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Abstract

We describe a Herschel Space Observatory 194–671 μm spectroscopic survey of a sample of 121 local luminous
infrared galaxies and report the fluxes of the CO J to J–1 rotational transitions for  J4 13, the [N II] 205 μm
line, the [C I] lines at 609 and 370 μm, as well as additional and usually fainter lines. The CO spectral line energy
distributions (SLEDs) presented here are consistent with our earlier work, which was based on a smaller sample,
that calls for two distinct molecular gas components in general: (i) a cold component, which emits CO lines
primarily at J4 and likely represents the same gas phase traced by CO (1−0), and (ii) a warm component, which
dominates over the mid-J regime (4<J10) and is intimately related to current star formation. We present
evidence that the CO line emission associated with an active galactic nucleus is significant only at J>10. The flux
ratios of the two [C I] lines imply modest excitation temperatures of 15–30 K; the [C I] 370 μm line scales more
linearly in flux with CO (4−3) than with CO (7−6). These findings suggest that the [C I] emission is predominantly
associated with the gas component defined in (i) above. Our analysis of the stacked spectra in different far-infrared
(FIR) color bins reveals an evolution of the SLED of the rotational transitions of H O2 vapor as a function of the
FIR color in a direction consistent with infrared photon pumping.

Key words: galaxies: active – galaxies: ISM – galaxies: star formation – infrared: galaxies – ISM: molecules –
submillimeter: galaxies

Supporting material: figure set, machine-readable tables

1. Introduction

Luminous infrared galaxies (LIRGs, defined to have an
8–1000 μm total infrared luminosity  ☉L L10IR

11 ; Sanders &
Mirabel 1996), and ultra-luminous galaxies (ULIRGs,

> ☉L L10IR
12 ) dominate the cosmic star formation (SF) at

z1 (Le Flóch et al. 2005; Caputi et al. 2007; Magnelli et al.
2009, 2011; Gruppioni et al. 2013). For z∼1 up to 3, these
galaxies are mixtures of two populations based on the dominant
“SF mode”: (i) mergers dominated by nuclear starburst with

warm far-infrared (FIR) colors and a high SF efficiency (SFE)

similar to that of local ULIRGs, and (ii) gas-rich disk galaxies
with SF extended over their disks and an SFE comparable to
local spirals (e.g., Daddi et al. 2010; Genzel et al. 2010). Most
ULIRGs at z∼1–3, as defined purely by their luminosities,
belong to group (ii), the so-called “main-sequence” population
(Elbaz et al. 2010; Muzzin et al. 2010), with FIR colors in the
range occupied by typical local LIRGs (Rujopakarn et al.
2011). Due to their proximity, local LIRGs can be studied in
much more detail than distant counterparts, and therefore
provide valuable insights into the SF process and its interplay
with dense interstellar gas in the galaxy population that
dominates the cosmic SF at high redshifts. For this reason, the
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flux-limited sample of local LIRGs in the Great Observatories
All-Sky LIRG Survey (GOALS; Armus et al. 2009) has been
the focus of a large number of observational surveys, including
imaging and/or spectroscopy in X-ray (e.g., Iwasawa et al.
2011; U et al. 2012), ultraviolet (e.g., Howell et al. 2010; Petty
et al. 2014), optical/near-IR (e.g., Haan et al. 2011), mid- to
far-IR (e.g., Díaz-Santos et al. 2010, 2011, 2014; Petric et al.
2011; Inami et al. 2013; Stierwalt et al. 2013, 2014), and radio
continuum (e.g., Murphy et al. 2013). More recently, the
GOALS sample was observed with the Herschel Space
Observatory (hereafter Herschel; Pilbratt et al. 2010) in a
broadband photometric survey at 70, 100, 160, 250, 350, and
500 μm (PI: D. B. Sanders; see J. Chu et al. 2017, in
preparation) and a spectroscopic survey targeting some of the
major FIR gas cooling lines (PI: L. Armus; see Díaz-Santos
et al. 2013, 2014).

(U)LIRGs are all known to be rich in molecular gas (Sanders
& Mirabel 1996), which is the fuel necessary for their above-
average SF rates (SFRs). The CO (1−0) line,23 which is
associated with a critical density (nc) on the order of 103 cm−3

and an excitation temperature (Tex) of 5.5 K, has been widely
used to trace the total molecular gas content. However, SF
occurs mainly in the denser parts of molecular clouds, as
evidenced by correlations in local (U)LIRGs between LIR and
dense gas tracers such as HCN(1−0) (e.g., Gao &
Solomon 2014; Wu et al. 2005; Privon et al. 2015), and heats
up the surrounding dense molecular gas substantially. The
resulting warm dense gas can be better traced by a mid-J CO
line transition, such as CO (6−5), which has ~n 10c

5 cm−3

and =T 116ex K (Carilli & Walter 2013). This prediction was
already suggested by limited ground-based CO data (e.g.,
Bayet et al. 2009) prior to the advent of Herschel. In general, a
CO line of a higher J corresponds to higher nc and Tex. This
unique property of the CO rotational transitions allows one to
immediately make ballpark estimates on both the gas density
and temperature of the underlying molecular gas based on the J
value at the peak of the CO spectral line energy distribution
(SLED) observed.

By combining our own observations with archival data, we
analyzed the 194–671 μm spectra of 121 LIRGs obtained with
the Fourier transform spectrometer (FTS) of the Spectral and
Photometric Imaging REceiver (SPIRE; Griffin et al. 2010;
Swinyard et al. 2014) on board Herschel. These galaxies
belong to a complete, IR flux-limited sample of 123 LIRGs
from GOALS as detailed in Section 2. One of our primary
goals is to study the CO SLED in the mid-J regime, i.e.,
4<J10, which was anticipated to be closely related to
ongoing SF. Indeed, our earlier analysis of the CO SLEDs on a
subset of this sample (Lu et al. 2014) suggests that a simple
picture that can adequately describe the molecular gas proper-
ties in the majority of (U)LIRGs involves two gas components:
(a) a cold, moderately dense gas phase, which emits CO lines
primarily at J<4 and is not directly related to current SF, and
(b) a warm and dense component, which emits CO lines mainly
in the mid-J regime. For the vast majority of the SF-dominated
(U)LIRGs, the ratios of the total luminosity of the warm CO
line emission to LIR show a well defined characteristic value,
suggesting strongly that current SF is the power source for both
the warm CO and IR dust emissions in these galaxies. This

framework was further confirmed by our high angular
resolution mapping of the CO (6−5) line emission in
some representative local LIRGs with the Atacama Large
Millimeter/submillimeter Array (ALMA; Xu et al. 2014, 2015;
Zhao et al. 2016b). As a result, Lu et al. (2015) analyzed the
CO (7−6) data from the current paper and showed that a single
mid-J CO line, such as CO (7−6), can serve as a good SFR
tracer for galaxies both in the local universe and at high
redshifts.
As an SFR tracer, CO (7−6) has advantages over some

conventional SFR tracers such as the luminosity of the [C II]

line at 158 μm and LIR. The [C II] line luminosity to LIR (or
SFR) ratio decreases steeply as the FIR color increases (e.g.,
Díaz-Santos et al. 2013; Lu et al. 2015). Since the FIR color is
fundamentally driven by the average intensity of the dust
heating radiation field (e.g., Draine & Li 2007) and scales
empirically with the average SFR surface density in disk
galaxies (e.g., Liu et al. 2015; Lutz et al. 2016), this implies
that, the higher the SFR surface density of a galaxy is, the less
relevant (energetically) the [C II] line becomes. This runs
counter to what constitutes a good SFR tracer. In contrast, the
CO (7−6) to IR luminosity ratio depends little on the FIR color
(Lu et al. 2014, 2015). LIR is regarded as a reliable SFR tracer
for active star-forming galaxies, as dust grains are very
effective at absorbing far-UV photons and reradiating the
energy in the infrared. For high-z galaxies, however, this
usually requires multiple photometric measurements covering a
wide wavelength range, as illustrated in the recent studies of 3
galaxies at z∼5–6 (Riechers et al. 2013; Gilli et al. 2014;
Rawle et al. 2014). Furthermore, as z increases, accurate
continuum photometry at submillimeter wavelengths becomes
challenging due to a relatively bright background and an
increasing Cosmic Microwave Background (CMB; da Cunha
et al. 2013). In comparison, using CO (7−6) as the SFR tracer
involves only one line flux measurement and is less impacted
by CMB, due to the high line excitation temperature. In
addition, as further shown in this paper, the CO (7−6) line
emission could also be largely free from the influence
of AGNs.
In this paper we tabulate and study in more detail the

SPIRE/FTS fluxes of the CO emission lines of 4� J� 13 for
the whole sample. The CO data presented here can be further
combined with existing ground-based CO lines of 1� J� 3
(e.g., Sanders et al. 1991; Gao & Solomon 1999; Yao et al.
2003; Leech et al. 2010; Papadopoulos et al. 2012) to construct
a “full” CO SLED that can be used to gain important insights
into the physical conditions of molecular gas in (U)LIRGs and
how different gas phases evolve along a merger sequence. This
can by done either by modeling the observed CO SLED in a
non-local thermodynamic equilibrium (non-LTE) condition,
which has been applied to many individual galaxies with
SPIRE/FTS data (e.g., Panuzzo et al. 2010; Van der Werf et al.
2010; Rangwala et al. 2011; Kamenetzky et al. 2012; Spinoglio
et al. 2012; Meijerink et al. 2013; Pellegrini et al. 2013;
Pereira-Santaella et al. 2013; Rigopoulou et al. 2013;
Papadopoulos et al. 2014; Rosenberg et al. 2014a, 2014b,
2015; Schirm et al. 2014; Wu et al. 2015; Xu et al. 2015), or by
empirical correlation analyses with data from other wavebands
(e.g., Greve et al. 2014; Lu et al. 2014, 2015; Liu et al. 2015;
Kamenetzky et al. 2016).
In addition to the CO lines, our other main targeted spectral

lines include the fine-structure line of singly ionized nitrogen at

23
Throughout this paper, we use J to refer to the upper energy level of the CO

rotational transition from J to J–1. For example, CO (1−0) is the rotational
transition from J=1 to (J–1)=0.
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205 μm (i.e., P P3
1

3
0 at 1461.134 GHz; hereafter referred to

as [N II] 205 μm or the [N II] line) and the two fine-structure
transitions of neutral carbon in its ground state at 609 μm (i.e.,
P P3

1
3

0 at 492.1607 GHz; hereafter [C I] 609 μm) and
370 μm (i.e., P P3

2
3

1 at 809.3435 GHz; hereafter
[C I] 370 μm). Statistical analyses of our data on the [N II]

line, which probes mainly low-ionization and low-density
ionized gas, can be found in Zhao et al. (2013, 2016a), who
also carefully derived a local luminosity function (LF) of this
line. A detailed analysis of the [C I] line data will be presented
elsewhere. The current paper describes our survey and presents
the spectral lines detected. The remainder of this paper is
organized as follows: we present our galaxy sample in
Section 2. In Section 3 we describe our spectroscopic survey
and data reduction, present the resulting spectra, and tabulate
the fluxes of the detected spectral lines. In Section 4 we
consider possible data systematics that may be relevant for
certain future science application of the data sets given here. In
Section 5 we present statistical analyses of the CO and [C I]

lines, as well as spectral lines from H O2 vapor and hydrogen
fluoride (HF) molecules. Finally, in Section 6 we summarize
our results.

2. Sample

2.1. Sample Selection

We selected our targets for the SPIRE/FTS survey from the
GOALS sample (Armus et al. 2009). The GOALS sample
consists of 202 LIRGs complete to a flux density of 5.24 Jy at
60 μm as measured by the Infrared Astronomical Satellite
(IRAS). For a target in a multiple galaxy system, its LIR was
determined based on a flux partition between the individual
galaxies at either 70 or 24 μm, following the scheme described
in Díaz-Santos et al. (2010, 2011). Figure 1(a) is a plot of the
202 GOALS galaxies in terms of Llog IR versus FIR, where FIR
is the 8–1000 μm IR flux as defined in Sanders & Mirabel
(1996). The conversion between FIR and LIR was done using
the luminosity distance given in Table 1 below. The horizontal
dotted line stands for the LIR cutoff for LIRGs. The vertical
dotted line stands for = ´ -F 6.5 10IR

13Wm−2, which was
the cutoff for the initial 124 targets selected for our SPIRE/
FTS survey, including 7 ULIRGs. This flux cutoff was applied
to achieve a balance between the sample size and the telescope
time required to achieve our desired sensitivity. Our sample
selection included one object (IRAS 05223+1908) that we now
no longer consider to be an LIRG, based on the new SPIRE/
FTS data here (see Section 3.3). After excluding this source,
the complete, IR flux-limited LIRG sample intended for our
SPIRE/FTS survey consists of 123 sources.

While SPIRE/FTS observations of ULIRGs were also
obtained by other groups, our program is the only one that
provides adequate coverage of LIRGs with LIR of 1011 to
~ L1011.5 , where the LIRG population displays the largest
diversity in physical properties (Armus et al. 2009). Figure 1(b)
plots the FIR color, C(60/100), defined in this work as the
IRAS60-to-100 μm flux density ratio, as a function of FIR. For
a galaxy in a multiple galaxy system unresolved by IRAS, its
FIR color used here is the same as that for the system as a
whole, except for the cases where the 60 and 100 μm flux
densities of the individual galaxies were available. Figure 1(b)
shows that the C(60/100) color range covered by our FTS
sample is representative of the parent sample. Figure 1(c) plots

the IRAS60 μm flux density against FIR, with the horizontal
dotted line standing for the 60 μm flux density cutoff of the
GOALS sample. This plot illustrates that our FTS sample is
effectively limited only by our flux cutoff in FIR.

2.2. Basic Galaxy Parameters

Of the 123 LIRGs in our complete, IR flux-limited sample, a
total of 121 were observed with SPIRE/FTS (with VV 250a
and IC 4686 being the 2 objects that were not observed). In
addition, we also observed two non-LIRG galaxies, NGC 5010
and the aforementioned IRAS 05223+1908. All 123 observed
targets are listed in Table 1 with the following columns:
Column (1) is the name of the target spatially closest to the
actual pointing of the SPIRE/FTS observation. These names
follow an updated naming scheme detailed in J. M. Mazzarella
et al. (2017, in preparation), with notes given in the Appendix
for those galaxies with known companions. Columns(2) and
(3) are the J2000 R.A. and decl.of the actual pointing of the
SPIRE/FTS observation. Column(4) gives the systematic
pointing offset in arcseconds, as of the calibration version 11 in
the Herschel Interactive Processing Environment (HIPE; Ott
2010), between the actual pointed position and the requested
pointing position. The latter is always the nuclear position of
the target specified in Column (1). This pointing offset includes
a 1 7 SPIRE-specific offset applicable to the Herschel
observational days (OD) earlier than OD 1110, but not any

Figure 1. Plots of (a) logarithmic LIR, (b) IRAS60-to-100 μm flux density ratio
or the FIR color C(60/100), and (c) IRAS60 μm flux density as a function of
the total IR flux, FIR, for the GOALS sample of 202 LIRGs. The LIR ad C(60/
100) are the values used at the time of the sample selection. The vertical dotted
line across all the plots indicates our FTS sample selection of

> ´ -F 6.5 10IR
13 W m−2. The horizontal dotted lines in (a) and (c) indicate

= L L10IR
11 and m =n ( )f 60 m 5.24Jy, respectively.
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Table 1

SPIRE/FTS Observations

Name R.A. Decl. dr LIR CFIR Dlum
Vh OBSID Exp FTS Program

(J2000) (J2000) (″) ( Llog ) (Mpc) ( -km s 1) (sec)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

NGC 0023 0h09m53 4 25d55m26s 0.2 11.11 0.58 65.2 4566 1342247622 1584 OT1_nlu_1

NGC 0034 0h11m06 6 −12d06m24s 2.9 11.49(*) 1.01 84.1 5881 1342199253 14832 KPOT_pvanderw_1

MCG −02-01-051 0h18m50 9 −10d22m38s 0.1 11.44(*) 0.77 117.5 8159 1342247617 2936 OT1_nlu_1

ESO 350-IG038(=Haro 11) 0h36m52 5 −33d33m17s 0.0 11.28 1.37 89.0 6175 1342246978 2936 OT1_nlu_1

NGC 0232 0h42m45 9 −23d33m39s 3.1 11.41(*) 0.59 95.2 6647 1342221707 2936 OT1_nlu_1

MCG +12-02-001 0h54m03 4 73d05m09s 3.1 11.50 0.75 69.8 4706 1342213377 14428 KPOT_pvanderw_1

NGC 0317B 0h57m40 3 43d47m33s 0.3 11.18(*) 0.67 77.8 5429 1342239358 2936 OT1_nlu_1

IC 1623 1h07m46 7 −17d30m27s 5.3 11.71(*) 0.73 85.5 6016 1342212314 13346 KPOT_pvanderw_1

MCG −03-04-014 1h10m08 8 −16d51m11s 2.0 11.65 0.70 144.0 10040 1342213442 5640 OT1_nlu_1

ESO 244-G012 1h18m08 3 −44d27m39s 4.2 11.38(*) 0.79 91.5 6307 1342221708 2936 OT1_nlu_1

CGCG 436-030 1h20m02 5 14d21m41s 2.2 11.69 1.11 134.0 9362 1342213443 5640 OT1_nlu_1

ESO 353-G020 1h34m51 3 −36d08m15s 0.1 11.06 0.46 68.8 4797 1342247615 2936 OT1_nlu_1

III Zw 035 1h44m30 5 17d06m09s 0.2 11.64 0.93 119.0 8375 1342239343 2936 OT1_nlu_1

NGC 0695 1h51m14 4 22d34m56s 1.5 11.68 0.56 139.0 9735 1342224767 5640 OT1_nlu_1

NGC 0828 2h10m09 5 39d11m25s 0.2 11.36 0.45 76.3 5374 1342239357 1584 OT1_nlu_1

NGC 0876 2h18m00 1 14d32m34s 0.2 10.97(*) 0.46 54.6 3913 1342239342 1584 OT1_nlu_1

UGC 01845 2h24m07 9 47d58m11s 0.3 11.12 0.66 67.0 4679 1342240022 1584 OT1_nlu_1

NGC 0958 2h30m42 8 −2d56m24s 0.2 11.20 0.39 80.6 5738 1342239339 2936 OT1_nlu_1

NGC 1068a 2h42m40 8 −0d00m48s 2.1 11.40 0.76 15.9 1137 1342213445 5041 KPGT_cwilso01_1

UGC 02238 2h46m17 5 13d05m45s 0.1 11.33 0.52 92.4 6560 1342239340 2936 OT1_nlu_1

MCG +02-08-029 2h54m01 8 14d58m14s 0.1 11.66(*) 0.72 136.0 9558 1342239341 5640 OT1_nlu_1

UGC 02608a 3h15m01 2 42d02m09s 0.2 11.38(*) 0.73 100.0 6998 1342239356 2936 OT1_nlu_1

NGC 1275a 3h19m48 2 41d30m42s 0.3 11.26 0.97 75.0 5264 1342249054 3612 OT1_pogle01_1

UGC 02982 4h12m22 5 5d32m50s 0.1 11.20 0.50 74.9 5305 1342240021 1584 OT1_nlu_1

ESO 420-G013 4h13m49 6 −32d00m24s 0.2 11.07 0.65 51.0 3570 1342242590 1584 OT1_nlu_1

NGC 1572 4h22m42 8 −40d36m03s 0.3 11.30 0.48 88.6 6111 1342242588 2936 OT1_nlu_1

IRAS 04271+3849 4h30m33 2 38d55m49s 1.2 11.11 0.63 80.8 5640 1342227786 2936 OT1_nlu_1

NGC 1614 4h33m59 8 −8d34m45s 1.7 11.65 0.94 67.8 4778 1342192831 6720 KPOT_pvanderw_1

UGC 03094 4h35m33 8 19d10m19s 1.4 11.41 0.49 106.0 7408 1342227522 2936 OT1_nlu_1

MCG −05-12-006 4h52m05 0 −32d59m26s 0.2 11.17 0.83 81.3 5622 1342242589 2936 OT1_nlu_1

IRAS F05189-2524a 5h21m01 3 −25d21m46s 2.3 12.16 1.12 187.0 12760 1342192832 16996 KPOT_pvanderw_1

IRAS 05223+1908b 5h25m16 8 19d10m49s 2.4 .....(*) .... .... 100 1342228738 2936 OT1_nlu_1

MCG +08-11-002 5h40m43 8 49d41m43s 1.8 11.46 0.57 83.7 5743 1342230414 1584 OT1_nlu_1

NGC 1961 5h42m04 7 69d22m43s 1.8 11.06 0.31 59.0 3934 1342228708 1584 OT1_nlu_1

UGC 03351 5h45m48 2 58d42m05s 1.8 11.28 0.48 65.8 4455 1342230415 1584 OT1_nlu_1

IRAS 05442+1732 5h47m11 3 17d33m48s 1.8 11.24(*) 0.79 80.5 5582 1342230413 1584 OT1_nlu_1

UGC 03410 6h14m30 1 80d27m01s 1.7 11.02(*) 0.42 59.7 3921 1342231072 1584 OT1_nlu_1

NGC 2146NWc 6h18m36 0 78d21m32s 2.2 11.12 0.76 17.5 893 1342219554 3070 KPOT_pvanderw_1

NGC 2146Nucc 6h18m38 6 78d21m25s 1.1 11.12 0.76 17.5 893 1342204025 3070 KPOT_pvanderw_1

NGC 2146SEc 6h18m39 8 78d21m16s 2.2 11.12 0.76 17.5 893 1342219555 3070 KPOT_pvanderw_1

ESO 255-IG 007 6h27m21 8 −47d10m36s 1.8 11.86(*) 0.76 173.0 11629 1342231084 5640 OT1_nlu_1

UGC 03608 6h57m34 6 46d24m12s 2.3 11.34 0.71 94.3 6401 1342228744 2936 OT1_nlu_1

NGC 2341 7h09m12 2 20d36m13s 1.5 10.97(*) 0.77 78.0 5276 1342228730 2936 OT1_nlu_1

NGC 2342 7h09m18 1 20d38m10s 1.5 11.03(*) 0.48 78.0 5276 1342228729 2936 OT1_nlu_1

NGC 2369 7h16m37 8 −62d20m35s 1.8 11.16 0.53 47.6 3240 1342231083 1584 OT1_nlu_1

NGC 2388 7h28m53 6 33d49m09s 1.8 11.28(*) 0.68 62.1 4134 1342231071 1584 OT1_nlu_1

MCG +02-20-003 7h35m43 5 11d42m36s 1.3 11.13 0.70 72.8 4873 1342228728 2936 OT1_nlu_1

IRAS 08355-4944 8h37m02 0 −49d54m29s 1.8 11.62 1.18 118.0 7764 1342231975 2936 OT1_nlu_1

NGC 2623 8h38m24 0 25d45m17s 0.8 11.60 0.92 84.1 5549 1342219553 12534 KPOT_pvanderw_1

IRAS 09022-3615 9h04m12 8 −36d27m00s 1.9 12.31 1.05 271.0 17880 1342231063 8344 OT1_nlu_1

UGC 05101 9h35m51 9 61d21m11s 2.1 12.01 0.59 177.0 11802 1342209278 5098 GT1_lspinogl_2

NGC 3110 10h04m02 2 −6d28m28s 1.7 11.37 0.51 79.5 5054 1342231971 1584 OT1_nlu_1

NGC 3221 10h22m20 4 21d34m21s 3.1 11.09 0.41 65.7 4110 1342221714 1584 OT1_nlu_1

NGC 3256 10h27m51 3 −43d54m15s 1.7 11.64 0.90 38.9 2804 1342201201 5234 KPOT_pvanderw_1

ESO 264-G036 10h43m07 7 −46d12m45s 0.3 11.32 0.45 100.0 6299 1342249044 2936 OT1_nlu_1

ESO 264-G057 10h59m01 8 −43d26m26s 0.3 11.14 0.47 83.3 5156 1342249043 2936 OT1_nlu_1

IRAS F10565+2448 10h59m18 2 24d32m34s 0.0 12.08 0.81 197.0 12921 1342247096 5640 OT1_nlu_1

UGC 06471d 11h28m30 6 58d33m39s 3.6 11.93 1.01 50.7 3093 1342199249 4964 KPOT_pvanderw_1

NGC 3690d 11h28m30 6 58d33m48s 3.6 11.93 1.01 50.7 3093 1342199250 4964 KPOT_pvanderw_1

UGC 06472d 11h28m33 2 58d33m45s 3.6 11.93 1.01 50.7 3093 1342199248 4964 KPOT_pvanderw_1

ESO 320-G030 11h53m11 7 −39d07m50s 1.0 11.17 0.74 41.2 3232 1342210861 6044 KPOT_pvanderw_1

NGC 4194 12h14m09 8 54d31m35s 1.7 11.10 0.92 43.0 2501 1342231069 1584 OT1_nlu_1
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Table 1

(Continued)

Name R.A. Decl. dr LIR CFIR Dlum
Vh OBSID Exp FTS Program

(J2000) (J2000) (″) ( Llog ) (Mpc) ( -km s 1) (sec)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

IRAS 12116-5615 12h14m22 1 −56d32m33s 0.3 11.65 0.76 128.0 8125 1342249462 5640 OT1_nlu_1

NGC 4418 12h26m54 6 −0d52m39s 0.0 11.19 1.37 36.5 2179 1342210848 9491 KPGT_esturm_1

UGC 08058a(=Mrk 231) 12h56m14 5 56d52m26s 2.4 12.57 1.04 192.0 12642 1342210493 14292 KPOT_pvanderw_1

MCG −02-33-098 13h02m19 8 −15d46m04s 0.1 11.16(*) 0.77 78.7 4773 1342247567 2936 OT1_nlu_1

ESO 507-G070 13h02m52 3 −23d55m18s 0.1 11.56 0.83 106.0 6506 1342248421 2936 OT1_nlu_1

NGC 5010e 13h12m26 5 −15d47m51s 1.6 10.82 0.47 44.4 2975 1342236996 1584 OT1_nlu_1

IRAS 13120-5453 13h15m06 3 −55d09m23s 0.5 12.32 0.79 144.0 9222 1342212342 4152 KPOT_pvanderw_1

UGC 08387 13h20m35 5 34d08m23s 1.9 11.73 0.70 110.0 6985 1342209853 14832 KPOT_pvanderw_1

NGC 5104 13h21m23 1 0d20m33s 0.1 11.27 0.51 90.8 5578 1342247566 2936 OT1_nlu_1

MCG −03-34-064a 13h22m24 4 −16d43m43s 0.1 11.17 1.00 82.2 4959 1342249041 2936 OT1_nlu_1

NGC 5135 13h25m44 0 −29d49m60s 1.4 11.30 0.54 60.9 4105 1342212344 14832 KPOT_pvanderw_1

ESO 173-G015 13h27m23 7 −57d29m23s 0.8 11.38 0.81 34.0 2918 1342202268 1988 KPOT_pvanderw_1

IC 4280 13h32m53 3 −24d12m26s 0.1 11.15 0.49 82.4 4889 1342249042 2936 OT1_nlu_1

UGC 08696 13h44m42 3 55d53m10s 3.3 12.21 1.00 173.0 11326 1342209850 13616 KPOT_pvanderw_1

UGC 08739 13h49m14 3 35d15m20s 0.0 11.15 0.36 81.4 5032 1342247123 2936 OT1_nlu_1

ESO 221-IG 010 13h50m56 9 −49d03m19s 0.2 11.22 0.59 62.9 3099 1342249461 1584 OT1_nlu_1

NGC 5653 14h30m09 9 31d12m56s 0.1 11.13(*) 0.46 60.2 3562 1342247565 1584 OT1_nlu_1

NGC 5734 14h45m09 0 −20d52m13s 0.1 10.99(*) 0.46 67.1 4121 1342248417 1584 OT1_nlu_1

VV 340a 14h57m00 8 24d37m05s 1.5 11.66(*) 0.46 157.0 10094 1342238241 5640 OT1_nlu_1

IC 4518A 14h57m41 1 −43d07m56s 0.1 11.16(*) 0.59 80.0 4763 1342250514 2936 OT1_nlu_1

CGCG 049-057 15h13m13 2 7d13m29s 3.2 11.35 0.69 65.4 3897 1342212346 14832 KPOT_pvanderw_1

VV 705 15h18m06 3 42d44m45s 1.5 11.92(*) 0.90 183.0 11944 1342238712 5640 OT1_nlu_1

ESO 099-G004 15h24m57 7 −63d07m30s 1.8 11.74 0.75 137.0 8779 1342230419 5640 OT1_nlu_1

NGC 5936 15h30m00 8 12d59m22s 0.2 11.14 0.49 67.1 4004 1342249046 1584 OT1_nlu_1

UGC 09913 (=Arp 220) 15h34m57 2 23d30m12s 1.5 12.27 0.90 87.9 5434 1342190674 10445 KPGT_cwilso01_1

NGC 5990 15h46m16 4 2d24m55s 0.2 11.13 0.56 64.4 3839 1342240016 1584 OT1_nlu_1

NGC 6052 16h05m12 9 20d32m37s 0.2 11.09 0.64 77.6 4739 1342212347 2936 OT1_nlu_1

CGCG 052-037 16h30m56 6 4d04m59s 0.2 11.43(*) 0.62 116.0 7342 1342251284 5640 OT1_nlu_1

NGC 6156 16h34m52 3 −60d37m08s 1.8 11.14 0.54 48.0 3263 1342231041 1584 OT1_nlu_1

2MASX J16381190-6826080 16h38m11 5 −68d26m08s 1.8 11.97(*) 0.56 212.0 13922 1342231040 8344 OT1_nlu_1

IRAS F16399-0937 16h42m40 1 −9d43m13s 0.2 11.63 0.57 128.0 8098 1342251334 5640 OT1_nlu_1

NGC 6240 16h52m59 1 2d24m04s 3.5 11.93 0.87 116.0 7339 1342214831 13346 KPOT_pvanderw_1

IRAS F16516-0948 16h54m23 8 −9d53m21s 0.2 11.31 0.46 107.0 6755 1342251335 5640 OT1_nlu_1

NGC 6285 16h58m23 9 58d57m19s 1.7 10.85(*) 0.39 85.7 5501 1342231068 1584 OT1_nlu_1

NGC 6286 16h58m31 4 58d56m17s 5.4 11.29(*) 0.44 85.7 5501 1342221715 1584 OT1_nlu_1

IRAS F17138-1017 17h16m35 7 −10d20m42s 1.7 11.49 0.80 84.0 5197 1342230418 1584 OT1_nlu_1

IRAS F17207-0014 17h23m22 0 −0d17m00s 1.3 12.46 0.89 198.0 12834 1342192829 6720 KPOT_pvanderw_1

ESO 138-G027 17h26m43 1 −59d55m56s 1.8 11.41 0.86 98.3 6230 1342231042 2936 OT1_nlu_1

UGC 11041 17h54m51 7 34d46m33s 1.7 11.11 0.46 77.5 4881 1342231061 2936 OT1_nlu_1

IRAS 17578-0400 18h00m31 8 −4d00m54s 1.7 11.39(*) 0.84 68.5 4210 1342231047 1584 OT1_nlu_1

NGC 6621 18h12m55 1 68d21m46s 1.2 11.27(*) 0.56 94.3 6191 1342221716 2936 OT1_nlu_1

IC 4687 18h13m39 7 −57d43m30s 1.2 11.36(*) 0.73 81.9 5200 1342192993 14562 KPOT_pvanderw_1

IRAS F18293-3413 18h32m41 3 −34d11m26s 2.3 11.88 0.67 86.0 5449 1342192830 5640 KPOT_pvanderw_1

IC 4734 18h38m25 6 −57d29m25s 0.2 11.35 0.55 73.4 4680 1342240013 1584 OT1_nlu_1

NGC 6701 18h43m12 5 60d39m10s 1.7 11.12 0.50 62.4 3965 1342231994 1584 OT1_nlu_1

ESO 339-G011 19h57m37 5 −37d56m10s 1.7 11.20 0.64 88.6 5756 1342231990 2936 OT1_nlu_1

MCG +04-48-002 20h28m35 1 25d44m03s 2.9 11.00(*) 0.57 64.2 4167 1342221682 1584 OT1_nlu_1

NGC 6926 20h33m06 0 −2d01m40s 1.7 11.32 0.49 89.1 5880 1342231050 2936 OT1_nlu_1

CGCG 448-020 20h57m24 4 17d07m38s 1.4 11.94(*) 1.08 161.0 10822 1342221679 2936 OT1_nlu_1

ESO 286-IG 019 20h58m26 8 −42d39m01s 0.0 12.06 1.18 193.0 12890 1342245107 5640 OT1_nlu_1

ESO 286-G035 21h04m11 2 −43d35m31s 3.1 11.20 0.68 79.1 5205 1342216901 2936 OT1_nlu_1

NGC 7130 21h48m19 4 −34d57m04s 1.5 11.42 0.65 72.7 4842 1342219565 5098 GT1_lspinogl_2

ESO 467-G027 22h14m39 8 −27d27m50s 0.1 11.08 0.45 77.3 5217 1342245108 2936 OT1_nlu_1

IC 5179 22h16m09 1 −36d50m37s 0.1 11.24 0.52 51.4 3422 1342245109 1584 OT1_nlu_1

UGC 12150 22h41m12 3 34d14m56s 0.9 11.35 0.51 93.5 6413 1342221699 2936 OT1_nlu_1

NGC 7469 23h03m15 9 8d52m30s 5.7 11.58(*) 0.78 70.8 4892 1342199252 12400 KPOT_pvanderw_1

ESO 148-IG 002 23h15m46 7 −59d03m15s 0.0 12.06 1.02 199.0 13371 1342245110 7396 OT1_nlu_1

IC 5298 23h16m00 9 25d33m26s 3.6 11.60 0.76 119.0 8221 1342221700 2936 OT1_nlu_1

NGC 7552 23h16m10 8 −42d35m05s 1.0 11.11 0.75 23.5 1608 1342198428 1988 KPOT_pvanderw_1

NGC 7591 23h18m16 3 6d35m09s 0.0 11.12 0.53 71.4 4956 1342257346 2936 OT1_nlu_1

NGC 7592 23h18m22 3 −4d24m57s 2.7 11.40(*) 0.76 106.0 7328 1342221702 2936 OT1_nlu_1

NGC 7674a 23h27m56 7 8d46m44s 0.0 11.54(*) 0.64 125.0 8671 1342245858 5640 OT1_nlu_1
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Herschel-wide absolute pointing error that could be up to 2″.
Column(5) is the adopted LIR relevant to the target of the
SPIRE/FTS observation. For a target in a multiple system of 2
or more galaxies, this value is followed by a “(

*
),” with its

derivation explained in the Appendix. In many cases, this is a
24 or 70 μm flux-scaled luminosity from the IRAStotal LIR of
the galaxy system. In addition, due to the updated LIR, a few of
our targets (e.g., NGC 0876, NGC 2341, NGC 6285) now have
LIR slightly less than L1011 . These galaxies are still kept in
our LIRG sample. Column(6) is the FIR color, C(60/100). For
most of the targets involved in a multiple system (see the
Appendix), their C(60/100) values are simply those for their
galaxy system, which should be dominated by the brightest
member galaxy, which is usually our SPIRE/FTS target.
Columns(7) and (8) are respectively the luminosity distance in
megaparsecs and heliocentric velocity in -km s 1, taken from
Table 1 in Armus et al. (2009). Column(9) is the SPIRE/FTS
observation identification number (OBSID). The observations
with an OBSID� 1342245858 were done prior to OD 1110,
and thus were impacted by the SPIRE-specific 1 7 pointing
offset mentioned above.24 Column(10) gives the on-target
integration time of the FTS observation. Finally, column(11)
identifies the original FTS program in which the observation
was carried out. For example, “OT1_nlu_1” refers to our own
SPIRE/FTS program.

For each target in Table 1 (except for NGC 1068), estimates
of the AGN fractional contribution to the total bolometric
luminosity have been recently updated by Díaz-Santos et al.
(2017) using a number of independent estimators, including the
line ratios [Ne V]/[Ne II] and [O IV]/[Ne II], mid-IR continuum
slope, equivalent width (EW) of Polycyclic Aromatic Hydro-
carbon (PAH) emission bands and the diagram of Laurent et al.
(2000), following the formulation prescribed in Veilleux et al.
(2009). If we denote fAGN as the unweighted average for the
fractional contribution by AGN to the total bolometric
luminosity, from these various independent estimates, there

are a total of 6 targets with >f 50%AGN , meaning that there is
a high likelihood, with a good consistency among the different
estimators, that the AGN could be the dominant source
powering the observed LIR in these galaxies. Although the
classic Seyfert galaxy NGC 1068 is not included in Díaz-
Santos et al. (2017), alternative analyses suggest f 50%AGN

for this galaxy (Telesco & Decher 1988; Lu et al. 2014). We
therefore refer to these seven galaxies (i.e., NGC 1068,
UGC 02608, NGC 1275, IRAS F05189-2524, UGC 08058
(=Mrk 231), MCG -03-34-064, and NGC 7674) as the (sub)
sample of dominant AGNs in the remainder of this paper.
These seven galaxies represent the cases where the AGN

clearly dominates the bolometric luminosity. While it is known
that SF dominates the bolometric luminosity of most LIRGs
(Petric et al. 2011; Stierwalt et al. 2013), there are certainly
additional sources in our sample in which the AGN contrib-
ution to the bolometric luminosity is non-negligible according
to one or more individual mid-IR diagnostics, such as the one
based on the EW of the 6.2 μm PAH feature (Stierwalt et al.
2013). However, in this paper we have chosen to isolate those
sources where the average fractional AGN bolometric contrib-
ution is above 50%, in order to identify galaxies where the
AGN might be expected to have the largest impact on the
molecular ISM. We refer the reader to Díaz-Santos et al. (2017)
for details on individual AGN diagnostics and their relationship
to the average AGN fraction value we used here.

3. Observations, Data Reduction, and Spectral Line Results

3.1. SPIRE/FTS Spectroscopy

The SPIRE/FTS (Griffin et al. 2010) uses two bolometer
arrays of 37 and 19 detectors for spectral imaging in a
Spectrometer Short Wavelength (SSW) coverage from 194 to
313 μm and a Spectrometer Long Wavelength (SLW) coverage
from 303 to 671 μm, respectively. The incoming light from the
telescope is split into two beams. An internal moving mirror
regulates the optical path difference between the two beams
before they are recombined to form an interference pattern that
is split again and focused onto the two detector arrays located
behind their respective, broadband filters. The detectors are

Table 1

(Continued)

Name R.A. Decl. dr LIR CFIR Dlum
Vh OBSID Exp FTS Program

(J2000) (J2000) (″) ( Llog ) (Mpc) ( -km s 1) (sec)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

NGC 7679 23h28m46 6 3d30m43s 1.3 11.11(*) 0.69 73.8 5138 1342221701 2936 OT1_nlu_1

NGC 7771 23h51m24 7 20d06m41s 3.6 11.27(*) 0.49 61.2 4277 1342212317 14832 KPOT_pvanderw_1

Mrk 331 23h51m26 6 20d35m09s 3.1 11.50(*) 0.79 79.3 5541 1342212316 13616 KPOT_pvanderw_1

Notes.
a
A member of the subsample of powerful AGNs defined in Section 2.2.

b
IRAS 05223+1908 consists of three objects. The SPIRE/FTS spectrum is likely dominated by the brightest northern object, which is a Galactic source at a

heliocentric velocity of 100 km s−1
(see Appendix for more details). While the SPIRE/FTS data of this target are included here, this target was not used in our

statistical analysis.
c
NGC 2146 has 3 independent observations, placed at the galaxy center and two offset positions, respectively. The total IRAS LIR is listed for each observation in the

table.
d
These 3 independent observations targeted the 3 surface brightness peaks of the interacting galaxy pair system NGC 3690. In the literature, UGC 06471 may also be

referred to as NGC 3690 or Arp 299B, and UGC 06472 as IC 0694 or NGC 3690A or Arp 299A. The total IRAS LIR of the system is listed for each individual

observation in the table.
e
NGC 5010 was included in the SPIRE/FTS sample based on its LIR from Sanders et al. (2003), where its systemic velocity is incorrect. While the SPIRE/FTS data

of this target are still documented here, this target was not used in any statistical analysis in this paper.

(This table is available in machine-readable form.)

24
Note that, since the observations of the SPIRE/FTS point-source flux

calibrators in the early ODs also suffered from this 1 7 systematic offset, this
offset has no net effect on the point-source flux calibration.

6

The Astrophysical Journal Supplement Series, 230:1 (34pp), 2017 May Lu et al.



arranged in a hexagonally close-packed pattern with the
spacing between them set at ∼33″ for SSW and ∼51″ for
SLW. These are roughly equal to two beam widths. Therefore,
there is always a gap of one beam width between the
neighboring detectors.

Ninety-one galaxies in our complete flux-limited sample
were observed in our own program (program ID: OT1_nlu_1;
PI: N. Lu) with the SPIRE/FTS operating in its high-resolution
(HR) staring (i.e., “sparse”) mode, targeted at the nuclear
position of each galaxy. The resulting spectra have a
frequency-independent resolution of 1.2 GHz (δν). This
corresponds to λ/δλ∼1218 (or a velocity resolution of
∼296 -km s 1) at the frequency (i.e., 1461.1 GHz) of the
NII line near the blue end of the FTS frequency coverage,
and to λ/δλ∼480 (or ∼750 -km s 1) at the frequency
(576.2 GHz) of CO (5−4) near the long-wavelength end. For
a spectrally unresolved line, the line profile is a sinc function
and the effective FWHM is 1.207δν or 1.44 GHz (hereafter,
referred to as nD FWHM

FTS ). In addition to our own observations, a
total of 31 sample galaxies were observed with SPIRE/FTS by
other groups in a similar way, except for NGC 4418, which was
observed in a mapping mode. The data from the central
pointing of the mapping observation were used for NGC 4418.
The FTS data of these targets were downloaded from the
Herschel science archive. As noted in Column(11) of Table 1,
these observations are mostly from the open-time key project
“HerCULES” (Herschel program ID: KPOT_pvanderw_1; see
Van der Werf et al. 2010; Rosenberg et al. 2015), with only a
few from other programs (i.e., KPGT_cwilson01_1, see
Rangwala et al. 2011; Kamenetzky et al. 2012, and Spinoglio
et al. 2012; GT1_lspinogl_2, see Pereira-Santaella et al. 2013;
KPGT_esturm_1, see Rosenberg et al. 2015; OT1_pogle_01_1,
PI: P. Ogle).

In order to cover (i) as large a sample of LIRGs as possible
for better statistics and (ii) more intrinsically faint LIRGs, our
own observing program was designed to ensure detection of the
mid-J CO lines, e.g., 5� J<10, in particular, CO (6−5) and
CO (7−6). The on-target integration time varied from 1332 to
7992s, set to detect the anticipated CO (6−5) flux at a signal-
to-noise ratio (S/N) >5. This line flux was estimated using the
M82 SPIRE/FTS spectrum (Panuzzo et al. 2010) plus an
apparent correlation between the CO (3−2) luminosity and the
FIR luminosity (LFIR, over 40–120 μm) for LIRGs from Yao
et al. (2003). As a result, our detection rate of the CO lines at
J� 10 is relatively low. In contrast, many of the archival
observations targeted the brightest local LIRGs and used longer
integration times (see Table 1), and therefore have significantly
better detection rates on the high-J CO lines.

3.2. Data Reduction

All the data, both our own and those from the Herschel
archive, were homogeneously reduced using HIPE version 11,
which offers a line flux accuracy on the order of 6% (Swinyard
et al. 2014). (The SPIRE/FTS flux calibration accuracy for
spectral lines has remained largely unchanged since HIPE
version 11.) The angular extent of the majority of our targets is
such that the flux is largely contained within the central
detector of the SSW and/or SLW arrays, with no significant
flux detected in off-axis detectors. We therefore extracted a
spectrum from the central detectors based on a point-source
flux calibration and used it for all our subsequent spectral line
detection and analysis.

A SPIRE/FTS continuum inherits a residual signal from the
bright emission of the 80 K telescope in an additive way. Under
the HIPE 11 calibration, this residual signal is on the order of
0.5 Jy. However, this systematic effect has no impact on the
detection and flux derivation of spectral lines. The SPIRE/FTS
continuum fluxes are used in this paper only when we discuss
the HF spectral line near the end of Section 5, where we
describe how we tried to further remove this telescope residual
from the continuum (see Section 5.7.2).
All of our targets have been observed with the Herschel

Photodetector Array Camera and Spectrometer (PACS;
Poglitsch et al. 2010) at 70 μm (J. Chu et al. 2017, in
preparation). Based on the PACS images, some of our targets
are more extended at 70 μm than the SPIRE beam relevant to
the frequency of a particular spectral line under consideration.
Since both the 70 μm emission from warm dust (e.g., Helou
1986; Buat & Deharveng 1988) and mid-J CO line emission in
LIRGs are traced to the same star-forming regions, in such
cases, the line flux from the point-source-calibrated spectrum
represents a lower limit on the total line flux of the target, and
an appropriate aperture flux correction is needed. Since the cold
dust continuum in a SPIRE/FTS spectrum may have a different
spatial scale than a mid-J CO line from warm molecular gas in
star-forming regions, we chose not to do the aperture flux
correction for an observed CO line by minimizing the
continuum gap between the SSW and SLW spectral segments
as prescribed in Wu et al. (2013). Instead, we provide a line
flux aperture correction factor qm

- ( )f
70 m
1 , where qm ( )f70 m is the

fractional 70 μm continuum flux within a Gaussian beam of θ
(FWHM). This was done by convolving the PACS 70 μm
image to the Gaussian beam of θ following the convolution
algorithm in Aniano et al. (2011; see Zhao et al. 2016a for more
details). In Table 2, we list the SPIRE/FTS FWHM beam sizes
(see the SPIRE Handbook) for all our main targeted spectral
lines. We have calculated the values of qm ( )f70 m for

representative beam sizes of q = 17 , 30″, and 35″ (see
Table 4) for each galaxy and discuss these parameters in depth
later (see Section 4.2).

3.3. Spectra

Figure 2 displays the final SPIRE/FTS spectra in the
reference frame of local standard of rest (LSR), after the
continuum was fit by a polynomial and subsequently removed

Table 2

FWHM Beam Sizes at Selected Line Frequencies

Line Freq. Wavlength FWHM Detector

(GHz) (μm) (arcsec)

CO (4−3) 461.041 650.7 42.8 SLWC3

[C I] 609 μm 492.161 609.1 38.6 SLWC3

CO (5−4) 576.268 520.2 35.2 SLWC3

CO (6−5) 691.473 433.6 31.2 SLWC3

CO (7−6) 806.652 371.7 35.9 SLWC3

[C I] 370 μm 809.342 370.4 36.0 SLWC3

CO (8−7) 921.800 325.2 40.1 SLWC3

CO (9−8) 1036.912 289.1 19.0 SSWD4

CO (10−9) 1151.985 260.4 17.4 SSWD4

CO (11−10) 1267.014 236.8 17.3 SSWD4

CO (12−11) 1381.995 217.1 16.9 SSWD4

[N II] 205 μm 1461.132 205.2 16.6 SSWD4

CO (13−12) 1496.922 200.4 16.6 SSWD4

7

The Astrophysical Journal Supplement Series, 230:1 (34pp), 2017 May Lu et al.



(as detailed below). The expected frequencies of the CO lines,

the [C I] lines, a few rotational transitions of H O2 vapor, and

HF(1−0) are marked and labeled in each spectral plot. The

brightest line in each spectral plot is almost always [N II]

205 μm, and it is not marked, as it can be unambiguously

recognized. For each target, the SSW spectrum is in the upper

Figure 2. Continuum-subtracted spectra in the local standard of rest (LSR), with expected frequencies of the spectral lines discussed in the text marked, for the sample
galaxies. The brightest feature is almost always the [N II] 205 μm line, which is not marked, but can be easily identified. The grayscale image shown is the
corresponding PACS 70 μm image (3′×3′; north up and east to the left) overlaid with the two SPIRE/FTS FWHM beam sizes at 250 μm (in blue) and 500 μm (red).
The gray scale was set between the intensities above which 99.5% and 15% pixels lie, respectively. The target name and its heliocentric velocity are also labeled.

(The complete figure set (127 images) is available.)
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panel, followed by the SLW spectrum and then by the

corresponding PACS 70 μm image of 3′×3′ in size, overlaid

with the two SPIRE/FTS FWHM beam sizes at 250 μm and

500 μm, respectively. This PACS image should be used only as

a quick visual guide as to whether the target is significantly

extended with respect to the FTS beams. We refer the reader to

J. Chu et al. (2017, in preparation) for a more detailed analysis

of the PACS images.
The SPIRE/FTS spectrum of IRAS05223+1908 is domi-

nated by a set of strong CO lines, which can be best fit with a

heliocentric velocity of 100 -km s 1. A close inspection of the

PACS images of this target reveals three distinct objects. As

explained in Appendix, the spectral lines in the SPIRE/FTS
spectrum are dominated by the emission from the northern

object in the field, which is likely a Galactic source. The data

for this target, as well as for the non-LIRG galaxy NGC 5010

we observed, are included in this paper (i.e., in Tables 1, 3 and

5) for completeness, however not used in any analyses.
For targets close to the Galactic plane, the Galactic [N II]

205 μm line emission could be present in their spectra, usually

at a frequency close to CO (13−12). ESO 099-G004 and
IRAS 08355-4944 in Figure 2 are two such examples.

3.4. Line Detection, Flux Derivation, and Identification

Tabulated in Table 3 is a list of the spectral lines (in emission
or absorption) detected in one of the deep SPIRE/FTS spectra
of Arp 220 (a ULIRG; Rangwala et al. 2011), M82 (a starburst;
Kamenetzky et al. 2012), and NGC 1068 (an AGN; Spinoglio
et al. 2012). We then searched for these lines in each of our
sample galaxies. We opted for this approach, rather than a blind
search for lines, because of the consideration that many of our
spectra are sensitive enough to detect only our primary targeted
lines. This approach minimizes the number of spurious line
detections. On the other hand, a potential drawback from this
approach is that we might miss spectral lines that are not in
Table 3, but would have been detected purely based on a S/N
criterion. In practice, this is only a potential issue in the cases of
the highest-S/N spectra obtained in the HerCULES program
(see Table 1): indeed, a few spectral lines additional to those
compiled in Table 3 have been possibly detected in some
HerCULES spectra (P. Van der Werf 2016, private
communication).
The determination of the continuum emission is a two-step

process. First, we fit a polynomial (of order 5) to the observed
SSW or SLW spectrum. A global channel-to-channel rmsnoise
was calculated after subtracting the polynomial fit from the
spectrum. Then all the spectral features (either in emission or
absorption) with a peak signal-to-noise ratio greater than 3
were identified and further masked out using a box car of 10
(3.0 GHz; for SLW) or 14 (4.2 GHz; for SSW) sample points.
A new polynomial fit of the order of 5 was then applied to all
the remaining data samples, resulting in our final continuum fit.
The detection of a candidate spectral line in Table 3 was

done in two steps. First, we calculated an average noise, s local
r ,

from the noise spectrum provided as part of the SPIRE/FTS
pipeline product, but within a spectral window of 20 times
nD FWHM
FTS , centered at the redshifted frequency of the spectral

line under consideration. The line was deemed as a tentative
detection if there was a signal peak within nD FWHM

FTS of the
expected line frequency, and with an amplitude of

s> ´2.5 local
r . The quantity s local

r mainly reflects the random
noise, and is usually equal to or somewhat smaller than the total
noise in the spectrum. The latter includes systematic noise due
to imperfect FTS calibration. Therefore this tentative detection
criterion is more relaxed than a true S/N=2.5 criterion. Once
all the tentatively detected lines were identified, these lines
were fit simultaneously. For each feature, we used either a sinc
or a sinc-Gaussian convolved line profile, plus a local linear
function for any possible residual continuum limited to the data
points within a frequency window of nD20 FWHM

FTS in width,
centered at the frequency of the feature peak. The sinc function
in either case always had a fixed width (in frequency) equal to
that of the SPIRE/FTS instrumental resolution profile. The
Gaussian component of the sinc-Gaussian function had a free
width parameter to reflect the unknown velocity dispersion of a
spectral line. The collective model fit to all the tentatively
detected features was obtained using an interactive data
language nonlinear least-squares fitting procedure as prescribed
by Markwardt (2009) and was subsequently removed from the
target spectrum. The resulting “line-free” residual spectrum
was used to calculate a refined local (total) noise, stlocal, for
each tentatively detected spectral line. This noise was the rms

Table 3

Rest-frame Frequencies of Known Spectral Lines within the SPIRE/FTS
Frequency Coverage

Line in SLW Frequency Line in SSW Frequency

(GHz) (GHz)

CO (4−3) 461.041 OH+
(112 −012)

a 1033.118

[C I](1−0) 492.161 CO (9−8)a 1036.912

HCN(6−5) 531.716 HCN(12−11) 1062.980

HCO+
(6−5) 536.828 H2O(312 −303) 1097.365

13CO (5−4) 550.926 H2O(111−000) 1113.343

CO (5−4) 576.268 H2O

+(111−000,

-J3 2 1 2)

1115.204

HCO+
(7−6) 624.208 H2O

+(111−000,

-J1 2 1 2)

1139.561

13CO (6−5) 661.067 CO (10−9) 1151.985

CO (6−5) 691.473 H2O(312−221) 1153.127

H2O
+
(202−111,

-J5 3 3 2)

742.033 H2O(321−312) 1162.912

H2O
+
(202−111,

-J3 2 3 2)

746.194 H2O(422−413) 1207.639

H2O(211−202) 752.033 H2O(220−211) 1228.789
13CO (7−6) 771.184 HF(1−0) 1232.476

CO (7−6) 806.652 HCN(14−13) 1239.890

[C I](2−1) 809.342 CO (11−10) 1267.014

CH+
(1−0) 835.079 HCN(15−14) 1328.302

13CO (8−7) 881.273 CO (12−11) 1381.995

OH+
(101−012) 909.159 H2O(523−514) 1410.618

CO (8−7) 921.800 HCN(16−15) 1416.683

OH+
(122−011)

b 971.805 [N II](1−0) 1461.134

H2O(202−111)
b 987.927 CO (13−12) 1496.923

HCN(17−16) 1505.030

CO (14−13) 1611.793

Notes.
a
These lines could also be seen in the SLW array if the source heliocentric

velocity is high enough, i.e., greater than about 13,510 and 14,660 -km s 1 for

OH+
(112−012) and CO (9−8), respectively.

b
These lines could also be seen in the SSW array if the source heliocentric

velocity is low enough, i.e., less than about 4640 and 9695 -km s 1 for

OH+
(122−011) and H2O(202−111), respectively.
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value (after further removing the fitted local residual con-

tinuum) within a frequency window of nD20 FWHM
FTS in length,

centered on the fitted central frequency of the spectral line
under consideration. Finally, all tentative detected lines with a
fitted peak flux density greater than s3 t

local were retained as
being the formal line detections. In the remainder of this paper,
the S/N of a line always refers to the ratio of the line peak
signal to stlocal.

In principle, the sinc profile always underestimates the flux
of a line because the line always has some intrinsic width (see
Section 4 for more details on this). However, a sinc-Gaussian
line profile is usually less robust than that using a sinc-only
profile, as the former line template is more sensitive to the
wings of a spectral line. As a result, one usually requires a very
high S/N in order to obtain a reliable line fit using a sinc-
Gaussian profile if the line is unresolved or only marginally
resolved, which should be the case for the mid-J CO lines in
all our galaxies (but NGC 6240). As a result, we used a sinc-
only line profile for all the detected lines (except for the [N II]

line), with the frequency width of the sinc function set to the
SPIRE/FTS spectral resolution. (The resulting line flux could
underestimate the real flux if the line significantly resolved. We
address this potential systematic effect in more detail in
Section 4.) For the [N II] line, we always tried to fit a sinc-
Gaussian profile if possible. This choice is not only practical
because the [N II] line was usually detected at a high S/N, but
also logical since the line is near the blue end of the SPIRE/
FTS spectral coverage. In a few cases, we used the sinc-only
profile to fit the [N II] line, as this resulted in a better fit. For
NGC 6240, its CO and [C I] lines are quite broad and have high
S/Ns (see Table 4). We fit each of these lines with a sinc-
Gaussian profile as well.

For each detected line, we assign a quality flag Q. This flag
depends on the S/N and a velocity criterion that measures how
well the heliocentric velocity (Vobs) inferred from the fitted line
central frequency matches a fiducial velocity (Vfiducial) adopted
for the target. Figure 3 shows the observed rmsvalue of the
velocity difference, -( )[ ]V Vobs N II , for all those lines that have
been detected at S/N� 7 in at least 3 targets, where [ ]VN II is the
inferred heliocentric velocity from the fitted central line
frequency of the [N II] line. For a given spectral line, this
rmsvalue was calculated over the number of qualifying targets.
With such a high S/N cutoff, we were looking for any potential
systematic trend of these rmsvelocity differences as a function
of frequency, for example, as a result of decreasing velocity
resolution with decreasing frequency; no obvious trend is seen
in Figure 3. The maximum value of this rmsvelocity difference
across all the lines shown in Figure 3 is s ~ -70 km sV

1. We
therefore assigned a good quality flag to a detected line if

- <∣ ∣V V 210obs fiducial km s−1
(i.e., s3 V ), where Vfiducial was set

to the inferred velocity of the [N II] line. In a rare case in which
the [N II] line was not detected, Vfiducial was set to the averaged
velocity of the detected CO lines. Additional details on the Q

flag are given in Table 4. We found no cases in which one
particular suite of lines, e.g., CO, have consistent velocities
among themselves, but differ in velocity from that of the [N II]

line at a significance of 3sV or larger.
Figure 4 shows examples of CGCG 049-057 and NGC 6240.

The sinc line profiles were used to fit all lines but (i) the [N II]

205 μm line in the spectra of both galaxies and (ii) the CO and
[C I] lines in the spectrum of NGC 6240. The lines specified in
(i) and (ii) were fit with sinc-Gaussian profiles.

3.5. Results

Table 4 tabulates the derived line fluxes and other properties

of the CO rotational transitions of J=4–13, the two [C I] lines

and the [N II] line. The table columns are as follows.

Column (1) is the target name from Table 1.
Columns (2)–(14) contain the data for each of these spectral

lines, in 9 rows, where:
Row 1—The spectral line flux or upper limit in units of

10−17Wm−2. A positive number indicates that the line is

detected, while a negative number represents a non-detection

with its absolute value being the 3 σ upper limit, where σ was

set using a sinc line profile together with the local rmsnoise
around the expected line frequency. For CO (4−3), a flux

value of zero means that the line is redshifted out of the low

frequency end of the SLW coverage. This is the case for a

total of 17 targets with V 9558h
-km s 1. Note that the flux

values given here (as well as in Table 5) were derived

assuming a point-source case. See Section 4.2 for a

discussion on how to use the qm ( )f70 m factors in Column

(15) of Table 4 for a possible flux aperture correction if the

target is more extended than a point-source. Row entries 2 to

9 are relevant only if the line is detected.
Row 2—The line flux uncertainty in units of 10−17Wm−2.

This is the uncertainty from the line-fitting procedure. For

most of the spectral lines fitted with a sinc profile, this was

found to be comparable to F/(S/N), where F is the total line

flux in Row 1 and S/N is the ratio of the line peak to stlocal,
given in Row 7 in this table. This local noise stlocal-based
estimator tends to overestimate the real line flux uncertainty

because the line flux fitting was done over multiple data

points. Near the long-wavelength ends of both SLW and

SSW, the spectral noise appears to be more “spiky” than

Gaussian noise due to some systematic noise. Therefore stlocal
could be systematically larger than the line flux uncertainty

quoted in Row 2 here. The spectral lines that are susceptible

to this potential issue include CO (4−3), [C I] 609 μm, and

possibly CO (9−8).
Row 3—The observed central frequency of the line, in GHz,

in the LSR.
Row 4—The uncertainty of the observed line central

frequency, in GHz, from the line profile fit.
Row 5—The difference in GHz between the observed line

central frequency and the expected line frequency based on

the heliocentric velocity of the target in Table 1.
Row 6—The peak line flux density in Jy.
Row 7—The S/N of the peak line flux density to the local

rmsnoise stlocal.
Row 8—A quality flag, Q, assigned for a detected line, with

Q=1: a robust detection with a S/N� 5 and a satisfaction

of our velocity criterion of - <∣ ∣V V 210obs fiducial km s−1
(as

defined in Section 3.4 above); Q=2: a less robust detection
with 3� S/N<5 but still satisfying our velocity criterion;

Q=3: a good detection with S/N>5, but a possible line

identification with the inferred line velocity being just short

of satisfying our velocity criterion; or Q=4: a detection of

3� S/N<5 and only a possible line identification with the

inferred line velocity being just short of satisfying our

velocity criterion.
Row 9—The FWHM of the Gaussian component in -km s 1

when a sinc-Gaussian profile was used for the line-fitting.
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Table 4

Fluxes of the CO, [C I] and [N II] Lines

Name (4−3) (5−4) (6−5) (7−6) (8−7) (9−8) (10−9) (11−10) (12−11) (13−12) [C I] 609 [C I] 370 [N II] qm ( )f70 m

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

NGC 0023 −4.22 2.57 1.43 1.14 −1.34 −1.14 −1.31 −1.35 −1.22 −1.33 −2.98 1.32 10.94 0.95

L 0.32 0.13 0.12 L L L L L L L 0.11 0.66 0.92

L 567.39 681.02 794.86 L L L L L L L 797.44 1439.42 0.75

L 0.09 0.06 0.09 L L L L L L L 0.06 0.04 L

L −0.23 −0.08 0.31 L L L L L L L 0.24 0.20 L

L 2.17 1.20 0.96 L L L L L L L 1.12 5.00 L

L 4.43 4.62 4.80 L L L L L L L 5.33 18.52 L

L 2 2 2 L L L L L L L 1 1 L

L L L L L L L L L L L L 428.10 L

NGC 0034 −0.83 1.54 1.91 2.11 2.05 2.20 1.66 1.66 1.17 0.93 0.88 0.97 3.52 1.00

L 0.11 0.06 0.05 0.09 0.09 0.08 0.08 0.07 0.08 0.13 0.05 0.23 0.98

L 565.28 678.33 791.24 904.36 1017.21 1130.22 1242.87 1355.98 1468.29 482.98 794.20 1433.43 0.85

L 0.04 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.06 0.10 0.03 0.03 L

L 0.10 0.17 0.11 0.29 0.25 0.40 0.24 0.57 0.17 0.29 0.43 0.40 L

L 1.30 1.61 1.78 1.73 1.85 1.40 1.40 0.99 0.79 0.74 0.82 1.88 L

L 10.83 14.64 22.25 11.53 13.21 8.24 12.73 7.07 4.65 5.69 11.71 15.67 L

L 1 1 1 1 1 1 1 1 2 1 1 1 L

L L L L L L L L L L L L 368.10

Notes.
a
The spectrum of IRAS 05223+1908 shows strong CO lines that have an inferred heliocentric velocity of 100 km s−1. This velocity was used for other line detections.

b
These qm ( )f70 m values are all with respect to the total 70 μm flux of the galaxy NGC 2146.

c
These qm ( )f70 m values are all with respect to the integrated 70 μm flux of the whole NGC 3690 system.

(This table is available in its entirety in machine-readable form.)
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Column (15) gives the data of qm ( )f70 m for three different

values of θ:
Row 1— m ( )f 3570 m , appropriate for the SPIRE/FTS beam

sizes of the CO (5−4), CO (7−6) or [C I] 370 lines.
Row 2— m ( )f 3070 m , appropriate for the SPIRE/FTS beam

size of the CO (6−5) line.
Row 3— m ( )f 1770 m , appropriate for the SPIRE/FTS beam
size of the [N II] line and the higher-J CO lines covered by
the SSW spectral segment.

Table 5 lists those targets with one or more additional lines
detected. These lines, which are listed in Column (2) of the
table, are usually fainter than our main targeted lines in Table 4
and include, for example, a set of rotational transitions of H O2
vapor and HF(1−0).

With the frequency coverage of SSW starting at ∼957 GHz
and that of SLW ending at ∼989 GHz, the two arrays have a
frequency coverage overlap of ∼32 GHz. As noted in Table 3,
up to 2 of the following targeted spectral lines could be seen in
both arrays, depending on the source heliocentric velocity:
CO (9−8) and OH+

(112−012) if Vh is greater than 14,660 and
13,510 -km s 1, respectively; OH+

(122−011) and H2O(202−111)
if Vh is less than 4640 and 9695 -km s 1, respectively. For each
of these lines, the line detection was performed on each
detector array independently. If the line was detected in both
SSW and SLW, the detection of the higher S/N was chosen in
the end. The fluxes of the CO (9−8) and OH+

(112−012) lines
were all measured in the SSW array. For the other two lines,
their fluxes given in Table 5 end with suffix “L” (for SLW) or
“S” (SSW) to indicate from which detector array the flux was
taken.

4. Consideration of Systematic Effects

4.1. Partially Resolved Lines

Some of the CO lines, especially those in the SSW spectral
segment, may be partially resolved by the SPIRE/FTS
instrumental spectral resolution. As a result, a sinc profile-
based line flux derivation may underestimate the true line flux.

In many cases, these lines are either undetected or detected at a
modest S/N, precluding an accurate line fit using a sinc-
Gaussian profile.
Figure 5 plots the theoretical prediction of the ratio of the

line flux of a sinc-Gaussian line profile to the flux of a sinc
profile with the same peak flux density, as a function of the line
frequency for a number of velocity widths (FWHM) of the
Gaussian component. In both cases, the width of the sinc
function was fixed in frequency to correspond to that of the
SPIRE/FTS instrumental resolution. It is clear that, near the
blue end of the SSW spectral coverage, a line velocity
dispersion of 200–300 km s−1

(in FWHM) could result in a
significant flux underestimate if the sinc-only profile is used to
derive the line flux. On the other hand, Figure 5 shows that, for
CO (7−6), the line flux from the sinc profile fitting may
underestimate the line flux by less than 20% if the intrinsic line
FWHM is under 400 -km s 1.
The majority of the archival spectra have quite high S/Ns for

CO (6−5), CO (7−6), [C I] 370 μm, and the [N II] lines. We
have fit both sinc-only and sinc-Gaussian profiles to these lines
in 31 archival spectra, of which the average S/Ns are 34, 30,
26, and 45 for these four spectral lines, respectively. The
resulting flux ratios are shown in Figure 6 as a function of the
fitted Gaussian FWHM expressed in GHz, where the dotted
curve is a third-order polynomial representation of the
theoretical prediction from Figure 5, given in Equation (1):

= - + - ( )R W W W1.013 0.074 0.301 0.0307 , 1theoretical
2 3

and the solid curve is a third-order polynomial fit to the data

points in Figure 15, given in Equation (2):

= - + - ( )R W W W1.051 0.110 0.315 0.0283 . 2fit
2 3

In both equations, W is the FWHM (in GHz) of the Gaussian

component and R stands for the (sinc-Gaussian to sinc) line

flux ratio. The rmsresidual (along the Y-axis) between the data

points and the solid curve is 0.03. This plot shows that, for

example, for an intrinsic line with of 1.0 GHz (equivalent to

∼434 and 372 -km s 1 for CO (6−5) and CO (7−6), respec-

tively), the sinc-only profile-based fluxes may underestimate

the real flux by ∼20% for both of these lines.

4.2. Flux Aperture Corrections

The SPIRE/FTS beam depends on frequency in a non-trivial
way (Swinyard et al. 2014). Table 2 lists the Gaussian FWHM
beam sizes at the rest-frame frequencies of all our main targeted
lines (see the SPIRE Handbook). This Gaussian approximation
of the SPIRE/FTS beam should be adequate for any target that
is either a true point-source or is only modestly extended with
respect to the SPIRE/FTS beam. All our targets fall under one
of these cases. For lines covered in the SLW spectral segment,
the smallest FWHM beam size is ∼30″ (i.e., for CO (6−5)).
For CO (7−6), the relevant beam size is ∼35″. For lines
covered by the SSW part, a representative FWHM beam size is
∼17″, as the beam size only weakly depends on frequency. For
each target, we therefore list in Table 4 the values of qm ( )f70 m

for θ=35″, 30″, and 17″, respectively.
Figure 7 shows how qm ( )f70 m varies with either C(60/100)

or LIR for θ=30″ (top panel) and 17″ (bottom panel). While
the former θ value is a conservative choice for all the spectral
lines in the SLW spectral segment, the latter case is appropriate
for the [N II] line and other lines in the SSW segment. The

Figure 3. Plot of the rmsvalue of -( )[ ]V Vline N II of a spectral line as a function
of the line frequency, where Vline is the inferred heliocentric velocity of the
spectral line and [ ]VN II is the similar velocity of the [N II] line. The rmsvalue
was calculated using all the targets in which the line was detected at S N 7.
Only the spectral lines that were detected at S/N � 7 for at least three targets
are plotted here. For each spectral line, the number of targets used in the
calculation of this rmsvalue is given in parentheses next to the label of the line.
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dotted lines in both plots indicate q =m ( )f 0.870 m . For the FIR

coldest (i.e., C(60/100)� 0.6) or least luminous (LIR
< L1011.3 ) sample galaxies, about 85% and 50% of them
pass the criteria m ( )f 30 0.870 m and m ( )f 17 0.870 m ,

respectively. When considering the ratio of a SPIRE/FTS
spectral line flux from this paper to the total IR or FIR flux, one
could either (a) divide qm ( )f70 m into the line flux in this paper

as an effective aperture correction or (b) multiply the total IR or
FIR flux by this factor to arrive at an estimate on the flux within
the SPIRE/FTS beam. Neither option is free from possible
systematics. However, for a mid-J CO line, (a) is likely a better
option because both the 70 μm dust emission and the warm CO
line emission originate from more or less the same region,
while the spectral energy distribution of the dust emission
behind the value of LIR or LFIR is expected to vary significantly
from the nucleus to the outer disk of a star-forming galaxy. In
the remainder of this paper, we use the point-source-calibrated
line fluxes in all analyses, but only include those galaxies with

qm ( )f 80%70 m when we consider a line-to-IR luminosity

ratio where θ=30″ or 17″, depending on whether the line is
covered in the SLW or SSW segment. In this manner the line
fluxes used will always be less than 20% underestimated
compared to their actual value.

4.3. Line Detection Rate

Panels (b) to (n) in Figure 8 are plots of the fractional

detection rates of the spectral lines tabulated in Table 4 in a

number of bins of FIR, indexed numerically from 1 to 7. The

bins are delineated at the following flux values: 7.5, 10, 15, 22,

35, and ´ -120 10 13Wm−2. For example, the first bin of index

1 is for  < ´ -F6.5 7.5 10IR
13Wm−2, the second bin for

 < ´ -F7.5 10 10IR
13Wm−2, and the last bin of index 7 for

> ´ -F 120 10IR
13Wm−2. Only the detections with a quality

flag of Q=1 and 2 are used here. As a comparison, panel (a)

in Figure 8 shows the number distribution of the observed

LIRGs, with the galaxy number in each flux bin marked

explicitly. It is clear that we have achieved a detection

completeness of better than ∼90% at all flux levels for CO (6

−5), CO (7−6), [C I] 370 μm, and [N II] 205 μm. The next best

cases are for CO (5−4) and CO (8−7), for which the detection

rates are still more than ∼60% even in the faintest flux bins.
Figure 9 shows similar plots for selected fainter spectral lines

based on the detections tabulated in Table 5. It is clear that the

detection rate is rather low for all of these lines, except in the

three brightest flux bins, where the number of galaxies is low.

To alleviate this shortcoming, we use stacked spectra created

Figure 4. Examples of our line-fitting results for CGCG 049-057 (top) and NGC 6240 (bottom). In each case, we show the observed spectrum (in red or blue),
overlaid with the fitted model continuum and line profiles (black), as well as their difference spectrum (also in black). The [N II] lines in both cases were fit using a
sinc-Gaussian profile. All the other lines were fit using sinc-only profiles, except for the CO and [C I] lines in the case of NGC 6240, for which sinc-Gaussian profiles
were used.
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by summing over the spectra of individual sources, to study
some of these fainter lines.

5. Data Analysis and Discussion

5.1. CO SLEDs

Figure 10 is a comparison of the observed CO SLEDs
among the brightest galaxies in each of the following 3 FIR
color bins: (a) 11 “FIR-cold” galaxies (in red) of 0.50<C(60/

100)� 0.65, which are brighter than m =n ( )f 60 m 8.1 Jy; (b)

11 “FIR-intermediate” galaxies (in black) of 0.75<C(60/
100)� 0.90 and brighter than m =n ( )f 60 m 12.0 Jy; and (c) 10

“FIR-warm” galaxies (in blue) of C(60/100)� 1.0 and brighter

than m =n ( )f 60 m 10.7 Jy.
These represent the brightest sample galaxies in their

respective FIR color bin. All satisfy  >m ( )f 17 0.870 m , which

means that the shape of each CO SLED should not deviate by

Table 5

Additional Detected Lines

Name Line F
a sFb nobsc snd ndiff e ( nf )p

f
(S/N)

g
Q
h

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

NGC 0023 H2O (321−312) −1.53 0.17 1145.41 0.09 −0.06 −1.29 4.03 2

HF (1-0) −1.39 0.21 1213.74 0.10 −0.24 −1.17 4.50 2
13CO (5−4) −1.80 0.33 544.18 0.12 1.52 −1.52 3.23 4

HCN (16−15) 1.14 0.21 1395.89 0.13 0.46 0.96 3.20 2

HCN (17−16) 1.56 0.24 1483.76 0.10 1.31 1.32 3.30 4

NGC 0034 H2O (202−111) 1.01S 0.12 969.36 0.08 0.44 0.85 7.73 1

H2O (211−202) 0.28 0.04 738.35 0.11 0.78 0.24 4.80 4

H2O (220−211) 0.43 0.08 1205.50 0.12 0.35 0.36 3.27 2

H2O (312−303) 0.49 0.07 1076.35 0.10 0.10 0.42 4.20 2

H2O (321−312) 0.73 0.07 1140.87 0.06 0.33 0.61 3.59 2

H2O
+

(111−000 J=3/2-1/2) 0.37 0.08 1094.60 0.13 0.85 0.31 3.88 2

OH+(112−012) 0.58 0.09 1013.18 0.10 −0.07 0.49 3.77 2

Notes.
a
Line flux in - -10 W m17 2. A negative value here indicates an absorption. Note that the flux derivation assumed a point-source case. See Section 4.2 for a prescription

of the flux aperture correction in case the target is moderately extended with respect to the SPIRE/FTS beam. The flux values of the OH+(122−011) and H2O

(202−111) lines end with suffix “S” (standing for SSW) or “L” (SLW) to indicate from which detector array the flux was measured.
b
Line flux uncertainty in - -10 W m17 2.

c
Observed line frequency in GHz.

d
Uncertainty of the observed line frequency in GHz.

e
This equals the observed frequency minus the expected line frequency based on the redshift of the target, expressed in units of GHz.

f
Peak line flux density in Jy. A negative value here also indicates an absorption.

g
S/N for the peak line flux density.

h
This is the same quality flag as defined in Table 4.

(This table is available in its entirety in machine-readable form.)

Figure 5. Theoretically predicted ratio of the flux of a sinc-Gaussian line
profile to the flux of a sinc-only line profile as a function the line central
frequency. The width of the sinc function in each line profile is fixed at the
SPIRE/FTS spectral resolution. The results are shown for four different
FWHM values (as noted in the legend) of the Gaussian component of the sinc-
Gaussian profile. Both line profiles have the same central frequency and peak
flux density.

Figure 6. Plot of the line flux ratio of a line fit with a sinc-Gaussian profile to
the same line fit with a sinc-only profile as a function of the fitted FWHM (in
GHz) of the Gaussian component for the [N II] line, CO (7−6), CO (6−5), and
[C I] 370 μm detected at high S/Ns in 31 archival spectra. The different
spectral lines are color-coded, as explained in the legend. The dotted curve is a
third-order polynomial representation of the theoretical prediction from
Figure 2. The solid curve is a third-order polynomial fit to the data points
here. The overall vertical rmsresidual between the data points and the solid
curve is 0.03.

14

The Astrophysical Journal Supplement Series, 230:1 (34pp), 2017 May Lu et al.



more than 20% from the true shape across the plotted range of J
values, even if the target is not point-like with respect to the
SPIRE/FTS beam sizes in SSW. All the CO SLEDs in
Figure 10 are normalized to unity at J=6. They are arranged
from the top left to bottom right in an increasing order of LIR.
These plots together reinforce the previous finding (Lu et al.
2014; Rosenberg et al. 2015) that the overall shape of a CO
SLED is more fundamentally correlated with the FIR color than
with LIR. For example, NGC 4418 has only a modest LIR, but
one of the warmest FIR colors known in the local universe. Its
CO SLED appears even “warmer” than that of Mrk 231, which
is more than 10 times more IR luminous. Since the FIR color is
driven in turn by the spatially averaged intensity of the dust
heating radiation field (e.g., Draine & Li 2007), this finding
suggests that it is the radiation field intensity that shapes the
overall CO excitation condition over 4<J<13.

A few CO SLEDs in Figure 10 show an apparent “kink,”
with the integrated line flux of a CO line (most often CO (9
−8)) being lower than the value from a smooth interpolation

from the neighboring data points. Such examples include
Mrk 231, IRAS F05189-2524, and ESO 286-IG019. However,
these “out-of-line” data points are mostly at a significance no
greater than 3σ based on the error bars shown here.
Furthermore, the CO (9−8) line is near the long-wavelength
end of SSW. As we mentioned before, the error bars plotted
here (from Table 4, Row 2 in Column 7) are from the line-
fitting procedure and might somewhat underestimate the true
line flux uncertainty for CO (9−8). Therefore, this CO (9−8)
kink phenomenon is likely to be an artifact.
In Figure 11 we plot the individual CO SLEDs from

Figure 10 separately for the three FIR color bins. The
individual CO SLEDs are plotted in various colors. For clarity,
only the detected lines are included. Within each FIR color bin,
we derived a median flux value at each J using the detected
lines only and also plotted the “median CO SLED” synthesized
from these median flux values as a thick black curve. Since the
upper limits were not used to calculate these median values,
some caution should be exercised when interpreting the

Figure 7. Plots of qm ( )f70 m , the fractional 70 μm flux within a Gaussian beam of FWHM θ, as a function of C(60/100) or LIR for θ=30″ (top panels) and

17″ (bottom panels). The dotted line in each plot indicates q =m ( )f 0.870 m .
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significance of a median flux value when there are many upper
limits, e.g., near the high-J end in Figure 11(a). Nevertheless,
these median CO SLEDs, given numerically in Table 6, are still
useful for illustrating the systematic changes in the shapes of
CO SLEDs as the FIR color increases. There is also an
indication that the variance of the CO SLED shapes also
increases as the FIR color increases. Since all the CO SLEDs
are normalized to 1 at J=6, this variance manifests itself in
the scatter of the individual CO SLEDs at the high-J end in
each plot. In particular, a large variance is seen in the warmest
FIR color bin. This may suggest that the local condition of the
radiation field and gas density become so complicated or
extreme that the spatially averaged FIR color becomes less

accurate at predicting the shape of a CO SLED. In Figure 11(c)
we have labelled the three individual galaxies associated with
some of the warmest CO SLEDs in our sample. One of them,
NGC 4418, is known to be among the most compact
extragalactic IR sources known (e.g., Sakamoto et al. 2013).
To confirm that the systematic variation in SLED shape seen

for the brightest galaxies of the sample in Figures 10 and 11 is
not dependent on their 60 μm flux densities, we show the entire
sample in Figure 12 by plotting each CO line luminosity,
normalized by that of CO (6−5), as a function of the FIR color.
For J=4 or J  9, there are now significant numbers of non-
detections. We therefore focus on the overall trend and whether
the upper limits are consistent with the trend. To this end, in each

Figure 8. Panels (b) to (n) show the fractional detection rates of the main targeted spectral lines in a number of bins of the total IR flux FIR, where the flux bins are

delineated at the following values: 7.5, 10.0, 15.0, 22, 35, and ´ -120 10 13 Wm−2. For example, the first bin (i.e., index=1) has  < ´ -F6.5 7.5 10IR
13 Wm−2,

the second bin has   ´ -F7.5 10 10IR
13 W m−2 and the last bin is for > ´ -F 120 10IR

13 W m−2. The subject spectral line and the 90% completeness level are
marked in each plot. As a comparison, panel (a) shows similar distributions of the total observed galaxies, with the number of galaxies in each flux bin explicitly
marked. The multiple entries for NGC 3690 and NGC 2146 in Table 1 were counted separately here.
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plot the horizontal dotted line marks where the normalized line
flux equals 1 and the two vertical dashed lines separate the three
color bins used in Figures 10 and 11. The individual sources
belonging to the dominant AGN subsample defined earlier are
shown in red. For the CO lines of J� 9 (covered in SSW), we
only used those sources with m ( )f 17 0.870 m in order to

control the effect on the normalized line fluxes from the SPIRE/
FTS beam size difference between SSW and SLW. For C(60/
100)0.7, the CO SLEDs tend to be brightest at J<6. In
contrast, at C(60/100)∼1.0, the observed CO SLEDs become
nearly flat across all J levels or even show somewhat increasing
normalized line fluxes toward higher J. At the FIR colors in
between, the CO SLEDs tend to peak around J∼6 or 7. These
observations are all consistent with the data of the brightest
sample galaxies shown in Figures 10 and 11.

Furthermore, there is no obvious segregation between the
dominant AGNs and the rest of the sample in any plot in
Figure 12. With the caveat that our AGN sample size is small,
this implies that the presence of an energetic AGN in a LIRG
has little or only marginal effect on the shape of the CO SLED
over the J levels shown here. This is in general agreement with
other recent studies on the mid-J CO line emissions in
individual AGNs (e.g., Pereira-Santaella et al. 2013; Zhao et al.
2016b). We discuss the subject of AGN gas heating in more
detail in Section 5.3.

5.2. Star Formation and Molecular Gas Heating

The simplest model for explaining the systematic change in
the shapes of the CO SLEDs shown in the previous figures is to

Figure 9. Plots similar to those in Figure 8, but for the fractional detection (in either emission or absorption) rates of selected fainter spectral lines. The subject spectral
line is labeled in each plot.
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assume a single molecular gas phase that gets warmer and

denser when the FIR color becomes warmer. However, we

showed earlier (Lu et al. 2014) that one generally requires at

least two distinct CO gas phases to explain the observed CO

SLEDs. We explore this important finding further using the full

galaxy sample here, which is twice the size of the sample used

in Lu et al. (2014).
Figure 13 shows how a CO line luminosity, normalized by

LIR, varies as a function of the FIR color for the entire sample.

As in Figure 12, those dominant AGNs are shown in red. All

the plots in Figure 13 span 2.0 dex vertically to facilitate direct

comparison. The horizontal dotted line in each plot indicates

the value of −4.88, the average logarithmic CO (7−6)/IR
luminosity ratio identified by Lu et al. (2015) on a combined

set of the LIRGs from the current sample and additional

ULIRGs from the Herschel archive. This line serves as a

fiducial level to help identify the most energetic CO line across

all J values at a given C(60/100). If one focuses first on the

mid-J CO lines of J=6 or 7 in Figure 13, the line-to-IR

luminosity ratios appear to only weakly depend on C(60/100)

Figure 10. Individual CO SLEDs, each normalized to 1 at J=6, of the brightest sample galaxies in each of the three FIR color bins: Those in red are for the 11 FIR-
cold galaxies with 0.50<C(60/100) � 0.65 and m >n ( )f 60 m 8.1 Jy, those in black are for the 11 galaxies with 0.75<C(60/100) � 0.90 and

m >n ( )f 60 m 12.0 Jy, and those in blue are for the 10 FIR-warm galaxies with C(60/100) � 1.0 and m >n ( )f 60 m 10.7 Jy. All the galaxies shown here satisfy

 >m ( )f 17 0.870 m . The individual SLEDs are arranged in increasing order of LIR from the top left to the bottom right. The galaxy name and logarithmic LIR in solar

units (in parentheses) are noted in each panel.
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and show apparently the smallest scatters among all the lines
plotted in Figure 13. In fact, the ratios shown in panel (J) in
Figure 13 are for the combined CO (6−5) and CO (7−6) line
fluxes. Excluding the AGNs and the outlier NGC 6240, the
ratios of the remaining galaxies show very little dependence on
C(60/100) across the entire FIR color range covered here. On
the other hand, the first two panels in Figure 13 show that, as C
(60/100) becomes smaller, CO (4−3) or even CO (5−4)
becomes relatively stronger. As pointed out in Lu et al.
(2014), a single gas phase model can not explain these
observations. One needs at least two gas components: a warm
and dense component, which emits the CO lines primarily in

the mid-J (i.e., 5J10) with a general peak around J≈6
or 7 and correlates energetically with the dust emission, is
mainly responsible for the observed constant ratio seen around
J=6 or 7. Since the dominant heating source for the IR
emission in the majority of LIRGs is unambiguously current
SF, the same ongoing SF should also be responsible for this
warm CO gas component, although the exact or dominant
heating mechanism is still controversial (see Lu et al. 2014 for
a list of possible mechanisms). The other gas component is a
cold gas phase of moderate density, which emits CO lines
primarily at J4 and is not directly related to current SF that
powers LIR in LIRGs.
This two-component picture has been supported by other

independent studies, with many of the recent studies on non-
LTE modeling of observed CO SLEDs in LIRGs and star-
forming galaxies pointing to at least two distinct gas phases
(e.g., Panuzzo et al. 2010; Van der Werf et al. 2010; Rangwala
et al. 2011; Kamenetzky et al. 2012; Spinoglio et al. 2012;
Pellegrini et al. 2013; Pereira-Santaella et al. 2013; Rigopoulou
et al. 2013; Papadopoulos et al. 2014; Rosenberg et al. 2014a,
2014b; Schirm et al. 2014; Xu et al. 2015). A few of our sample
galaxies have also been directly imaged in CO (6−5) at a high
angular resolution. The resulting CO (6−5) line emission
shows a very different spatial scale than either CO (1−0) or
CO (2−1) (e.g., Xu et al. 2014, 2015). This further supports our
two-component picture.

5.3. AGN and Molecular Gas Heating

We showed in Figure 12 that the presence of a dominant
AGN in a galaxy does not appear to have a significant impact
on the shape of a CO SLED up to J∼10, and in Figure 13 that
most of the dominant AGNs in our sample tend to show a
lower mid-J CO-to-IR ratio. We explore the possible physics
behind these phenomena here.
Figure 14 is a plot of the log of the ratio of the CO line

luminosity summed over CO (6−5) and CO (7−6) to LIR as a
function of fAGN for the same set of galaxies shown in
Figure 13(j). We have offset the Y-axis by the sample median
log value of −4.53 for the SF-dominated galaxies. The color-
coding scheme is the same as in Figure 13, except for the upper
limits shown here in green for the sake of visual clarity. The
average fAGN value and its uncertainty (= the standard
deviation of the mean) are plotted as an error bar here, as
described in Section 2.2, from Díaz-Santos et al. (2017). The
distribution of the data points in Figure 14 indicates a possible
trend that points to a lower Y-axis value on average as fAGN
increases. For example, the Y-axis median value is near zero for
the sources with f 0.25AGN . This median value would be
about −0.1 over < f0.25 0.5AGN if the two upper limits in
this bin were also taken into consideration. For >f 0.5AGN ,
there are 5 data points. The resulting median value is −0.31,
equal to about 2.6σ, where σ is the rms scatter of the sample
sources with <f 0.25AGN . We explain in detail the solid
curves in Figure 14 below.
Another useful way to gain insights into AGN heating of

molecular gas is to compare the CO SLEDs between well-
known AGNs and starbursts by extending their CO SLEDs
from our SPIRE/FTS observations to even higher J levels
using PACS spectroscopic data. Lu et al. (2014) singled out
Mrk 231 ( =f 0.77AGN ; Díaz-Santos et al. 2017) and
NGC 1068 ( f 0.50AGN ; Telesco & Decher 1988; Lu et al.
2014) as two representative AGN-dominated galaxies that

Figure 11. Plots of the individual CO SLEDs (connected squares in various
colors) from Figure 10, along with the median CO SLEDs (the thick curve in
black) they generate, for each of the three FIR color bins (as labeled in the
plots). The three galaxies with the warmest CO SLEDs are labeled in the
bottom panel.

Table 6

Median CO SLEDs from Brightest Sample Galaxies

Line Colda Intermediatea Warma

(1) (2) (3) (4)

CO (4-3) 1.18 0.80 ...

CO (5-4) 1.10 0.88 0.87

CO (6-5) 1.00 1.00 1.00

CO (7-6) 0.76 0.97 1.08

CO (8-7) 0.76 0.98 1.22

CO (9-8) 0.63 0.81 1.04

CO (10-9) 0.52 0.65 1.03

CO (11-10) 0.46 0.51 1.03

CO (12-11) 0.25 0.36 0.88

CO (13-12) 0.28 0.31 0.81

Note.
a
These columns correspond to the same FIR color bins used in Figures 10 and

11: < ( )C0.5 60 100 0.65 (i.e., “Cold”), 0.75<C(60/100)�0.9 (“Inter-

mediate”), and 1.0<C(60/100)�1.4 (“warm”). Note that the frequency-

dependent SPIRE/FTS beam has a minimal effect on the results here, as these

results were derived using galaxies satisfying  >m ( )f 17 0.8070 m .
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display a lower CO (7−6) to IR ratio than the typical ratios
seen in the SF-dominated galaxies in our sample. These AGNs
are known to have significant hot CO gas emissions at J>10
(Hailey-Dunsheath et al. 2012; González-Alfonso et al. 2014b),
which could be associated with the AGN-powered X-ray
dissociated regions (XDR) (Van der Werf et al. 2010;
Spinoglio et al. 2012). In Figure 15 we show the expanded
CO SLEDs of these two dominant AGNs, along with those of
M82, Arp 220 (=UGC 09913), and IC 0694 (=UGC 06472 or
Arp 299A), by making use of the PACS spectroscopic data
from Mashian et al. (2015). M82 is an archetypical starburst.
With ~f 0.12AGN (Díaz-Santos et al. 2017), Arp 220 is also
dominated by a starburst. The last galaxy, IC 0694, is
controversial as to whether it harbors a strong AGN, with
both positive evidence for (e.g., Sargent & Scoville 1991; Della

Ceca et al. 2002; Henkel et al. 2005; Tarchi et al. 2007;
Alonso-Herrero et al. 2013; Rosenberg et al. 2014b) and
against (e.g., Alonso-Herrero et al. 2000) it. Both Arp 220 and
Mrk 231 are compact enough to be practically point sources for
both SPIRE and PACS. IC 0694 is itself a compact source and
its SPIRE and PACS fluxes were based on a point-source case.
The mid-J CO line emission of NGC 1068 is shown to be
extended and dominated by the circumnuclear SF based on a
SPIRE/FTS mapping observation (Spinoglio et al. 2012). The
total SPIRE/FTS CO line fluxes in Table 1 of Spinoglio et al.
(2012) were used here. As shown in Spinoglio et al. (2012) and
Mashian et al. (2015), the PACS part of the CO SLED is
dominated by the central compact source. M82 is somewhat
extended with respect to both SPIRE and PACS beams
(Kamenetzky et al. 2012; Mashian et al. 2015). Its PACS line

Figure 12. Plots of the log of the flux ratio of a CO line of the upper level J to CO (6−5) as a function of C(60/100) for the sample galaxies detected in CO (6−5) and
for J from 4 to 13 (as labeled in each plot). The horizontal dotted line in each plot marks where the logarithmic line ratio equals 0. The two vertical dashed lines
separate the three subsamples used in Figures 10 and 11. For the CO lines covered in SSW (i.e., J � 9), we further limited the data plotted here to those galaxies with

 >m ( )f 17 0.870 m . The AGNs are shown in red and NGC 6240 is further circled in blue. For the plot of CO (6−5), it shows the relative line flux uncertainty.
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fluxes were integrated over the PACS field of view of
47″×47″. We therefore used the SPIRE/FTS CO line fluxes
within a constant aperture of comparable size from Kame-
netzky et al. (2012).

If one focuses on the mid-J regime, there is an apparent
scatter in CO SLED shape between the individual sources. In
particular, the CO SLED shape of NGC 1068 appears to be
different from that of any of the other sources. However, this
could be largely expected given the fact that the mid-J CO
SLED shape depends on C(60/100) (see Figure 11).
NGC 1068 has a relatively mild FIR color at C(60/
100)=0.76. In comparison, IC 0694, M82, and Mrk 231 all
have very warm FIR colors, with C(60/100)=1.01, 1.08, and

1.04, respectively. With C(60/100)=0.90, Arp 220 falls in
between. As a result, at least part of the mid-J differences
among the galaxies seen in Figure 15 should be due to their
FIR color differences. In fact, if we “convert” the observed CO
SLEDs of NGC 1068 and Arp 220 to what one would have
seen if they had C(60/100) > 1.0, the results would be those
shown in the insert in Figure 15. This conversion was done by
multiplying the observed SLED by the ratio of two of the
median CO SLEDs in the 3 FIR color bins in Figure 11 (or
Table 6) based on the FIR color of the target. For Arp 220, this
ratio equals Col.(4) divided by Col.(3) in Table 6; for
NGC 1068, it is Col.(4) divided by the average value of
Cols.(2) and (3) in Table 4, as its FIR color falls between the

Figure 13. Panels (a) to (i) are plots of the log of the luminosity of a CO line of the upper level J, divided by LIR, as a function of C(60/100) for our sample galaxies
and for J from 4 to 12, respectively. For J<9 (i.e., with the CO line detected in the SLW array), only the targets with  >m ( )f 30 0.870 m are plotted; for J � 9 (i.e.,

detected in SSW), only those with  >m ( )f 17 0.870 m are shown here. The red data points are the dominant AGNs that also satisfy our FTS beam size-based selection

criterion. The galaxy NGC 6240 is further circled in blue. Panel (j) is for the sum of CO (6−5) and CO (7−6). The horizontal dotted lines in panels (a) to (i) indicate
the average logarithmic ratios of −4.88 adopted for CO (7−6) in Lu et al. (2015). The dotted line in (j) indicates a value of −4.53, the median ratio for the galaxies
plotted in (j), excluding the AGNs and NGC 6240.
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FIR color ranges associated with the latter two columns. This
exercise illustrates an important point of Figure 15: (A) there is
no significant (systematic) difference over 5J10 (i.e., the
mid-J regime) between the AGNs and starbursts considered
here after one has accounted for the FIR color dependence of
the mid-J CO SLED shape. Another important point of
Figure 15 is that (B) the two dominant AGNs, Mrk 231 and
NGC 1068, show significant excess of the CO line emission at

higherJ (i.e., J>13) in comparison with the two starburst-
dominated galaxies, M82 and Arp 220.

(A) is the same conclusion we drew in Figure 12, i.e., the
mid-J CO SLED shape is not impacted by the presence of an
AGN in any obvious and significant way. There are two
possible explanations for (A): (i) that SF and AGN gas heating
produce more or less the same CO SLED shape in the mid-J
regime, or (ii) that the gas cooling associated with AGN gas
heating occurs mainly at J>10. We reject scenario (i) with
different arguments, depending on whether the observed gas
cooling at J>10 is due to AGN heating. If the observed gas
cooling at J>10 is due to AGN heating, this implies that the
dense CO gas surrounding the AGN is very hot, no matter
whether the actual gas heating is via the X-ray radiation alone
or via a combined X-ray and far-UV radiation field from the
AGN. Therefore, it is unrealistic for the mid-J CO SLED shape
to be similar to that in a pure starburst case. On the other hand,
if the observed gas cooling at J>10 were not related to
AGNs, most of the gas cooling associated with AGN heating
would be limited to being within the mid-J regime. In this case,
the lower mid-J CO-to-IR flux ratios of AGNs seen in
Figures 13 or 14 would conflict with the fact that AGNs
should be more effective in heating the gas than the dust,
regardless of whether it is via X-ray or AGN-driven shocks,
leading to a mid-J CO-to-IR flux ratio higher than those of SF-
dominated galaxies. Therefore (ii) is the most likely explana-
tion. Namely, the lower mid-J CO-to-IR luminosity ratios
associated with those dominant AGNs are due to the fact that
the SPIRE/FTS spectral coverage does not sample most of the
CO gas cooling associated with the AGN heating. This
conclusion is also consistent with the theoretical prediction
(e.g., Spaans & Meijerink 2008) that gas temperatures in XDRs
can be much higher than those found photon-dominated
regions (PDRs) powered by the far-UV radiation of young,
massive stars.
The conclusion drawn above leads to two important

corollaries. One is that the mid-J CO line emission of a (U)

LIRG is entirely powered by SF, regardless of whether an AGN
is present or not. This lays the foundation for a mid-J CO line,
such as CO (7−6), to be used as a robust SFR tracer, both
locally and at high redshifts (Lu et al. 2015). The other
corollary is that, as shown in Lu et al. (2014), the expected Y-
axis position of an AGN in Figure 14 is given by

d = -[ ( )] ( ) ( )L Llog CO IR log 1 , 3IR
AGN

IR

where L IR
AGN is the IR luminosity attributed to the AGN (i.e.,

excluding the SF in the host galaxy). To relate Equation (3) to

fAGN, one has to relate the two IR luminosities on the right side

of the equation to their respective bolometric luminosities. It is

relatively secure to establish (via observations) a mean

relationship between LIR and the bolometric luminosity, Lbolo,

for the galaxy as a whole. Veilleux et al. (2009) proposed an

average of =L L 1.15bolo IR for ULIRGs. We adopt this ratio

also for our LIRGs. In contrast, it is not observationally

straightforward to establish such a relationship for the AGN

itself, i.e., separating the AGN from its host galaxy. This would

require high spatial resolution observations in the mid- to far-

infrared. If we denote the quantity L LIR
AGN

bolo
AGN by  , then we

have

d = -[ ( )] ( ) ( )flog CO IR log 1 1.15 . 4AGN

Figure 14. Plot of the logarithmic ratio of the luminosity of the sum of the
CO (6−5) and CO (7−6) line emission to LIR as a function of fAGN for the
same set of galaxies as in Figure 13(j). The luminosity ratios plotted are offset
by the sample median log value of −4.53 marked in Figure 13(j). The color-
coding scheme is the same as in Figure 13, except for the upper limits shown
here in green for clarity. A few galaxies without an fAGN value are not plotted
here. The solid curves stand for the function of ( – )flog 1 1.15 AGN with
 = 50%, 65% and 80%, respectively, which are further explained in the text.

Figure 15. CO SLEDs, all normalized to 1 at J=6, of a few well-known
starbursts and AGNs (as labeled in the plot). These were constructed by
combining the SPIRE/FTS data in this paper (or from the literature in the cases
of M82 and NGC 1068) with the higher-J CO line fluxes from the PACS data
in Mashian et al. (2015). The vertical dashed line separates the SPIRE/FTS
frequency side from the PACS side. The small insert shows the sections of
these CO SLEDs over 4 � J<10, after “removing” a systematic dependence
of the mid-J CO SLED shape on the FIR color. (See the text for more details.)
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The solid curves in Figure 14 are from Equation (4) with

 = 50%, 65%, and 80%, respectively, and illustrate that

Equation (4) can follow the overall distribution of the AGN

data points in Figure 14 with some reasonable value of  .
Under the framework presented here, IC 0694 clearly

harbors an energetic AGN, perhaps, a heavily dust-enshrouded
one, as suggested by some authors (Della Ceca et al. 2002;
Alonso-Herrero et al. 2013). This galaxy is not included in
Figure 14 because it has  <m ( )f 30 0.870 m (see Table 4).

However, all mid-IR AGN diagnostics point to a low AGN
fractional contribution to its bolometric luminosity, at

~f 0.05AGN (Díaz-Santos et al. 2017).
Despite the convincing picture of AGN heating of molecular

gas unveiled here, we restrict our discussion by pointing out
that the sample size of the dominant AGNs presented here is
small. As a result, the claims drawn here are in principle still
subject to small number statistics.

5.4. Shocks and Molecular Gas Heating

NGC 6240 stands out as the only clear outlier in our sample
in terms of the mid-J CO/IR ratio. The starburst superwinds in
NGC 6240 are believed to power large-scale diffuse ionized
gas (e.g., Heckman et al. 1987) and shock-excited H2 line
emission (e.g., Max et al. 2005). Its SPIRE/FTS CO SLED has
been modeled in detail and its excitation was shown to be likely
due to shocks (Meijerink et al. 2013). However, there is some
difficulty with a stellar shock, which is in turn driven by the SF
process, being the main heating mechanism behind the high
CO/IR ratios observed, because the same SF process should
have a far-UV radiation component that is proportional in some
way to the mechanical energy of the shock. While the shock
itself would heat the gas, the far-UV component would heat the
dust which in turn would radiate in the IR. One would therefore
expect both the CO line emission and the IR emission to be
impacted by the superwinds and shocks, and therefore that the
CO-to-IR luminosity might not be significantly elevated.
Indeed, all other well-known superwind galaxies (e.g., M82,
Arp 220) show “normal” CO-to-IR-luminosity ratios. In fact, a
supernova or stellar wind driven shock has been the most
favored gas heating scenario in many recent studies of the mid-
J CO SLEDs of LIRGs and star-forming galaxies (see Lu et al.
2014 for a list of references). Therefore, shock gas heating does
not necessarily raise the CO/IR luminosity ratio as long as the
shock energy is ultimately derived from SF.

The gas in the nuclear region of NGC 6240 is known to be
highly turbulent (Tacconi et al. 1999), with strong molecular
gas outflows (Feruglio et al. 2013a, 2013b). Recent ALMA
imaging in HCN (4−3) and CS (7−6) has shown that the dense
gas is concentrated along the ridge between the two nuclei in
NGC 6240 (Scoville et al. 2015). ALMA imaging in CO (6−5)
would reveal directly whether shocks associated with this
nuclear gas component could be responsible for the elevated
CO/IR ratio.

Objects such as NGC 6240 are likely to be rare, as none of
the other galaxies in our sample are like it. Lu et al. (2014)
showed two more galaxies from the Herschel archive that
resemble NGC 6240 in terms of an elevated CO/IR luminosity
ratio. They are NGC 1266 and 3C 293, both of which are
known to have significant, non-SF driven shocks such as
shocks driven by an AGN-related outflow or radio jet (Ogle
et al. 2010; Alatalo et al. 2011; Lanz et al. 2015).

5.5. On Local CO Line Luminosity Functions

In Section 5.2 we have shown that a mid-J CO line, e.g.,
CO (7−6), is potentially a robust tracer of SFR. This opens up
the new possibility of characterizing galaxy SFRs at high
redshifts by measuring only the flux of CO (7−6). With a
modern facility such as ALMA, this may become routine. The
LF of CO (7−6) could therefore develop as a powerful tool to
characterize the cosmic evolution of SFR. To this end, one
needs to know the present-day CO (7−6) LF to serve as the
local benchmark. While there are no observational data on such
an LF, Lagos et al. (2012) derived a CO (7−6) LF based on a
galaxy formation model coupled with a PDR framework for
gas heating dominated by far-UV photons.
For most LIRGs, both LIR and a mid-J CO line emission

trace the same SFR. For lower luminosity galaxies, LIR may no
longer be dominated by young, massive stars. As a result, these
two quantities are expected to decouple from each other when
LIR is low enough. Liu et al. (2015) analyzed a large SPIRE/
FTS sample consisting of LIRGs and normal star-forming
galaxies and found that -( )LCO 7 6 and LIR are coupled nearly

linearly down to about LFIR~ L109 (roughly equivalent to LIR
» ´ L2 109 ), with an overall scatter increasing only to ∼0.2
dex at the low-luminosity end. In their study, Liu et al. also
applied an aperture correction to LIR that is similar to

m ( )f 3570 m defined in this paper. Their result therefore lends

support to extending the luminosity limit, above which the
CO (7−6)/IR ratio remains constant, to ~ ´ L L2 10IR

9 .
This constancy of the CO (7−6)/IR ratio allows one to

derive a local LF of the CO (7−6) emission from the well-
characterized local LF of LIR. We show in Figure 16 the
log of such a CO (7−6) LF (hereafter referred to as

-( )
‐LFCO 7 6

IR scaled ) as a function of -( )Llog CO 7 6 , where -( )
‐LFCO 7 6

IR scaled

is expressed as - ( ) ( )( )d N d L L d Vlog MpcCO 7 6
3 , with N

standing for number of galaxies. This function was scaled
from the two-power-law-fitted infrared LF of Sanders et al.
(2003) by adopting a constant luminosity scale factor of
á ñ = -( )( )L Llog 4.88 0.01IR CO 7 6 for (U)LIRGs from Lu
et al. (2015). For comparison we also plotted the model-based
CO (7−6) LF (hereafter -( )LFCO 7 6

model ) from Lagos et al. (i.e.,

Figure 16. Comparison of our CO (7−6) LF scaled from the infrared LF of
Sanders et al. (2003) (thick curve) and a local CO (7−6) LF of Lagos et al.

(2012) based on a PDR model (thin curve) for > ´ L L2 10IR
9 , with the

logarithmic LIR scale shown at the top of the plot. The typical uncertainty for
our CO (7−6) LF is on the order of 0.11 dex (see the text).
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from the solid black curve for z= 0 in their Figure 5). To
have a rough assessment of the uncertainty of -( )

‐LFCO 7 6
IR scaled , we

note that log(dN/d log LCO (7-6))=log(dN/d log LIR)+log
(d log LIR/d log LCO (7-6)). The error of the first term on the
right side of the above expression can be set to the typical
error of 0.08 for the log of the power-law fit of the LF of LIR
in Sanders et al. (see their Table 6). The error of the second
term on the right side of the expression can be set to 0.07, the
formal 1σ error of á ñ-( )( )L Llog FIR CO 7 6 given in the study of
Liu et al. The square root of the quadratic sum of these two
errors is 0.11, which we take as an estimate on the
uncertainty of the log of -( )

‐LFCO 7 6
IR scaled .

There are some significant differences between the two
curves in Figure 16. First, -( )LFCO 7 6

model from Lagos et al. predicts
fewer counts for all luminosity values covered in Figure 16.
Second, the turnover of -( )

‐LFCO 7 6
IR scaled occurs at »-( )LCO 7 6

L105.6 , which is about 0.8 dex lower than the turnover

luminosity of -( )LFCO 7 6
model . This difference is larger than any that

could arise from a systematic underestimate in the SPIRE/FTS
CO (7−6) line fluxes (i.e., as a result of our choice of sinc line
profile; see Figure 5). Another difference is that -( )LFCO 7 6

model is

much steeper than -( )
‐LFCO 7 6

IR scaled at  L L10IR
11.5 . Both of these

differences may reflect the fundamental uncertainty as to
whether the far-UV photon gas heating that is the backbone of
all PDR models is the main heating mechanism behind the mid-
J CO line emission in galaxies. For example, recent studies on
modeling of the CO SLEDs of galaxies tend to favor a
mechanical heating via shocks (see Lu et al. 2014 for a
discussion of this topic). In view of this uncertainty, an
LIR-scaled LF such as the one shown in Figure 16 might be a
more practical choice for the LF of a mid-J CO line emission,
at least for luminous galaxies.

5.6. Neutral Carbon Line Emission

The ground state of neutral carbon has a simple three-level,
fine-structure system, with the upper and middle energy
levels at 62.5 K (

3P2) and 23.6 K (
3P1) above the bottom level

(
3P0). The P P3

1
3

0 transition (i.e., [C I] 609 μm) has
»n 470c cm−3 and the P P3

2
3

1 transition ([C I] 370 μm)

has » ´n 1.2 10c
3 cm−3

(assuming collisions with H2 and a
gas temperature of 100 K; see Table 1 in Carilli & Walter
2013). The latter critical density is similar to that of CO (1
−0). In the optically thin case, the ratio of the two [C I] lines
depends only on the excitation temperature (Tex) between the
energy levels 3P2 and 3P1. If the gas density is high enough
that the neutral carbon ground system is nearly thermalized,
the Tex from the [C I] line ratio should be close to the gas
kinetic temperature. In the thermalized case, the observed
[C I] fluxes can also be used to infer the total neutral carbon
column density. Prior to the advent of Herschel, the [C I] line
observations were available for a small number of nearby
galaxies (e.g., Büttgenbach et al. 1992; Schilke et al. 1993;
Harrison et al. 1995; Stutzki et al. 1997; Gerin & Phillips
2000; Israel & Baas 2002; Papadopoulos & Greve 2004) and
for some high-redshift galaxies (see references in Carilli &
Walter 2013).

We plot in Figure 17(a) the line flux ratio of [C I] 370 μm to
[C I] 609 μm as a function of the FIR color for the whole
SPIRE/FTS sample, overlaid with implied excitation tempera-
tures (Tex) assuming an optically thin case (Stutzki et al. 1997).
The relevant excitation temperature range for our LIRGs

appears to be from ∼15 and 30 K. This is in agreement with
similar findings on some IR active galaxies in the literature
(e.g., Weiß et al. 2003). NGC 6240 has the highest Tex at
40.7 K, among all the sample sources with both [C I] lines
detected. Most observations of the [C I] lines in the literature
indicate optically thin cases (e.g., Ojha et al. 2001; Weiß et al.
2003). If this assumption does not hold, the true excitation
temperatures would be somewhat higher than those shown in
Figure 17(a).
In the classical picture of PDRs (e.g., Kaufman et al. 1999),

the [C I] line emission arises from a thin transition layer (of
~A 1V to a few) in a gas cloud, between C+ and CO. Recent

observations have indicated good spatial correspondence
between the [C I] 609 μm line emission and some low-J
rotational transitions from either CO or 13CO in molecular
clouds in our Galaxy (e.g., Ojha et al. 2001; Ikeda et al. 2002;
Beuther et al. 2014). This suggests that neutral carbon may be
found more ubiquitously throughout a molecular cloud than
previously thought, opening up the possibility of using one of
the [C I] lines as an alternative tracer for the mass of molecular
gas in distant galaxies (e.g., Papadopoulos & Greve 2004;
Papadopoulos et al. 2004). Figure 17(c) shows that, for our
LIRGs, the [C I] 370 μm to CO (7−6) ratio is strongly anti-
correlated with ( )C 60 100 over the full FIR color range
explored here. This ratio drops by at least a factor of 5 when C
(60/100) increases from 0.4 to 1.2. In contrast, the
[C I] 370 μm to CO (4−3) ratio in Figure 17(b) has a much
weaker overall dependence on C(60/100) based on those
sources with both [C I] 370 μm and CO (4−3) lines detected,
albeit with increased scatter. In general, as J decreases, the ratio
of [C I] 370 μm (or [C I] 609 μm) to the CO line of the upper
energy level J becomes less dependent on C(60/100). This
would be evident if one had replaced CO (7−6) in Figure 17(c)
with CO (5−4) or CO (6−5). This overall trend can also been
seen in our stacked spectra discussed later (see Figure 21 or
Table 7). These statistical results suggest that the [C I] line
emission in our LIRGs comes predominantly from regions of
molecular gas of moderate densities and temperatures, which
collectively represent the bulk of the molecular gas mass. It is
therefore promising to use the [C I] lines as an alternative
molecular gas mass tracer for galaxies at high redshifts.
In Figure 17(c), the dominant AGNs on average show a

higher [C I] 370 μm to CO (7−6) ratio than the SF-dominated
galaxies at a given C(60/100). However, such a systematic
difference is not evident in Figure 17(c), which is a plot of the
[C I] 370 μm line-to-IR luminosity ratio as a function of C(60/
100). This suggests that the “elevated” [C I] 370 μm to CO (7
−6) ratios seen in the dominant AGNs are likely due to the fact
that these dominant AGNs have relatively “depressed” CO (7
−6) to IR luminosity ratios, as discussed in Section 5.3.

5.7. Spectral Stacking and Fainter Lines

In view of the low detection rates of the fainter spectral lines,
we also co-added individual SPIRE/FTS spectra (after
registering them all in the rest-frame using a spline interpola-
tion along with the redshift inferred from the observed
frequency of the [N II] line) to increase sensitivity. Shown in
Figures 18–20 (i.e., top panel) are the stacked spectra within
three different FIR color bins. These are unweighted median
spectra, obtained in the frequency domain, where the instru-
mental resolution is frequency-independent. Since most of the
spectral lines are expected to be unresolved, there is little
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systematic effect from shifting a line in frequency. The

weighted median spectra would look similar when the weight

used was the inverse of the square of the average noise in SSW

or SLW. We prefer the median method over a weighted or

unweighted averaging method in order to be less biased to the

brightest galaxies in each FIR color bin. We marked the

frequency locations of all the main targeted lines and some of

the fainter lines in each spectrum, along with the sample

standard deviation (middle panel) and the number of individual

spectra (bottom panel) used in the stacking process at a given

frequency.
In Table 7, we give the peak line flux densities (or the 3-σ

upper limits), in units of relative Jy, for the CO, [N II], and [C I]

lines, as well as a set, of the H O2 line transitions and HF(1−0).

For an unresolved line, this peak flux density is proportional to

its line flux. The error bars at 1σ were estimated from the noise

in the stacked spectrum, and therefore do not reflect the

dispersion (shown in Panel (b) in Figures 18–20) among the

individual spectra that went into the stacking process. Our

stacking procedure was carried out using the point-source

calibrated spectra of individual sources regardless of angular

sizes. The frequency-dependent SPIRE/FTS beam could in
principle imprint its signature on the relative line fluxes across
the frequency range, especially between SSW and SLW, even

though the median filtering method we employed should
reduce this effect by filtering out those very extended sources
that tend to have smaller point-source line fluxes. To check on
this systematic effect, we performed the same stacking process
on a subset of the sources that are “compact” enough to satisfy

 >m ( )f 17 0.8070 m to see if this would result in a significantly

different CO or H O2 SLED shape. This additional selection
process threw out about half of the targets in the FIR cold color
bin (i.e., Figure 18), but only a few sources in the FIR warm
color bin (Figure 20). We found that the two stacking processes
produced similar CO and H O2 SLED shapes in each color bin.
Using Table 7, we show in Figure 21 plots of the line

intensity, normalized by that of CO (6−5), as a function of the
rest-frame line frequency for the CO lines (in red), the two [C I]

lines (black), the [N II] line (magenta), as well as a suite of H O2
lines (blue) and HF (1−0) (green) from the three stacked
spectra shown in Figures 18–20, respectively. A detected line is
plotted as a filled square whereas an undetected line is shown

Figure 17. Plots of various [C I] line-related luminosity ratios as a function of the FIR color for our galaxy sample: (a) [C I] 370 μm to [C I] 609 μm, (b) [C I] 370 μm
to CO (4−3), (c) [C I] 370 μm to CO (6−5), and (d) [C I] 370 μm to the total IR emission. In each plot, arrows indicate the 3σ limits when one line involved in the
ratio was undetected; the cases where both lines in the ratio were undetected are not included here. NGC 6240 and the known AGNs are further circled in blue and red,
respectively. The dotted lines in (a) show the implied gas excitation temperatures from the line ratio using an optically thin case. In (d), only those sources with

 >m ( )f 35 0.870 m are included.

25

The Astrophysical Journal Supplement Series, 230:1 (34pp), 2017 May Lu et al.



either as an upper limit if it is a CO line or as a range of±3σ if
it is a H2O line or HF (1−0). The CO (4−3) and CO (14−13)
lines are excluded here as both of them were stacked over fewer
individual spectra. Note that the [N II] line is not shown in (a)
or (b), as the line is too bright to fit within the plot. As a
comparison, we also plot, in each color bin, the CO SLED (in
red crosses) from the stacking of the subset of targets with

 >m ( )f 17 0.8070 m . For clarity, the crosses were manually

offset in frequency by −10 GHz. There appears to be no
significant difference between the two sets of CO SLEDs
shown here, especially in (a) and (b). The difference is
apparently larger for the warm FIR color bin in (c), but this is
largely due to the fact that the intrinsic scatter in individual CO
SLED shape is large in the first place (see Figure 11). The same
conclusion could have been drawn if we had done a similar
comparison on the H O2 SLEDs here. As a result, the relative
CO and H O2 line fluxes in Table 7 are not significantly affected
by the fact that the SPIRE/FTS beam varies significantly
across SSW and SLW.

The CO SLEDs from the stacked spectra in Figure 21 are
consistent with their corresponding median CO SLEDs based
on the brightest sample galaxies (see Figure 11 and Table 6).
This confirms that the average CO SLED shape is indeed
correlated primarily with the FIR color, not significantly
influenced by apparent flux or luminosity. Also note in
Figure 21 that, while the relative flux strength between
[C I] 370 μm and CO (7−6) varies greatly across the 3 FIR

colors, that between [C I] 370 μm and CO (5−4) varies much
less so. This reinforces our earlier conclusion that the ratio of
[C I] 370 μm to a CO line of the upper energy level J becomes
less dependent on C(60/100) as J decreases (see Figures 17(b)
and (c)). As a further application of the stacked spectra, we use
Figure 21 to study below how the relative strengths of H O2
lines vary as FIR color increases.

5.7.1. H2O Vapor Lines

While H2O is an abundant molecular species in the ISM, it
remains mostly as ice on dust grains (e.g., van Dishoeck et al.
2011). Only in warm molecular gas does it exist in vapor form
and can be detected in terms of its rotational transitions in
emission or absorption depending on the background con-
tinuum. These lines were detected by the Infrared Space
Observatory in a small number of galaxies, including Arp 220
(González-Alfonso et al. 2004), NGC 253, and NGC 1068
(Goicoechea et al. 2005), and Mrk 231 (González-Alfonso
et al. 2008). With the improved sensitivity of Herschel, the
sample of galaxies with H2O line detections has been expanded
to include additional bright galaxies and (U)LIRGs (e.g.,
González-Alfonso et al. 2010, 2012, 2013; Van der Werf et al.
2010; Weiß et al. 2010; Rangwala et al. 2011; Kamenetzky
et al. 2012; Spinoglio et al. 2012; Appleton et al. 2013). Yang
et al. (2013) collected a sample of 176 galaxies with either
published or unpublished SPIRE/FTS spectra and examined
simple flux–flux correlations between the luminosity of a water

Table 7

Line Intensities from Spectral Stacking Using a Median Methoda

(C(60/100) =0.3 to 0.6) (C(60/100) =0.6 to 0.9) (C(60/100) =0.9 to 1.4)

Line Freq. Peakb rmsb stdb npts Peakb rmsb stdb npts Peakb rmsb stdb npts
(GHz)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

CO (4–3) 461.041 1.409 0.048 1.05 47 1.503 0.042 4.97 47 1.179 0.051 2.55 14

[C I] 609 μm 492.161 0.877 0.048 0.59 50 0.750 0.042 2.26 52 0.559 0.051 0.70 23

CO (5–4) 576.268 1.399 0.048 0.87 50 1.535 0.042 5.30 52 1.200 0.051 2.20 23

CO (6–5) 691.473 1.020 0.048 0.75 50 1.424 0.042 4.91 52 1.576 0.051 2.16 23

H2O (211−202) 752.033 <0.144 0.048 0.24 50 0.192 0.042 0.65 52 0.243 0.051 1.25 23

CO (7–6) 806.652 0.800 0.048 0.72 50 1.428 0.042 4.75 52 1.535 0.051 2.47 23

[C I] 370 μm 809.342 1.353 0.048 0.86 50 1.389 0.042 5.02 52 0.971 0.051 1.57 23

CO (8–7) 921.800 0.634 0.048 0.70 50 1.021 0.042 4.33 52 1.625 0.051 2.65 23

H2O (202-111)
c 987.927 0.347 0.048 0.58 50 0.391 0.042 1.00 52 0.489 0.051 1.72 23

CO (9–8) 1036.912 0.407 0.051 0.50 50 0.991 0.046 2.76 52 1.257 0.049 2.07 23

H2O (312-303) 1097.365 <0.153 0.051 0.28 50 0.191 0.046 0.77 52 0.413 0.049 1.45 23

H2O (111-000) 1113.343 <0.153 0.051 0.35 50 <0.138 0.046 0.51 52 <0.147 0.049 1.65 23

CO (10–9) 1151.985 0.366 0.051 0.36 50 0.611 0.046 2.37 52 1.417 0.049 1.84 23

H2O (321-312) 1162.912 <0.153 0.051 0.35 50 0.301 0.046 1.22 52 0.550 0.049 2.78 23

H2O (422−413) 1207.639 <0.153 0.051 0.30 50 <0.138 0.046 0.51 52 0.278 0.049 1.02 23

H2O (220−211) 1228.789 0.171 0.051 0.40 50 0.265 0.046 0.88 52 0.250 0.049 1.34 23

HF (1–0) 1232.476 −0.208 0.051 0.50 50 <0.138 0.046 0.61 52 −0.163 0.049 1.87 23

CO (11–10) 1267.014 0.199 0.051 0.44 50 0.597 0.046 2.05 52 0.913 0.049 1.56 23

CO (12–11) 1381.995 <0.153 0.051 0.33 50 0.387 0.046 1.54 52 0.880 0.049 1.22 23

H2O (523−514) 1410.618 <0.153 0.051 0.32 50 <0.138 0.046 0.42 52 <0.147 0.049 0.66 23

[N II] 205 μm 1461.134 5.840 0.051 3.42 50 4.563 0.046 12.90 52 1.568 0.049 2.89 23

CO (13–12) 1496.923 <0.153 0.051 0.36 50 0.253 0.046 1.05 52 0.688 0.049 1.26 23

Notes.
a
The relative line peak flux densities listed here are from stacking of the point-source calibrated spectra of individual targets regardless of their source extension.

However, it is shown in the text (see Section 5.7) that the shape of the resulting CO and H O2 SLEDs should not be significantly impacted by the fact that the SPIRE/
FTS beam is frequency-dependent.
b
These are respectively the line peak flux density, the rms noise in continuum, and the sample standard deviation, all in units of relative Jy.

c
The line flux of H2O (202−111) was measured in the SLW spectral segment.
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line and LIR for a subset of 45 galaxies with at least one water
line detected. They found that, in general, the water line
luminosity scales nearly linearly with LIR and favored the IR
pumping plus collisional excitation model proposed by
González-Alfonso et al. (2010). However, if the water lines
from highly excited energy levels in (U)LIRGs are dominated
by IR photon pumping, one would expect the shape of the
SLED of the H O2 line emission to be highly sensitive to the
FIR color or dust temperature Tdust (or IR photon density)
(González-Alfonso et al. 2014a). However, such a trend was
not observed by Yang et al. (2013). We investigate this subject
further here.

Since the H2O lines were only detected in a fraction of our
sample galaxies, we chose to make use of the data in Table 7
from the stacked spectra. As shown in Figure 21, only two
individual H2O lines, H2O (202–111) and H2O (220–211), are
detected in all three stacked spectra. Both these lines show only
small variations in their CO (6−5)-normalized line flues: 0.28
to 0.34 for H2O (202–111) and 0.16 to 0.19 for H2O (220–202).
These two lines are characterized by their relatively low upper
energy levels of Eup=100–200 K. In contrast, such variations
are much larger for water lines with higher Eup. For example,
the CO (6−5)-normalized flux of H2O (321–312) (with

=E 305up K) increases from a value less than 0.15 in the
FIR cold subsample to a value of 0.35 in the FIR warm
subsample. Since the CO (6−5) line luminosity traces the total
SFR well, this quantitative observation suggests that, as C(60/
100) increases, only H2O emission lines associated with a high-
enough Eup are enhanced above the average line luminosity
per SFR.

We explore the above phenomenon further in Figure 22,
where we show the resulting H2O SLEDs from each of the
three stacked spectra by plotting the strength of a H2O line,
relative to that of H2O (202–111), as a function of the upper
level energy of that line. The H2O SLEDs of the 3 FIR color
bins are differentiated by different colors. (One can connect the
data points of the same color to see more clearly the differences
between the individual SLEDs.) It is evident that the H O2
SLED of the warmest FIR color bin of 0.9�C(60/100)<1.4
(shown in blue) is “tilted” more toward the high-Eup lines than
the H O2 SLED of the least warm FIR color bin of 0.3�C(60/
100)<0.6 (shown in red). In other words, as the FIR color
increases, the strengths of the water lines with >E 200up K are
increasingly enhanced relative to those of the water lines with
E 200up K. The clearest difference among the different FIR

color bins is seen in H2O(321–312) with ~E 300up K, where
the vertical displacement between the successive FIR color bins
has a significance of at least 2.5 times the uncertainty inferred
from the error bars shown. However, the most significant point
is that the observed pattern in Figure 22 is consistent with the
IR pumping model predictions by González-Alfonso et al.
(2014a), who showed that an increasing Tdust enhances the
relative strengths of the H2O lines of >E 200up K (see their
Figure 3).
The H2O line of the lowest Eup is H O2 (111–000) at

1113.3 GHz. This line is in absorption in more than half of the
detections, with the strong absorption case in Arp 220 (see
Figure 2) being a good example. In contrast, the H2O lines of
the highest Eup are almost always in emission in our sample,
e.g., H2O (321–312) and H2O (523–514). This contrast supports

Figure 18. Results from stacking individual SPIRE/FTS spectra of galaxies with 0.3 � C(60/100)<0.6: (a) the rest-frame, unweighted median spectrum; (b) the
sample standard deviation as a function of frequency; and (c) the number of spectra used in the stacking as a function of frequency. The frequency locations of our
main targeted lines, as well as a number of H O2 lines and HF (1−0), are marked in (a).
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the picture that lower-energy water lines are overall not
significantly affected by the IR pumping.

5.7.2. HF (1–0)

Despite its relatively low abundance in the ISM, Fluorine
(F) can react with molecular hydrogen (H2) to form HF,
which locks up most F atoms. If the F/H abundance ratio is
more or less fixed, the formation process of HF involving H2

implies that its number density may scale with that of H2,
thus can serve as an alternative tracer of the total molecular
mass (Neufeld et al. 2005). The lowest rotational transition,
HF (1−0), has a frequency of 1232.476 GHz, which is within
the SPIRE/FTS frequency coverage. The critical density for
collisional excitation of this transition with H2 is quite high,
at about ´5 1010 cm−3

(Neufeld et al. 2005). As a result, the
line is typically observed in absorption in the Milky Way
(e.g., Neufeld et al. 2010; Phillips et al. 2010; Sonnentrucker
et al. 2010, 2015; Monje et al. 2011). With the assumption
that most HF is in its ground rotational state, the observed
absorption line strength of HF (1−0) has been used to infer
the column density of HF along the line of sight, and thus,
indirectly, that of H2 (e.g., Neufeld et al. 2005; Monje et al.
2011, 2014). Recent Herschel observations of Mrk 231 (Van
der Werf et al. 2010), NGC 7130 (Pereira-Santaella et al.
2013), and the Orion Bar in our own Galaxy (Van der Tak
et al. 2012) have revealed that this line could be predomi-
nantly in emission. Possible excitation mechanisms for the
emission have been discussed in the literature, including
near-infrared radiative pumping, chemical pumping, and
collision with electrons (Van der Tak et al. 2012; Pereira-
Santaella et al. 2013), but with no consistent picture

emerging at this point. The observational fact that HF (1

−0) can be either in emission or absorption at a galactic level
suggests that it might be not straightforward to use the

observed flux of this line to infer the total molecular gas

content of a galaxy.
We can look to see whether there are any trends in the ratio

of the HF (1−0) flux to FIR or the underlying continuum for our

galaxy sample. To this end, we used a continuum flux based on
the more recent HIPE 14 flux calibration. While the line flux

calibration improved very marginally since HIPE 11, the

continuum flux calibration has improved significantly. We
further estimated the telescope residual continuum signal by

fitting a polynomial of the order of 5 to the median spectrum of

the surrounding detectors (i.e., for SLW, these are the five
detectors in the first detector ring; for SSW, these are the five

detectors in the second detector ring that also co-align spatially

with the aforementioned five SLW detectors; see Swinyard
et al. 2014). We can calculate the value of this polynomial

function at any given frequency. For our galaxy sample, the

mean value is about 0.1Jy over the SSW frequency range, with

a sample standard deviation of ∼0.2Jy. (This residual
telescope signal is much less in SLW.) This polynomial fit of

the telescope residual continuum was then subtracted from the

target spectrum extracted from the central detectors before any
continuum flux was measured. We then measured the median

continuum flux densities in two line-free frequency ranges:

1169–1221 GHz and 1273–1305 GHz (in the rest-frame),
which bracket the HF line in frequency. The continuum flux

density at the frequency of the HF line, derived as a linear

interpolation of these two flux densities, was used to calculate
the line EW.

Figure 19. Same as Figure 18, but using the sample galaxies with 0.6 � C(60/100)<0.9.
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If the HF (1−0) line was detected for a galaxy, its integrated

line flux was calculated using a sinc line profile and tabulated
in Table 5, where a negative flux denotes a line in absorption;

in the case of a non-detection we derived a 3σ upper limit for

the flux amplitude using the local noise level in the spectrum.

In Figure 23 we plot, as a function of the FIR color, (a) the ratio
of the absolute HF (1−0) luminosity to LIR and (b) the EW of

the absolute HF (1−0) line flux or its 3σ upper limit for our

sample galaxies. For a detected line, we use different colors to
separate an emission case (in red) from an absorption case (in

blue). The dominant AGNs as defined in Section 2.2 are further

circled in magenta. In either plot, there is no clear segregation
trend between the emission and absorption cases as C(60/100)
increases, nor any significant difference between the strong

AGNs and those dominated by SF. The emission and
absorption cases appear to be roughly equally represented in

our sample so that HF (1−0) is either undetected or only

marginally detected in our stacked spectra (see Figure 21). One

conjecture is that the observed HF (1−0) line is a net of
individual emission and absorption sites along the line of sight

and could be in either emission or absorption depending on

whether the emission sites collectively outnumber the absorp-
tion sites. Without a good understanding of the physical picture

behind the integrated HF (1−0) line flux, it is rather uncertain

to use the observed HF line flux to infer the molecular gas mass
of a galaxy, especially at high redshift where the spatial

resolution is usually poor.
There could be possibly a weak trend for a lower absolute

HF (1−0) luminosity to LIR ratio on average at a higher C(60/
100) in Figure 23(a). However, the fact the emission and
absorption cases of HF (1−0) are well mixed in Figure 23(a)

makes it challenging to draw any meaningful inference from
such a trend. Figure 23(a) shows that, of all the emission cases
we detected, the LHF/LIR is the largest (» ´ -1.3 10 5) in the
case of IRAS 05442+1732. On the other hand, the strongest
absorption case in Figure 23(b) is NGC 0023, which has an EW
of 106 (±16) -km s 1.

6. Summary

In this paper we presented a Herschel SPIRE 194–671 μm
spectroscopic survey of 121 galaxies belonging to a complete,
flux-limited sample of 123 LIRGs down to a total IR flux of
´ -6.5 10 13Wm−2, selected from the GOALS. This program

complements the other two Herschel surveys on the GOALS
sample: a broadband photometric survey at 70, 100, 160, 250,
350, and 500 μm (J. Chu et al. 2017, in preparation) and a
spectroscopic line survey of some major FIR fine-structure
lines (Díaz-Santos et al. 2013).
From the SPIRE spectra presented here, we derived and

tabulated the integrated line fluxes or upper limits for (a) the
CO rotational transitions of J to J−1 over 4� J� 13, being
most complete for the CO lines in the mid-J regime (i.e.,
5� J� 10), (b) the fine-structure [N II] line at 205 μm, with a
detection completeness at nearly 100%, and (c) the two fine-
structure lines of the neutral carbon in its ground state, [C I] at
609 and 370 μm, with a very high detection completeness for
the 370 μm line. We also tabulated additional (usually fainter)
spectral lines detected in many individual targets, such as some
of the rotational transitions of H O2 vapor and HF(1−0), the
J=1 to 0 rotational transition of hydrogen fluoride. The [N II]

data presented here have been statistically analyzed in detail in
Zhao et al. (2013, 2016a).

Figure 20. Same as Figure 19, but using the sample galaxies with 0.9 � C(60/100)<1.4.
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We found that the overall shape of a CO SLED over
4� J� 13 is much better correlated with FIR color than with
IR luminosity LIR. From this we inferred that the intensity of
the dust heating radiation field is the main determinant of the
overall excitation temperature of dense molecular gas in these
galaxies. The CO-line-to-IR-luminosity ratios presented here
confirm our earlier analysis (Lu et al. 2014), calling for a
minimum of two distinct galactic molecular gas components:
(i) a cold component, which emits the CO lines primarily at
J4 and likely represents the same gas phase as traced by
CO (1−0), and (ii) a warm and dense gas component, dominant
over the mid-J regime (4<J10), which is intimately
related to current SF.

Based on a quantitative estimate of the fractional contrib-
ution of AGN to the bolometric luminosity, fAGN, we singled
out a set of seven dominant AGNs with >f 50%AGN . The
mid-J CO SLEDs of these dominant AGNs are statistically
identical to those of the galaxies dominated by SF, but on
average have a lower mid-J CO-to-IR-luminosity ratio.
Considering the galaxy sample as a whole (excluding NGC
6240), we observe an overall trend toward a falling mid-J CO-
to-IR-luminosity ratio with increasing fAGN. Combining our
SPIRE/FTS data with CO data of J>13 from the literature,
we further illustrated that the lower mid-J CO-to-IR ratios of
these dominant AGNs are likely a result of an excess of CO

emission in the J>10 CO lines, likely associated with AGN

heating of molecular gas. As a result, the mid-J CO line

emission in a LIRG is predominantly powered by SF,

irrespective of whether the galaxy harbors an energetic AGN

or not.
NGC 6240 is a clear outlier in our sample with a mid-J CO-

to-IR luminosity ratio much higher than that of any other

galaxy in the sample. We argued that the likely gas heating

scenario in NGC 6240 involves shocks unrelated to current SF.
The relatively tight correlation between the mid-J CO line

emission and the total IR emission for our LIRGs implies that

the shape of the local LF of a mid-J CO line should be close to

that of LIR except for a constant scale factor in luminosity. The

CO (7−6) LF determined this way differs significantly from a

PDR-model-based LF, suggesting either that the PDR heating

mechanism may need to be revised or that it may not be the

dominant heating mechanism for this warm molecular gas

phase.
The ratios of the two neutral carbon lines imply a relatively

modest excitation temperature, ranging from 15 to 30 K. This,

together with the fact that the [C I] line flux scales more linearly

with CO (4−3) than with a higher-J CO line (e.g., CO (7−6)),

suggests that the [C I] line emission is physically more related

to the cold CO component (i) defined above.

Figure 21. Panels (a) to (c) are plots of the line intensity or its upper limit, normalized by the intensity of CO (6−5), as a function of the line frequency, for the CO
lines (in red), the two [C I] lines (black), the [N II] line (magenta), as well as a suite of H O2 lines (blue) and HF(1−0) (green) from the three stacked spectra shown in
Figures 18–20, respectively. The normalized [N II] line fluxes are 5.72, 3.20, and 1.00 in (a), (b) and (c), respectively. Therefore this line is off the scale in both (a) and
(b). Detected lines are shown as filled squares. For an undetected CO line, its 3σ upper limit is plotted; for an undetected H O2 or HF (1−0) line, its±3σ range is
shown to enclose both emission and absorption possibilities. Some of the lines are labeled in (a) to guide line identifications. For the CO lines, we also show the results
(in red crosses) from a similar stacking procedure, but there results are limited to the subset of “compact” targets with  >m ( )f 17 0.8070 m . For clarity, this second CO

data set is offset by −10 GHz along the frequency axis in each plot.
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To better measure some of the fainter lines in the SPIRE
spectra, we derived stacked spectra of three subsamples of
different FIR colors. Our results indicate an evolution of the
H O2 SLED as the FIR color becomes warmer in a direction that
is consistent with an IR photon pumping framework suggested
by González-Alfonso et al. (2014a).

The HF (1−0) line was detected in emission in some
sources, but in absorption in others. No correlation with the
FIR color was identified. This, together with the fact that HF(1
−0) is only barely detected in our stacked spectra, suggests that
both emission and absorption may be present in any given
galaxy. As a result, it is not straightforward to use the observed
HF(1−0) line strength (in either absorption or emission) to
estimate the total molecular gas mass in a galaxy.
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Appendix
Notes on Infrared Luminosities of Targets with

Companions

The targets in Table 1 with their LIR value marked by “(
*
)”

are all in a (either physical or projected) system of multiple

galaxies based on optical and near-IR imaging data (see Howell
et al. 2010; and for an updated work on this, see J. M.

Mazzarella et al. 2017, in preparation). When the angular

separations from the galaxy targeted by our SPIRE/FTS
observation to the companions are all (a) larger than the largest

IRASbeam (i.e., ∼4′) or (b) smaller than or comparable to the

smallest beam size of SPIRE/FTS (i.e., ∼17″), we used the

IRAS-measured total LIR for our target. For a case in between
(a) and (b), we used a reduced LIR scaled from the IRAStotal
LIR using either the Spitzer Space Observatory (hereafter

Spitzer) 70 μm or 24 μm fluxes of the individual galaxies

(Díaz-Santos et al. 2010, 2011). If the individual galaxies in the

system are separated in the Spitzer70 μm image, the 70 μm
flux-scaled luminosities were always preferred. In this

appendix, we describe how we derived LIR in each of these

cases. Note that, regardless of how LIR was derived, the FIR
color, C(60/100), is still based on the IRAStotal fluxes unless
specified otherwise. Therefore, the adopted value of C(60/100)
is dominated by the brightest individual galaxy in the system.

In most case, this brightest galaxy is the target in our SPIRE/
FTS observation.

NGC 0034: This is a LIRG in a galaxy pair with NGC 0035

(a non-LIRG) at an angular separation of 318″. We used the
IRAStotal LIR for our target.

Figure 22. Plot of the line intensity as a function of the line upper level energy for the H2O lines listed in Table 7. As noted in the legend, the data points are color-
coded to differentiate which of the three stacked spectra they belong to. The intensity of each line plotted has been normalized by that of H2O ( –2 102 11) at 987.927 GHz
from the same stacked spectrum. For visual clarity, a small offset along the X-axis was placed between the data sets shown in different colors. The individual H2O
transitions are labeled in the plot. Note that the 3σ upper limit shown for a non-detection also constrains the amplitude of the subject line if it is in absorption.
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MCG -02-01-051: This is a LIRG in a galaxy pair with MCG
-02-01-052 (a non-LIRG) at an angular separation of 64″.

We used a 24 μm flux scaled LIR for our target, which

accounts for 91% of the IRAStotal LIR.
NGC 0232: This is a LIRG in a pair with NGC 0235 (a non-

LIRG) at an angular separation of 121″. The LIR and the FIR

color of this target were derived from IRAShigh-resolution
data in Surace et al. (2004).
NGC 0317B: This is a LIRG in a pair with NGC 0317A (a
non-LIRG) at an angular separation of 33″. We used a 24 μm
flux scaled LIR for the target, which accounts for 98% of the

IRAStotal LIR.
IC 1623: This refers to the galaxy pair involving IC 1623A

and IC 1623B, separated by 12″. We used the IRAStotal
LIR here.
ESO 244-G012: This refers to a galaxy pair involving two
galaxies, one LIRG and one non-LIRG, separated by 17″.

We used IRAStotal LIR here.
NGC 0876: This is in a pair with NGC 0877 at an angular

separation of 123″. We used a 70 μm flux scaled LIR for our

target, which accounts for 75% of the IRAStotal LIR. Note
that the resulting LIR is just below the threshold for being

a LIRG.
MCG +02-08-029: This is in a pair with MCG +02-08-030

(a non-LIRG) at an angular separation of 22″. We used a

24 μm flux scaled LIR for our target, which accounts for 98%
of the IRAStotal LIR.

UGC 02608: This is in a projected pair with a much fainter
galaxy UGC 02612 with an angular separation of 247″. We
used the IRAStotal LIR for our target.
IRAS 05223+1908: The CO lines in the SPIRE/FTS
spectrum of this target can be best fit with a heliocentric
velocity of 100 -km s 1. The PACS image at 100 μm (J. Chu
et al. 2017, in preparation) reveals three separate sources
within ∼40″ of the targeted position of our SPIRE/FTS
observation: Object 1 (at R.A.=5h25m16 69, decl.=19°
10′48 7; J2000), Object 2 (5h25m17 75, 19°10′12 2), and
Object 3 (5h25m16 40, 19°10′35 9). Our SPIRE/FTS
observation was pointed at Object 1. At 39″ away from
Object 1, Object 2 is largely outside the SPIRE/FTS beam.
Object 3 is only at 13″ from Object 1 and should contribute
to the observed SPIRE/FTS spectrum. However, Object 3 is
very red in color, with PACS flux densities of 0.12, 0.81 and
2.72Jy at 70, 100, and 160 μm, respectively. Our checks of
the archived images from the Hubble Space Telescope, the
Two-Micron All Sky Survey and Spitzer in some near- to
mid-IR bands between 1.6 and 8 μm in wavelength revealed
no detections of this source, with quite stringent near-IR
upper limits (e.g., a 3σ limit of 27 mJy at 3.6 μm). All these
findings suggest that Object 3 is unlikely to be a Galactic
source. Therefore, the CO lines detected in our SPIRE/FTS
spectrum should be largely from Object 1, which should then
be a Galactic source. If Object 3 is indeed an extragalactic
object, its extremely red FIR color calls for a very high

Figure 23. Plots as a function of the FIR color of (a) the ratio of the absolute HF(1−0) luminosity to LIR and (b) the equivalent width (EW) of the absolute HF(1−0)
line flux for our sample galaxies. The emission and absorption cases of detections are shown in red and blue, respectively. For non-detections, the 3σ upper limits are
shown in black. The dominant AGNs are further circled in magenta. In (a), only those targets compact enough (i.e., with  >m ( )f 17 0.870 m ) are plotted; in (b) the

whole sample is shown. Two galaxies (IRAS 05442+1732 and NGC 23), which are discussed in the text, as well as a few well-known individual galaxies, are labeled
in the plots.
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redshift (e.g., 3). However, this inference seems to conflict
with its relatively high PACS fluxes. Object 2 shows a
quiescent FIR color based on its PACS flux densities of 1.97,
2.95, and 3.38Jy at 70, 100. and 160 μm, respectively. The
IRAS 05223+1908 system was detected in H I 21 cm line
emission at a heliocentric velocity of 8867 -km s 1 with the
Arecibo radio telescope (Lu et al. 1990). This H I emission
might come from Object 2, as the 3 2 Arecibo beam
enclosed all the three objects here.
IRAS 05442+1732: This is a pair with UGC 03356 (a non-
LIRG) at an angular separation of 85″. We used a 70 μm flux
scaled LIR for our target, which accounts for 88% of the
IRAStotal LIR.
UGC 03410: This is in a pair with UGC 03405 (a non-LIRG)

at an angular separation of 124″. We used a 70 μm flux
scaled LIR, which accounts for 83% of the IRAStotal LIR.
ESO 255-IG 007: This refers to two galaxies in a triple-galaxy
system. In terms of the 24 μm flux scaled LIR, these galaxies
are (a) ´ L6.04 1011 (position: =R.A. 6 27 21. 70h m s ,

decl.=−47°10′36 2; J2000), (b) ´ L1.19 1011 (position:

6 27 22. 55h m s , −47°10′47 3), (c) ´ L6.63 1010 (position:

6 27 23. 09h m s , −47°11′02 6). Our SPIRE/FTS observation
was pointed at the brightest galaxy (a). The galaxies (b) and
(c) are 14″ and 30″ off our pointing, respectively. We
therefore used the summed luminosity of the two LIRGs (a)
and (b) in Table 1.
NGC 2341: This is in a pair with NGC 2342 at an angular
separation of 144″. We used the IRAShigh resolution data in
Surace et al. (2004) to calculate the LIR and FIR color for this
target.
NGC 2342: See the note on NGC 2341 above.
NGC 2388: This target has two companion galaxies: NGC
2389 at an angular offset of 202″ and NGC 2385 at 323″ off.
We used the IRAStotal LIR for our target.
MCG -02-33-098: This refers to a pair system of one LIRG
and one non-LIRG, separated by 11″. The LIRG component
accounts for 70% of the IRAStotal LIR. we used the
IRAStotal LIR here.
NGC 5653: There is a companion galaxy at about 10″ west
of NGC 5653, but the companion is much fainter. We used
the IRAStotal LIR here.
NGC 5734: This is in a pair with NGC 5743 (a non-LIRG)

with an angular separation of 158″. We used the IRAShigh-
resolution data in Surace et al. (2004) to calculate the LIR and
FIR color for this target.
VV 340a: This is in a pair with VV340b at an angular
separation of 39″. Both galaxies are LIRGs. We used a
70 μm flux scaled LIR for our target, which accounts for 82%
of the IRAStotal LIR.
IC 4518A: This is in a pair with IC 4518B (a non-LIRG) at
an angular separation of 45″. We used a 70 μm flux scaled
LIR for our target, which accounts for 84% of the
IRAStotal LIR.
VV 705: This refers to a pair of two LIRGs with an angular
separation of 7″. We used the IRAStotal LIR here.
CGCG 052-037: This is in a pair with 2MASX J16381338-
6827170 (a non-LIRG) at an angular separation of 68″. We
used a 70 μm flux scaled LIR for our target, which accounts
for 97% of the IRAStotal LIR.
NGC 6285: In a pair with NGC 6286 (a LIRG) with an
angular separation of 91″. We used the IRAShigh resolution
fluxes from Surace et al. (2004) to calculate the LIR and FIR

color for this target. The resulting LIR suggests that NGC
6285 is just short of being a LIRG.
NGC 6286: In a pair with NGC 6285 (a non-LIRG) with an
angular separation of 91″. We used the IRAShigh resolution
fluxes from Surace et al. (2004) to calculate the LIR and FIR
color for this target.
IRAS 17578-040: This has two non-LIRG companions:
2MASX J18003399-0401443 (at 60″ off our SPIRE/FTS
pointing) and 2MASX J18002449-040023 (at 113″ off). We
used a 70 μm flux scaled LIR for our target, which accounts
for 83% of the IRAStotal LIR for the system.
NGC 6621: This is in the Arp 81 galaxy group involving two
other non-LIRG galaxies: NGC 6621SE (at 25″ off our
SPIRE/FTS pointing) and NGC 6622 (at 41″ off). We used a
24 μm flux-scaled LIR for our target, which accounts for 97%
of the IRAStotal LIR.
IC 4687: This is in a galaxy system involving two other
galaxies: IC 4689 (a non-LIRG at 84″ off our SPIRE/FTS
pointing) and IC 4686 (a LIRG at 28″ off). We used a 24 μm
flux-scaled LIR for our target, which accounts for 54% of the
IRAStotal LIR for the system.
MCG +04-48-002: This is in a pair with NGC 6921 (a non-
LIRG) at an angular separation of 91″. We used a 70 μm
flux-scaled LIR for our target, which accounts for 78% of the
IRAStotal LIR.
CGCG 448-020: This refers to a triple-galaxy system
consisting of two LIRGs (CGCG 448-020SEsw at

=R.A. 20 57 24. 09h m s , and decl.=+17°07′35 2, J2000;
CGCG 448-020SEne at 20 57 24. 38h m s and +17°07′39 2)
and a non-LIRG galaxy (CGCG 448-020NE at 20 57 23. 65h m s

and +17°07′44 1). All the galaxies are within 12″ of each
other. We used the IRAStotal LIR for this target.
NGC 7469: In a pair with IC 5283 (a non-LIRG) at an
angular separation of 79″. We used a 70 μm flux-scaled LIR
for our target, which accounts for 86% of the IRAStotal LIR.
NGC 7592: This refers to a galaxy pair consisting of
NGC 7285E and NGC 7592W at an angular separation of
12″. Both galaxies are LIRGs based on their 24 μm fluxes.
We used the IRAStotal LIR.
NGC 7674: This is in a pair with NGC 7674A (a non-LIRG)

at an angular separation of 34″. We used a 24 μm flux-scaled
LIR for our target, which accounts for 96% of the
IRAStotal LIR.
NGC 7679: This is in a pair with NGC 7678 at an angular
separation of 271″. We used the IRAStotal LIR for our target.
NGC 7771: This is in a triple-galaxy system with NGC 7769
and NGC 7770. Only NGC 7771 is a LIRG based on the
24 μm imaging photometry. NGC 7769 is too far away to
have meaningful contribution to the IRASfluxes. The
separation between NGC 7771 and NGC 7770 is 61″. We
therefore split the IRAStotal LIR between these two galaxies
based on their 24 μm fluxes. The resulting LIR of NGC 7771
accounts for 76% of the IRAStotal LIR.
Mrk 331: This is in a pair with UGC 12812 (a non-LIRG) at
an angular separation of 118″. We used a 24 μm flux scaled
LIR for our target, which accounts for 99% of the
IRAStotal LIR.

References

Alatalo, K., Blitz, L., Young, L. M., et al. 2011, ApJ, 735, 88
Alonso-Herrero, A., Rieke, G. H., Rieke, M. J., & Scoville, N. Z. 2000, ApJ,

532, 845

33

The Astrophysical Journal Supplement Series, 230:1 (34pp), 2017 May Lu et al.

https://doi.org/10.1088/0004-637X/735/2/88
http://adsabs.harvard.edu/abs/2011ApJ...735...88A
https://doi.org/10.1086/308622
http://adsabs.harvard.edu/abs/2000ApJ...532..845A
http://adsabs.harvard.edu/abs/2000ApJ...532..845A


Alonso-Herrero, A., Roche, P. F., Esquej, P., et al. 2013, ApJL, 779, L14
Aniano, G, Draine, B. T., Gordon, K. D., & Sandstrom, K. 2011, PASP, 123, 1218
Appleton, P. N., Guillard, P., Boulanger, F., et al. 2013, ApJ, 777, 66
Armus, L., Mazzarella, J. M., Evans, A. S., et al. 2009, PASP, 121, 559
Bayet, E., Gerin, M., Philips, T. G., & Contursi, A. 2009, MNRAS, 399, 264
Beuther, H., Ragan, S. E., Ossenkopf, V., et al. 2014, A&A, 571, A53
Buat, V., & Deharveng, J. M. 1988, A&A, 195, 60
Büttgenbach, T. H., Keene, J., Phillips, T. G., & Walker, C. K. 1992, ApJL,

397, L15
Caputi, K. I., Lagache, G., Yan, L., et al. 2007, ApJ, 660, 97
Carilli, C. L., & Walter, F. 2013, ARA&A, 51, 105
da Cunha, E., Groves, B., Walter, F., et al. 2013, ApJ, 766, 13
Daddi, E., Elbaz, D., Walter, F., et al. 2010, ApJ, 714, 118
Della Ceca, R., Ballo, L., Tavecchio, F., et al. 2002, ApJL, 581, L9
Díaz-Santos, T., Armus, L., Charmandaris, V., et al. 2013, ApJ, 774, 68
Díaz-Santos, T., Armus, L., Charmandaris, V., et al. 2014, ApJ, 788, 17
Díaz-Santos, T., Armus, L., Charmandaris, V., et al. 2017, ApJ, submitted
Díaz-Santos, T., Charmandaris, V., Armus, L., et al. 2010, ApJ, 723, 993
Díaz-Santos, T., Charmandaris, V., Armus, L., et al. 2011, ApJ, 741, 32
Draine, B. T., & Li, A. 2007, ApJ, 657, 810
Elbaz, D., Dickinson, M., Hwang, H. S., et al. 2010, A&A, 533, A119
Feruglio, C., Fiore, F., Maiolino, R., et al. 2013a, A&A, 549, A51
Feruglio, C., Fiore, F., Piconcelli, E., et al. 2013b, A&A, 558, A87
Gao, Y, & Solomon, P. M. 1999, ApJL, 512, L99
Gao, Y, & Solomon, P. M. 2014, ApJ, 606, 271
Genzel, R., Tacconi, L. J., Gracia-Carpio, J., et al. 2010, MNRAS, 407, 2091
Gerin, M., & Phillips, T. G. 2000, ApJ, 537, 644
Gilli, R., Norman, C., Vignali, C., et al. 2014, A&A, 562, 67
Goicoechea, J., Martín-Pintado, J., & Cernicharo, J. 2005, ApJ, 619, 291
González-Alfonso, E., Fischer, J., Aalto, S., & Falstad, N. 2014a, A&A, 567, A91
González-Alfonso, E., Fischer, J., Bruderer, S., et al. 2013, A&A, 550, A25
González-Alfonso, E., Fischer, J., Graciá-Carpio, J., et al. 2012, A&A, 541, A4
González-Alfonso, E., Fischer, J., Graciá-Carpio, J., et al. 2014b, A&A,

561, A27
González-Alfonso, E., Fischer, J., Isaak, K., et al. 2010, A&A, 518, 43
González-Alfonso, E., Smith, H. A., Ashby, M. L. N., et al. 2008, ApJ,

675, 303
González-Alfonso, E., Smith, H. A., Fischer, J., & Cernicharo, J. 2004, ApJ,

613, 247
Greve, T. R., Leonidaki, I., Xilouris, E. M., et al. 2014, ApJ, 794, 142
Griffin, M. J., Abergel, A., Abreu, A., et al. 2010, A&A, 518, L3
Gruppioni, C., Pozzi, F., Rodighiero, G., et al. 2013, MNRAS, 432, 23
Haan, S., Armus, L., Laine, S., et al. 2011, ApJS, 197, 27
Hailey-Dunsheath, S., Sturm, E., Fischer, J., et al. 2012, ApJ, 755, 57
Harrison, A., Puxley, P., Russell, A., & Brand, P. 1995, MNRAS, 277, 413
Heckman, T. M., Armus, L., & Miley, G. K. 1987, AJ, 93, 276
Helou, G. 1986, ApJL, 311, L33
Henkel, C., Peck, A. B., Tarchi, A., et al. 2005, A&A, 436, 75
Howell, J. H., Armus, L., Mazzarella, J. M., et al. 2010, ApJ, 715, 572
Ikeda, M., Oka, T., Tatematsu, K., Sekimoto, Y., & Yamamoto, S. 2002, ApJS,

139, 467
Inami, H., Armus, L., Charmandaris, V., et al. 2013, ApJ, 777, 156
Israel, F. P., & Baas, F. 2002, A&A, 383, 82
Iwasawa, K., Sanders, D. B., Teng, S. H., et al. 2011, A&A, 529, A106
Kamenetzky, J., Glenn, J., Rangwala, N., et al. 2012, ApJ, 753, 70
Kamenetzky, J., Rangwala, N., Glenn, J., Maloney, P. R., & Conley, A. 2016,

ApJ, 829, 93
Kaufman, M. J., Wolfire, M. G., Hollenbach, D. J., & Luhman, M. L. 1999,

ApJ, 527, 795
Lagos, C. P., Bayet, E., Baugh, C. M., et al. 2012, MNRAS, 426, 2142
Lanz, L., Ogle, P. M., Evans, D., et al. 2015, ApJ, 801, 17
Laurent, O, Mirabel, I. F., Charmandaris, V., et al. 2000, A&A, 359, 887
Le Flóch, E., Papovich, C., Dole, H., et al. 2005, ApJ, 632, 169
Leech, J., Isaak, K. G., Papadopoulos, P. P., Gao, Y., & Davis, G. R. 2010,

MNRAS, 406, 1364
Liu, D., Gao, Y., Isaak, K., et al. 2015, ApJL, 810, L14
Lu, N., Dow, M. W., Houck, J. R., Salpeter, E. E., & Lewis, B. M. 1990, ApJ,

357, 388
Lu, N., Zhao, Y., Xu, C. K., et al. 2014, ApJL, 787, L23
Lu, N., Zhao, Y., Xu, C. K., et al. 2015, ApJL, 802, L11
Lutz, D., Berta, S., Contursi, A., et al. 2016, A&A, 591, A136
Magnelli, B., Elbaz, D., Chary, R. R., et al. 2009, A&A, 496, 57
Magnelli, B., Elbaz, D., Chary, R. R., et al. 2011, A&A, 528, A35
Markwardt, C. B. 2009, adass XVIII, 411, 251
Mashian, N., Sturm, E., Sternberg, A., et al. 2015, ApJ, 802, 81
Max, C. E., Canalizo, G., Macintosh, B. A., et al. 2005, ApJ, 621, 738

Meijerink, R., Kristensen, L. E., Weiß, A., et al. 2013, ApJL, 762, L16
Monje, R. R., Emprechtinger, M., Phillips, T. G., et al. 2011, ApJ, 734, 23
Monje, R. R., Lord, S., Falgarone, E., et al. 2014, ApJ, 785, 22
Murphy, E. J., Stierwalt, S., Armus, L., Condon, J. J., & Evans, A. S. 2013,

ApJ, 768, 2
Muzzin, A., van Dokkum, P., Kriek, M., et al. 2010, ApJ, 725, 742
Neufeld, D. A., Sonnentrucker, P., Phillips, T. G., et al. 2010, A&A, 518, L108
Neufeld, D. A., Wolfire, M., & Schilke, P. 2005, ApJ, 628, 260
Ogle, P., Boulanger, F., Guillard, P., et al. 2010, ApJ, 1193
Ojha, R., Stark, A. A., Hsieh, H. H., et al. 2001, ApJ, 548, 253
Ott, S. 2010, in ASP Conf. Ser. 434, Astronomical Data Analysis Software and

Systems XIX, ed. Y. Mizumoto, K. Morita, & M. Ohishi (San Francisco,
CA: Astronomical Society of the Pacific), 139

Panuzzo, P., Rangwala, N., Rykala, A., et al. 2010, A&A, 518, L37
Papadopoulos, P. P., & Greve, T. R. 2004, ApJL, 615, L29
Papadopoulos, P. P., Thi, W.-F., & Viti, S. 2004, MNRAS, 351, 147
Papadopoulos, P. P., van der Werf, P., Xilouris, E., Isaak, K. G., & Gao, Y.

2012, ApJ, 751, 10
Papadopoulos, P. P., Zhang, Z.-Y., Xilouris, E. M., et al. 2014, ApJ, 788, 153
Pellegrini, E. W., Smith, J. D., Wolfire, M. G., et al. 2013, ApJL, 779, L19
Pereira-Santaella, M., Spinoglio, L., Busquet, G., et al. 2013, ApJ, 768, 55
Petric, A. O., Armus, L., Howell, J., et al. 2011, ApJ, 730, 28
Petty, S. M., Armus, L., Charmandaris, V., et al. 2014, AJ, 148, 111
Phillips, T. G., Bergin, E. A., Liz, D. C., et al. 2010, A&A, 518, 109
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1
Poglitsch, A., Waelkens, C., Geis, N., et al. 2010, A&A, 518, L2
Privon, G. C., Herrero-Illana, R., Evans, A. S., et al. 2015, ApJ, 814, 39
Rangwala, N., Maloney, P. R., Glenn, J., et al. 2011, ApJ, 743, 94
Rawle, T. D., Egami, E., Bussmann, R. S., et al. 2014, ApJ, 783, 59
Riechers, D. A., Bradford, C. M., Clements, D. L., et al. 2013, Natur, 496, 329
Rigopoulou, D., Hurley, P. D., Swinyard, B. M., et al. 2013, MNRAS, 434, 2051
Rosenberg, M. J. F., Kazandjian, M. V., van der Werf, P. P., et al. 2014a,

A&A, 564, A126
Rosenberg, M. J. F., Meijerink, R., Israel, F. P., et al. 2014b, A&A, 568, A90
Rosenberg, M. J. F., van der Werf, P. P., Aalto, S., et al. 2015, A&A, 568, A90
Rujopakarn, W., Rieke, G. H., Eisenstein, D. J., & Juneau, S. 2011, ApJ,

726, 93
Sakamoto, K., Aalto, S., Costagliola, F., et al. 2013, ApJ, 764, 42
Sanders, D. B., Mazzarella, J. M., Kim, D.-C., & Surace, J. A. 2003, ApJ,

126, 1607
Sanders, D. B., & Mirabel, I. F. 1996, ARA&A, 34, 749
Sanders, D. B., Scoville, N. Z., & Soifer, B. T. 1991, ApJ, 370, 158
Sargent, A. L., & Scoville, N. 1991, ApJL, 366, L1
Schilke, P., Carlstrom, J. E., Keene, J., & Phillips, T. 1993, ApJL, 417, L67
Schirm, M. R. P., Wilson, C. D., Parkin, T. J., et al. 2014, ApJ, 781, 101
Scoville, N., Sheth, K., Walter, F., et al. 2015, ApJ, 800, 70
Sonnentrucker, P, Neufeld, D. A., Phillips, T. G., et al. 2010, A&A, 521, L12
Sonnentrucker, P, Wolfire, M., Neufeld, D. A., et al. 2015, ApJ, 806, 49
Spaans, M., & Meijerink, R. 2008, ApJL, 678, L5
Spinoglio, L., Pereira-Santaella, M., Busquet, G., et al. 2012, ApJ, 758, 108
Stierwalt, S., Armus, L., Charmandaris, V., et al. 2014, ApJ, 790, 124
Stierwalt, S., Armus, L., Surace, J. A., et al. 2013, ApJS, 206, 1
Stutzki, J, Graf, U. U., Haas, S., et al. 1997, ApJL, 477, L33
Surace, J. A., Sanders, D. B., & Mazzarella, J. M. 2004, ApJ, 127, 3235
Swinyard, B. M., Polehampton, E. T., Hopwood, R., et al. 2014, MNRAS,

440, 3658
Tacconi, L. J., Genzel, R., Tecza, M., et al. 1999, ApJ, 524, 732
Tarchi, A., Castangia, P., Henkel, C., & Menten, K. M. 2007, NewAR, 51, 67
Telesco, C. M., & Decher, R. 1988, ApJ, 334, 573
U, V., Sanders, D. B., Mazzarella, J. M., et al. 2012, ApJS, 203, 9
Van der Tak, F. F. S., Ossenkopf, V., Nagy, Z., et al. 2012, A&A, 537, L10
van der Werf, P. P., Isaak, K. G., Meijerink, R., et al. 2010, A&A, 518, L42
van Dishoeck, E. F., Kristensen, L. E., Benz, A. O., et al. 2011, PASP, 123, 138
Veilleux, S., Pupke, D. S. N., Kim, D.-C., et al. 2009, ApJS, 182, 628
Weiß, A., Henkel, C., Downes, D., & Walter, F. 2003, A&A, 409, L41
Weiß, A., Requena-Torres, M. A., Güsten, R., et al. 2010, A&A, 521, L1
Wu, J., Evans, N. J., II, Gao, Y., et al. 2005, ApJ, 635, 173
Wu, R., Madden, S. C., Galliano, F., et al. 2015, A&A, 575, A88
Wu, R., Polehampton, E. T., Etxaluze, M., et al. 2013, A&A, 556, A116
Xu, C. K, Cao, C., Lu, N., et al. 2014, ApJ, 787, 48
Xu, C. K., Cao, C., Lu, N., et al. 2015, ApJ, 799, 11
Yang, C., Gao, Y., Omont, A., et al. 2013, ApJL, 771, L24
Yao, L., Seaquist, E. R., Kuno, N., & Dunne, L. 2003, ApJ, 588, 771
Zhao, Y., Lu, N., Xu, C. K., et al. 2013, ApJL, 765, L13
Zhao, Y., Lu, N., Xu, C. K., et al. 2016a, ApJ, 819, 69
Zhao, Y., Lu, N., Xu, C. K., et al. 2016b, ApJ, 820, 118

34

The Astrophysical Journal Supplement Series, 230:1 (34pp), 2017 May Lu et al.

https://doi.org/10.1088/2041-8205/779/1/L14
http://adsabs.harvard.edu/abs/2013ApJ...779L..14A
https://doi.org/10.1086/662219
http://adsabs.harvard.edu/abs/2011PASP..123.1218A
https://doi.org/10.1088/0004-637X/777/1/66
http://adsabs.harvard.edu/abs/2013ApJ...777...66A
https://doi.org/10.1086/600092
http://adsabs.harvard.edu/abs/2009PASP..121..559A
https://doi.org/10.1111/j.1365-2966.2009.15258.x
http://adsabs.harvard.edu/abs/2009MNRAS.399..264B
https://doi.org/10.1051/0004-6361/201424757
http://adsabs.harvard.edu/abs/2014A&amp;A...571A..53B
http://adsabs.harvard.edu/abs/1988A&amp;A...195...60B
https://doi.org/10.1086/186533
http://adsabs.harvard.edu/abs/1992ApJ...397L..15B
http://adsabs.harvard.edu/abs/1992ApJ...397L..15B
https://doi.org/10.1086/512667
http://adsabs.harvard.edu/abs/2007ApJ...660...97C
https://doi.org/10.1146/annurev-astro-082812-140953
http://adsabs.harvard.edu/abs/2013ARA&amp;A..51..105C
https://doi.org/10.1088/0004-637X/766/1/13
http://adsabs.harvard.edu/abs/2013ApJ...766...13D
https://doi.org/10.1088/2041-8205/714/1/L118
http://adsabs.harvard.edu/abs/2010ApJ...714L.118D
https://doi.org/10.1086/345925
http://adsabs.harvard.edu/abs/2002ApJ...581L...9D
https://doi.org/10.1088/0004-637X/774/1/68
http://adsabs.harvard.edu/abs/2013ApJ...774...68D
https://doi.org/10.1088/2041-8205/788/1/L17
http://adsabs.harvard.edu/abs/2014ApJ...788L..17D
https://doi.org/10.1088/0004-637X/723/2/993
http://adsabs.harvard.edu/abs/2010ApJ...723..993D
https://doi.org/10.1088/0004-637X/741/1/32
http://adsabs.harvard.edu/abs/2011ApJ...741...32D
https://doi.org/10.1086/511055
http://adsabs.harvard.edu/abs/2007ApJ...657..810D
https://doi.org/10.1051/0004-6361/201117239
http://adsabs.harvard.edu/abs/2011A&amp;A...533A.119E
https://doi.org/10.1051/0004-6361/201219746
http://adsabs.harvard.edu/abs/2013A&amp;A...549A..51F
https://doi.org/10.1051/0004-6361/201321275
http://adsabs.harvard.edu/abs/2013A&amp;A...558A..87F
https://doi.org/10.1086/311878
http://adsabs.harvard.edu/abs/1999ApJ...512L..99G
https://doi.org/10.1086/382999
http://adsabs.harvard.edu/abs/2004ApJ...606..271G
https://doi.org/10.1111/j.1365-2966.2010.16969.x
http://adsabs.harvard.edu/abs/2010MNRAS.407.2091G
https://doi.org/10.1086/309072
http://adsabs.harvard.edu/abs/2000ApJ...537..644G
https://doi.org/10.1051/0004-6361/201322892
http://adsabs.harvard.edu/abs/2014A&amp;A...562A..67G
https://doi.org/10.1086/426540
http://adsabs.harvard.edu/abs/2005ApJ...619..291G
https://doi.org/10.1051/0004-6361/201423980
http://adsabs.harvard.edu/abs/2014A&amp;A...567A..91G
https://doi.org/10.1051/0004-6361/201220466
http://adsabs.harvard.edu/abs/2013A&amp;A...550A..25G
https://doi.org/10.1051/0004-6361/201118029
http://adsabs.harvard.edu/abs/2012A&amp;A...541A...4G
https://doi.org/10.1051/0004-6361/201321709
http://adsabs.harvard.edu/abs/2014A&amp;A...561A..27G
http://adsabs.harvard.edu/abs/2014A&amp;A...561A..27G
https://doi.org/10.1051/0004-6361/201014664
http://adsabs.harvard.edu/abs/2010A&amp;A...518L..43G
https://doi.org/10.1086/527292
http://adsabs.harvard.edu/abs/2008ApJ...675..303G
http://adsabs.harvard.edu/abs/2008ApJ...675..303G
https://doi.org/10.1086/422868
http://adsabs.harvard.edu/abs/2004ApJ...613..247G
http://adsabs.harvard.edu/abs/2004ApJ...613..247G
https://doi.org/10.1088/0004-637X/794/2/142
http://adsabs.harvard.edu/abs/2014ApJ...794..142G
https://doi.org/10.1051/0004-6361/201014519
http://adsabs.harvard.edu/abs/2010A&amp;A...518L...3G
https://doi.org/10.1093/mnras/stt308
http://adsabs.harvard.edu/abs/2013MNRAS.432...23G
https://doi.org/10.1088/0067-0049/197/2/27
http://adsabs.harvard.edu/abs/2011ApJS..197...27H
https://doi.org/10.1088/0004-637X/755/1/57
http://adsabs.harvard.edu/abs/2012ApJ...755...57H
https://doi.org/10.1093/mnras/277.2.413
http://adsabs.harvard.edu/abs/1995MNRAS.277..413H
https://doi.org/10.1086/114310
http://adsabs.harvard.edu/abs/1987AJ.....93..276H
https://doi.org/10.1086/184793
http://adsabs.harvard.edu/abs/1986ApJ...311L..33H
https://doi.org/10.1051/0004-6361:20042175
http://adsabs.harvard.edu/abs/2005A&amp;A...436...75H
https://doi.org/10.1088/0004-637X/715/1/572
http://adsabs.harvard.edu/abs/2010ApJ...715..572H
https://doi.org/10.1086/338761
http://adsabs.harvard.edu/abs/2002ApJS..139..467I
http://adsabs.harvard.edu/abs/2002ApJS..139..467I
https://doi.org/10.1088/0004-637X/777/2/156
http://adsabs.harvard.edu/abs/2013ApJ...777..156I
https://doi.org/10.1051/0004-6361:20011736
http://adsabs.harvard.edu/abs/2002A&amp;A...383...82I
https://doi.org/10.1051/0004-6361/201015264
http://adsabs.harvard.edu/abs/2011A&amp;A...529A.106I
https://doi.org/10.1088/0004-637X/753/1/70
http://adsabs.harvard.edu/abs/2012ApJ...753...70K
https://doi.org/10.3847/0004-637X/829/2/93
http://adsabs.harvard.edu/abs/2016ApJ...829...93K
https://doi.org/10.1086/308102
http://adsabs.harvard.edu/abs/1999ApJ...527..795K
https://doi.org/10.1111/j.1365-2966.2012.21905.x
http://adsabs.harvard.edu/abs/2012MNRAS.426.2142L
https://doi.org/10.1088/0004-637X/801/1/17
http://adsabs.harvard.edu/abs/2015ApJ...801...17L
http://adsabs.harvard.edu/abs/2000A&amp;A...359..887L
https://doi.org/10.1086/432789
http://adsabs.harvard.edu/abs/2005ApJ...632..169L
http://adsabs.harvard.edu/abs/2010MNRAS.406.1364L
https://doi.org/10.1088/2041-8205/810/2/L14
http://adsabs.harvard.edu/abs/2015ApJ...810L..14L
https://doi.org/10.1086/168929
http://adsabs.harvard.edu/abs/1990ApJ...357..388L
http://adsabs.harvard.edu/abs/1990ApJ...357..388L
https://doi.org/10.1088/2041-8205/787/2/L23
http://adsabs.harvard.edu/abs/2014ApJ...787L..23L
https://doi.org/10.1088/2041-8205/802/1/L11
http://adsabs.harvard.edu/abs/2015ApJ...802L..11L
https://doi.org/10.1051/0004-6361/201527706
http://adsabs.harvard.edu/abs/2016A&amp;A...591A.136L
https://doi.org/10.1051/0004-6361:200811443
http://adsabs.harvard.edu/abs/2009A&amp;A...496...57M
https://doi.org/10.1051/0004-6361/200913941
http://adsabs.harvard.edu/abs/2011A&amp;A...528A..35M
http://adsabs.harvard.edu/abs/2009adass..18..251M
https://doi.org/10.1088/0004-637X/802/2/81
http://adsabs.harvard.edu/abs/2015ApJ...802...81M
https://doi.org/10.1086/427546
http://adsabs.harvard.edu/abs/2005ApJ...621..738M
https://doi.org/10.1088/2041-8205/762/2/L16
http://adsabs.harvard.edu/abs/2013ApJ...762L..16M
https://doi.org/10.1088/2041-8205/734/1/L23
http://adsabs.harvard.edu/abs/2011ApJ...734L..23M
https://doi.org/10.1088/0004-637X/785/1/22
http://adsabs.harvard.edu/abs/2014ApJ...785...22M
https://doi.org/10.1088/0004-637X/768/1/2
http://adsabs.harvard.edu/abs/2013ApJ...768....2M
https://doi.org/10.1088/0004-637X/725/1/742
http://adsabs.harvard.edu/abs/2010ApJ...725..742M
https://doi.org/10.1051/0004-6361/201014523
http://adsabs.harvard.edu/abs/2010A&amp;A...518L.108N
https://doi.org/10.1086/430663
http://adsabs.harvard.edu/abs/2005ApJ...628..260N
https://doi.org/10.1088/0004-637X/724/2/1193
https://doi.org/10.1088/0004-637X/724/2/1193
https://doi.org/10.1086/318693
http://adsabs.harvard.edu/abs/2001ApJ...548..253O
http://adsabs.harvard.edu/abs/2010ASPC..434..139O
https://doi.org/10.1051/0004-6361/201014558
http://adsabs.harvard.edu/abs/2010A&amp;A...518L..37P
https://doi.org/10.1086/426059
http://adsabs.harvard.edu/abs/2004ApJ...615L..29P
https://doi.org/10.1111/j.1365-2966.2004.07762.x
http://adsabs.harvard.edu/abs/2004MNRAS.351..147P
https://doi.org/10.1088/0004-637X/751/1/10
http://adsabs.harvard.edu/abs/2012ApJ...751...10P
https://doi.org/10.1088/0004-637X/788/2/153
http://adsabs.harvard.edu/abs/2014ApJ...788..153P
https://doi.org/10.1088/2041-8205/779/2/L19
http://adsabs.harvard.edu/abs/2013ApJ...779L..19P
https://doi.org/10.1088/0004-637X/768/1/55
http://adsabs.harvard.edu/abs/2013ApJ...768...55P
https://doi.org/10.1088/0004-637X/730/1/28
http://adsabs.harvard.edu/abs/2011ApJ...730...28P
https://doi.org/10.1088/0004-6256/148/6/111
http://adsabs.harvard.edu/abs/2014AJ....148..111P
https://doi.org/10.1051/0004-6361/201014570
http://adsabs.harvard.edu/abs/2010A&amp;A...518L.109P
https://doi.org/10.1051/0004-6361/201014759
http://adsabs.harvard.edu/abs/2010A&amp;A...518L...1P
https://doi.org/10.1051/0004-6361/201014535
http://adsabs.harvard.edu/abs/2010A&amp;A...518L...2P
https://doi.org/10.1088/0004-637X/814/1/39
http://adsabs.harvard.edu/abs/2015ApJ...814...39P
https://doi.org/10.1088/0004-637X/743/1/94
http://adsabs.harvard.edu/abs/2011ApJ...743...94R
https://doi.org/10.1088/0004-637X/783/1/59
http://adsabs.harvard.edu/abs/2014ApJ...783...59R
https://doi.org/10.1038/nature12050
http://adsabs.harvard.edu/abs/2013Natur.496..329R
https://doi.org/10.1093/mnras/stt1149
http://adsabs.harvard.edu/abs/2013MNRAS.434.2051R
https://doi.org/10.1051/0004-6361/201323109
http://adsabs.harvard.edu/abs/2014A&amp;A...564A.126R
https://doi.org/10.1051/0004-6361/201423707
http://adsabs.harvard.edu/abs/2014A&amp;A...568A..90R
https://doi.org/10.1051/0004-6361/201423707
http://adsabs.harvard.edu/abs/2014A&amp;A...568A..90R
https://doi.org/10.1088/0004-637X/726/2/93
http://adsabs.harvard.edu/abs/2011ApJ...726...93R
http://adsabs.harvard.edu/abs/2011ApJ...726...93R
https://doi.org/10.1088/0004-637X/764/1/42
http://adsabs.harvard.edu/abs/2013ApJ...764...42S
https://doi.org/10.1086/376841
http://adsabs.harvard.edu/abs/2003AJ....126.1607S
http://adsabs.harvard.edu/abs/2003AJ....126.1607S
https://doi.org/10.1146/annurev.astro.34.1.749
http://adsabs.harvard.edu/abs/1996ARA&amp;A..34..749S
https://doi.org/10.1086/169800
http://adsabs.harvard.edu/abs/1991ApJ...370..158S
https://doi.org/10.1086/185896
http://adsabs.harvard.edu/abs/1991ApJ...366L...1S
https://doi.org/10.1086/187096
http://adsabs.harvard.edu/abs/1993ApJ...417L..67S
https://doi.org/10.1088/0004-637X/781/2/101
http://adsabs.harvard.edu/abs/2014ApJ...781..101S
https://doi.org/10.1088/0004-637X/800/1/70
http://adsabs.harvard.edu/abs/2015ApJ...800...70S
https://doi.org/10.1051/0004-6361/201015082
http://adsabs.harvard.edu/abs/2010A&amp;A...521L..12S
https://doi.org/10.1088/0004-637X/806/1/49
http://adsabs.harvard.edu/abs/2015ApJ...806...49S
https://doi.org/10.1086/588253
http://adsabs.harvard.edu/abs/2008ApJ...678L...5S
https://doi.org/10.1088/0004-637X/758/2/108
http://adsabs.harvard.edu/abs/2012ApJ...758..108S
https://doi.org/10.1088/0004-637X/790/2/124
http://adsabs.harvard.edu/abs/2014ApJ...790..124S
https://doi.org/10.1088/0067-0049/206/1/1
http://adsabs.harvard.edu/abs/2013ApJS..206....1S
https://doi.org/10.1086/310514
http://adsabs.harvard.edu/abs/1997ApJ...477L..33S
http://adsabs.harvard.edu/abs/2004AJ....127.3235S
https://doi.org/10.1093/mnras/stu409
http://adsabs.harvard.edu/abs/2014MNRAS.440.3658S
http://adsabs.harvard.edu/abs/2014MNRAS.440.3658S
https://doi.org/10.1086/307839
http://adsabs.harvard.edu/abs/1999ApJ...524..732T
https://doi.org/10.1016/j.newar.2006.11.011
http://adsabs.harvard.edu/abs/2007NewAR..51...67T
https://doi.org/10.1086/166861
http://adsabs.harvard.edu/abs/1988ApJ...334..573T
https://doi.org/10.1088/0067-0049/203/1/9
http://adsabs.harvard.edu/abs/2012ApJS..203....9U
https://doi.org/10.1051/0004-6361/201118308
http://adsabs.harvard.edu/abs/2012A&amp;A...537L..10V
https://doi.org/10.1051/0004-6361/201014682
http://adsabs.harvard.edu/abs/2010A&amp;A...518L..42V
https://doi.org/10.1086/658676
http://adsabs.harvard.edu/abs/2011PASP..123..138V
https://doi.org/10.1088/0067-0049/182/2/628
http://adsabs.harvard.edu/abs/2009ApJS..182..628V
https://doi.org/10.1051/0004-6361:20031337
http://adsabs.harvard.edu/abs/2003A&amp;A...409L..41W
https://doi.org/10.1051/0004-6361/201015078
http://adsabs.harvard.edu/abs/2010A&amp;A...521L...1W
https://doi.org/10.1086/499623
http://adsabs.harvard.edu/abs/2005ApJ...635L.173W
https://doi.org/10.1051/0004-6361/201423847
http://adsabs.harvard.edu/abs/2015A&amp;A...575A..88W
https://doi.org/10.1051/0004-6361/201321837
http://adsabs.harvard.edu/abs/2013A&amp;A...556A.116W
https://doi.org/10.1088/0004-637X/787/1/48
http://adsabs.harvard.edu/abs/2014ApJ...787...48X
https://doi.org/10.1088/0004-637X/799/1/11
http://adsabs.harvard.edu/abs/2015ApJ...799...11X
https://doi.org/10.1088/2041-8205/771/2/L24
http://adsabs.harvard.edu/abs/2013ApJ...771L..24Y
https://doi.org/10.1086/374333
http://adsabs.harvard.edu/abs/2003ApJ...588..771Y
https://doi.org/10.1088/2041-8205/765/1/L13
http://adsabs.harvard.edu/abs/2013ApJ...765L..13Z
https://doi.org/10.3847/0004-637X/819/1/69
http://adsabs.harvard.edu/abs/2016ApJ...819...69Z
https://doi.org/10.3847/0004-637X/820/2/118
http://adsabs.harvard.edu/abs/2016ApJ...820..118Z

	1. Introduction
	2. Sample
	2.1. Sample Selection
	2.2. Basic Galaxy Parameters

	3. Observations, Data Reduction, and Spectral Line Results
	3.1. SPIRE/FTS Spectroscopy
	3.2. Data Reduction
	3.3. Spectra
	3.4. Line Detection, Flux Derivation, and Identification
	3.5. Results

	4. Consideration of Systematic Effects
	4.1. Partially Resolved Lines
	4.2. Flux Aperture Corrections
	4.3. Line Detection Rate

	5. Data Analysis and Discussion
	5.1. CO SLEDs
	5.2. Star Formation and Molecular Gas Heating
	5.3. AGN and Molecular Gas Heating
	5.4. Shocks and Molecular Gas Heating
	5.5. On Local CO Line Luminosity Functions
	5.6. Neutral Carbon Line Emission
	5.7. Spectral Stacking and Fainter Lines
	5.7.1. H2O Vapor Lines
	5.7.2. HF (1–0)


	6. Summary
	AppendixNotes on Infrared Luminosities of Targets with Companions
	References

