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Abstract

For organisms with limited vagility and/or occupying patchy habitats, we often encounter
nonrandom patterns of genetic affinity over relatively small spatial scales, labelled fine-scale
genetic structure. Both the extent and decay rate of that pattern can be expected to depend
on numerous interesting demographic, ecological, historical, and mating system factors,
and it would be useful to be able to compare different situations. There is, however, no
heterogeneity test currently available for fine-scale genetic structure that would provide us
with any guidance on whether the differences we encounter are statistically credible. Here,
we develop a general nonparametric heterogeneity test, elaborating on standard autocorrelation
methods for pairs of individuals. We first develop a ‘pooled within-population’ correlogram,
where the distance classes (lags) can be defined as functions of distance. Using that pooled
correlogram as our null-hypothesis reference frame, we then develop a heterogeneity test
of the autocorrelations among different populations, lag-by-lag. From these single-lag
tests, we construct an analogous test of heterogeneity for multilag correlograms. We
illustrate with a pair of biological examples, one involving the Australian bush rat, the other
involving toadshade trillium. The Australian bush rat has limited vagility, and sometimes
occupies patchy habitat. We show that the autocorrelation pattern diverges somewhat
between continuous and patchy habitat types. For toadshade trillium, clonal replication
in Piedmont populations substantially increases autocorrelation for short lags, but clonal
replication is less pronounced in mountain populations. Removal of clonal replicates
reduces the autocorrelation for short lags and reverses the sign of the difference between
mountain and Piedmont correlograms.

Keywords: fine-scale genetic structure, heterogeneity testing, spatial autocorrelation

Received 17 January 2008; revision received 15 May 2008; accepted 25 May 2008

Introduction

Until the mid-1980s, genetic autocorrelation analysis
was used to analyse ‘isolation-by-distance’ patterns among
spatially separated populations, using allele frequencies
as the data substrate. The univariate methods that were
employed paralleled those used for ecological, anthropological
and geographical analyses (see review in Sokal et al.
1997). At that point, Sokal and colleagues introduced a
multivariate approach, using a Mantel test (Mantel 1967) to
compare multi-allele, multilocus genetic distances between
pairs of populations with their degrees of geographical

separation (Sokal et al. 1986), and a variety of multivariate
approaches have since become available for genetic
analysis. By the mid-1990s, the focus of autocorrelation
studies turned to the analysis of ‘fine-scale genetic structure’
within populations, using multi-allele, multilocus geno-
types for individuals (e.g. Heywood 1991; Knowles et al.
1992; Berg & Hamrick 1995; Epperson 1995; Loiselle et al.
1995; Streiff et al. 1998; Hardy & Vekemans 1999; Smouse &
Peakall 1999; Rousset 2000; Vekemans & Hardy 2004).

Fine-scale genetic structure is particularly interesting
because the details of the mating system (Van Rossum &
Triest 2007), propagule dispersal (Peakall et al. 2003; Cruse-
Sanders & Hamrick 2004; Double et al. 2005; Temple et al.
2006), as well as ecological (Parker et al. 2001; Van Rossum
et al. 2004; Premoli & Kitzberger 2005) factors vary on a
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microgeographical scale and affect the pattern of genetic
structure. Different situations can be expected to yield
different outcomes, so comparative analysis becomes
important, but to date, comparisons have been more verbal
than formal.

Autocorrelation analysis is also important in arenas
other than population genetics. Just by way of recent example,
autocorrelation analysis has been used to characterize
neighbourhood patterns in health status (Auchincloss et al.
2007), patterns of taxonomic composition in community
ecology (Bacaro & Ricotta 2007), spatial patterns in soil
properties, as that relates to shifting cultivation practices in
tropical forests (Diekmann et al. 2007), near neighbour
effects on individual-tree growth models in forestry (Fox
et al. 2007), fine-scale variation of foliar defence chemicals
in Eucalyptus trees (Andrew et al. 2007), and on a very tiny
scale, the pattern of spatial biases in micro-array experi-
ments (Koren et al. 2007). Context is important to pattern
in all of these cases, and the expected decay pattern of
autocorrelation with distance differs for such examples.
The need for a general nonparametric comparative method
is growing.

There is, however, currently no formal test of autocorre-
lational heterogeneity available that would tell us whether
two (or more) sampled patterns are credibly divergent
or not. We have two objectives here. (i) We first develop
a general nonparametric heterogeneity test, based on
elaborations of the autocorrelation method of Smouse &
Peakall (1999), which can be used for a wide variety of
comparative analyses of fine-scale structure, both those
from genetics and those from other arenas. (ii) We then
illustrate it with two examples, one animal (Australian
bush rat) and one plant (toadshade trillium). The Australian
bush rat example involves differences in fine-scale struc-
ture associated with fragmentation of a previously con-
tinuous habitat, for an organism that is dispersal-restricted.
The toadshade trillium example involves a case where
divergent fine-scale structures are associated with differential
vegetative cloning in two ecologically distinct habitat
zones. In both cases, we are able to establish that apparent
differences in fine scale structure are statistically credible
and biologically meaningful.

Extracting autocorrelation

Our first task is to reprise the essentials of the single-
population autocorrelation analysis of genetic fine-scale
structure (Smouse & Peakall 1999), generalizing the notation
in a way that simplifies the extension to multiple populations.
The autocorrelation analysis of Smouse & Peakall (1999)
is available in genalex 6 (Peakall & Smouse 2006). The
procedures described here are freely available in genalex
6.2 (Australian National University, Canberra, Australia,
www.anu.edu.au/BoZo/GenAlEx/). Briefly, we begin with

a single population of N individuals, for each of which we
have a battery of L genetic loci. The species can be either
haploid or diploid. If haploid, then at any particular locus, we
score two individuals as having distance  if they have
different alleles and as having distance = 0 if they have
the same allele. Alleles are treated as the same or different.
This is the Manhattan scoring convention described in
Excoffier et al. (1992). The genetic distance between the ith
and jth individuals is obtained by adding 1’s and 0’s across
the L genetic loci,

(eqn 1)

If the species is diploid, we use genetic distances ranging
from  for each locus, depending on the particular
pair of diploid genotypes being contrasted, a Euclidean
scoring convention described in detail by Peakall et al.
(1995) and Smouse & Peakall (1999). The metric is summed
across loci, as in eqn (1).

Our particular interest here is in genetic analysis, and
both of these measures weight all alleles and loci equally,
which we have found to be a robust treatment, but the
reader interested in weighting inversely by allele frequencies
(in typically multinomial fashion) is referred to Smouse &
Peakall (1999) for details. More generally, and of particular
relevance for nongenetic data and problems, any multivariate
Euclidean distance measure that closes properly in
geometric space will suffice for what follows.

Distance and covariance matrices

Having constructed distances between all N · (N − 1)/2
pairs of individuals, we construct a symmetric genetic
distance matrix D = {dij} of dimension N × N, with ‘0’s
down the diagonal and with dij = dji in the off-diagonal
positions. Gower (1966) showed that there is a one-to-one
translation between this N × N distance matrix (D) and a
corresponding N × N genetic variance–covariance matrix
(S). A diagonal element {sii} of S is the ‘genetic variance’ of
the ith individual, its squared deviation from the centre of
the gene pool, whereas an off-diagonal element {sij = sji}
of S is the ‘genetic covariance’ between the ith and jth
individuals, the pairwise cross-product of those deviations
from the centre of the gene pool. Translation of D into S is
described by Smouse & Peakall (1999, following Gower
1966). The important point is that D ↔ S; they contain the
same information.

We could (in principle) translate the variance–covariance
matrix S into a correlation matrix R = {rij}, with rij defined
as the genetic correlation between the ith and jth individuals.
If we construct a vector from the genetic centre of the
population to the ith individual and another to the jth
individual, those two vectors are offset by an angle (θij).
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The correlation rij = cos (θij) is a scale-free measure of
genetic affinity between that pair of individuals, closely
related to ‘kinship’ (Loiselle et al. 1995) and ‘relationship’
(Streiff et al. 1998) coefficients. The whole focus of examining
genetic fine-scale structure is to determine the decay of
genetic affinity/relationship with spatial separation. These
interindividual correlations have large variances, of course,
because each represents a single pair of genotypes, and
they are statistically imprecise. Standard practice in
correlation analysis is to use several individuals to cal-
culate average correlation coefficients, and we follow that
practice here.

Extracting autocorrelations from the S-matrix

By virtue of ‘centring’ the S-matrix for the population, the
sum of all elements in the matrix is zero, as are each of the
row (and column) sums. Denoting the diagonal array of
variances as V = diag{S} and the off-diagonal covariances
as C = S – V, we can partition S into separate variance and
covariance matrices, S = C + V, which guarantees that sum
C = −sum V = −Tr V, inasmuch as V is diagonal. With this
notation, we can denote the average correlation involving
all pairwise comparisons in S as

(eqn 2)

The (N – 1) multiplier in the denominator derives from
each individual being compared with (N – 1) other indi-
viduals in the collection. By virtue of geometric closure, the
average interindividual correlation of the entire data set is
–(N – 1)−1. Our standard null hypothesis is that the average
correlation of the entire data set, r(0) = 0, so it is convenient
to reset the reference at r(0) = 0 by adding +(N – 1)−1 to
eqn (2), and that is now general practice.

Lag matrices

The practice in spatial autocorrelation analysis is to allo-
cate particular pairs of individuals to one of a series of
distance classes (called ‘lags’ in Geographic Information
Systems literature). One usually defines distance classes
(lags) in terms of the physical separation between pairs
of individuals, say 0–5 m, 5–10 m, 10–15 m, etc., or as
logarithmic distance classes, say 0–1 m, 1–2 m, 2–4 m, etc.
(e.g. Rousset 2000; Vekemans & Hardy 2004), but any
scheme that makes biological sense for the problem at hand
is acceptable. It is important for comparative analysis to
define the lags in a comparable way for each of the
populations, and in such a way that each of the lags
possesses pairs in each of the populations to be compared.

Now, we place each pair of individuals in one of H
lags, numbered from closest to most distant {h = 1, . . . , H}.

We construct an N × N lag matrix, X(h) for the pairs of the
hth lag, which has xij = 1 = xji if the physical distance
between the ith and jth individuals is within the hth lag,
and = 0 otherwise. The diagonal element xii is the number
of times for which the ith individual is paired with another
individual within the hth lag, i.e. the number of off-diagonal
‘1’s in the ith row/column. For example, if the 1st individual
is h lags away from the 3rd, 5th and 8th individuals, then
x13 = 1 = x31, x15 = 1 = x51, x18 = 1 = x81, and x11 = 3. All other
positions in the 1st row/column have 0’s. Each pair of
individuals is tallied in only one lag-matrix, X(h), but any
particular individual may be paired with different partners
for different lags. The matrix X(h) tells us which elements to
count for the hth lag and weights them by the number of
pairs to which they contribute. For the hth lag, we include
the ijth pair in the correlation argument only if 
Formally, we compute lag-specific covariance and variance
terms,

(eqn 3)

We define a covariance matrix for the hth lag as E(h) =
C ⊗ X(h) =  the inner product of X(h) and C, and also
the diagonal variance matrix as F(h) = V ⊗ X(h) =  We
then construct

(eqn 4)

with sum E(h) and Tr F(h) computed as the sum of terms
from eqn (3). The final term once again contains a bias-
adjustment to ensure that the null hypothesis value is
r(h) = 0. We repeat this procedure for each of our H lags, one
at a time. For the special case where all pairs of individuals
are compared (with the whole population considered as
the 0th lag), sum E(0) = sum C and Tr F(0) = (N – 1) · Tr V,
which reduces eqn (4) to zero for h = 0, the null hypothesis
(reference) condition.

Testing autocorrelation

We have a set of N individual genotypes, distributed over
space but within the confines of a single population. The
null hypothesis is that autocorrelation for each lag is zero,
barring sampling variation. If the organism in question
exhibits restricted dispersal (relative to the spatial scale
of sampling), we often discover that genetically similar
individuals are physically clustered over a fine-scale
landscape, which generally translates into r > 0 for small
lags and r < 0 for large lags. We anticipate declining
correlations with increasing lag if the null hypothesis is not
correct. The first question is whether there is any credible
evidence that r(h) ≠ 0 for the hth lag. If we permute the N
genotypes randomly and without replacement among
sample locations, then for any particular lag, we anticipate
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a departure from r(h) = 0, though it represents the sampling
noise of random genetic placement on our fine-scale
landscape. Repeating the permutation procedure, we
construct an empiric null distribution for each lag,
conditioned on the total collection of sampled map
coordinates and recovered genotypes. The variance in the
outcome is inversely proportional to the sample size
(number of pairs) for any particular lag, and there is little
to be gained by defining lags with small sample sizes. The
short distance lags of particular interest often suffer
from this limitation, so it is common to combine the
shortest lags to increase the numbers of pairs (replication)
within them.

For each permutation, we compute the set of r(h)-
estimates, one per lag, as in eqn (4). We permute the data
(say) 999 times, and for each permutation, we compute
a complete battery of r(h)-estimates. We add the realized
values from the actual data as a final (1000th) trial, on the
(null hypothesis) premise that it too is a spatially randomized
genetic collection. Any tendency for a deviation of the data
from r(h) = 0 is treated as due to random noise, because
the null hypothesis is that genotypes are locationally
exchangeable. We compute a histogram of random r values,
one lag at a time, and compare the observed value with
that null distribution. We determine the ranking of the
observed r(h)-value in the listing of 1000 random r(h)-trial
values and extract the p value empirically. Where fine-
scale structure exists, we typically see r(h) > 0 for small lags
and r(h) < 0 for large lags. Since the average, r(0) = 0, some
values of r(h) must be negative if others are positive, so we
compute:

(eqn 5)

We also need a test of whether the collection of observed
r(h) values is compatible with the ‘no autocorrelation at any
distance’ hypothesis (H0: r(1) = r(2) = ... = r(H) = 0). Attached
to each r(h) estimate is an empiric p value (one-tailed
probability), so we have constructed a matrix P = {p-values},
of dimensions 1000 × H (one row for each of 1000 data
permutations, and H columns — one per lag). For the kth
row of the P-matrix, representing the kth randomization,
we compute a combined probability metric ω (Fisher
1958),

(eqn 6)

Fisher’s test criterion (eqn 6) is usually compared with a χ2

(2H d.f.), but in the spirit of nonparametric analysis, we
rank 1000 ω values and estimate Pr(ωk ≥ ωdata) empirically,
yielding a test of the hypothesis that the entire correlogram
is ‘flat’ against the alternative that it is not.

Heterogeneous autocorrelation

Rationale

Correlograms are not invariably homogeneous from one
population to the next, and there are many situations where
differences in ecology, land management, or breeding system
may yield differential spatial patterns (cf. Peakall et al.
2003; Double et al. 2005). The operative question is whether
we can establish that the differences we encounter are
biologically and statistically credible, and not just sampling
artefacts. We need a heterogeneity test for autocorrelograms.

Method

Consider a series of populations, indexed by π = α, β, ... µ,
within which we have Nα, Nβ, ... , Nµ sampled individuals,
respectively. We assume that the same genetic loci are used for
each population, that the lags are defined in comparable
fashion, and that each lag has at least one pair (preferably
several) in each population. We compute a set of autocorrela-
tion coefficients for each lag within each population,

(eqn 7)

We also construct a set of pooled within-population
estimates, representing the null hypothesis reference frame
for autocorrelational homogeneity,

(eqn 8)

The sample sizes for the different populations are typically
not the same, so to ensure that = 0 for the entire
collection of individuals, we define a weighted average
bias correction as

(eqn 9)

We use eqn (7) to estimate the within-population r(h) values
for each of the µ separate populations and eqn (8) for the
null-hypothesis (average) reference. The separate populations
will have an array of values that will bracket the average,
but the question is ‘Are the observed r(h) values from
different populations compatible with random sampling
from the null hypothesis distribution, or are they not
compatible?’ We evaluate the distribution of random
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departures from the null average by bootstrap resampling,
drawing paired samples of the sizes actually encountered
for each lag and population. For the hth lag, we have 
pairs of individuals from within the πth collection and 
pairs from within the total collection. We randomly draw

 pairs from the total collection of hth lag pairs and place
it in the πth collection. We repeat this process for each of
the  pairs, sampling with replacement. That procedure
ensures that the sampling frame is preserved, i.e. that
the  are preserved. For each random trial, we recompute
eqn (8) and tally the results. We repeat this bootstrap resa-
mpling process for 999 trials and record the complete set of
measured r(h) values, trial by trial, adding the observed val-
ues as a final (1000th) trial.

We now have 1000 trial r(h) values for each of µ popula-
tions. We convert the r values to z values (Fisher 1958),

(eqn 10)

Recalling that (−1 ≤ r(h) ≤ +1), that (−∞ < z(h) < +∞) and that
r and z are monotonic, we note that rank order is preserved
by this normalizing transformation. We compute the square
of a paired-sample t-test, which [suppressing the (h)
notation] takes the value

(eqn 11)

For each of the random trials, we compute rα and rβ,
convert them to zα and zβ, and then compute (zα – zβ)2. We
compute an empiric variance from the random trials,
V(zα – zβ), and use it for the denominator of eqn (11). We
compute eqn (11) for each trial, and then rank our data result,
thereby extracting an estimate of an upper tail probability
(p value). We have a nonparametric test of homogeneity
for the hth lag of the αth and βth collections. Computing a
separate  test for each of H lags, we have p values that
can be combined into a multilag ω-comparison of popu-
lations α and β, via eqn (6), a formal test of heterogeneous
autocorrelograms.

Multipopulation testing

It will be useful to have a test of correlational heterogeneity
among the entire set of populations. We pack the ωij-criteria
into a matrix W of the form,

(eqn 12)

For each of our 1000 trials, we have a random ωij value. We
rank them and determine the fraction of trials that have ωij
at least as large as the data result, pij = Pr(ωij-rand ≥ ωij-data).
Each element of the matrix W thus has an associated
p value. We use the matrix W to construct an overall test of
multipopulation divergence in whole correlograms. We
compute an ‘among-populations’ test of correlogram
homogeneity,

(eqn 13)

For statistical testing, we also compute eqn (13) for each of
the random trials. Finally, we determine the fraction of
random trials yielding at least as large an ωAP value as the
data,

pAP = Pr(ωAP(rand) ≥ ωAP(data)), (eqn 14)

our test of the null hypothesis that the correlograms from
all populations are homogeneous.

Australian bush rats

The Australian bush rat (Rattus fuscipes) is a common
terrestrial rodent of coastal southern Australia. Individuals
live for 12–15 months, and there is substantial demographic
turnover from year to year (Taylor & Calaby 1988). While
little is known about the distance moved by dispersing
individuals or the proportions of individuals involved in
each dispersal phase, there is some evidence that most
dispersal movements are in the range of 200–400 m, with
males dispersing more than females (see review in Peakall
et al. 2003). Home ranges overlap, and densities can exceed
10 animals/ha (Peakall & Lindenmayer 2006).

The genetic data to be used here were drawn from
Peakall et al. (2003; Peakall & Lindenmayer 2006). These
studies form part of the Tumut fragmentation project — a
large landscape study of habitat fragmentation, established
by Lindenmayer et al. (1999). The study area is characterized
by a series of remnant native eucalypt forest patches,
embedded within a 50 000-hectare exotic conifer plantation,
bounded by extensive native eucalypt forest. Bush rats are
patchily distributed along moist gullies and creeklines
with well-developed native vegetation, both within the
eucalypt fragments embedded in the unsuitable conifer
plantation and within the extensive eucalypt forests sur-
rounding the plantation.

Peakall et al. (2003) concluded that the level of gene flow
was sufficiently restricted in bush rats to generate the
strong positive signal of local spatial genetic structure
they detected at Tumut. More recent evidence indicates
that the movements of bush rats may be more restricted
in this region than reported in other studies, with mean
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mark–recapture movement distances (tagged animals) of
35 m and a maximum of 280 m, far short of the maximum
distance between traps of up to 1000 m (Peakall et al. 2003).
The question of interest here is whether the restricted
dispersal and associated fine-scale genetic structure is
more pronounced at sites within fragmented remnant
patches than at sites within continuous forest, and if so,
whether this pattern is a consequence of dispersal limitations
under fragmented habitat conditions?

For illustrative purposes, we have selected a quartet of
population samples: two from isolated eucalypt fragments
within the pine plantation (α = T3U3 and β = 1875) and
two from extensive forest habitats (γ = CAM and δ =
MCMD). We sampled with traps, spaced every 10 m along
normal gully habitat, for each of the four sites. Each site
was 10–50 m in width, with two trapping transects of
length 800–1000 m, and the sample sites were 5–10 km
apart. Rats were sexed, aged, and subsequently genotyped
for a set of seven nuclear STR loci (C2, E5, FG, CR, PB, TT
and PL; see Peakall et al. 2003). For illustrative purposes
here, we ignore differences in sex and age class, yielding
sample sizes of Nα = 77, Nβ = 65, Nγ = 63, and Nδ = 60,
respectively. The microhabitat preferences of this organism
are such that the habitat is basically one-dimensional, so
we expect the autocorrelation to decline more or less linearly
with distance. We defined eight lags, of equal distance
width, 50 m each, as per Peakall et al. (2003). The story
unfolds over about 400 m.

The driving question is whether the fine-scale patterns
from continuous forest sites (γ and δ), with no habitat
impediments to extensive dispersal, differ from those of
the forest fragments (α and β), between which intersite
migration involves the traverse of large stretches of

unfavourable (exotic conifer forest) habitat. The first step is
to assess the pattern of autocorrelation within each of the
separate populations, and the separate analyses of the four
populations yield the results in Table 1 and Fig. 1. Autocor-
relation is positive and significant for the 1st lag (0–50 m)
in all four populations, and always positive and generally
significant for the 2nd lag (51–100 m). With these distance
class sizes, the correlogram appears to cross the X-axis
between 120 and 210 m, indicating that proximal pairs are
(on average) more related than are spatially random pairs,
while more distant pairs are (on average) less related than
are random pairs. Peakall et al. (2003) showed that the
correlograms and crossing points are somewhat dependent
on the widths of the distance classes, but the essential point
of positive autocorrelation at short distance is quite general
for this organism.

The next step was to determine whether the four popu-
lations exhibited heterogeneous autocorrelation patterns.
Using the testing procedure described above, we obtained
the results in Table 2, from which we discover that the two
fragment sites (α, β) are not distinguishable, but that both
are significantly different from the first continuous forest
site (γ), mostly due to modest correlational differences in
the first and last distance classes. Interestingly, all three of
these sites are easily distinguishable from the second
continuous forest site (δ) over several lags. The pronounced
fine-scale structure of MCMD was counter to prior expec-
tation. Post-hoc, we are unable to explain the finding of very
much stronger structure within the MCMD continuous
site, but the results suggest that sensitivity of fine-scale
structure to habitat fragmentation per se may not be the
only operative factor. The overall findings of positive local
spatial genetic structure for all populations reinforce the

Table 1 Autocorrelation r values and p values and numbers of pairs (n) for the Australian bush rat (Rattus fuscipes) for each of eight 50-m
distance classes and a multiclass test criterion (ω) of the departure from the null hypothesis of r = 0; the test is conducted for each of the four
locations (T3U3, 1875, CAM and MCMD) separately; populations α = T3U3 and β = 1875 occupy Eucalyptus fragments, while populations
γ = CAM and δ = MCMD are from continuous Eucalyptus forest

Distance class 1 2 3 4 5 6 7 9 ω-test Estimated

Interval (m) 0–50 51–100 101–150 151–200 201–250 251–300 301–350 351–400 Criterion p value

r = 0.103 0.051 −0.001 0.033 0.006 0.012 −0.030 −0.034
α = T3U3 n = 187 177 131 104 114 119 120 87 52.67 0.001

p = 0.001 0.001 0.489 0.027 0.379 0.230 0.037 0.047
0.065 0.021 0.002 −0.013 0.007 −0.009 −0.010 −0.031

β = 1875 159 217 163 180 302 281 182 152 44.49 0.001
0.001 0.028 0.428 0.145 0.198 0.173 0.208 0.016
0.143 0.017 0.031 −0.014 −0.017 −0.038 −0.005 0.021

γ = CAM 169 104 99 83 85 97 123 64 43.23 0.001
0.001 0.062 0.054 0.251 0.190 0.014 0.372 0.187
0.222 0.157 0.081 0.040 −0.027 −0.016 −0.062 −0.021

δ = MCMD 113 84 108 85 92 103 121 143 75.26 0.001
0.001 0.001 0.001 0.036 0.094 0.202 0.001 0.091
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conclusion of Peakall & Lindenmayer (2006) that as a
common and widespread species, bush rats may not need
well-developed dispersal capability in natural landscapes,
but that they may be at risk of irreversible local extinctions
in fragmented landscapes, if limited dispersal capability
results in a failure to recolonize isolated and depopulated
fragments.

Toadshade trillium

Our second case study involves a rhizomatous woodland
wildflower, toadshade trillium (Trillium cuneatum), a long-lived

spring ephemeral that carpets the floors of mature mesic
deciduous forests in southeastern North America, both in
large continuous and fragmented remnant habitats. This
long-lived species exhibits a leaky self-incompatibility system
with a mixed reproductive strategy. Both sexual and vegetative
reproduction occur, with the balance varying among
populations and habitats. Toadshade trillium is insect-
pollinated, and pollen is seldom moved more than a few
metres (Gonzales et al. 2006), and the seeds are gravity and
ant-dispersed over very short distances. We have also
shown that vegetative reproduction is sometimes pronounced,
but that it varies among locations (Gonzales et al. in press).

Fig. 1 Fine-scale correlograms for Australian bush rat (Rattus fuscipes) populations in fragmented habitat (α = T3U3 and β = 1875) and
populations in continuous habitat (γ = CAM and δ = MCMD).

Table 2 Single-class (t2) and multiclass (ω) test criteria and associated p values for six paired-population comparisons of correlogram
homogeneity, involving Australian bush rats (Rattus fuscipes); two populations (α = T3U3 and β = 1875) are from Eucalyptus fragments; two
populations (γ = CAM and δ = MCMD) are from continuous Eucalyptus forest

Distance class 1 2 3 4 5 6 7 8 ω-test Estimated

Interval (m) 0–50 51–100 101–150 151–200 201–250 251–300 301–350 351–400 Criterion p value

α vs. β t2 = 2.10 1.57 0.01 3.53 0.00+ 1.15 0.94 0.01 17.92 0.323
p = 0.145 0.212 0.912 0.055 0.951 0.284 0.332 0.927

α vs. γ 2.25 1.40 1.76 2.52 0.85 3.62 1.20 3.85 31.58 0.006
0.138 0.227 0.181 0.110 0.363 0.051 0.262 0.046

β vs. γ 8.07 0.02 1.62 0.00+ 1.42 1.73 0.06 4.13 26.80 0.036
0.005 0.888 0.205 0.976 0.252 0.189 0.814 0.044

α vs. δ 15.05 12.90 10.71 0.06 1.68 1.28 1.97 0.24 51.17 0.001
0.001 0.001 0.002 0.809 0.190 0.256 0.159 0.617

β vs. δ 26.14 23.48 10.85 4.21 2.60 0.10 6.48 0.27 60.95 0.001
0.001 0.001 0.002 0.051 0.106 0.747 0.012 0.601

γ vs. δ 6.76 18.41 3.62 3.16 0.14 0.68 6.52 2.57 50.59 0.001
0.007 0.001 0.057 0.073 0.716 0.411 0.012 0.101
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Work on another species of Trillium (Yamagishi et al.
2007) and on clonal American ginseng (e.g. Chung &
Epperson 1999) has shown that fine-scale genetic structure
is sensitive to habitat disruption. Here, we compare
fine-scale structure in a relatively undisturbed, continuous
population of T. cuneatum at high elevation in the Southern
Appalachian Mountains with that from a small, fragmented,
and heavily disturbed urban population from the Pied-
mont of Georgia, USA. The mountain population occupies
a site in the wilderness area of the Joyce Kilmer Memorial
Forest (JK) in western/mountainous North Carolina, a
cool, mesic, and environmentally stable habitat. The popu-
lation consists of tens of thousands of patchily distributed
individuals, spread over hundreds of hectares of continuous
hardwood forest. The Piedmont population (EM) occupies
a small forest fragment near Emory University in Atlanta,
completely surrounded by urban development, subject to
ongoing human disturbance and to strong edge effects.
The site is hotter and subject to periodic drought. Although
this population occupies a small area, the Trillium popula-
tion contains several thousand individuals. Descriptions of
contrasting historical and environmental details for these
sites are available in Gonzales et al. (2006, in press). Our
prime interest here is the fact that vegetative spread is quite
rare at the mountain (JK) site but frequent at the Piedmont
(EM) site. There are two questions: (i) What are the effects
of clonal spread on fine-scale genetic structure in these
different habitats? (ii) How is clonality and its associated
fine-scale structure influenced by different histories of
disturbance and environmental conditions?

For illustration, we have selected a single plot from
within each population, yielding NJK = 231 and NEM = 240.
We conducted allozyme analyses (9 loci) for all mapped

plants (Gonzales et al. 2006, in press). Within each popu-
lation, we analysed spatial autocorrelation in two fashions:
(i) with all plants (including clonal ramets), and (ii) after
removing clonal replicates (using independent sexual
genets). After removing the clonal replicates, the sample
sizes were NJK = 212 and NEM = 147. These populations
are spread out across a two-dimensional landscape, for
which theory (Rousset 2000) predicts linearly declining
genetic affinity with the logarithm of physical distance (over
an intermediate range of distances), so we defined distance
classes (lags) on a logarithmic scale and held them constant
for all analyses.

Fine-scale genetic structure is pronounced for both
mountain (JK) and Piedmont (EM) populations, either
with or without the clonal replicates (Table 3). The sample
sizes are large, and the results are statistically compelling,
lag-by-lag and for the whole correlogram. Piedmont
populations have higher rates of clonal replication than
mountain populations (Gonzales et al. in press), and the EM
correlogram declines more steeply than that for JK (Fig. 2α
vs. 2β). While the observed genetic relatedness among near
neighbours in EM ( ) is much higher than in JK
( ), the difference is smaller after clonal ramets
are removed ( ), and the exclusion
of the clonal replicates reverses the sign of the difference
(Table 3). The JK correlogram (minimally affected by
removing a small number of clonal replicates) now exhibits
higher values than the EM correlogram (Fig. 2γ vs. 2δ, Table 4).

Decoupling clonal spread from sexual reproduction pro-
vides additional resolution on fine-scale genetic structure.
The JK site has lower fruiting density, a higher proportion
of full-sibs within the fruit and a higher rate of seedling
establishment, leading to stronger kinship structure at close

Table 3 An autocorrelation analysis of fine-scale genetic structure for Trillium cuneatum: (a) Montane (JK) and Piedmont (EM) sites from
Georgia, with r values and p values for each of eight distance classes and a global test of departure from the null hypothesis of r = 0,
including tightly clumped clonal ramets (α and β); and (b) the same pair of sites with all clonal copies (except one) removed for each genet
(γ and δ)

Distance class 1 2 3 4 5 6 7 8 ω -test Estimated

Interval (cm) 0–10 11–20 21–40 41–80 81–160 161–320 321–640 641–1280 Criterion p value

α = JK with clones r = 0.355 0.290 0.220 0.183 0.133 0.022 −0.010 −0.038 110.52 0.001
n = 56 123 310 587 1408 4178 10376 9339
p = 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

β = EM with clones 0.876 0.663 0.162 0.113 −0.011 −0.006 −0.025 −0.051 91.17 0.001
515 262 502 677 1467 4016 12702 8539
0.001 0.001 0.001 0.001 0.140 0.114 0.001 0.001

γ = JK no clones 0.337 0.284 0.222 0.193 0.089 0.027 −0.009 −0.036 110.52 0.001
44 101 268 487 1103 3407 8862 7934
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

δ = EM no clones 0.245 0.199 0.084 0.077 −0.003 0.036 −0.012 −0.022 97.14 0.001
76 78 242 363 686 1254 5153 2879
0.001 0.001 0.001 0.001 0.402 0.001 0.002 0.001

r EM
( ) .1 0 876=

r JK
( ) .1 0 355=

r vs rEM JK
( ) ( ). . .1 10 245 0 337= =
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distances. The EM site occupies a narrow strip of a forest,
completely exposed to sunlight and to increased wind,
both of which contribute to soil desiccation. Thus, edge
effects associated with habitat fragmentation exacerbate
naturally more stressful environmental conditions in the
Piedmont. Although increased pollinator activity leads to
fewer correlated matings and higher fruiting density, seed-
ling establishment is rare in the EM population (Gonzales
et al. in press), contributing to reduced relatedness among
sexually produced neighbouring plants. This difference in
relatedness among near neighbours in the two habitats is
overridden by a higher rate of clonal replication in Pied-
mont populations, where the sexually produced progeny
in close proximity are actually less related than in the
mountains.

Discussion

Our objective was to develop a formal test of the hypothesis
that the correlograms for two or more populations are
heterogeneous, based on elaborations of the autocorrelation
method of Smouse & Peakall (1999) and to illustrate it with
two interesting example problems. We have developed a
nonparametric heterogeneity test for separate patterns of
fine-scale genetic structure, either one lag at a time, or for
the entire correlogram. The method is general enough to be
used for a wide range of comparative problems. While we
have illustrated here with genetic data sets, there is nothing
inherently genetic about the methodology. We can just
as easily apply it to a wide variety of ecological and
microgeographical problems for which one can describe

Fig. 2 Fine-scale correlograms for toadshade trillium (Trillium cuneatum) populations: (α) location JK (clonal ramets included); (β) location
EM (clonal ramets included); (γ) location JK (clonal copies removed); and (δ) location EM (clonal copies removed).

Table 4 Single-distance class (t2) and multidistance class (ω) test criteria, and associated p values, for correlograms in Trillium cuneatum:
Mountain (α = JK) vs. Piedmont (β = EM) correlograms, clonal replicates included; and Mountain (γ = JK) vs. Piedmont (δ = EM)
populations, but with clonal ramets removed; the correlograms are significantly and substantially different for both comparisons, but the
relative strengths of the correlograms are reversed without clonal ramets

Distance class 1 2 3 4 5 6 7 8 ω-test Estimated

Interval (cm) 0–10 11–20 21–40 41–80 81–160 161–320 321–640 641–1280 Criterion p value

α vs. β t2 = 26.99 49.52 4.68 9.08 68.14 14.89 11.97 7.66 94.61 0.001
with clones p = 0.001 0.001 0.026 0.005 0.001 0.001 0.002 0.011
γ vs. δ 1.27 2.20 15.38 18.01 26.80 0.69 0.26 3.95 57.13 0.001
no clones 0.257 0.136 0.001 0.001 0.001 0.413 0.593 0.046
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multivariate (multidimensional) distances between all
pairs of individuals, constructing an appropriate Euclidean
distance matrix D, which is substrate for everything that
follows.

Other ways of measuring genetic affinity

In narrowly genetic context, there are other measures that
can be used for autocorrelation analysis, using the kinship
measures constructed by Loiselle et al. (1995) and Ritland
(1996) or the relationship measures described by Cockerham
(1969). Each can be translated into correlational form that
will work with methods similar to those deployed here. It
develops that kinship, relationship, and correlation are all
closely related. Kinship can be measured in a variety of
slightly different fashions, not all of which close in
Euclidean space, but for the ith and jth individuals, one can
use the form deployed in spagedi (Hardy & Vekemans
2002),

(eqn 15)

where q is the index on alleles, a total of Q alleles for L loci,
where piq (or pjq) = (1, ½, 0), depending on whether the ith
(or jth) individual is a homozygote for the qth allele, a
heterozygote for the qth allele, or does not possess the qth
allele, and where p.q is the global average frequency of the
qth allele for the entire collection of N individuals. Where
i = j (comparing an individual with itself), we have kii > 0.
The appropriate bias correction (2 N – 1)−1 is built into the
pairwise measures. In any case, we can pack the kinship
values into an N × N matrix K that is analogous to the
S matrix. Starting from K, one could estimate the auto-
correlations of the various lags, in much the same fashion
we have described above for S.

Hardy & Vekemans (1999) point out that relationship
metrics are related to kinship metrics, specifically (for the
diploid case and in our own notation)

(eqn 16)

provided that the inbreeding coefficient F for a single
individual is approximately a constant within the popu-
lation, or alternatively, using a more general Cockerham
(1969) result,

(eqn 17)

if the inbreeding coefficient is not identical among
individuals. We pack these relationship measures into a
kinship analogue of a correlation matrix R, because ρii = 1.
Starting from this R matrix, we extract ρ(h) values by
averaging the appropriate (within-lag) sets of ρij values,
and adding an appropriate bias correction to ensure that
ρ(h) = 0. The correlograms extracted from S or K or R
should be three almost indistinguishable versions of the
same thing.

There are other autocorrelation metrics and procedures
in common usage, prominent among them, Moran’s I and
Join-Count statistics. We direct the reader interested in
exploring the wider arena of genetic autocorrelation
analysis to the recent review by Epperson (2004, and
references cited therein). The nonparametric Smouse-
Peakall (1999) form of analysis used here employs a
minimum of assumptions, and it has some features that we
can exploit to advantage for the heterogeneity analyses,
particularly where we wish to extrapolate to wider ecological
or geographical scales. All one requires are a Euclidean
distance matrix for the response variables and a matrix of
pairwise geographical separations. It should also be
possible to extend these methods to formal comparison of
fine-scale genetic structure patterns for different alleles,
different genetic loci, or different sets of genetic markers,
but measured on the same individuals. The larger point is
that we need to become more formal and overt in our
comparative work.

Final note

We have concentrated here on the question of how to
determine when two or more correlograms are statistically
heterogeneous. The larger context of such analysis is the
urge/need to mount comparative studies, searching out
both the general and differential patterns exhibited by
multiple populations of the same species, both those
in similar and those in different settings, reflecting vari-
ation in the natural ecology, anthropogenic managerial
alternatives, and geographical variation in the mating
system. Autocorrelation analysis requires fairly large
sample sizes, and seemingly large correlogram dif-
ferences are sometimes not statistically credible, by
virtue of inadequate sample sizes. Conversely, there are
cases where tiny correlogram differences are highly
significant, by virtue of large sample sizes, but of no
practical value, in the context of the problem. What we
have constructed here is a productive formalism that
has been missing from our comparative arsenal, not a
replacement for biological common sense. Used carefully,
and in conjunction with a proper biological understanding
of the organism and its variable context, we should be
able to use it to move the comparative enterprise
forward.
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