ω)) is non-decreasing in time. We first show
that in this setting, if the density starts as a characteristic function, the pressure only increases
over time.

Lemma 8.1. Let Σ0 be a bounded subset of Rn which contains K. Suppose that ρ0 = χΣ0\K and
that Σ0 \K coincides with the initial pressure support {p0 > 0}, where p0 solves (2.12) with ρ∞(·, t)
replaced by ρ0. If (ρ, p) is the limit solution given by Theorem 2.4 with initial data ρ0, then ρ and
p are monotone increasing with respect to t.
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Proof. Let BR contain the support of Σ0. We claim that (ρ0, p0) is a stationary subsolution of (5.1)
with D = BR \ K and with boundary data f . To verify this claim, using the monotonicity of λ
over time, it is enough to check that

(8.1)

∫
D
−∇p0∇ψ + λ(·, 0)ρ0ψdx ≥ 0

for any nonnegative test function ψ ∈ C∞0 (D). Since ρ0 = χ{p0>0}, the question boils down to the
nonnegativity of the measure µ0 := ∆p0 + λ(·, 0)χ{p0>0}. This follows the same proof of showing
µt ≥ 0 in Proposition 2.10, see section 5.

With the claim and the comparison principle for (5.1) (Proposition 5.1), it follows that

(8.2) ρ(x, 0) ≤ ρ(x, ε) for all ε > 0.

Note that, since λ is non-decreasing in time, ρ(·, t− ε) is a subsolution of (5.1) for any ε > 0. Thus
by comparison principle and (8.2) it follows that

ρ(x, t− ε) ≤ ρ(x, t) for any t > ε > 0,

and we conclude that ρ increases for all times. p accordingly increases by its definition.
�

Corollary 8.2. Let (ρ, p) be the weak solution of (5.1) in Ω× [0,∞) with the fixed boundary data
p = f > 0 and the initial data ρ0 ∈ BV . Then Σ(t) := {p(·, t) > 0} increases in time, and is a set
of finite perimeter for a.e. t > 0. Moreover for all t ≥ 0

(8.3) ρ(·, t) = χΣ(t) + ρEχRn\Σ(t), where ρE(x, t) := ρ0 exp
∫ t
0 λ(x,s)ds .

Proof. We claim that the pressure support Σ(t) := {p(·, t) > 0} increases over time. For any
t0 > 0, Let us call ρ∗ be the weak solution of (5.1) with the initial data χΣ(t0), and with the same
fixed boundary data f for the pressure. Then ρ∗ increases in time due to Lemma 8.1. From the
monotonicity of ρ∗ and Proposition 5.1, we have

(8.4) χΣ(t0) ≤ ρ∗(·, t) ≤ ρ(·, t0 + t) for all t > 0.

It follows that Σ(t) increases over time. It follows from Proposition 1.5 that ρt = λρ in Σ(t)
C ×

[0, t] for any T > 0, and thus we can conclude (8.3). Lastly Σ(t), is a set of finite perimeter for a.e.
t > 0 since ρ ∈ BV (Ω) for a.e. t > 0 and ρ has jump discontinuity on the boundary of Σ(t) due to
(8.3).

�

Appendix A. Tumor growth model with Nutrient

In [PQV14] (see also [DP21]), the following model for tumor growth is studied:

(A.1)


∂tρm − div (ρm∇pm) = ρmG(pm, cm) x ∈ Rn, t ≥ 0

∂tcm −∆cm + ρmH(cm) = (cB − cm)K(pm)

cm(x, t)→ cB for x→∞

where

pm =
m

m− 1
ρm−1
m .

In this system, the evolution of the cell population density ρm ≥ 0 is coupled to the concentration
of nutrients cm ≥ 0 by the cell division rate G(p, c). Importantly, this function satisfies

∂pG < −β < 0
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(see [PQV14] for a complete list of the assumptions necessary to get a good existence and uniqueness
framework as well as the appropriate estimates to pass to the limit).

It is proved in [PQV14] that ρm(x, t), pm(x, t) and cm(x, t) converge strongly in L1(QT ) (for all
T > 0) to ρ∞, p∞, c∞ in BV (QT )which solves the system

(A.2)


∂tρ∞ − div (ρ∞∇p∞) = ρ∞G(p∞, c∞) x ∈ Rn, t ≥ 0

∂tc∞ −∆c∞ + ρ∞H(c∞) = (cB − c∞)K(p∞)

c∞(x, t)→ cB for x→∞

with the Hele-Shaw relation p∞ ∈ P∞(ρ∞).
Remarkably, the solution of this system is unique, and one would like to interpret the system

as a weak form of some geometric Hele-Shaw type free boundary problem. For this one needs to
identify the pressure p∞ as solution of an elliptic equation in {ρ∞ = 1}.

In [DP21], it is proved that p∞ solves the complementarity condition

p∞(∆p∞ +G(p∞, c∞)) = 0 in D′(Q).

This condition says that p∞ solves an elliptic equation in {p∞} and is proved by deriving additional
estimates on pm.

We will show below that the approach used in this paper can be used to characterize p∞(·, t) as
the unique solution of an obstacle problem. First, we summarize the estimates proved in [PQV14]:

Lemma A.1. Under the assumptions listed in [PQV14], the following holds for all T > 0:

• ρm(t) is uniformly compactly supported for t ∈ [0, T ];
• |∇pm| is bounded in L2(QT )

• 0 ≤ pm ≤ pM , 0 ≤ ρm ≤
(
m−1
m pM

) 1
m−1 , 0 < cm < cB

• ρm, pm and cB − cm are bounded in BV (QT )
• ρm, pm and cB−cm converge strongly in L1 and almost everywhere to ρ∞, p∞ and cB−c∞.

Furthermore, proceeding as in Lemma 3.7, it is not difficult to show that {ρm}m∈N is relatively
compact in Cs(0, T ;H−1(Rn)) for all s ∈ (0, 1/2) and thus that ρ∞ ∈ C(0, T ;H−1(Rn)).

Finally, since p∞ and cB − c∞ are in BV (QT ), we can define the trace p+(·, t) and c+(·, t) for all
t > 0 as in (2.10). We can then prove the following result:

Proposition A.2. For all t > 0, let Et denote the space

Et = {v ∈ H1(Rn) ∩ L1(Rn) ; v(x) ≥ 0, 〈v, 1− ρ∞(t)〉H1,H−1 = 0}.

Then for all t > 0, the function x 7→ p+(x, t) is the unique solution of the minimization problem:

(A.3)

p ∈ Et∫
Rn

1

2
|∇p|2 − G(p, c+) dx ≤

∫
Rn

1

2
|∇v|2 − G(v, c+) dx ∀v ∈ Et

where G is the (concave) function such that ∂pG(p, c) = G(p, c) and G(0, c) = 0. Furthermore p∞
satisfies the complementarity condition

(A.4) p∞(∆p∞ +G(p∞, c∞)) = 0 in D′(Rn × (0,∞)).

As mentioned in the introduction (see Proposition 2.8), if the complementarity condition (A.4) is
known to hold, then one can derive the variational formulation (A.3) from the weak equation (A.2).
In particular, this complementarity condition was derived for this particular model in [DP21] by
using a generalized Aronson-Bénilan estimate and the L2(W 1,4) estimate on the pressure (but our
proof here does not require either of these estimates).
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Proof. First we recall the equation for the pressure pm:

(A.5) ∂tpm = (m− 1)pm(∆pm +G(pm, cm)) + |∇pm|2.
We then proceed as in the proof of Theorem 2.7: Given t0 > 0 and a function v(x) in Et0 , we use
the equation for the pressure (A.5) and density (A.2) to write:∫

Rn
∇pm · ∇pm − ρm∇pm · ∇v − G(pm, cm) + G(v, cm) dx

= − 1

m− 1

[
d

dt

∫
Rn
pm dx−

∫
Ω
|∇pm|2 dx

]
+
d

dt

∫
Rn
vρm dx

+

∫
Rn
pmG(pm, cm)− ρmvG(pm, cm)− G(pm, cm) + G(v, cm) dx

in D′(R+). Using the concavity of G to write

G(v, cm)− G(pm, cm) ≤ G(pm, cm)(v − pm)

we deduce∫
Rn
∇pm · ∇pm − ρm∇pm · ∇v − G(pm, cm) + G(v, cm) dx = − 1

m− 1

[
d

dt

∫
Rn
pm dx−

∫
Rn
|∇pm|2 dx

]
+
d

dt

∫
Rn
v ρm dx+

∫
Rn

(1− ρm) v G(pm, cm) dx.

We can now proceed as in the proof of Theorem 2.7: Integrating this equality with respect to
t ∈ [t0, t0 + δ) and using the weak L2 convergence of ∇pm and ρm∇pm to ∇p, we get∫ t0+δ

t0

∫
Rn
|∇p∞|2 −∇p∞ · ∇v − G(p∞, c∞) + G(v, c∞) dx dt

≤
∫

Rn
v(x)[ρ∞(x, t0 + δ)− ρ∞(x, t0)] dx+

∫ t0+δ

t0

∫
Rn

(1− ρ∞)vG(p∞, c∞) dx dt

≤ ‖G(p∞, c∞)‖L∞
∫ t0+δ

t0

∫
Rn
v(1− ρ∞) dx dt

(where we used the fact that v(x)ρ∞(x, t0) = v(x) and v(x)ρ∞(x, t) ≤ v(x) for all t)
Finally, dividing by δ and using Young’s inequality, we rewrite the inequality as

1

δ

∫ t0+δ

t0

∫
Rn

1

2
|∇p∞|2 − G(p∞, c∞) dx

≤ 1

δ

∫ t0+δ

t0

∫
Rn

1

2
|∇v|2 − G(v, c∞) dx dt+

C

δ

∫ t0+δ

t0

∫
Rn
v(1− ρ∞) dx dt

≤
∫

Rn

1

2
|∇v|2 − 1

δ

∫ t0+δ

t0

G(v, c∞) dt dx+
C

δ

∫ t0+δ

t0

〈v, 1− ρ∞〉H1,H−1 dx dt.

The continuity of t 7→ 〈v, 1 − ρ∞〉H1,H−1 and the fact that v ∈ Et implies that the last term
converges to zero as δ → 0. We can now conclude as in the proof of Theorem 2.7.

Finally, given a test function ϕ ∈ D(Rn × (0,∞)), we take v = p∞ + ε(p∞ϕ) = p∞(1 + εϕ) in
(A.3), with |ε| small enough so that 1 + εϕ ≥ 0. Passing to the limit ε→ 0− and ε→ 0+ yields∫

Rn
∇p∞ · ∇(p∞ϕ)−G(p∞, c∞)p∞ϕdx = 0
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and (A.4) follows.
�

Appendix B. The complementarity condition

Proof of Proposition 2.8. We note that ∂tρ = ∆p+ λρ ∈ L2(0, T ;H−1(Ω)). Given u ∈ Et, we have
p− u ∈ L2(0, T ;H1

0 (Ω)) and so we can write (in D′(R+)):

(B.1) 〈∂tρ, (p− u)〉H−1,H1
0

= 〈∆p+ λρ, p− u〉H−1,H1
0

= −
∫

Ω
∇p · ∇(p− u)− λρ(p− u) dx.

Next, proceeding as in the beginning of the proof of Lemma 8.1 (using the comparison principle
for the limiting problem, Proposition 5.1), we can show that ρ = 1 in U×R+ for some neighborhood
U of K and that supp p is bounded in Ω× [0, T ]. In particular, ∂tρ vanishes in U × R+. Taking a
smooth function φ(x) which is equal to 1 in supp p \ (U × [0, T ]) and vanishes on ∂K, we can write

〈∂tρ, (p− u)〉H−1,H1
0

= 〈∂tρ, (p− u)φ〉H−1,H1
0

= 〈∆p+ λρ, pφ〉H−1,H1
0
− 〈∂tρ, uφ〉H−1,H1

0

= 〈p(∆p+ λρ), φ〉D′,D − 〈∂tρ, uφ〉H−1,H1
0

= 〈p(∆p+ λρ), φ〉D′,D −
d

dt

∫
Ω
ρuφ dx

= − d

dt

∫
Ω
ρuφ dx in D′(R+)

where we used the fact that 〈p(∆p+λρ), φ〉D′,D = 0 (this is the complementarity condition). Using
(B.1), we deduce ∫

Ω
∇p · ∇(p− u)− λρ(p− u) dx =

d

dt

∫
Ω
ρuφ dx in D′(R+).

Using the fact that ρ(x, t)p(x, t) = p(x, t), we deduce:∫
Ω
∇p · ∇(p− u)− λ(p− u) dx dt =

∫
Ω
∇p · ∇(p− u)− λρ(p− u) dx dt+

∫
Ω
λ(1− ρ)u dx dt

≤ d

dt

∫
Ω
ρuφ dx+ Λ

∫
Ω

(1− ρ)u dx dt

Integrating with respect to t ∈ [t0, to + δ], we get∫ t0+δ

t0

∫
Ω
∇p · ∇(p− u)− λ(p− u) dx dt ≤

∫
Ω

(ρ(t0 + δ)− ρ(t0))uφ dx+ Λ

∫ t0+δ

t0

∫
Ω

(1− ρ)u dx dt

≤
∫

Ω
(ρ(t0 + δ)− 1)uφ dx+ Λ

∫ t0+δ

t0

∫
Ω

(1− ρ)u dx dt

≤ Λ

∫ t0+δ

t0

∫
Ω

(1− ρ)u dx dt

and the result now follows by proceeding as in the proof of Theorem 2.7. �
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