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Abstract— Convolutional Neural Networks (CNNs) have rev-
olutionized computer vision, speech recognition and other fields
requiring strong classification capabilities. These strenghts make
CNNs appealing in edge node internet-of-things (IoT) applications
requiring near-sensors processing. Specialized CNN accelerators
deliver significant performance per watt and satisfy the tight
constraints of deeply embedded devices, but they cannot be
used to implement arbitrary CNN topologies or non-conventional
sensory algorithms where CNNs are only a part of the processing
stack. A higher level of flexibility is desirable for next generation
IoT nodes. Here we present Mia Wallace, a 65nm System-
on-Chip integrating a near-threshold parallel processor cluster
tightly coupled with a CNN accelerator: it achieves peak energy
efficiency of 108 GMAC/s/W @ 0.72V and peak performance of
14 GMAC/s @ 1.2V, leaving 1.2 GMAC/s available for general-
purpose parallel processing.

Keywords—Convolutional Neural Networks, Multi-Processor
System On a Chip, Near Threshold Computing, Heterogeneous
Computing

I. INTRODUCTION

Convolutional networks are becoming increasingly popular
in computer vision thanks to their outstanding accuracy and
generalization capability in object detection, scene parsing, and
image segmentation tasks [1]. As CNNs are computationally
expensive, they are typically deployed in high-performance,
power-hungry servers “in the cloud” and not on embedded
devices. However, the ability to compress low information
density data into a highly informative compressed state (e.g.
a classification tag) is attractive also for low-power embedded
devices. For example, smart visual sensor nodes could exploit
it to minimize the amount of energy spent in data transmission,
by sending to the cloud only classification tags or pre-classified
data. ASIC accelerators are the standard way to cope with
significant workloads in low-power embedded devices, but for
the specific task of CNNs they lack the flexibility to adapt
to the great variety of different topologies. Moreover, they
are limited in scope to a scenario where CNNs are the sole
application run on the node.

This work extends the previous abstract by Pullini et al. [2];
we propose a 65nm energy-efficient system-on-chip based on
a hybrid HW/SW approach to CNN acceleration. We rely on
a near-threshold parallel platform featuring four single-issue
OpenRISC cores enhanced for efficient fixed point computa-
tions and a hardware accelerator for convolution-accumulation
operations, which constitute the bulk of the computational
load of CNNs. The proposed approach joins the flexibility of
software-programmable processors with the performance and
energy efficiency boost of specialized hardware, suitable for
a new generation of IoT applications based on brain inspired
computing.

A common way to accelerate CNNs on programmable hard-
ware relies on GP-GPUs, which are able to reach extremely

high throughput (up to 6 Top/s), but consume tens or hundreds
of Watts [3][4]. Embedded CNN implementations on platforms
such as ODROID-XU [5] or CEVA [6] provide tens of Gop/s
within a power budget of a few watts. Movidius Myriad 2 has
12 8-way VLIW SHAVE processors, claimed to be working
at 600MHz within a power envelope of 0.5mW [7], for a
total of up to 120 Gop/s/W. Despite its very high claimed
peak efficiency, it is not a direct point of comparison for our
work as it targets more powerful embedded systems such as
smartphones, UAVs with a power envelope more than 10×
higher than that of Mia Wallace.

Low-power application specific CNN accelerators often fo-
cus on convolutional layers as they dominate CNNs. Origami is
a convolutional accelerator providing a peak energy efficiency
of 803 GOPS/W in 65nm technology [8]. Although this
solution is efficient, it requires additional components at sys-
tem level to implement full CNNs. Other hardware solutions
implement a whole CNN including pooling, activation layers
and fully-connected layers exploiting different computational
models and architectures. A reconfigurable dataflow architec-
ture Neuflow was presented in IBM 45nm SOI technology with
a throughput up to 1280 Gop/s and an core energy efficiency
of 490 Gop/s/W [9]. ShiDianNao presented an architecture
exploiting the 2D structure of the CNN reaching 128 Gop/s
and 400 Gop/s/W energy efficiency [10]. Eyeriss includes an
array of 14x12 reconfigurable processing elements connected
through a network-on-chip. It reduces data movements and
exploit data re-use compression to reduce I/O bandwidth
[11]. Jaehyeong et al. present a DNN processor that uses an
image tiling scheme for reducing off-chip memory access and
an algorithmic approach (Principal Component Analysis) to
reduce the dimension of the kernels [12]. Different approaches
to low-power sensor data analytics have also been recently
explored with promising results, using e.g. convolutional deep

Fig. 1: Mia Wallace SoC architecture
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belief networks (DBN) instead of CNNs. Park et al. [13]
report up to 1939 Gop/s/W when combining DBN learning
and inference.

Contrasted to most of the presented CNN accelerators, i) our
proposal is a full multicore heterogeneous SoC, working in a
SW-driven fashion (in fact, the CNN accelerator accounts only
for 15% of the full cluster area); ii) we focus on a technique for
sustainable usage of the available memory bandwidth, which
is often the scarcest resource in CNN computations; iii) the
flexible architecture we propose can combine CNNs with many
other sensor data analysis techniques, using SW cores and the
CNN accelerator concurrently.

II. SOC ARCHITECTURE

The proposed SoC implements the third generation PULP
(Parallel Ultra-Low-Power) platform1 extended with a ded-
icated accelerator for convolution intensive processing [16].
The programmable computing engine of the SoC is based on
a tightly coupled cluster of 4 OpenRISC ISA cores called
OR10N enhanced for energy efficient digital signal processing
[17]. The cluster features a shared 4kB latch-based Standard
Cell Memory (SCM) [18] instruction cache that, coupled with
a private per-core L0 buffer, increases energy efficiency by
30% with respect to an SRAM-based private cache architecture
[15]. The cores share an explicitly managed Tightly Coupled
Data Memory (TCDM). The TCDM features 8 word-level
interleaved banks connecting the processors through a non-
blocking interconnect to minimize banking conflict probability.
Each logical bank is implemented as a heterogeneous memory,
composed of 64kB of SRAM banks and 8kB of SCM banks;
by disabling SRAMs in the cluster entirely, it is possible to
extend the operating range well below the limits imposed by
SRAM scaling (down to 0.62V in the case of Mia Wallace).

A multi physical-channel DMA enables fast and flexible
communication with 256kB of L2 memory. The set of periph-
erals available on the SoC include: 200 Mbit/s SPI interfaces
(master/slave and single/quad mode), I2C, 50 Mbit/s I2S,
GPIOs, bootup ROM and JTAG interface for debug and test
purposes. To provide high energy efficiency across a wide
range of workloads, the cluster and the rest of the SoC are
in different clock and voltage domains, isolated by dual-clock
FIFOs and level shifters. Fine-grained tuning of the SoC and
cluster frequencies is performed by two Frequency-Locked
Loops [19].

A dedicated Hardware Convolution Engine (HWCE) ex-
tends the cluster to efficiently implement convolve-accumulate
operations. The “deep core” of the HWCE are two sum-of-
products (SoP) units, providing a peak throughput of 2 5× 5
convolutions per cycle on 16-bit inputs. The 5×5 SoP enables
native computation of the great majority of CNNs, which use
5 × 5 and 3 × 3 filters [20][21]. The accelerator is integrated
in the cluster as a triple of masters of the TCDM interconnect,
using the same interconnect as the processor cores. Offload of
HW accelerated tasks is performed through a dedicated slave
port mapped on a peripheral interconnect, where a shadow
configuration register enables asynchronous control of the
HWCE without stopping its execution.

1The first generation PULP architecture is presented in [14], while the
second generation is presented in [15]. Further information regarding the
PULP platform can be found in the project web page http://www.pulp-
platform.org.
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Fig. 3: Schematization of a single iteration of a tiled convolu-
tional layer with the strategies proposed in Section III.

III. CNNS ON MIA WALLACE

A first challenge in implementing CNNs in a small em-
bedded device such as Mia Wallace is the CNN working
set size, forcing to maximize usage of local memory (the
TCDM) and minimize data exchange with other levels of
the memory hierarchy. Deep CNNs are naturally divided in
layers (e.g. convolutional, pooling and fully-connected). Each
convolutional layer builds a 3D space of output feature maps
from a 3D space of input feature maps, using a matrix of
convolutional filters (see e.g. [21]); typically, even a single
layer is too big to be stored entirely in the 72 kB TCDM.

This challenge can be addressed noting that CNNs have
a hierarchical structure that maps nicely to the explicitly
managed memory hierarchy of Mia Wallace. We assume that
the CNN topology (inputs and weights for the full network)
resides on an external memory accessible via QSPI (see Figure
2). The application brings one layer at a time to the L2 memory
via QSPI. Since the 72 kB TCDM cannot typically host inputs,
weights and outputs for a whole layer, it is necessary to further
split the workload and the work set in independent chunks that
are executed one after the other from TCDM. This can be
achieved by tiling, i.e slicing the input space in a Ni×H×W
grid (in the feature, height and width dimensions); the output
space in a No×H×W grid; and the filter space in a Ni×No
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Fig. 4: SW pipeline with low-effort NN run in SW that triggers a high-effort CNN run by SW, HWCE and DMA cooperation.

grid. The computation is performed on one tile (kept in L1)
at a time.

Each output tile is computed as a sum of contributions from
a set of Ni input tiles, but from the tiling perspective there
is significant freedom on how to organize this accumulation.
Using the tiling strategy shown in Figure 3, for each output
tile the contribution of all Ni related input tiles is computed
sequentially; then the next output tile is computed. This
requires to reload each input tile up to No times. The transfer
overhead can be reduced by minimizing Ni; in the limit where
there is a single input tile (Ni = 1), it is no longer necessary
to reload tiles multiple times. The flexible architecture of Mia
Wallace enables this strategy, without being limited to it.

The presence of the HWCE relieves the OR10N cores of the
heavy task of computing convolutions in CNN, substituting it
with the much lighter task of DMA and HWCE control. In
both the DMA and HWCE it is possible to enqueue a set of
jobs (up to 8 for the DMA, 2 for the HWCE), after which
the cores are free to perform other useful work. For example,
it is possible to establish a software pipeline where the cores
execute activation and pooling of the previous layer while the
HWCE works on the “bulk” convolution of the current layer.
It is also possible to introduce double buffering to hide data
transfer overheads.

An additional advantage of the availability of both SW cores
and a HW accelerator is that of establishing a trigger for a
high-effort CNN execution with a low-effort, low-power first
stage such as a shallow simplified non-convolutional neural
network executed in SW [22], which Mia Wallace can execute
in pure SW, as shown in Figure 4. Thanks to its reduced
memory requirements, the LE-NN can also be run using only
the SCM portion of the TCDM, making it possible to reach the
minimum supply voltage of 0.62V and minimize the overall
power envelope. Section IV evaluates the maximum workload
of such a kind that can be supported in Mia Wallace, and the
relative energy efficiency.

IV. RESULTS

In this Section, we evaluate performance and efficiency
of our platform on the manufactured Mia Wallace prototype
chips2. Figure 5 shows a microphotograph of one of the chips,
along with its main features and parameters such as working
operating frequecies and power range. The total size of Mia
Wallace is 3.95mm×1.88mm.

We measured the baseline peak efficiency that can be
expected from the platform on CNNs by letting the HWCE
run while the rest of the cluster is silent and there is no
data transfer. The average throughput in this case is 36.5

2All tests are run using similar uniformly distributed random data sets for
inputs and weights; as many CNNs work on sparse data in the latter stages
and on dense data in the first stage, this provides a reasonable upper bound
on power consumption.
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Fig. 5: Mia Wallace chip micrograph and main features.

MAC/cycle - in other words, 1.46 5 × 5 convolutions per
cycle. To put this value into perspective, a high-accuracy
CNN architecture such as GoogLeNet [20] requires a total of
2.45×109 MAC operations when applied on a 320×240 input
image (a realistic image size for low-power camera sensors);
at peak, our platform could sustain a similar computational
workload in real time. At 0.72V, pure HWCE execution
reaches 3.53 GMAC/s of throughput within 15mW, for an
overall 236 GMAC/s/W of overall efficiency.

Sharing memory between software cores and the HWCE
introduces the opportunity to apply also activation and pooling
to the output set of the accelerator directly in-place in the
cluster, by software. These operations are typically simple,
and they show a high degree of variability between different
CNN topologies (e.g., max- and avg-pooling on different
sizes, different types of nonlinear activations); hence, they are
not good candidates for hardware acceleration. The shared-
memory acceleration technique allows to implement these
kernels without any additional performance/energy overhead
to move data from the accelerator. For example, at 0.72V
2× 2 max-pooling has a cost of ∼3.8 cycles and ∼640 pJ per
input pixel for computation on 4 SW cores; if this data had to
be copied from a private HWCE memory to L2 and then to
the shared TCDM before being used, there would be a small
time penalty (∼ 0.5 cycles per input pixel), and a significant
energy overhead (250 pJ per pixel - a 39% increase). If the
only non-linearity applied to output pixels is a simple ReLU,
then the energy overhead of data movement from private
accelerator memories becomes even more expensive - while
data movement overheads are similar to the max-pooling case,
pure computation costs only 0.7 cycles per pixel and 120 pJ;
data movement would cost more than 3× computation on such
a small kernel.

As mentioned in Section III, the most critical aspect of
executing CNNs on an embedded platform such as PULP is
data transfer to/from the local memory, which requires tiling.
As a way to understand how well convolutional layer execution
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Fig. 6: Energy efficiency and throughput of convolutional layer execution on Mia Wallace in the HWCE, HWCE+MMUL and
LE-NN tests.

Platform Conv Perf. Powera Conv Efficiency Conv Pool Dense Fully SW
I/O

& Tech. [GMAC/s] [mW] [GMAC/s/W] Layer Layer Layer Programmable

S
W

NVIDIA Fermi [3] GPU 22nm 3.2k 250k 12.7 ✓ ✓ ✓ ✓ PCIe

NVIDIA Tegra [3] GPU 28nm 84 11k 7.6 ✓ ✓ ✓ ✓ mobileb

ODROID-XU [5] CPU 28nm 1.21 2.8k 0.43 ✓ ✓ ✓ ✓ mobileb

STM32 L476 [23] uC 0.026 10 2.6 ✓ ✓ ✓ ✓ uCc

A
S

IC

NeuFlow [9] 45nm 147 600 245d ✓ ✓ ✗ ✗ DDRd

ShiDianNao [10] 65nm 64 320 200 ✓ ✓ ✓ ✗ -
Origami [8] 65nm 27.5 93 296 ✓ ✗ ✗ ✗ parallel

Jaehyeong et al. [12] 65nm 32 45 710e ✓ ✓ ✗ ✗ -
Eyeriss [11] 65nm 23 278 83 ✓ ✗ ✗ ✗ -

M
P

S
o

C Mia Wallace SoC@0.72V 65nm 3.3 31 108 ✓(HW) ✓ ✓ ✓ uCc

Mia Wallace HWCE@0.72V 11 300
Mia Wallace SoC@1.2V 65nm 14 359 39 ✓(HW) ✓ ✓ ✓ uCc

Mia Wallace HWCE@1.2V 127 110

a For ASICs and Mia Wallace power and efficiency numbers refer to core power, excluding I/Os.
b Includes I/O interfaces typically found in mobile devices, such as USB, Wi-Fi, and ones such as SPI, I2C that are usually present in mobile SoCs.
c Includes typical microcontroller I/O interfaces such as SPI, I2C, I2S.
d Data collected post-synthesis and thus not considering power overheads from backend (e.g. from the clock tree).
e Weights produced on-chip from a small set of PCA bases to save area/power. No evaluation on the general validity of this approach is presented in [12],

beyond the reported MNIST use case.

TABLE I: Comparison between Mia Wallace and several platforms representative of the state-of-the-art in CNN inference.

can be superimposed to data transfer and other computations
(e.g. subsampling in a pooling layer), we define computation-
to-communication ratio (CCR) metric as the ratio between
executed MAC operations and bytes transferred in/out of the
cluster TCDM. We swept CCR from 5 (i.e. full overlap
between busy time of DMA and HWCE) to 100 (i.e. the DMA
is active only for a fraction of the computation time). We
performed two kinds of CNN tests: in HWCE tests one OR10N
core is used only for controlling the execution and the other
three are idle, while in HWCE+MMUL tests the cores are used
for a high effort computation (a matrix multiplication), a worst
case where the cores are used in a software pipeline. Finally,
a third test (LE-NN) represents the continuous running of a
small fully-connected artificial NN such as that described in
Section III.

Figures 6a and 6b report respectively the energy efficiency
in GMAC/s/W and the throughput in GMAC/s when executing

the tests; Figure 6c shows the efficiency variation at the
1.2V operating point when sweeping the CCR. The results
of the LE-NN tests indicate that at 0.62V, power is below
6.3mW at 38MHz, and the platform can support a LE-NN
of up to 150 MMAC/s, which is enough to run a very small
shallow non-convolutional neural network. Conversely, a pure
SW implementation of CNNs would be too slow to run a state-
of-the-art CNN with more than 109 MACs on an embedded
SoC. The HWCE solves part of this problem, delivering good
results even when the cost of data transfers in energy and in
increased memory contention is highest. For example, when
the CCR is 5 the energy efficiency is still as high as 91
GMAC/s/W. In the more common case of a relatively high
CCR, Mia Wallace reaches an even better overall efficiency of
108 GMAC/s/W at 0.72V, or 9.26 pJ per MAC.

When we consider the HWCE+MMUL tests, the cooper-
ative execution on both the OR10N cores and the HWCE
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provides a 10% performance boost. Counting two operations
per MAC, Figure 6 shows that a compound CNN workload
of up to 30 Gop/s can be sustained by the Mia Wallace
platform. Net HWCE throughput differs by less than 5%
from the performance in the HWCE tests - superposition
of HWCE work with a significant SW load does not hit
CNN performance. Supporting additional workload benefits
the overall CNN execution in several ways, not only by
directly improving its throughput. For example, pooling layers
are pure reductions: executing one in the software pipeline
improves the CCR by performing more operations and even
more by reducing the amount of data to be written back to L2,
improving overall throughput in turn. This key consideration
helps understanding the HWCE+MMUL results in Figure 6:
while there is of course a small net power cost in having both
the cores and the HWCE run at the same time, additional
computation improves the CCR by both raising the number
of ops and, in the case of pooling, by reducing the amount of
data to be moved, making the effective efficiency loss almost
negligible.

Table I provides a final summary of our contribution and its
positioning with respect to the state-of-the-art in CNN infer-
ence executed both in SW and in HW accelerators. In terms of
energy efficiency, the HWCE in Mia Wallace achieves results
comparable to state-of-the-art dedicated ASICs [9][10][8][11],
and the efficiency of the full Mia Wallace cluster, including
cores, DMA and interconnects, is still in a similar range.
Differently from most other platforms, Mia Wallace is able
to execute full CNNs of arbitrary size using the methodology
illustrated in Section III (whereas except for [10] ASICs are
mostly limited to conv and pool layers). Moreover, as opposed
to all ASIC architectures compared in the table, it can also
execute arbitrary code using CNNs as part of more complex
pipelines.

V. CONCLUSION

This work presented Mia Wallace, a 65nm system-on-chip
targeting the emerging class of near-sensor IoT applications.
We have shown how the flexible architecture of Mia Wallace
can be exploited to efficiently run Convolutional Neural Net-
works, which provided state-of-the-art results in visual, audio
and signal classification and would be highly desirable in a IoT
scenario. On the one hand, this allows the execution of a low-
performance, low-effort SW neural network within 6.3mW of
overall power budget. On the other hand, the execution of a
CNN convolutional layer can be superimposed with additional
workload, for a maximum compound average throughput of
∼30 GOP/s at 400MHz.
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