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Abstract 

Background:  Increase of antibiotic resistance in pathogenic microbes necessitated novel molecules for curing 
infection. Antimicrobial peptides (AMPs) are the gene-encoded evolutionarily conserved small molecules with 
therapeutic value. AMPs are considered as an alternative drug for conventional antibiotics. Hepcidin, the cysteine-
rich antimicrobial peptide, is an important component in innate immune response. In this study, we identified and 
characterized hepcidin gene from the fish, Catla catla (Indian major carp) and termed it as Cc-Hep.

Results:  Open reading frame of Cc-Hep consists of 261 base pair that encodes 87 amino acids. Cc-Hep is synthesized 
as a prepropeptide consisting of 24 amino acid signal peptide, 36 amino acid propeptide, and 26 amino acid 
mature peptide. Sequence analysis revealed that Cc-Hep shared sequence similarity with hepcidin from Sorsogona 
tuberculata. Phylogenetic analysis indicated that Cc-Hep was grouped with HAMP2 family. Structure analysis of mature 
Cc-Hep identified two antiparallel beta sheets stabilized by four disulphide bonds and a random coil. The mature 
peptide region of Cc-Hep has a charge of + 2, isoelectric value 8.23 and molecular weight 2.73 kDa.

Conclusion:  Functional characterization predicted antibacterial, antioxidant, and anticancer potential of Cc-Hep, 
which can be explored in aquaculture or human health care.
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Background
The overuse and misuse of antibiotics has stimulated the 
bacterial evolution towards resistance development, as 
an adaptive mechanism for survival. To overcome this 
situation an urgent need for new therapeutic agents are 
required. Natural products have proven to be rich source 
of potent compounds having health promoting benefits 
with specific application in modern medical field [3–5, 
10, 13, 26, 29, 34].

Antimicrobial peptides (AMPs) are evolutionarily 
conserved host defense peptides, distributed widely in 
nature as an innate immune molecule [32]. AMPs have 
broad spectrum activity against bacteria, virus, fungi, and 
parasites. The aquatic environment contains wide variety 
of pathogens and hence the innate immune system, the 
first line of defence in fish is highly significant [16, 59, 
61]. AMP production was found to enhance in response 
to infection and exhibit broad spectrum antimicrobial 
activity against fish and human pathogens [35]. Presence 
of AMP in fish mucus prevents the colonization 
of pathogens [51, 60, 62]. Hepcidin, cathelicidin, 
betadefensin, piscidin, and histone-derived AMPs are the 
five different classes of AMPs in fishes [35, 50].
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Hepcidins are an important group of cationic short 
peptides with roles in innate immunity and iron 
homeostasis. Mammalian hepcidins are reported 
to have both antibacterial as well as iron regulatory 
mode of action [39, 47, 48, 54]. Hepcidin was first 
reported in humans and later from other vertebrates 
[36, 53]. Hepcidin was initially isolated from human 
urine and was also identified from blood ultra-filtrate 
which led to naming it as LEAP1 (liver-expressed 
antimicrobial peptide) [36]. Recently  it was renamed 
to hepcidin due to its hepatic origin and antibacterial 
activity in  vitro [46]. In response to inflammation 
and iron overload, liver produces hepcidin [24]. 
Liver synthesizes hepcidin as a prepropeptide and 
subsequently the signal peptidase and propeptide 
convertase cleavage results in release of mature peptide 
[36, 53]. Four intramolecular disulphide bonds formed 
by eight conserved cysteine residues offer hepcidin a 
hair pin structure [71]. Number of cysteines can vary 
from four to eight residues [68]. Fish hepcidin gene 
contains three exons separated by two introns [25, 30]. 
Fish hepcidins are categorized into two, HAMP1 and 
HAMP2 based on amino acid sequence, cationicity, 
and the iron binding motif DTHFP or QSHLS. HAMP1 
hepcidins has similarity with mammalian hepcidins 
whereas HAMP2 present only in acanthopterygians 
except Chlorophthalmus bicornis [19]. Diversification 
and duplication of gene resulted in the formation of 
multiple copies of hepcidin in the genome, identified 
up to 8 copies [23, 58, 73]. Hepcidin is a versatile 
molecule proposed to have antimicrobial [14, 17, 22, 
38, 40, 42, 75], anticancer [18, 21], antiparasitic [75], 
and immunomodulatory [65] functions. Catla catla 
(Hamilton, 1822) is the fastest growing species among 
the Indian major carps and is an important component 
in polyculture system due to its surface feeding 
behavior [33]. Higher consumer demand gives Catla 
catla higher economic value. In the present study, an 
antimicrobial peptide hepcidin Cc-Hep was identified 
from Indian major carp, Catla catla. The study mainly 
focussed on molecular and functional characterization 
of hepcidin molecule to understand the bioactive 
potential of this molecule that can be explored for 
application in aquaculture and medicine.

Methods
Sample collection
Live sample of the Indian major carp, Catla catla, was 
collected from Prakrithi fish farm (Kerala, India) and 
transported to the laboratory in live condition. The 
fish was killed humanely, blood and gill samples were 

collected and stored in TRI reagent (Sigma) at – 20 °C 
until processed.

Total RNA isolation and reverse transcription
The total RNA was extracted from blood and gill 
samples in accordance with the manufacturer’s protocol. 
Quantity of RNA was checked spectrophotometrically 
at 260 nm and 280 nm. RNA sample with absorbance 
ratio (A260:A280) greater than 1.8 (good quality RNA) 
was selected for the current work. The first strand cDNA 
was synthesized in a 20 μL reaction volume containing 
5 μg total RNA, 1× RT buffer, 2 mM dNTP, 2 mM oligo 
d(T20), 20 U of RNase inhibitor, and 100 U MMLV 
reverse transcriptase (New England Biolabs, USA). The 
reaction mixture was incubated at 42 °C for 1 h followed 
by an inactivation step at 85 °C for 15 min. Beta actin, a 
housekeeping gene (Forward 5′ATC​ATG​TTC​GAG​ACC​
TTC​AACAC 3′ and Reverse 5′CGA​TGG​TGA​TGA​CCT​
GTC​CGTC 3′) was used to test the quality of RNA.

Hepcidin amplification and cloning
The PCR amplification of hepcidin from cDNA of the 
fish Catla catla was performed using Hepcidin primers 
(Forward 5′ CGA​AGC​AGT​CAA​ACC​CTC​CTA​AGA​
TG 3′ and Reverse 5′ GAA​CCT​GCA​GCA​GAC​ACC​
ACA​TCC​G 3′) [57]. Reaction was carried out in 25 
μl total reaction volume containing 1× standard Taq 
buffer (10 mM Tris-HCl, 50 mM KCl, pH 8.3), 3.5 mM 
MgCl2, 200 mM dNTPs, 0.4 mM each primer and 1 U 
Taq DNA polymerase (New England Biolabs, USA). The 
PCR condition consisted of an initial denaturation at 
95 °C for 2 min followed by 35 cycles at 94 °C for 15 s, 
60 °C for 30 s, and 72 °C for 30 s and a final extension 
at 72 °C for 10 min. The amplicons were analysed in 
1.5% agarose gel stained with ethidium bromide (0.3 
μg/ml) at 90 V for 60 min and visualized using the gel 
documentation unit (Syngene G Box).

The purified PCR products were ligated into pGEM-T 
easy clone vector and transformed into competent DH5α 
Escherichia coli cells as per manufacturer’s protocol 
(pGEM-T Easy TA Cloning Kit, Promega). The cells were 
cultured in Luria Bertani agar plates containing ampicillin, 
IPTG, and X-Gal at 37 °C for 24 h, and the recombinant 
clones were selected by blue white screening. White 
recombinant colonies screened using vector-specific 
primers (T7 F and SP6 R)  and hepcidin specific primers. 
For vector specific amplification, 95 °C for 3 min followed 
by 35 cycles at 94 °C for 15 s, 57 °C for 30 s and 72 °C for 
30 s, and a final extension at 72 °C for 10 min program 
was used. Amplicons were analyzed on 1.5% agarose gels 
stained with ethidium bromide (0.3 μg/ml) at 90 V for 60 
min.
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Plasmid isolation
Recombinant clones were selected for plasmid isolation 
as per the manufacturer’s protocol using the GenElute 
HP Plasmid Miniprep Kit (Sigma). Isolated plasmids 
were analyzed on 0.8% agarose gel. PCR using vector-
specific and gene specific primers was done to confirm 
the presence of insert. The recombinant plasmids were 
sequenced in ABI Prism 377 DNA sequencer (Applied 
Biosystem) at SciGenom, India.

Sequence analysis and molecular characterization
The nucleotide sequence  was assembled and analyzed 
using GeneTool software. The cDNA nucleotide sequence 
was translated to protein sequence using ExPASy translate 
tool (http://​web.​expasy.​org/​trans​late/). Homology 
searches of nucleotide sequence and amino acid 
sequence were performed using BLASTn and BLASTp 
algorithm of the National Centre for Biotechnology 
Information (http://​www.​ncbi.​nlm.​nih.​gov/​blast). The 
signal peptide region was identified using SignalP 5.0 
server (http://​www.​cbs.​dtu.​dk/​servi​ces/​Signa​lP-5.​0/). 
Processing site for propeptidase was determined using 
ProP 1.0 server (http://​www.​cbs.​dtu.​dk/​servi​ces/​ProP). 
Physicochemical characteristics of the peptide and half-
life were analysed using the ProtParam Tool (http://​cn.​
expasy.​org/​cgi-​bin/​protp​aram). Wimley-White whole-
residue hydrophobicity and Boman index were predicted 
using APD3 tool (http://​aps.​unmc.​edu/​AP/​main.​php). 
Protein motif search was carried out using motif server 
(https://​www.​genome.​jp/​tools/​motif ) online tool. Coiled 
coil conformation within the protein was detected using 
COILS server (https://​embnet.​vital-​it.​ch/​softw​are/​
COILS_​form.​html). Phosphorylation sites in peptide was 
analysed using NetPhos 3.1 server (http://​www.​cbs.​dtu.​
dk/​servi​ces/​NetPh​os).

To find out the stability of the peptide, cDNA sequence 
was converted to corresponding RNA sequence using 
biomodel server (http://​biomo​del.​uah.​es/​en/​lab/​cyber​
tory/​analy​sis/​trans.​htm) and submitted to RNA Fold 
server program (http://​rna.​tbi.​univie.​ac.​at/​cgi-​bin/​RNAfo​
ld.​cgi) to visualize the RNA structure with minimum free 
energy (MFE). Hydrophobicity of peptide was analysed 
using the Kyte-Doolittle plot using the ProtScale tool of 
ExPASy (http://​web.​expasy.​org/​prots​cale).

Molecular modelling and structure prediction
The secondary structure prediction of Catla catla 
pre-prohepcidin was analysed using PSIPRED (http://​
bioinf.​cs.​ucl.​ac.​uk/​psipr​ed/). The tertiary structure 
of the Catla catla pre-propeptide was identified by 
SWISS-MODEL server, and the PDB data generated 
for visualization of spatial structure and bonding 

patterns of the residues using the PyMOL viewer. The 
stereo chemical quality of the predicted model was 
evaluated using Ramachandran plot computed with 
the PROCHECK (http://​servi​ces.​mbi.​ucla.​edu/​PROCH​
ECK/).

Phylogenetic analysis
Hepcidin sequences were retrieved from NCBI and 
ClustalW was used for multi-alignment. Phylogenetic 
tree was constructed using MEGA 7 by Maximum 
likelihood (ML) method based on the Jones-Taylor-
Thornton (JTT) model with complete deletion of gaps 
and 1000 bootstrap value.

Mature peptide characterization
Physicochemical properties of mature Cc-Hep was 
predicted using ProtParam Tool (http://​cn.​expasy.​org/​
cgi-​bin/​protp​aram). Expression probability of Cc-Hep 
in different expression systems was evaluated using 
codon adaptation index value of the peptide (https://​
www.​biolo​gicsc​orp.​com/​tools/​CAICa​lcula​tor/#.​Xo15x​
4gzbIU). Quality of the peptide was analysed in peptide 
ranker (http://​disti​lldeep.​ucd.​ie/​Pepti​deRan​ker/). 
Peptides having rank score greater than 0.7 indicates its 
bioactive potential.

Functional characterization
The antimicrobial probability of Cc-Hep mature peptide 
was analysed using CAMP (http://​www.​camp.​bicni​rrh.​
res.​in/) database. Antifungal, antiviral, and antiparasitic 
activities of peptide were predicted using AntiFP (https://​
webs.​iiitd.​edu.​in/​ragha​va/​antifp/), AVPdb (http://​crdd.​
osdd.​net/​serve​rs/​avpdb/), and ParaPep (http://​crdd.​osdd.​
net/​ragha​va/​parap​ep/) respectively. Anticancer activity, 
anti-angiogenicity, and tumor-homing properties of 
the peptide were evaluated with AntiCP (http://​crdd.​
osdd.​net/​ragha​va/​anticp/), AntiAngioPred (http://​crdd.​
osdd.​net/​ragha​va/​antia​ngiop​red/), and TumorHPD 
(http://​crdd.​osdd.​net/​ragha​va/​tumor​hpd/​pepti​de.​php) 
servers respectively. Antioxidative, antihypertensive, 
anti-inflammatory, and anti-tubercular properties were 
predicted with AnOxPePred (https://​servi​ces.​healt​htech.​
dtu.​dk/​servi​ce.​php?​AnOxP​ePred-1.0), AHTpin (http://​
crdd.​osdd.​net/​ragha​va/​ahtpin/), AIPpred (http://​www.​
thegl​eelab.​org/​AIPpr​ed/), and AtbPpred (http://​thegl​
eelab.​org/​AtbPp​red) respectively. Hemolytic activity and 
half-life of the Cc-Hep in intestine like environment was 
analysed in HemoPred (http://​codes.​bio/​hemop​red/) and 
HLP (https://​webs.​iiitd.​edu.​in/​ragha​va/​hlp/) servers.
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Results
A 261 bp cDNA fragment encoding 87 amino acids 
was obtained from the mRNA of Catla catla by reverse 
transcription PCR. Nucleotide and deduced amino acid 
BLAST analysis identified that the peptide is coming 
under hepcidin family of antimicrobial peptides. The 
sequences were deposited in GenBank database under 
the accession MW854006 (Fig. 1a). Nucleotide similarity 
search of Cc-Hep showed 99% similarity with Sorsogona 
tuberculata hepcidin mRNA (GenBank ID: MN609931.1) 
and Leiognathus equulus hepcidin (Genbank ID: 
KM034809.1), 87% similarity with Dicentrarchus labrax 

hepcidin 2 (Genbank ID: KJ890400.1), 86% similarity 
with Morone chrysops hepcidin precursor (Genbank 
ID: AF394246.1), and 82% similarity with Pagrus major 
hepcidin (Genbank ID: AY557619.3).

Protparam analysis predicted the physicochemical 
properties of Cc-Hep, i.e., molecular weight 9.581 kDa, 
net charge 0.75 and isoelectric point 6.78. Cc-Hep was 
found to be rich in amino acids like valine (11.6%), 
cysteine (10.5%), alanine (9.3%), and glutamine (8.1%). 
The aliphatic index and extinction coefficient were 
identified as 56.63 and 10470 respectively. Half-life 
estimation of Cc-Hep revealed as 30 h in mammalian 

Fig. 1  a Nucleic acid and deduced amino acid sequences of Catla catla hepcidin, Cc-Hep (GenBank ID: MW854006). The single letter amino acid 
code is shown below the corresponding nucleotide sequences. Yellow color specifies signal peptide region, green color propeptide, and blue color 
mature peptide region. b mRNA structure of Cc-Hep showing stem loop structure. The mRNA structure colored by base-pairing probabilities. High 
base-pairing probability is indicated by red color and low base-pair probability indicated by blue color
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reticulocytes (in vitro), greater than 20 h in yeast (in 
vivo) and greater than 10 h in Escherichia coli (in vivo). 
Instability index calculated as 91.42, which classifies 
the peptide as unstable. Cc-Hep is having equal 
number of positively (arginine + lysine) and negatively 
charged residues (aspartate + glutamate), highlighting 
its amphipathicity. Grand average of hydropathicity 
(GRAVY) was computed as 0.084. Boman index (Protein 
binding potential) and Wimley-White whole residue 
hydrophobicity predicted by APD3 server were 1.29 kcal/
mol and 15.18 kcal/mol respectively.

Signal 5.0 server predicted the presence of signal 
peptidase cleavage site in between A24-V25 producing a 
signal peptide of 24 amino acids. ProP 1.0 identified the 
propeptide convertase cleavage site in between R60-H61, 
giving rise to 36 amino acid propeptide and 26 amino acid 
mature peptide with 8 conserved cysteine residues. Pfam 
identified Cc-Hep under Hepcidin family with significant 
independent E value. Serine phosphorylation at positions 
5, 49, 55, 56, 62, and one tyrosine phosphorylation site 
at position 42 were predicted by NetPhos 3.1 server. 
Phosphorylation in Cc-Hep deals with the protease 
attack protection. No coiled coil formation was detected 
in Cc-Hep.

Stem loop is a vital component in the structure of 
RNA. Cc-Hep stem loop consists of hairpin loop, internal 
loop, multi loop, and bulges which gives the structural 
integrity (Fig. 1b). Minimum free energy (MFE) predicted 
was − 93.00 kcal/mol indicating that the mRNA is stable 
and well structured. Hydrophobicity of Cc-Hep was 
analysed by kyte-doolittle plot. Hydrophobic residues are 
more concentrated in signal peptide region, involved in 
proper protein translocation (Fig. 2a).

Secondary structure of Cc-Hep showed α-helical 
region followed by beta sheet and random coiled regions. 
N-terminal α-helical structure formed the signal peptide 
region, helix and random coils the propeptide, beta sheet 
and random coiled structure the mature peptide (Fig. 2b). 
Arginine and phenylalanine of mature peptide formed 
the beta hairpin structure. The beta hairpin was formed 
by two beta strands that are adjacent in their primary 
structure but oriented in an antiparallel direction. 
Secondary structure is stabilized by 4 disulphide bonds 
(C67-C84, C70-C83, C71-C80, and C73-C74). The three 
dimensional structure of Cc-Hep was constructed 
using solution structure of hepcidin-25 (PDB: 1m4f.1). 
3D structure of Cc-Hep was found to have two 
antiparallel beta sheets and random coil strengthened 
by four disulphide bonds (Fig.  3a). Cc-Hep constituted 
hydrophobic positively charged residues, which permit 
the effective interaction between peptide and bacterial 
membrane. Ramachandran plot for the model was 
constructed with 78.9% residues in most favored regions 

and 21.1% residues in additional allowed regions. There 
were no residues in generously allowed regions as well as 
disallowed regions. A tight clustering of residues at + 120 
to + 180° psi value and − 160 to − 45° phi value, clearly 
validate the antiparallel beta sheet structure of Cc-Hep 
(Fig. 3b).

The amino acid sequence of Cc-Hep aligned with 
amino acid sequence of previously reported HAMP2 
and HAMP1 hepcidins from various organisms (Fig. 4). 
Signal peptide region was found to be more conserved 
than propeptide and mature peptide regions. Variation 
is prominently visible in propeptide part. HAMP1 
propeptide showed more variation than HAMP2 
propeptide. Negatively charged amino acid, glutamic 
acid (E) is notable in propeptide part contributing 
significantly to the anionic nature of pro region. In the 
signal peptide region, abundance of hydrophobic amino 
acids like alanine and valine were prominent in fishes, 
whereas abundance of hydrophobic amino acid leucine 
was notable in higher organisms. The signature cysteine 
residues in mature peptide region is associated with 
disulphide bond formation and proper protein folding. In 
HAMP1, conserved fish motif QSHL/DTHFP in mammal 
(first five amino acids of N-terminal mature peptide) 
was visible. Phylogenetic tree based on the amino 
acid sequences from different organisms showed two 
prominent lineages, HAMP1 and HAMP2 (Fig. 5). Non-
fish vertebrate hepcidins formed a separate cluster. Cc-
Hep aligned closely with Sorsogona tuberculata hepcidin 
and deeply nested within HAMP2 clade. Phylogenetic 
tree confirmed Cc-Hep as HAMP2 like peptide and its 
potential role in antimicrobial activity.

Mature peptide Cc-Hep is having a molecular weight 
2.72 kDa, charge + 2, isoelectric point 8.23 and 53% 
hydrophobicity. Mature peptide was found to be rich 
in amino acids such as cysteine (30%), glycine (15.4%), 
alanine (7.7%), arginine (7.7%), asparagine (7.7%), 
histidine (7.7%), and phenylalanine (7.7%). The instability 
index 35.07, classified the peptide as stable. Aliphatic 
index and GRAVY of the peptide were 18.85 and 0.342 
respectively. The codon adaptation index representing 
the probable success of heterologous gene expression was 
predicted to be 0.60 for Escherichia coli, 0.69 for Pichia 
pastoris, 0.67 for Saccharomyces cerevisiae expression 
system, 0.85 for Spodoptera frugiperda and 0.87 for Mus 
musculus. Peptide rank score was calculated as 0.99 
clearly depicting its bioactive potential.

CAMP server confirmed Cc-Hep as antimicrobial 
peptide using Support Vector Machine (SVM) 
classifier. It was noted that Cc-Hep has no antifungal, 
antiviral, and antiparasitic activity. Server AntiCP 
classified Cc-Hep as an anticancer peptide with 0.81 
SVM score. Sequence characterization using both 
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AntiAngioPred and TumorHPD gave significant scores 
for the antiangiogenic and tumor homing property 
of the peptide. Cc-Hep is an antioxidative peptide 
with a free radical scavenger score of 0.534. AHTpin, 
AIPpred and AtbPpred identified its functional 
types as antihypertensive, anti-inflammatory and 
antitubercular with prediction scores of 0.53, 0.547, 
and 0.71 respectively. HemoPred predicted Cc-Hep as 
non-hemolytic peptide, ensuring its safe application. 
Half-life of Cc-Hep was calculated as 0.536 s, indicating 
its stability in intestine-like environment. All these 

characteristics mutually compliment, confirming Cc-
Hep as a potent AMP.

Discussion
Antimicrobial peptides of fishes represent the first 
line of defense against infections [43]. Hepcidin, a 
cysteine-rich antimicrobial peptide is considered as 
a significant effector molecule in iron regulation and 
antimicrobial activity in vertebrates [44]. The multiple 
isoforms of hepcidin present in fish show tissue 
specific expression pattern [74]. In the present study, 
a hepcidin AMP Cc-Hep was identified from gill RNA 

Fig. 2  a Kyte-Doolittle plot showing hydrophobicity of Cc-Hep. The peaks above the score (0.0) indicate the hydrophobicity. The X axis is 
represented by amino acid sequence positions and Y axis by hydrophobicity score. b Secondary structure of Cc-Hep peptide predicted using 
PSIPRED server. Alpha helical structure represented by pink color, beta strand by yellow color and coils by grey color respectively
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of Catla catla that shared all the hallmark features of a 
HAMP2 hepcidin.

Antimicrobial peptides are produced from precursor 
molecules by hydrolytic cleavage. Generally, hepcidin 
prepropeptide has 81 to 96 amino acids, with highly 
conserved signal peptide sequence (24 amino acids), an 
acidic propeptide (36 to 40 amino acids), and a mature 
peptide (19 to 27 amino acids). Cc-Hep prepropeptide 

consists of 24 amino acid signal peptides, 36 amino 
acid propeptides, and 26 amino acid mature peptides. 
Signal peptide of Cc-Hep is found to be conserved and 
rich in hydrophobic amino acids like valine (25%) and 
alanine (16.7%). Hydrophobic nature is required for 
cellular translocation of the peptide. Signal peptidase 
and propeptidase cleavage is essential for the release 
of the mature peptide of the prepropeptide. Anionic 

Fig. 3  a Three dimensional structure of Cc-Hep constructed using homology modelling by SWISSMODEL server. Cyan color indicating disulphide 
bonds. b Ramachandran plot for the predicted three dimensional structure of Cc-Hep using PROCHECK server
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propeptide deals with the cellular trafficking and charge 
neutralization of mature peptide region [27, 67]. The 
RX(K or R) R motif (Furin site) is the processing site for 

the propeptide convertases  in hepcidin [45]. The mature 
peptide region with a conserved glycine residue and 8 
cysteine residues forming 4 intramolecular disulphide 

Fig. 4  Multiple sequence alignment of Cc-Hep using MEGA 6 software. Signal peptide, propeptide and mature peptide of all the sequences are 
highlighted

Fig. 5  Maximum likelihood tree obtained using MEGA 6 showing the phylogenetic relationship of Cc-Hep with other vertebrate hepcidins
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bond [11]. Cc-Hep mature peptide has a net charge of + 
2, isoelectric point of 8.23 and 53% hydrophobicity. The 
cationicity of Cc-Hep mature peptide is mainly due to the 
amino-terminal portion, which is same for all HAMP2 
hepcidins [30].

Cc-Hep has all the signature features of hepcidin AMP 
family and sequence similarity with previously reported 
hepcidins. Cell membrane destruction is the major way 
by which AMPs exert its activity, which also explains 
the reason why AMPs do not produce drug resistance 
[15, 66]. All the physicochemical parameters of Cc-Hep 
predicted it to be a significant immune molecule. Base 
pairing ability of mRNA is expressed as its MEF value. 
Unpaired bases are indicated by positive MEF value, 
whereas paired bases are indicated by negative MEF 
value [70]. MEF value of Cc-Hep was calculated as − 
93.00 kcal/mol indicating the mRNA as mostly paired 
and only few nucleotides left unpaired.

Structure prediction is important to characterize the 
function of the protein. The mature peptide of hepcidin 
has a beta hairpin structure in which the two arms are 
linked by disulphide bond in ladder-like manner [11]. 
The mature region of Cc-Hep shows two antiparallel 
beta sheet stabilized by four disulphide bonds (linking 
the eight cysteine residue) forming a hairpin loop. A 
notable factor is that the presence of disulphide-bridge 
between the cysteine residues, near the hairpin turn act 
as a vital domain in the functioning of hepcidin [25]. 
Importance of the intramolecular disulphide bond was 
demonstrated by Hocquellet et  al. [31] that synthetic 
peptide with all cysteines replaced by alanine showed 
reduced/no antibacterial activity [31]. The disulphide 
bond has crucial role in the permeabilization of bacterial 
membrane. Cc-Hep also showed spatial separation of 
hydrophilic and hydrophobic amino acids, a typical 
feature of membrane disrupting peptide.

Sequence alignment of Cc-Hep showed close 
relationship with previously reported hepcidins, 
with respect to conserved signal peptide, cysteine 
configuration and the cleavage site for propeptide 
convertase. The presence of hydrophobic amino acids 
like alanine and valine in the signal peptide is notable 
in fishes whereas leucine is found abundant in higher 
organisms. Alanine, valine, and leucine are neutral in 
charge their presence/absence will not affect the total 
charge of the peptide. HAMP1 conserved motif DTHFP/
QSHL deals with ferroportin internalization [46]. Shared 
ancestry is the reason for sequence similarity. HAMP1 
and HAMP2 hepcidin formed separate clusters. Cc-
Hep occupied the same clade of HAMP2 family of 
hepcidins. Hepcidins from other vertebrates formed 
a separate clade. Mammals have single hepcidin gene 
with both antimicrobial and iron regulation mechanism 

whereas single copy of HAMP1 gene and multiple 
copies of HAMP2 genes are present in fishes [30]. 
Presence of multiple copies of HAMP2 is explained in 
terms of genome duplication and positive Darwinian 
selection under different selection pressures [72]. Teleost 
hepcidins are diverse, mainly due to the diversity of 
aquatic systems, oxygenation, diversity of pathogens, and 
different iron concentrations [71]. Bacterial pathogenicity 
and antimicrobial peptide production is coevolving, 
by which novel epitope of pathogens produce novel 
antimicrobial peptides [12, 55].

Oxidation is an important chemical reaction which is 
present in non-biological and biological processes. Effect 
of oxidation is the production of free radicals that are 
unstable and highly reactive causing oxidative stress [41]. 
Antioxidants are the group of molecules which scavenge 
and chelate the free radicals. Higher ratio of histidine 
residue as well as lower ratio of leucine and proline are 
directly related to antioxidant activity [49]. Peptide Cc-
Hep was predicted to have antioxidant activity with 
a notable free radical scavenging score. Antioxidant 
activity of Cc-Hep is by virtue of the higher ratio of 
histidine and low occurrence of leucine (0%) and proline 
(3.8%) residues.

Hypertension is one of the major lifestyle associated 
disease which need new class of drugs with little or no 
side effects. Occurrence of glycine and phenylalanine 
is frequent in antihypertensive peptides, whereas 
amino acids like glutamic acid and aspartic acid 
occurs rarely. Frequent occurrence of glycine and 
phenylalanine with rare occurrence of aspartic acid 
and glutamic acid make Cc-Hep a promising lead 
molecule in antihypertensive therapy [37]. The major 
bottleneck with the cationic peptide is its short half-
life and high susceptibility to degradation by proteases 
in serum and gut [28]. Size of the amino acid is directly 
related to the half-life of the peptide, i.e. amino acids 
like glycine, threonine, alanine and serine (small sized) 
reduces protease susceptibility and amino acids like 
phenylalanine, arginine, tyrosine and tryptophan (large 
sized) reduces the stability of the peptide [64].

Membrane attack is the major mode of action of 
AMPs. Presence of arginine and leucine increases the 
haemolytic activity. Presence of glycine is assumed to 
increase the selectivity towards bacterial membrane and 
reduces the toxicity to RBC. Absence of arginine and 
leucine with richness of glycine make Cc-Hep a ‘single 
edged sword’ having both reduced cytotoxicity towards 
eukaryotic cell and high antimicrobial potential [69].

Natural compounds as anticancer therapeutics has 
attracted attention because of its cost-effectiveness, 
nutritional benefits and lesser side effects [6–8]. 
Anticancer peptides has the ability to discriminate 
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normal and cancerous cell [52]. Hepcidin from 
tilapia TH2-3 inhibited the growth, proliferation 
and migration of human fibrosarcoma cell line 
[21]. TH1–5 peptide specifically lysed cancer cells 
and strong disorganization of cell membrane was 
visible under SEM analysis. The peptide also showed 
antiangiogenicity in HeLa cells [20]. Compounds with 
anticancer activity display apoptosis and oxidative 
stress inhibiting the cell proliferation [1, 2, 9]. Server 
AntiCP identified Cc-Hep as anticancer peptide with 
significant prediction score. AntiAngioPred analysis 
predicted that the peptide also has antiangiogenic 
property. Positional preference of amino acids viz., 
cysteine and serine in N-terminal region as well as 
glycine, cysteine, and arginine in C-terminal region 
contribute to the antiangiogenicity of Cc-Hep peptide. 
Antiangiogenesis treatments emphasize on principal 
events like wound healing, migration, extracellular 
matrix interaction, infiltration, and invasion fuelling 
tumor growth [1, 2]. The discovery of antiangiogenic 
property can be explored to inhibit the metastasis of 
cancer cell [56]. Tumor homing peptides are small 
peptides, which selectively identify and bind to tumor 
cells. Cc-Hep also showed tumor-homing property. 
The property was predicted based on SVM model, 
binary profile model, amino acid composition, and 
dipeptide composition [63]. Tumor-homing property 
can be used to deliver drugs at tumor site.

Conclusion
A HAMP2 family of antimicrobial peptide, Cc-Hep was 
identified and cloned from mRNA transcripts of Indian 
major carp, Catla catla. Analogous nature of Cc-Hep 
to formerly reported hepcidins and its physicochemical 
properties firmly support its use as an antimicrobial 
peptide. Functional characterization in silico revealed 
the peptide for its possible use as antioxidant, 
antimicrobial and anticancer peptide with minimal side 
effects. The study also demonstrate the significance of 
hepcidin antimicrobial peptide in acanthopterygian 
innate immune system.
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