
A Heterogeneous Parallel Framework for

Domain-Specific Languages

Kevin J. Brown∗ Arvind K. Sujeeth∗ HyoukJoong Lee∗ Tiark Rompf†

Hassan Chafi∗ Martin Odersky† Kunle Olukotun∗

∗Stanford University, Stanford, CA: {kjbrown, asujeeth, hyouklee, hchafi, kunle}@stanford.edu
†EPFL, Lausanne, Switzerland: {firstname.lastname}@epfl.ch

Abstract—Computing systems are becoming increasingly par-
allel and heterogeneous, and therefore new applications must be
capable of exploiting parallelism in order to continue achieving
high performance. However, targeting these emerging devices
often requires using multiple disparate programming models and
making decisions that can limit forward scalability. In previous
work we proposed the use of domain-specific languages (DSLs)
to provide high-level abstractions that enable transformations to
high performance parallel code without degrading programmer
productivity. In this paper we present a new end-to-end system
for building, compiling, and executing DSL applications on par-
allel heterogeneous hardware, the Delite Compiler Framework
and Runtime. The framework lifts embedded DSL applications to
an intermediate representation (IR), performs generic, parallel,
and domain-specific optimizations, and generates an execution
graph that targets multiple heterogeneous hardware devices.
Finally we present results comparing the performance of several
machine learning applications written in OptiML, a DSL for
machine learning that utilizes Delite, to C++ and MATLAB
implementations. We find that the implicitly parallel OptiML
applications achieve single-threaded performance comparable to
C++ and outperform explicitly parallel MATLAB in nearly all
cases.

Keywords-parallel programming; multicore processing; com-
puter languages

I. INTRODUCTION

Current microprocessor trends focus on larger numbers of

simpler cores [1], [2] and include increasingly heterogeneous

processing elements, such as SIMD units or a GPU [3]. These

heterogeneous architectures continue to provide increases in

achievable performance, but unfortunately programming these

devices to reach maximum performance levels is not straight-

forward. Each heterogeneous element has its own performance

characteristics and pitfalls, and usually comes with its own

programming model. Therefore when targeting such archi-

tectures, the programmer must have a deep understanding

of all the different hardware components and programming

models, as well as understand how to use them together.

Even with this understanding, the best way of dividing work

across the hardware is often affected by application variables

such as dataset size, making it nontrivial to realize maximal

performance improvement.

The difficulty of programming heterogeneous parallel archi-

tectures results in a severe loss in programmer productivity.

In addition to the significantly increased effort needed to

achieve correctness and performance during initial develop-

ment, exposing all the low level details of each compute

device is detrimental to the maintainability, future scalability,

and portability of the application. In order to alleviate these

problems, it is essential to develop high level abstractions that

allow programmers to develop high performance programs

with high productivity.

Ideally a programming language should provide generality,

high productivity, and produce high-performance binaries that

take advantage of all the hardware resources available in a

given platform. Unfortunately, no such language currently ex-

ists. A more tenable goal is to create a language that trades-off

one desirable aspect to achieve the others. A compromise that

has the potential to attain both productivity and performance

is to use languages targeted to a specific application domain,

so called domain-specific languages (DSLs) [4]. DSLs can

provide a higher level of abstraction than general-purpose

languages and can enable mappings between domain abstrac-

tions and efficient parallel implementations. In addition DSLs

enable domain-specific static and dynamic optimizations that

would not be possible with a general-purpose compiler and

runtime system.

Traditional DSLs fall into two categories. External DSLs,

which are completely independent and allow total design

freedom, but consequently require the developer to write a

complete compiler, and internal DSLs, which are embedded

in a host language. Internal DSLs are significantly easier

to develop, but traditionally sacrifice the ability to perform

static analyses and optimizations. In previous work [5] we

showed how such an internal DSL can target heterogeneous

hardware. In this paper we utilize a more advanced method of

embedding DSLs that allows the DSL to build and optimize

an intermediate representation (IR) of the application.

Figure 1 illustrates our vision for constructing new implic-

itly parallel DSLs which automatically target heterogeneous

hardware. Between the DSLs themselves and the hardware

lies the DSL infrastructure. This infrastructure consists of

multiple layers. The first layer of the infrastructure is a way of

embedding a DSL within the general-purpose hosting language

Scala [6] that allows the DSL to participate in the back-end

phases of compilation [7]; this approach is called Lightweight

Modular Staging [8]. In this paper we focus on the next

two layers, which are collectively called Delite. The Delite

Compiler Framework is capable of expressing parallelism both

within and among DSL operations, as well as performing use-

2011 International Conference on Parallel Architectures and Compilation Techniques

1089-795X/11 $26.00 © 2011 IEEE

DOI 10.1109/PACT.2011.15

89

Domain Embedding Language (Scala)

Delite Runtime

Staging

Heterogeneous

Hardware

DSL

Infrastructure

Task & Data Parallelism

Delite Compiler Framework

Static Optimizations Heterogeneous Code Generation

Locality Aware Scheduling

Virtual

Worlds

Personal

Robotics

Data

informatics

Scientific

Engineering

Physics Scripting Probabilistic
Machine
Learning
(OptiML)

Rendering

Applications

Domain

Specific

Languages

Hardware Architecture

OOO Cores SIMD Cores Threaded Cores Specialized Cores

Fig. 1: An environment for domain-specific programming of

heterogeneous parallel architectures.

ful parallel analyses. It also provides a framework for adding

domain-specific optimizations. It then generates a machine-

agnostic intermediate representation of the program which is

consumed by the Delite Runtime. The runtime system provides

a common set of features required by most DSLs, such as

scheduling work across hardware resources and managing

communication. Our specific contributions are as follows:

• We present an end-to-end system for executing a pro-

gram written in a domain-specific language on parallel

heterogeneous hardware.

• We provide a framework for lifting embedded DSLs to an

intermediate representation which can be optimized from

multiple viewpoints.

• We utilize this framework to perform and orchestrate

generic, parallel, and domain-specific optimizations in a

single environment.

• We generate and execute a machine-agnostic graph of

the application targeting multiple heterogeneous hardware

devices.

In the rest of this paper we discuss the benefits of using

DSLs for parallelism, present the Delite Compiler Framework

and Runtime, and compare DSL compilation to embedded

DSL libraries. We then present experimental results for both

overall application performance and the effects of Delite’s

optimizations.

II. DSLS FOR HETEROGENEOUS PARALLELISM

In this section we briefly illustrate the benefits of using

DSLs for achieving both productivity and portable parallel

performance in a heterogeneous environment. We will use

OptiML [9], a DSL for machine learning, as a running

example. We then address the common challenges faced when

designing and building a new DSL targeted to heterogeneous

parallelism.

A. DSL productivity

At the forefront of DSL design is the ability to exploit

domain knowledge to provide constructs that express domain

operations at a higher level of abstraction. As a consequence

1 val distances =
2 Stream[Double](data.numRows, data.numRows) {
3 (i,j) => dist(data(i), data(j))
4 }
5 for (row <- distances.rows) {
6 if(densities(row.index) == 0) {
7 val neighbors = row find {_ < apprxWidth}
8 densities(neighbors) = row count {_ < kernelWidth}
9 }

10 }

Listing 1: Downsampling in OptiML

11 #pragma omp parallel for shared(densities)
12 for (size_t i=0; i<obs; i++) {
13 if (densities[i] > 0)
14 continue;
15 // Keep track on observations we can approximate

16 std::vector<size_t> apprxs;
17 Data_t *point = &data[i*dim];
18 Count_t c = 0;
19 for (size_t j=0; j<obs; j++) {
20 Dist_t d = distance(point, &data[j*dim], dim);
21 if (d < apprx_width) {
22 apprxs.push_back(j);
23 c++;
24 } else if (d < kernel_width) c++;
25 }
26 for (size_t j=0; j<apprxs.size(); j++)
27 densities[apprxs[j]] = c;
28 densities[i] = c;
29 }

Listing 2: Downsampling in C++

of working at this abstraction level much of the lower-level

implementation details are provided by the DSL itself rather

than the application programmer. This often results in a

significant reduction in total number of lines of code as well

as improved code readability compared to a general-purpose

language.

As an example, consider the snippet of OptiML code

shown in Listing 1, which shows the core of a downsampling

application. In contrast to the C++ implementation shown in

Listing 2, the OptiML version concisely expresses what should

be accomplished rather than how it should be accomplished.

B. Portable parallel performance

In addition to providing a means of writing concise,

maintainable code, DSLs can also expose significantly more

semantic information about the application than a general-

purpose language. In particular domain constructs can expose

structured, coarse-grained parallelism within an application.

The DSL developer must identify the mapping between do-

main constructs and known parallel patterns, and with the

proper restrictions this allows the DSL to generate safe and

efficient low-level parallel code from application source using

a sequential programming model.

As an example consider the OptiML sum construct (shown

in Listing 4). Summations occur quite frequently in machine

learning applications that focus on condensing large input

datasets into concise, useful output. The construct allows the

90

user to supply an anonymous function producing the elements

to be summed that is subject to the restricted semantics

enforced by the OptiML compiler. The anonymous function

is not allowed to access arbitrary indices of data structures or

mutate global state. This restriction is not overly constraining

for the majority of use cases and allows the function to

be implemented efficiently as a map-reduce. In addition,

the anonymous function is often non-trivial to evaluate, and

therefore exposes coarse-grained parallelism which can be

exploited to achieve strong scaling.

Along with the ability to identify the parallelism inher-

ent in an application, domain abstractions can also abstract

away implementation details sufficiently to generate parallel

code optimized for various hardware devices. The lack of

implementation artifacts in the application source ultimately

allows DSL programs to be portable across multiple current

and future architectures.

C. Building DSLs

DSLs have the potential to be a solution for heterogeneous

parallelism, but this solution rests on the challenging task of

building new DSLs targeting parallelism. The first obvious

challenge is designing and constructing a new language,

namely implementing a full compiler (i.e., a lexer, parser, type

checker, analyzer, optimizer, and code generator). In addition,

the DSL must have the facilities to recognize parallelism

in applications, and then to generate parallel code that is

optimized for different hardware devices (e.g., both the CPU

and GPU). This requires the DSL developer to be not only a

domain expert, but also an expert in parallelism (to understand

and implement parallel patterns) as well as architecture (to

optimize for low-level hardware-specific details). Finally, the

DSL developer must write a significant amount of plumbing

whose implementation can have a significant impact on ap-

plication performance and scalability. This includes choosing

where and how to execute the parallel operations on a given

hardware platform, managing data transfers across address

spaces, and synchronizing reads and writes to shared data.

To address the challenge of building DSLs for parallelism,

we present the Delite Compiler Framework and Runtime as

a means of dividing the required expertise across multiple

systems developers. Delite uses DSL embedding and an ex-

tensible compilation framework to greatly reduce the effort

in creating a DSL compiler, provides parallel patterns that

the DSL developer can extend, performs heterogeneous code

generation, and handles all the run-time details of executing

the program correctly and efficiently on various hardware

platforms. In short, Delite provides the expertise in parallelism

and hardware. The DSL developer can then focus on being a

domain expert, designing the language constructs and identi-

fying the mapping between those domain constructs and the

parallel patterns Delite provides. He or she must implement the

data and control structures that inherit from Delite prototypes

as well as add domain-specific optimization rules.

III. COMPILER FRAMEWORK

The Delite Compiler Framework aims to greatly decrease

the burden of developing a compiler for an implicitly par-

allel DSL, by providing facilities for lifting embedded DSL

programs to an intermediate representation (IR), exposing

and expressing parallelism, performing generic, parallel, and

domain-specific analyses and optimizations, and generating

heterogeneous parallel code that will be executed and managed

by the Delite Runtime.

A. Compilation framework

The Delite Compiler Framework uses and extends a general-

purpose compiler framework designed for embedding DSLs

in Scala called Lightweight Modular Staging (LMS) [8].

LMS employs a form of meta-programming to construct a

symbolic representation of a DSL program as it is executed.

For DSLs built on top of LMS, the application code is actually

a program generator and each program expression, such as

if (c) a else b, constructs an IR node when the program is

run (in this case IfThenElse(c,a,b)). We use abstract types

and type inference to safely hide the IR construction from the

DSL user [10].

Through this mechanism the DSL compiler effectively

reuses the front-end of the Scala compiler, and then takes

over with the creation of the IR. Possible nodes in the IR

are all constructs of the DSL or constructs the DSL developer

chooses to inherit from Scala (e.g., If-Then-Else statements).

The LMS framework provides all of the tools required for

building the IR, performing analyses and optimizations, and

generating code, which the DSL developer can then use and

extend. Delite expands on this functionality by providing three

primary views of the IR, namely the generic view, the parallel

view, and the domain-specific view, as illustrated in Figure 2.

B. Generic IR

The lowest-level view of the IR is centered around symbols

and definitions. Unlike many compilers, where individual

statements are fixed to basic blocks, which are connected

in a control flow graph (CFG), we use a "sea of nodes"

representation [11]. Nodes are only connected by their (input

and control) dependencies but otherwise allowed to float freely.

Nodes in the IR are represented as instances of Scala classes;

dependencies are represented as fields in each class. This

representation enables certain optimizations to be performed

during IR construction. For example, when a side-effect free

IR node is constructed, the framework first checks if a defini-

tion for the node already exists. If a definition does exist it is

reused to perform global common subexpression elimination

(CSE). Pattern matching optimizations are also applied during

node construction. The DSL compiler can override the con-

struction of an IR node to look for a sequence of operations

and rewrite the entire sequence to a different IR node. This

mechanism is easy to apply and can be used to implement

optimizations such as constant folding and algebraic rewrites.

Listing 3 shows an example of implementing a simple pattern

matching optimization in OptiML.

91

Matrix

Plus

Vector

Exp

Matrix

Sum

Delite

Reduce

Delite

Map

Delite

ZipWith

Definition

s = sum(M) V1 = exp(V2) M1 = M2 + M3

Domain

Analysis & Opt.

Domain User

Interface

Parallelism

Analysis & Opt.

Code Generation

& Execution

Generic Analysis

& Opt.

Application Source

DS IR

Delite IR

Base IR

Fig. 2: Views of the DSL IR. DSL applications produce an IR

upon execution. This IR is defined by the LMS framework

with enough information to perform generic analyses and

optimizations. The Delite Compiler Framework extends the IR

to add parallelism information, and this view allows parallel

optimizations and parallel code generation. The DSL extends

the parallel IR to form a domain-specific IR, which allows for

domain-specific optimizations.

30 override def matrix_plus[A:Manifest:Arith]
31 (x: Exp[Matrix[A]], y: Exp[Matrix[A]]) =
32 (x, y) match {
33 // (AB + AD) == A(B + D)

34 case (Def(MatrixTimes(a, b)),
35 Def(MatrixTimes(c, d))) if (a == c) =>
36 matrix_times(a, matrix_plus(b,d))
37 // ...

38 case _ => super.matrix_plus(x, y)
39 }

Listing 3: Implementing pattern matching optimizations

Once the complete IR is built and all dependency informa-

tion is available, transformations that require a global view

of the program can take place and work towards a program

schedule. Transformations that occur during scheduling in-

clude dead-code elimination, various code motion techniques

(e.g., loop hoisting) and aggressive fusing of operations, in

particular loops and traversals. During the course of these

global transformations, the sea of nodes graph is traversed

and the result is an optimized program in block structure.

An important point is that since the IR is composed of

domain operations, all of the optimizations described here are

performed at a coarser granularity (e.g., Matrix-Multiply) than

in a typical compiler.

It is important to note that in a general-purpose environment,

it can be difficult to guarantee the safety of many important op-

timizations. However, because DSLs naturally use a restricted

programming model and domain knowledge is encoded in

the operations, a DSL compiler can do a much better job at

optimizing than a general-purpose compiler that has to err

on the side of completeness. These restrictions are especially

important for tackling side effects in DSL programs in order

to generate correct parallel code.

In the absence of side effects, the only dependencies among

nodes in the IR are input dependencies, which are readily

encoded by references from each node instance to its input

nodes. While Delite and OptiML favor a functional, side-effect

free programming style, prohibiting any kind of side effect

would be overly restrictive and not in line with the driving goal

of offering pragmatic solutions. However, introducing side

effects adds control-, output-, and anti-dependencies that must

be detected by the compiler to determine which optimizations

can be safely performed. Dependency analysis is significantly

complicated if mutable data can be aliased, i.e., a write to one

variable may effect the contents of another variable. The key

to fine-grained dependency information is to prove that two

variables must never alias, which, in general, is hard to do. If

separation cannot be ensured, a dependency must be reported.

Tracking side effects in an overly conservative manner falsely

eliminates both task-level parallelism and other optimization

opportunities.

The approach adopted by Delite is to restrict side-effects to a

more manageable level. Delite caters to a programming model

where the majority of operations is side-effect free and objects

start out as immutable. At any point in the program, however,

a mutable copy of an immutable object can be obtained.

Mutable objects can be modified in-place using side-effecting

operations and turned back into immutable objects, again by

creating a copy. A future version of Delite might even remove

the actual data copies under the hood, based on the results of

liveness analysis. The important aspect is that aliasing (and

deep sharing) between mutable objects is prohibited.

DSL developers explicitly designate effectful operations and

specify which of the inputs are mutated and/or whether the

operation has a global effect (e.g., println). In addition,

developers can specify for each kind of IR node which of

its inputs are only read and which may be aliased by the

object the operation returns (the conservative default being

that any input may be read or aliased). This information is

used by the dependency analysis to serialize reads of anything

that may alias one or more mutable objects with the writes to

those objects. The target of a write, however, is always known

unambiguously and no aliasing is allowed.

C. Parallel IR

The Delite Compiler extends the generic IR to express

parallelism within and among IR nodes. Task parallelism

is discovered by tracking dependencies among nodes. This

information is used by the Delite Runtime to schedule and

execute the program correctly and efficiently.

IR definition nodes are extended to be a particular kind of

Delite op. There are multiple op archetypes, each of which

expresses a particular parallelism pattern. A Sequential op,

for example, has no internal parallelism, while a Reduce op

specifies the reduction of some collection via an associative

92

operator, and can therefore be executed in parallel (as a tree-

reduce). Delite ops currently expose multiple common data-

parallel patterns with differing degrees of restrictiveness. Some

require entirely disjoint accesses (e.g., Map and Zip), while

others allow the DSL to specify the desired synchronization

across shared state for each iteration (e.g., Foreach).

Most Delite data-parallel ops extend a common loop-based

ancestor, the MultiLoop op. A MultiLoop iterates over a

range and applies one or more functions to each index in

the range. MultiLoop also has an optional final reduction

stage of thread-local results to allow Reduce-based patterns to

be expressed. Like Map and Zip, MultiLoop functions must

have disjoint access. However, a MultiLoop may consume

any number of inputs and produce any number of outputs

and is the key abstraction that enables Delite to fuse data-

parallel operations together. Delite will fuse together adjacent

or producer-consumer MultiLoops that iterate over the same

range and do not have cyclic dependencies, creating a single

pipelined MultiLoop. By fusing a MultiLoop that produces

a set of elements together with a MultiLoop that consumes

the same set, potentially large intermediate data structures

can be entirely eliminated. Since fusing ops can create new

opportunities for further optimization, fusion is iterated (and

previously discussed optimizations reapplied) until a fixed

point is reached. In addition to allowing multiple data-parallel

ops in a single loop, fusion also effectively creates optimized

MapReduce and ZipReduce ops (as well as any other combi-

nation, e.g., MapReduceReduce). Since Delite ops internally

extend MultiLoop, DSL authors can benefit from fusion even

while using only the simpler data parallel patterns.

Fusion can significantly improve the performance of appli-

cations by improving cache behavior and reducing the total

number of memory accesses required. For example consider

the OptiML code shown in Listing 1. The application performs

multiple subsequent operations on the input in order to update

the result. Fusing these operations into a single traversal over

the input collection that generates all of the outputs at once

without temporary buffer allocations can produce a significant

performance improvement for large inputs.

D. Domain-specific IR

The DSL developer extends the Delite Compiler to create

domain-specific IR nodes that extend the appropriate Delite

op. It is through this simple mechanism that a DSL devel-

oper expresses how to map domain constructs onto exist-

ing parallel patterns. This highest-level view of the IR is

unique for each DSL and allows for domain-specific analyses

and optimizations. For example, OptiML views certain IR

nodes as linear algebra operations, which allows it to use

pattern matching to apply linear algebra simplification rules.

These rewrites can eliminate redundant work (e.g., whenever

Transpose(Transpose(x)) is encountered, it is rewritten to be

simply x) as well as yield significantly more efficient imple-

mentations that are functionally equivalent to the original. As

an example, consider the snippet of OptiML code for Gaussian

Discriminant Analysis (GDA) shown in Listing 4. The OptiML

40 val sigma = sum(0,m) { i =>
41 val a = if (!x.labels(i)) x(i)-mu0 else x(i)-mu1
42 a.t ** a
43 }

Listing 4: The summation representing the bulk of computa-

tion in Gaussian Discriminant Analysis

compiler’s pattern matcher recognizes that a summation of

outer products can be implemented much more efficiently as

a single matrix multiplication [9]. Specifically, it recognizes

∑
n

i=0
~xi ∗ ~yi →

∑
n

i=0
X(:, i) ∗ Y (i, :) = X ∗ Y .

The transformed code allocates two matrices, populates

them by performing the operations required to produce all

of the inputs to the original outer product operation, and then

performs the multiplication.

E. Heterogeneous code generation

The final stage of compilation is code generation. The

DSL can extend one or more code generators, which are

modular objects that translate IR nodes to an implementation

in a lower level language. The LMS framework provides the

basic mechanisms for traversing the IR and invoking the code

generation method on each node. It also provides generator

implementations for host language operations. On top of that,

the Delite Compiler Framework supplies generator implemen-

tations for all Delite ops. Due to the ops’ deterministic access

patterns and restricted semantics, Delite is able to generate

safe parallel code for CMPs and GPUs without performing

complex dependency analyses. The DSL developer can also

choose to override the code generation for an individual target

(e.g., Cuda [12]) to provide a hand-optimized implementation

or utilize an existing library (e.g. CUBLAS, CUFFT). We

currently have implemented code generators for Scala, C++,

and Cuda, which allow us to leverage their existing compilers

to perform further low-level optimizations.

The Delite Compiler Framework adds a new code generator

which generates a representation of the application as an exe-

cution graph of Delite ops with executable kernels. The design

supports control flow nodes and nested graphs, exposing paral-

lelism within a given loop or branch. For every Delite op, the

Delite generator emits an entry in the graph containing the op’s

dependencies. It then invokes the other available generators

(Scala, Cuda, etc.) for each op, generating multiple device-

specific implementations of each op kernel. For example, if

a particular operation may be well-suited to GPU execution,

the framework will emit both a CPU-executable variant of

the op as well as a GPU-executable variant of the op. The

runtime is then able to select which variant to actually execute.

Since it is not always possible to emit a given kernel for

all targets, each op in the graph is only required to have at

least one kernel variant. By emitting this machine-agnostic

execution graph of the application along with multiple kernel

variants, we are able to defer hardware specific decisions to

the runtime and therefore run the application efficiently on a

93

variety of different machines. This mechanism also allows the

DSL to transparently expand its set of supported architectures

as new hardware becomes available. Once Delite supports code

generation and runtime facilities for the new hardware, existing

DSL application code can automatically leverage this support

by simply recompiling.

IV. HETEROGENEOUS RUNTIME

The Delite Runtime provides services required by DSLs to

execute implicitly parallel programs, such as scheduling, data

management, and synchronization, and optimizes execution for

the particular machine.

A. Scheduling

The runtime takes as input the execution graph generated by

the Delite Compiler, along with the kernels and any additional

necessary code generated by the Delite Compiler, such as DSL

data structures. The execution graph is a machine-agnostic

description of the inherent parallelism within the applica-

tion that enumerates all the ops in the program along with

their static dependencies and supported target(s). The runtime

schedules the application at walk-time [13], combining the

static knowledge of the application behavior provided by the

execution graph with a description of the current machine,

i.e., the number of CPU cores, number of GPUs, etc. (see

Figure 3). The scheduler traverses all of the nested graphs

in the execution graph file and produces partial schedules for

blocks of the application that are statically determinable. The

partial schedules are dispatched dynamically during execution

as the branch directions are resolved. The runtime scheduler

currently utilizes a clustering algorithm that prefers scheduling

each op on the same resource as one of its inputs. If an

op has no dependencies it is scheduled on the next available

resource. This algorithm attempts to minimize communication

among ops and makes device decisions based on kernel and

hardware availability. Data-parallel ops selected for CMP

execution are split into a number of chunks (determined by

resource availability) and then scheduled across multiple CPU

resources.

B. Schedule compilation

In order to avoid the overheads associated with dynami-

cally interpreting the execution graph, the runtime generates

an executable for each hardware resource that invokes the

kernels assigned to that resource according to the partial

schedules. Since the compiler is machine-agnostic, the runtime

is responsible for generating an implementation of each data-

parallel op that is specialized to the number of processors

chosen by the schedule. For example, a Reduce op only has its

reduction function generated by the compiler, and the runtime

generates a tree-reduction implementation with the tree height

specialized to the number of processors chosen to perform the

reduction.

The generated code enforces the schedule by synchronizing

kernel inputs and outputs across resources. The synchroniza-

tion is implemented by transferring data through lock-based

Delite

Execution

Graph

Kernels

(Scala, C,

Cuda,)

DSL Data

Structures

Local System

GPU

Partial schedules, Fused, specialized kernels

SMP

Machine Inputs Application Inputs

Scheduler

Code Generator

JIT Kernel Fusion, Specialization, Synchronization

Walk-Time

Schedule Dispatch, Memory Management, Lazy Data Transfers

Run-Time

Fig. 3: An overview of the Delite Runtime. The runtime

uses the machine-agnostic execution graph representing the

application as well as a machine description to schedule and

execute the application on the available hardware. Walk-time

code generation utilizes scheduling information to optimize

kernels and synchronization, minimizing run-time overheads.

Run-time systems execute the schedule, manage memory, and

perform data transfers.

one-place buffers. This code generation allows for a distributed

program at runtime (no master coordination thread is required)

and also allows for multiple optimizations that minimize run-

time overhead. For example, kernels scheduled on the same

hardware resource with no communication between them are

fused to execute back-to-back. All synchronization in the

application is generated at this time and only when necessary

(kernel outputs that do not escape a single hardware resource

require no synchronization). So in the simplest case of target-

ing a traditional uniprocessor, the final executable code will

not invoke any synchronization primitives (e.g., locks). The

runtime also injects data transfers when the communicating

resources reside in separate address spaces. When shared

memory is available, it simply passes the necessary pointers.

C. Execution

The current implementation of the Delite Runtime is written

in Scala and generates Scala code for each CPU thread and

Cuda code to host each GPU. This environment allows it to

support the execution of Scala kernels, C++ kernels, and Cuda

kernels that are generated by the Delite compiler (using JNI

as a bridge). The runtime spawns a JVM thread for each CPU

resource assigned to a kernel, and also spawns a single CPU

host thread per Cuda-compliant GPU.

The GPU host thread performs the work of launching

kernels on the GPU device and transferring data between

main memory and the device memory. For efficiency, it allows

the address spaces to become out-of-sync by default, and

only performs data transfers when the schedule requires them.

Delite also provides memory management for the GPU. Before

each Cuda kernel is launched, any memory on the device it

will require is allocated and registered. The runtime uses the

execution graph and schedule to perform liveness analysis for

94

each input and output of GPU ops to determine the earliest

time during execution at which it can be freed. By default,

the runtime attempts to keep the host thread running ahead

as much as possible by performing asynchronous memory

transfers and kernel launches. When this causes memory

pressure, however, the runtime uses the results of the liveness

analysis to wait for enough data to become dead, free it, and

then perform the new allocations. This analysis can be very

useful due to the limited memory available in current GPU

devices.

V. DSL COMPILERS VS. DSL LIBRARIES

As a simpler alternative to constructing a framework for

building DSL compilers that target heterogeneous hardware,

one could also create a framework for domain-specific li-

braries. In previous work [5] we presented such a framework

along with an earlier version of the OptiML DSL. This

DSL could also target heterogeneous processing elements

transparently from a single application source with no ex-

plicit parallelism and achieve performance competitive with

MATLAB. These original versions of Delite and OptiML were

implemented as pure libraries in Scala (with the OptiML

library extending the Delite library).

A. Static optimizations and code generation

By introducing compilation Delite DSLs gain several key

benefits that are crucial to achieving high performance for

certain applications. First of all, we add the ability to perform

static optimizations, which includes generic optimizations pro-

vided by the Delite framework as well as domain-specific

ones provided by the DSL, as discussed in Section III. With

a library-based approach optimizations can only be performed

dynamically.

In addition, adding code generation support can greatly

improve the efficiency of the final executables by eliminating

all the DSL abstractions and layers of indirection within the

generated code, leaving only type-specialized, straight-line

blocks of instructions and first-order control flow that target

compilers can optimize heavily. Code generating from an IR

also makes targeting hardware other than that supported by

the DSL’s hosting language much more tractable. A common

solution for libraries is to rely on the host language’s com-

piler to perform code generation for the CPU and manually

provide native binaries targeting other hardware using the host

language’s foreign function interface. In our previous work we

attempted to somewhat ease this burden on the DSL author

for GPUs by writing a compiler plug-in that generated Cuda

equivalents of Scala anonymous functions that had disjoint

data accesses (i.e., maps). By building an IR, however, Delite

is able to handle Cuda code generation seamlessly for both

DSL and user-supplied functions, as well as perform static

optimizations on the generated kernels that are only reasonable

on GPU architectures. These code generators are also easily

extensible to new target languages and architectures, making

the execution target(s) of Delite DSLs truly independent of the

DSL hosting language.

B. Runtime optimizations

It is also important to note that many of Delite’s runtime

features are contingent on full program static analyses, which

are made possible by the compiler statically generating the

execution graph of the application. Delite can make scheduling

decisions and specialize the execution at walk-time, thereby

incurring significantly less run-time overhead. Full program

analysis is also essential for Delite’s ability to manage GPU

memory intelligently, as discussed in Section IV-C. A library-

based system can also obtain an execution graph of the

application by dynamically deferring the execution of each

operation and building up the graph at run-time. We employed

such a deferral strategy in our previous work, but were unable

to defer past control flow, thereby creating “windows” of the

application that could be executed at a time. These windows,

however, were not sufficient to allow us to intelligently free

GPU memory. We instead treated the GPU main memory as a

software-managed cache of the CPU main memory, which was

subject to undesirable evictions and could not always handle

application datasets that severely pressured the GPU memory’s

capacity.

We investigate the benefits of code generation for the GPU

(Section VI-C), static optimizations (Section VI-D), and run-

time optimizations (Section VI-E) not possible in our previous

work in our experiments.

VI. EXPERIMENTAL ANALYSIS

In this section we present results for overall application

performance for various machine learning applications written

in OptiML (using Delite) and compare them to sequential

C++ counterparts as well as multiple explicitly parallelized

MATLAB versions. We also show benchmarks that provide

insights into the achievable performance benefits from some of

Delite’s new optimizations, namely the benefits of GPU code

generation compared to a library-based approach (launching

pre-written kernels), static optimizations, and runtime schedule

compilation.

A. Methodology

We compare the OptiML version of our applications to

C++ implementations using the Armadillo linear algebra li-

brary [14] and multiple MATLAB implementations. We used

MATLAB 7.11 [15] with its Parallel Computing Toolbox to

write explicitly parallelized versions of each application for

multi-core CPU results, as well as a different implementation

that utilizes MATLAB’s GPU computing support. Each of the

four versions of the applications are algorithmically identical,

but for the MATLAB versions, we made a reasonable effort

to vectorize and parallelize the code. In situations where we

were forced to choose between the two options, we chose the

version that produced the fastest execution time at the highest

thread count. For the GPU versions, we offloaded all com-

putationally expensive operations to the GPU and attempted

to make the best data locality choices when managing the

memory transfers. A summary of our applications appears in

Table I.

95

NAME DESCRIPTION INPUT SIZE

Gaussian

Discriminant

Analysis

(GDA)

Generative learning algorithm
for modeling the probability
distribution of a set of data as
a multivariate Gaussian

1,200 x 2,048

matrix

Naïve Bayes

(NB)

Fast, low-work supervised
learning algorithm for
classification

50,000 x 1,448

matrix

k-means

Clustering

(k-means)

Unsupervised learning
algorithm for finding similar
clusters in a dataset

1,048,576 x 3

matrix

Support Vector

Machine

(SVM)

Optimal margin classifier,
implemented using the
Sequential Minimal
Optimization (SMO) algorithm

400 x 1,448

matrix

Linear Regression

(LR)

Unweighted and locally
weighted linear regression

2,048 vectors

Restricted

Boltzmann

Machine

(RBM)

Stochastic recurrent neural
network, without connections
between hidden units

2,000

hidden units

2,000

dimensions

TABLE I: Applications used for performance evaluations.

Our experiments were performed on a Dell Precision

T7500n with two quad-core Xeon 2.67 GHz processors, 24GB

of RAM, and an NVidia Tesla C2050. For the CPU we

generated Scala code that was executed on Oracle’s Java SE

Runtime Environment 1.7.0 and the HotSpot 64-bit server VM

with default options. For the GPU, we generated and executed

Cuda v3.2. For each experiment we timed the computational

part of the application, ignoring initialization steps. We ran

each application (with initialization) ten times without inter-

ruption in order to warm up the JIT, and averaged the last five

runs to smooth out fluctuations due to garbage collection and

other variables.

B. Performance results

In Figure 4 we present the performance of OptiML, C++,

and MATLAB from one to eight CPU threads, as well as

with one GPU. Execution times are normalized to the single-

threaded OptiML version of each application. The implicitly

parallel OptiML code achieves single-threaded performance

comparable to single-threaded C++ and outperforms the ex-

plicitly parallel MATLAB version in nearly all cases. For

some of the C++ versions of the apps (GDA and Linear

Regression), we observed that the total cost of allocating new

matrix objects was very high, and therefore we optimized the

memory usage in ways that prevent parallelizing the appli-

cations. Specifically we pre-allocated and re-used storage for

temporary matrices generated within loops rather than having

the functions return a newly allocated result for each call. This

significantly reduced the execution time of the C++ versions

of the applications, and we show these hand-optimized results

in addition to the original results in Figure 4. The OptiML

versions of the applications always perform a new allocation

in order to allow parallelization.

For most of the CPU results, we were able to achieve

superior performance results to MATLAB and comparable

results to C++ using our analysis and code generation fa-

cilities, which produces code that is specialized, efficient,

and contains minimal abstractions and levels of indirection.

We wrote the C++ implementations single-threaded using the

Armadillo library to perform all linear algebra operations.

The GPU performance numbers are dependent on the suit-

ability of the application to the GPU, which is directly related

to Delite’s ability to generate Cuda kernels. It is clear from

the large variance in the performance results that achieving

maximum performance requires supporting heterogeneous sys-

tems and being able to choose the best resource for execution.

Some applications, like GDA and RBM, achieved significant

speedup by utilizing the GPU, while others achieved better

performance with multi-core scaling.

For GDA, Naive Bayes, and k-means, we were able to

achieve significantly better GPU performance results com-

pared to MATLAB due to code generation of custom Cuda

kernels. The MATLAB versions only launched kernels for

individual language operations, which in these applications

are much too fine-grained with little data-parallelism. Code

generating user functions created fewer kernels and exposed

much more data-parallelism per kernel for the GPU to exploit.

In the cases of Naive Bayes and k-means this generation was

a relatively straightforward translation of each function using

the Delite ops created by the application. For Naive Bayes

transferring the input data to the GPU was very expensive

and consumed most of the execution time, allowing the

CPU to perform much better overall. SVM uses an iterative

convergence algorithm with a few expensive linear algebra

operations that can be parallelized within each loop iteration.

While this parallelism was sufficient for CPU speedups, the

overhead of transferring data to and from the GPU every loop

iteration resulted in a GPU execution of nearly identical time

to the single-threaded CPU execution.

For GDA, the significant GPU speedup came from ex-

ploiting multiple GPU-specific hardware characteristics during

code generation of the summation kernel shown in Listing 4.

Since the summation function dynamically allocates multiple

objects, the Cuda code generator implemented the summation

loop serially and parallelized the inner data-parallel operations

(which do not require dynamic allocations) in order to fit the

Cuda programming model. It then used work duplication for

the vector operations in order to localize all the work needed

to compute a given element of the output matrix. Once this

transformation was performed the code generator was able

to keep all intermediate results for the entire summation in

registers and eliminate all main memory accesses besides

loading the inputs and storing the output by assigning each

GPU thread to compute a single element of the output matrix.

For Naive Bayes and k-means we also achieved significantly

better performance and scalability on the CPU. In the MAT-

LAB version of k-means we were forced to choose between

vectorization and parallelization. Vectorization produced the

fastest execution time at 8 threads, which is why the MATLAB

results do not scale. Both of these applications contain numer-

ous small operations, which the OptiML compiler is able to

inline and eliminate a significant amount of overhead, resulting

in significantly faster kernels that also scale.

RBM is composed of many fine-grained linear algebra

operations and matrix multiplications which MATLAB ships

to BLAS, which is how the MATLAB version performs at

96

1
.0

1
.7

2
.7

3
.5

1
1

.0

1
.0

1
.9

3
.2

4
.7

8
.9

0
.6

0.00

0.50

1.00

1.50

2.00

1 CPU 2 CPU 4 CPU 8 CPU CPU + GPU

RBM
1

.0

1
.9

3
.6

5
.8

1
.1

0
.1

0
.2

0
.2

0
.3

1
.2

 0.00

 2.00

 4.00

 6.00

 8.00

 10.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

0
.0

1

100.00

110.00

Naive Bayes

...

1
.0

1
.9

3
.1

4
.2

1
.1

0
.9

1
.2

1
.4

1
.4

0
.8

 0.00

 0.50

 1.00

 1.50

 2.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

0
.1

7.00

15.00

SVM

..
1

.0

2
.1

4
.1

7
.1

2
.3

0
.3

0
.4

0
.4

0
.4

0
.3

1
.2

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

K-means

OptiML MATLAB C++ C++ no-alloc

1
.0

1
.6

1
.8

1
.9

4
1

.3

0
.5

0
.9

1
.4

1
.6

2
.6

0
.6

1

.2

0.00

0.50

1.00

1.50

2.00

2.50

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

GDA

1
.0

1
.4

2
.0

2
.3

1
.7

0
.5

0
.9

1
.3

1
.1

0
.4

0
.5

1

.2

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 CPU 2 CPU 4 CPU 8 CPU CPU +

GPU

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Linear Regression

Fig. 4: Execution time of the various versions of our applications normalized to single-threaded OptiML. Speedup numbers

are reported on top of each bar.

least as well as the other versions and scales (through parallel

BLAS). We therefore believe OptiML should achieve compa-

rable results to MATLAB by simply making more OptiML

operations use BLAS implementations.

C. GPU compilation vs. library approach

In this experiment we investigate the impact of GPU com-

pilation on Delite and OptiML, and the result is shown in

Figure 5. Applications that mostly consist of matrix/vector

operations supported by common GPU libraries, such as RBM,

show similar performance in both approaches since Delite can

simply generate code that calls the efficiently implemented

GPU libraries (e.g., CUBLAS). Naive Bayes, however, spends

most of its time executing a user-defined Map operation, which

Delite generates as a single GPU kernel. In the library-based

version the Map must be broken down into multiple library

calls, introducing more kernel launch overhead and additional

main memory accesses across kernel boundaries, which results

in 2.3x slower execution. For Naive Bayes the ability to

generate a custom Cuda kernel from a user-defined function

was critical, but being able to analyze and optimize the gener-

ated code was not. Therefore, while Delite code generation

outperformed the Delite library, a simpler source-to-source

translation approach similar to our previous work [5] is also

viable here. GDA, however, is an example of where generating

an efficient custom Cuda kernel was only possible by building

an IR composed of both the application function and the DSL

functions called within the application function. With that IR

Delite is able to localize all the work required for each output

element within a thread so that all intermediate results are

kept in registers. This static optimization significantly reduces

the number of GPU main memory accesses, resulting in 5.5x

speedup compared to the library-based equivalent.

D. Static optimizations

Op fusing can significantly improve application perfor-

mance by computing multiple loop-based operations within

a single loop, which can result in improved cache behavior,

fewer necessary memory allocations, and a reduction in the

total number of memory accesses. In this experiment we

compare the results of applying fusing and Delite’s generic

optimizations to the Downsampling application shown in

Listing 1 to the performance of the hand-optimized C++

version shown in Listing 2. A straightforward generation of the

97

1.0

2.3

5.5

0

0.2

0.4

0.6

0.8

1

1.2

RBM Naïve Bayes GDA

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Library-based Compiled

Fig. 5: GPU normalized execution time of three of the apps

shown in Figure 4 using Delite code generation compared to

a pure library-based approach. Speedups are reported at the

top of each bar.

0

0.1

0.2

0.3

0.4

0.5

0.6

8 CPU

Naïve Bayes K-means

1
.7

2
.6

1
.0

1
.8

2
.8

3
.3

3
.2

6
.1

1
1

.2

1
8

.9

3
.0

5
.9

1
0

.8

1
8

.1

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CPU 2 CPU 4 CPU 8 CPU

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

t
io

n
 T

im
e

OptiML No Fusing OptiML Fusing C++

Fig. 6: left) Normalized execution time of Downsampling in

C++ and OptiML with and without fusing optimizations. right)

Execution time of Naive Bayes and k-means in OptiML with

fusing enabled normalized to OptiML with fusing disabled.

Speedups are reported at the top of each bar.

OptiML version results in over 3x slower execution compared

to the C++ version, shown in Figure 6. This performance

is equivalent to the best achievable in a purely library-based

approach for Delite on this application. However, as can be

seen in Listing 1, each row in the loop is only actually needed

if the condition holds, and enabling code motion pushes

the DSL row initialization function inside the condition as

desired. In addition, enabling fusing generates all of the bulk

operations using only a single pass over the input dataset

(instead of 3 passes) and eliminates the two temporary Vector

allocations. These transformations result in generated code

that is 7% faster than the C++ version that performs all of

these optimizations manually. It is important to note that these

optimizations require performing transformations across both

DSL library code and application code, which would not be

possible in a library-based approach.

Enabling fusing also had a significant performance impact

on Naive Bayes and k-means, resulting in 1.7x and 2.6x faster

execution, respectively, as shown in Figure 6. The results

shown in Figure 4 for these apps include fusing optimizations,

with the C++ versions manually optimized.

Section III-D describes a much more efficient implementa-

tion of the GDA algorithm using matrix multiplication that

the OptiML compiler can generate automatically from the

0

0.5

1

1.5

2

2.5

 1 CPU 2 CPU 4 CPU 8 CPU

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Compiled Schedule Interpreted Schedule

1
.0

0

1
.6

2

2
.3

0

3
.2

1

0
.9

9

0
.5

3

0
.6

2

0
.4

9

Fig. 7: Normalized execution time of GDA using a 64 element

input for the compiled and interpreted implementations of the

Delite Runtime. Speedups are reported at the top of each bar.

description in Listing 4 using IR pattern matching. This

transformation significantly reduces execution time by elim-

inating memory allocations and improving cache behavior,

which results in both improved single-threaded performance

and improved multi-threaded performance, as the memory

system becomes less of a scaling bottleneck. Figure 4 shows

our performance results for GDA without this transformation.

Enabling this optimization yielded 20.4x faster execution with

one thread and 48.3x faster execution with eight threads

compared to our original performance results.

E. Runtime schedule compilation

As discussed in Section IV-B, the runtime utilizes post-

scheduling code generation to minimize overheads and bot-

tlenecks that a non-specialized execution can incur. For this

experiment, we implemented an “interpreted” version of the

runtime in which the execution graph is traversed and sched-

uled dynamically by a master thread. The master thread

schedules each op and then enqueues it for execution on

the selected worker thread. As each op is dequeued by a

worker thread, it synchronizes with every op it depends on,

executes, and then synchronously stores its output(s). This

purely dynamic approach closely follows the design of the

library runtime in our previous work [5], and was necessary

since the execution graph was created dynamically by a master

thread, as discussed in Section V-B. Such a design, however,

necessarily spends more time executing code at run-time that

is not from application kernels, and therefore creates a much

greater minimum op size required to achieve performance

scaling. In this experiment we ran GDA on a small input

(64 elements), and compare the performance results between

the interpreted version and the compiled version, shown in

Figure 7. At these execution times, the interpreted version

has too much run-time overhead and only slows down with

multiple processors. The compiled version however, achieves

comparable scaling to that observed for the larger dataset

shown in Figure 4.

VII. RELATED WORK

Delite builds upon a variety of previously published work

in the areas of domain-specific languages, multi-stage compi-

lation, and parallel programming.

98

DSLs and optimizations: DSL design can be split into two

categories. External DSLs, which are completely independent

languages, and internal DSLs, which borrow some degree of

functionality from a hosting language. We adopt a purely

embedded approach for constructing DSLs, as presented by

Hudak [16]. Previous work has shown how domain knowledge

can enhance application performance. Meng et al. show the

benefits of best-effort computing for recognition and mining

applications [17]. Menon et al. apply high level transforma-

tions to MATLAB code, producing performance gains in both

interpreted and compiled code [18]. Guyver et al. present a

way to annotate library methods with domain-specific knowl-

edge and show significant performance improvements [19].

CodeBoost [20] allows for user-defined rules that are used to

transform the program using domain knowledge. Delite, on the

other hand, allows DSL developers to perform domain-specific

compiler transformations on the application IR.

Multi-Stage compilation: Many static metaprogramming

techniques exist, including C++ templates [21] and Template

Haskell [22]. Expression Templates [23] allow customizable

generation, and TaskGraph [24] performs runtime code gen-

eration from C++. Telescoping languages [25] are efficient

DSLs created from annotated component libraries. Designated

multi-stage programming languages include MetaML [26] and

MetaOCaml [27]. The Delite framework is built on top of

the Lightweight Modular Staging approach [8], inspired from

the related work on embedding typed languages by Carette

et al. [28] and Hofer et al. [29]. Libraries using domain-

specific code generation and optimization include ATLAS [30]

(linear algebra), FFTW [31] (discrete Fourier transform), and

SPIRAL [32] (general linear transformations). Such program

generators often require significant effort to create. The Delite

framework and Lightweight Modular Staging aim to make

such facilities easily accessible.

Heterogeneous programming: Some systems such as EX-

OCHI [33] and OpenCL [34] provide abstractions that allow

the programmer to explicitly manage and target any available

accelerator, eliminating the need to use vendor APIs for each

device. Merge [35] builds on top of EXOCHI by allowing

kernel variants to be associated with particular accelerators and

using the runtime to select the appropriate kernel. Harmony

[36] builds a data dependency graph of a program and then

schedules independent kernels to run in parallel. Unlike Delite,

it does not perform automatic data-decomposition or support

domain-specific optimizations.

Data-parallel programming: Several programming models

use a data-parallel API to hide the complexity of the underly-

ing hardware. Copperhead [37] provides automatic Cuda code

generation from a data-parallel subset of Python. FlumeJava

[38] is a Java library targeting Google’s MapReduce [39] that

optimizes the data-flow graph to create an efficient pipeline

of MapReduce operations. Intel’s Array Building Blocks [40]

provides managed execution of data parallel patterns across

processor cores and is capable of targeting multiple architec-

tures (e.g., different vector units) from a single application

source. Concurrent Collections (CnC) [41] is a model that

shares some similarities with the Delite task graph. Com-

putation steps and scheduling are treated separately in CnC,

whereas Delite produces optimized kernels using scheduling

information. Dryad [42] executes very coarse-grained data-

parallel operations over clusters and uses an explicitly con-

structed execution graph to map the application to a specific

system configuration. DryadLINQ [43] automatically trans-

lates LINQ [44] programs to a Dryad execution graph. Here

LINQ could be considered the DSL and Dryad the runtime. In

contrast, Delite additionally provides facilities for developing

new implicitly parallel DSLs, targets finer-grained parallelism,

and exploits both task and data parallelism.

Parallel programming languages: Recent parallel pro-

gramming languages include Chapel [45], Fortress [46], and

X10 [47]. These languages employ explicit control over lo-

cations and concurrency and are targeted primarily at scien-

tific applications for supercomputers. In contrast, the Delite

runtime manages locations and concurrency transparently. Im-

plicit parallelism in languages is often based on data-parallel

operations on parallel collections. Languages with this feature

include Chapel, Data-Parallel Haskell [48], Fortress, High

Performance Fortran [49], NESL [50], and X10. DSLs which

utilize the Delite framework are able exploit implicit data

parallelism as well as implicit task parallelism.

VIII. CONCLUSION

As computing systems become increasingly parallel and

heterogeneous, application programmers are being forced to

learn multiple disparate programming models and consider

more low-level hardware details in order to achieve high

performance. We propose using domain-specific languages to

provide a higher level of abstraction that is capable of pro-

ducing high performance code without negatively impacting

programmer productivity. We presented the Delite Compilation

Framework and Runtime system for creating heterogeneous

parallel DSLs using an example DSL for machine learning

called OptiML. OptiML and other DSLs can leverage Delite

to achieve high performance with significantly less effort than

building a stand-alone compiler and runtime from scratch.

Finally, we presented results comparing the performance of

several machine learning applications written in OptiML and

running on Delite to multiple MATLAB and C++ implemen-

tations.

ACKNOWLEDGMENT

The authors thank the reviewers for their feedback, Michael

Garland for shepherding this paper, and Peter B. Kessler for

reviewing drafts. This research was sponsored by the DOE

through Sandia order 942017, the Army under contract AH-

PCRC W911NF-07-2-0027-1, DARPA through Oracle order

US103282, the ERC under grant 587327 "DOPPLER", and the

Stanford Pervasive Parallelism Lab affiliates program, which

is supported by Oracle/Sun, NVIDIA, AMD, NEC, and Intel.

REFERENCES

[1] K. Olukotun, B. A. Nayfeh, L. Hammond, K. G. Wilson, and K. Chang,
“The case for a single-chip multiprocessor,” in ASPLOS ’96.

99

[2] Intel, “From a Few Cores to Many: A Tera-scale Computing Re-
search Review.” Website, http://download.intel.com/research/platform/
terascale/terascale_overview_paper.pdf.

[3] AMD, “The Industry-Changing Impact of Accelerated Computing.”
White Paper, 2008.

[4] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages: an
annotated bibliography,” SIGPLAN Not., vol. 35, no. 6, pp. 26–36, 2000.

[5] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and
K. Olukotun, “A domain-specific approach to heterogeneous paral-
lelism,” in Proceedings of the 16th ACM symposium on Principles and

practice of parallel programming, ser. PPoPP, 2011.

[6] M. Odersky, “Scala,” http://www.scala-lang.org, 2011.

[7] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Hanrahan,
M. Odersky, and K. Olukotun, “Language Virtualization for Heteroge-
neous Parallel Computing,” ser. Onward!, 2010.

[8] T. Rompf and M. Odersky, “Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls,” ser. GPCE,
2010.

[9] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, M. Wu, A. R. Atreya,
M. Odersky, and K. Olukotun, “OptiML: an implicitly parallel domain-
specific language for machine learning,” in Proceedings of the 28th

International Conference on Machine Learning, ser. ICML, 2011.

[10] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Oderksy,
and K. Olukotun, “Building-blocks for performance oriented dsls,”
Electronic Proceedings in Theoretical Computer Science, 2011.

[11] M. Paleczny, C. Vick, and C. Click, “The java hotspot(tm) server
compiler,” in In USENIX Java Virtual Machine Research and Technology

Symposium, 2001, pp. 1–12.

[12] NVIDIA, “CUDA,” http://developer.nvidia.com/object/cuda.html.

[13] J. Fisher, “Walk-time techniques: catalyst for architectural change,”
Computer, vol. 30, no. 9, pp. 40–42, Sep. 1997.

[14] C. Sanderson, “Armadillo: An Open Source C++ Linear Algebra Li-
brary for Fast Prototyping and Computationally Intensive Experiments.
Technical Report, NICTA,” 2006.

[15] MathWorks, “Matlab,” http://www.mathworks.com/products/matlab/.

[16] P. Hudak, “Building domain-specific embedded languages,” ACM Com-

puting Surveys, vol. 28, 1996.

[17] J. Meng, S. Chakradhar, and A. Raghunathan, “Best-effort parallel
execution framework for recognition and mining applications,” in Proc.

of IPDPS, 2009.

[18] V. Menon and K. Pingali, “A case for source-level transformations
in MATLAB,” in PLAN ’99: Proceedings of the 2nd conference on

Domain-specific languages. New York, NY, USA: ACM, 1999, pp.
53–65.

[19] S. Z. Guyer and C. Lin, “An annotation language for optimizing software
libraries,” in PLAN ’99: Proceedings of the 2nd conference on Domain-

specific languages. New York, NY, USA: ACM, 1999, pp. 39–52.

[20] O. Bagge, K. Kalleberg, M. Haveraaen, and E. Visser, “Design of
the CodeBoost transformation system for domain-specific optimisation
of C++ programs,” in Source Code Analysis and Manipulation, 2003.

Proceedings. Third IEEE International Workshop on, Sept. 2003, pp.
65–74.

[21] D. Vandevoorde and N. Josuttis, C++ templates: the Complete Guide.
Addison-Wesley Professional, 2003.

[22] T. Sheard and S. Jones, “Template meta-programming for Haskell,” ACM

SIGPLAN Notices, vol. 37, no. 12, pp. 60–75, 2002.

[23] T. L. Veldhuizen, “Expression templates, C++ gems,” SIGS Publications,
Inc., New York, NY, 1996.

[24] O. Beckmann, A. Houghton, M. Mellor, and P. H. Kelly, “Runtime code
generation in c++ as a foundation for domain-specific optimisation,” in
Domain-Specific Program Generation, ser. Lecture Notes in Computer
Science, C. Lengauer, D. Batory, C. Consel, and M. Odersky, Eds.
Springer Berlin / Heidelberg, 2004, vol. 3016, pp. 77–210.

[25] K. Kennedy, B. Broom, A. Chauhan, R. Fowler, J. Garvin, C. Koelbel,
C. McCosh, and J. Mellor-Crummey, “Telescoping languages: A system
for automatic generation of domain languages,” Proceedings of the

IEEE, vol. 93, no. 3, p. 387–408, 2005, this provides a current overview
of the entire Telescoping Languages Project.

[26] W. Taha and T. Sheard, “Metaml and multi-stage programming with
explicit annotations,” Theor. Comput. Sci., vol. 248, no. 1-2, pp. 211–
242, 2000.

[27] C. Calcagno, W. Taha, L. Huang, and X. Leroy, “Implementing multi-
stage languages using asts, gensym, and reflection,” in GPCE, 2003, pp.
57–76.

[28] J. Carette, O. Kiselyov, and C. chieh Shan, “Finally tagless, partially
evaluated,” in APLAS, 2007, pp. 222–238.

[29] C. Hofer, K. Ostermann, T. Rendel, and A. Moors, “Polymorphic
embedding of DSLs,” ser. GPCE, 2008.

[30] R. C. Whaley, A. Petitet, and J. Dongarra, “Automated empirical
optimizations of software and the ATLAS project,” Parallel Computing,
vol. 27, no. 1-2, pp. 3–35, 2001.

[31] M. Frigo, “A fast fourier transform compiler,” in PLDI, 1999, pp. 169–
180.

[32] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. A. Padua,
M. M. Veloso, and R. W. Johnson, “Spiral: A generator for platform-
adapted libraries of signal processing alogorithms,” IJHPCA, vol. 18,
no. 1, pp. 21–45, 2004.

[33] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian, M. Girkar,
N. Y. Yang, G.-Y. Lueh, and H. Wang, “Exochi: architecture and
programming environment for a heterogeneous multi-core multithreaded
system,” in PLDI ’07: Proceedings of the 2007 ACM SIGPLAN confer-

ence on Programming language design and implementation. New York,
NY, USA: ACM, 2007, pp. 156–166.

[34] The Khronos Group, “OpenCL 1.0,” http://www.khronos.org/opencl/.
[35] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge: a

programming model for heterogeneous multi-core systems,” in ASPLOS

’08. New York, NY, USA: ACM, 2008.
[36] G. F. Diamos and S. Yalamanchili, “Harmony: an execution model

and runtime for heterogeneous many core systems,” in HPDC ’08:

Proceedings of the 17th international symposium on High performance

distributed computing. New York, NY, USA: ACM, 2008, pp. 197–200.
[37] B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead: compiling

an embedded data parallel language,” in Proceedings of the 16th ACM

symposium on Principles and practice of parallel programming, ser.
PPoPP ’11. New York, NY, USA: ACM, 2011, pp. 47–56.

[38] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-
shaw, and N. Weizenbaum, “Flumejava: easy, efficient data-parallel
pipelines,” in Proceedings of the 2010 ACM SIGPLAN conference on

Programming language design and implementation, ser. PLDI ’10. New
York, NY, USA: ACM, 2010, pp. 363–375.

[39] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in OSDI, 2004, pp. 137–150.

[40] “Intel array building blocks,” http://software.intel.com/en-us/articles/
intel-array-building-blocks.

[41] Z. Budimlic, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton,
J. Palsberg, D. M. Peixotto, V. Sarkar, F. Schlimbach, and S. Tasirlar,
“Concurrent collections,” Scientific Programming, vol. 18, no. 3-4, pp.
203–217, 2010.

[42] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
EuroSys ’07: Proceedings of the 2nd ACM SIGOPS/EuroSys European

Conference on Computer Systems 2007. New York, NY, USA: ACM,
2007, pp. 59–72.

[43] M. Isard and Y. Yu, “Distributed data-parallel computing using a high-
level programming language,” in SIGMOD ’09: Proceedings of the 35th

SIGMOD international conference on Management of data. New York,
NY, USA: ACM, 2009, pp. 987–994.

[44] E. Meijer, B. Beckman, and G. Bierman, “LINQ: Reconciling object, re-
lations and XML in the .NET framework,” in SIGMOD ’06: Proceedings

of the 2006 ACM SIGMOD International Conference on Management

of Data. New York, NY, USA: ACM, 2006, pp. 706–706.
[45] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability

and the Chapel Language,” Int. J. High Perform. Comput. Appl., vol. 21,
no. 3, pp. 291–312, 2007.

[46] G. L. S. Jr., “Parallel programming and parallel abstractions in fortress,”
in IEEE PACT, 2005, p. 157.

[47] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” SIGPLAN Not., vol. 40,
no. 10, pp. 519–538, 2005.

[48] S. L. P. Jones, R. Leshchinskiy, G. Keller, and M. M. T. Chakravarty,
“Harnessing the Multicores: Nested Data Parallelism in Haskell,” in
FSTTCS, 2008, pp. 383–414.

[49] “High Performance Fortran,” http://hpff.rice.edu/index.htm.
[50] G. E. Blelloch, “Programming parallel algorithms,” Commun. ACM,

vol. 39, no. 3, pp. 85–97, 1996.

100

