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A Heterogeneous Reconfigurable Cell Array
for MIMO Signal Processing

Chenxin Zhang, Student Member, IEEE, Liang Liu, Member, IEEE,

Dejan Marković, Member, IEEE, and Viktor Öwall, Member, IEEE

Abstract—This paper presents a heterogeneous reconfigurable
cell array, designed for high-throughput baseband processing
of Multiple-Input Multiple-Output (MIMO) systems. To achieve
high performance and energy efficiency while retaining high
flexibility, the proposed architecture adopts heterogeneous and
hierarchical resource deployments. Additionally, extensive vector
computation enhancements and flexible memory access schemes
are employed to better support MIMO signal processing. Imple-
mented in a 65 nm CMOS technology, the cell array occupies
8.88 mm2 core area and is capable of running at 500 MHz.
For illustration, three computationally intensive blocks, namely
channel estimation, channel matrix pre-processing, and hard-
output data detection, of a 4×4 MIMO processing chain in a
20 MHz 64-QAM 3GPP Long Term Evolution Advanced (LTE-
A) downlink are mapped and processed in real-time. Imple-
mentation results report a maximum throughput of 367.88 Mb/s
with 1.49 nJ/b energy consumption. Compared to state-of-the-
art designs, the proposed solution outperforms programmable
platforms by several orders of magnitude in energy efficiency,
and achieves similar level of efficiency to that of ASICs.

Index Terms—Reconfigurable architecture, vector processor,
channel estimation, pre-processing, QR Decomposition (QRD),
Multiple-Input Multiple-Output (MIMO), data detection.

I. INTRODUCTION

MULTIPLE-Input Multiple-Output (MIMO) techniques
have been adopted in most newly released wireless

communication standards, e.g., IEEE 802.11ac and 3GPP
Long Term Evolution Advanced (LTE-A), to achieve high
spectral efficiency. MIMO provides significant improvements
in system capacity and link reliability without increasing band-
width. However, the price-to-pay is an increased complexity
and energy consumption due to the required sophisticated
signal processing. In addition, MIMO is often combined with
Orthogonal-Frequency-Division Multiplexing (OFDM) as a
wireless access scheme to further improve spectral efficiency.
Under such circumstances, the receiver needs to perform the
corresponding processing at every OFDM subcarrier. This
poses even more stringent requirements for hardware imple-
mentations, especially for battery-powered terminals operating
at wide frequency band and large antenna numbers.

Besides the computational capability and energy consump-
tion, flexibility becomes an important design factor. The fast
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evolving radio standards (more than 10 in a single module
[1]) and the exploding number of operation modes within
each protocol (63 for 3GPP LTE) makes the traditional mode-
specific solution unaffordable in terms of silicon re-design
cost and time-to-market. Moreover, being capable of allocating
resources dynamically, flexible hardware platforms have the
potential to provide run-time power-performance trade-offs by,
for example, adopting different algorithms and system setups.
This feature is vital to supporting link-adaptive processing
[2] to efficiently combat with constantly changing wireless
channels. However, flexibility comes at the price of design
overhead in terms of processing speed and power, contradict-
ing the aforementioned requirements. Thus, sufficing all three
demands at the same time poses a critical design challenge.

Recent work on MIMO signal processing shows a paradigm
shift towards flexible hardware designs, for example, to sup-
port different operation modes and algorithms [3]–[7]. In this
paper, we propose an application-domain specific reconfig-
urable platform aimed at supporting flexible MIMO signal
processing and achieving balanced design requirements. The
platform is built upon a heterogeneous cell array architec-
ture, capable of performing multiple tasks while fulfilling
the stringent timing requirement such as for a 20 MHz LTE-
A system with 4×4 MIMO and 64-QAM setup. Such high
performance is primarily achieved by three key architecture-
level improvements. First, heterogeneous resource deploy-
ments and a hierarchical network topology enable efficient
hybrid-format data computing and substantial communication
cost reduction. Second, vector-enhanced processing achieves
low-latency high-throughput vector computing. Third, flexible
memory access schemes relieve processing cores from non-
computational address manipulations. Additionally, algorithm-
architecture co-optimization is conducted to further improve
hardware efficiency. Using previously developed algorithms
[8]–[10], most of the operations involved in all three tasks are
vectorized and unified, enabling extensive parallel processing
and hardware reuse. Note that the proposed reconfigurable cell
array is not limited to the presented tasks and algorithms, since
the platform is flexible and extendible. Compared to related
work, the proposed solution achieves a good design trade-off
between flexibility and implementation cost.

The remainder of this paper is organized as follows. Section
II briefly describes the target system model and the three
processing algorithms. Section III introduces the proposed ar-
chitecture framework and Section IV presents the detailed cell
array architecture. Section V summarizes the implementation
results. Finally, Section VI concludes the paper.

1



2

II. MIMO SIGNAL PROCESSING

Figure 1 shows a typical MIMO-OFDM system with N
transmit (Tx) and receive (Rx) antennas. Assuming perfect
front-end processing, the received vector y after Cyclic Prefix
(CP) removal and FFT can be written as

y = Hx+ n, (1)

where H denotes the complex-valued channel matrix, x is
the transmitted vector obtained by mapping a set of encoded
information bits onto a Gray-labelled complex constellation,
and n is the i.i.d. complex Gaussian noise vector with zero
mean and variance σ2

n.
As a case study, this work adopts a 20 MHz LTE-A

transceiver to present processing algorithms and hardware
configurations. Three tightly coupled Rx blocks (highlighted in
Fig. 1), which are unique and crucial in MIMO for exploiting
its full superiorities, are mapped onto the cell array: estimation

of the channel matrix H using pilot tones, channel matrix

pre-processing that is an indispensable step for detection
algorithms, and data detection that recovers x.

As mentioned in Section I, previously developed MIMO
processing algorithms [8]–[10] are used to demonstrate the
performance of the proposed hardware platform. In the fol-
lowing, the three adopted algorithms are briefly summarized
for the sake of completeness.

A. Robust MMSE Channel Estimation

Utilizing the scattered pilot tones, the Robust MMSE
(R.MMSE) algorithm [8] is adopted in this work, due to its
estimation robustness and high Data-Level Parallelism (DLP).
R.MMSE starts by Least Square (LS) estimation of channel
vector h at pilot positions (denoted by subscript p),

hp,LS = ypx
−1

p . (2)

Data-tone channel coefficients are obtained by interpolation,

hMMSE = Fhp,LS = Rhdhp

(

Rhphp
+

β

SNR
I

)−1

hp,LS,

(3)
where Rhdhp

represents the channel cross-correlation between
pilot and data-carrying subcarriers, Rhphp

is the channel auto-
correlation between pilots, β is a constellation dependent
constant [8], and I denotes the identity matrix.

Employing the robust correlation matrix [8], obtained by
assuming a uniform power-delay profile, the function F in
(3) becomes a constant scaling matrix that can be computed
off-line. In addition, a sliding window approach is applied to
the R.MMSE algorithm, named as R.MMSE-SW for short,
which dramatically reduces the dimension of F due to the
adoption of low-rank approximations [8]. In R.MMSE-SW, the
sliding window size (NSW) is a performance-complexity trade-
off parameter, which can be adjusted based on the channel
condition and performance demand.

B. Channel Matrix Pre-processing

Given the estimated channel matrix Ĥ , MMSE-SQRD [9]
algorithm is adopted to compute the MMSE detection matrix
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Fig. 1. A simplified MIMO system model. This work integrates all three
shaded blocks into single reconfigurable baseband processor.

required in the succeeding data detector [10]. According to [9],
MMSE-SQRD is equivalent to calculating the pseudo-inverse
of an augmented channel matrix of size 2N ×N ,

Ĥ
†
=

(

[

Ĥ, σnI
]T

)†

=
(

ĤpP
T
)†

, (4)

where Ĥp and P represent the sorted channel and the per-
mutation matrix respectively, (·)T indicates matrix transpose,
and (·)† denotes matrix pseudo-inverse. In MMSE-SQRD,
Ĥp can be decomposed as Ĥp = QR = [Qa,Qb]

T
R

and R−1 = 1/σnQb is obtained as a by-product of the
decomposition. Correspondingly, the system model in (1) can
be rewritten as

ỹ = QH
a y = Rxp + ñ, (5)

where xp = P Tx and ñ = QH
a n are the permuted x and

the noise vector, respectively. Considering the accuracy and
numerical stability, computational complexity, and hardware
reusability, Modified Gram-Schmidt (MGS) algorithm is used
for implementing QR decomposition. Core operations of the
MGS-QRD per iteration i is briefly summarized as follows,
where the index k = i + 1, . . . , N , (·)i denotes a column
vector, and (·)i,i represents the (i, i)th matrix element

ri,i = ‖ĥpi
‖2, (6)

q
i
= q

i
/ri,i, (7)

ri,k = qH

i
q
k
, (8)

q
k
= q

k
− ri,kqi

. (9)

C. Node-Perturbed MMSE Data Detection

For data detection, we adopt the Node-Perturbation-
enhanced MMSE (MMSE-NP) algorithm [10] to utilize its
highly parallelized operations. MMSE-NP originates from a
linear MMSE detection

x̂MMSE
p = Q

(

R−1ỹ
)

= Q
(

1

σn

QbQ
H
a y

)

, (10)

where Q(·) denotes the slicing function returning a constel-
lation point nearest to the computed symbol. After expanding
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Fig. 2. Computational complexity and processing performance. Metrics are
normalized to that of the reference case “LMMSE+FSD” which has unit
computational complexity and zero required SNR at FER = 10−2.

each element of x̂MMSE
p with Ωi locally nearest siblings,

based on the corresponding post-detection SNR of x̂MMSE
p ,

L =
∏N

i=1
Ωi candidate vectors are constructed and the final

detection result is obtained

x̂ = Px̂p = P

(

arg min
xp∈L

‖ ỹ −Rxp ‖2
2

)

. (11)

In MMSE-NP, performance-complexity trade-off can be
tuned by varying the symbol expansion parameter Ω =
[Ω1,Ω2, · · · ,ΩN ]. Compared to conventional tree-search
based algorithms, e.g., [7] and [11], the key advantage of
MMSE-NP resides in the elimination of sequential scalar op-
erations, as both candidate-vector expansions and evaluations
are carried out in parallel on all layers. Thus, it promises high
implementation efficiency on vector-based architectures [10].

D. Algorithm Analysis

To give a full picture of the selected algorithms, Fig. 2
compares them with several representative MIMO signal pro-
cessing methods in terms of complexity and performance. The
included methods are LS and Linear MMSE (LMMSE) for
channel estimation, and linear MMSE and Fixed-complexity
Sphere Decoder (FSD) [11] for signal detection. In Fig. 2,
numbers at the vertical axis denotes the minimum SNR re-
quired to achieve a Frame-Error-Rate (FER) of 10−2, obtained
from simulations using 3GPP EVA-70 channel model [12].
A rate 1/2 parallel concatenated turbo code is adopted with
interleaver size of 5376 and BCJR decoding algorithm with 6
internal iterations. In terms of the computational complexity,
the number of operations required in one LTE-A time slot
is shown horizontally. To simplify the analysis, all operations
are normalized to a W -bit complex-valued addition. This way,
a W -bit complex-valued multiplication has the complexity
of W ; a W -bit real-valued division and square-root has a
complexity of KW with K being a scaling factor to account
for iteration numbers when using, for example, Newton-
Raphson method. In this work, W = 16 and K = 2 are used,

TABLE I
ALGORITHM PROFILING FOR VECTOR (V ) AND SCALAR (s) OPERATIONS

IN THE ADOPTED MIMO SIGNAL PROCESSING.

Operation
Operation dimension & Proportion in each task

R.MMSE-SW MMSE-SQRD MMSE-NP

Ch. Estimator Pre-processor Data detector

A
⊙

Ba − − V(N×1) 35% − −
A ·B V(Nsw×1) 91% V(N×1) 35% V(N×1) 84%

A±B − − V(N×1) 15% V(N×1) 15%

xa · xb s(xa · xb) 9% − − − −
Sorting − − s(xi) 5% s(xi) ∼0%

1/
√
x − − s(x) 10% − −

Pert.b − − − − s(Ωi) 1%
a Element-wise vector multiplication.
b Node perturbation in data detection.

which are typical parameters used in baseband processing [5]
[13]. Moreover, both coordinates in Fig. 2 are normalized to
a reference case, “LMMSE+FSD” in the right-bottom corner,
which provides the best performance among the considered
algorithms. The selected scheme “R.MMSE-SW+MMSE-NP”
with parameters NSW = 24 and Ω = [F, 4, 3, 2] [10] achieves
a good trade-off between performance and complexity, provid-
ing more than 7 dB performance gain to “LS+MMSE” (left-up
corner) and 100 times complexity reduction to the reference
case “LMMSE+FSD”. It should be re-emphasized that NSW

and Ω are tunable parameters and should be optimized de-
pending on the system requirement.

With the presented algorithms, primitive operations required
by the R.MMSE-SW estimator, MMSE-SQRD pre-processor,
and MMSE-NP detector are characterized. Table I summarizes
required vector and scalar operations and their proportion
in each task. Two meaningful properties can be observed.
First, more than 90% of operations in all three tasks are
at vector level, indicating high DLP. Second, most of the
operations are shared among the three algorithms, implying
the potential of extensive hardware reuse. Before going on to
present the hardware development, it is worth mentioning that
algorithm selection is one of the important steps during the
entire system design. Although reconfigurable platforms can
support different algorithms, appropriate algorithm selection
will lead to high hardware efficiency by making use of
essential architectural characteristics.

III. RECONFIGURABLE ARCHITECTURE

In this section, we introduce the reconfigurable architecture
that can efficiently support MIMO processing algorithms. To
do so, we start by identifying hardware requirements, and then
analyzing and comparing different reconfigurable architectures
including our previously proposed cell array framework [14].

A. Requirements for Hardware Platform

Inspired by the aforementioned operation analysis, we ex-
tract three main properties of MIMO signal processing and the
corresponding hardware requirements with respect to compu-

tation, memory access, and data transfer.

• Massive vector operations: in view of the massive vector
operations, efficient vector computing and high band-
width memory access are essential.
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• Hybrid data-widths and formats: the coexistence of scalar
and vector operations requires a hybrid computational
data-path. Additionally, efficient communication mecha-
nisms are expected to offload processing units from non-
computational operations, e.g., data alignments, during
data transfers of various data-widths and formats.

• Multi-subcarrier processing: as a scheduling technique
to further exploit DLP [3], multi-subcarrier processing
requires various data access patterns to perform opera-
tions simultaneously at multiple subcarriers. Therefore,
flexible memory access schemes are required.

Architecture selection should take all these challenging
requirements into account to obtain high hardware efficiency.

B. Comparison of Reconfigurable Architectures

Based upon the coupling between processing and memory
units and their interconnects, previously proposed reconfig-
urable architectures can be classified into four broad cate-
gories, illustrated in Fig. 3.

The first group of architectures (Fig. 3(a)), such as [13]
and [15], are constructed from an array of homogeneous
processors, each having exclusive access to its own memory.
The homogeneous deployment of resources is inefficient in
supporting hybrid data computing. Besides, inter-core data
transfers may take significant amount of processing power,
as they require controls from processors at both ends.

Architectures in Fig. 3(b) are built from atomic Functional
Units (FUs), e.g., [16] and [17]. Since data memories are
accessible only from the border of the cluster, it may result in
high data transfer overhead especially for large-size clusters.
Additionally, centralized memory organization may become a
bottleneck for vector and multi-subcarrier processing, due to
memory contention during concurrent data accesses.

Figure 3(c) shows architectures that consist of heteroge-
neous units interconnected through a shared homogeneous
network, such as [18] and [19]. Since the overhead of ho-
mogeneous interconnects (e.g., the crossbar switch) increases
linearly with the number of array nodes and data precision, it
may have restricted usage in large-size networks and high di-
mensional (e.g., vector) data applications. Additionally, when
considering hybrid computing, various-width data transfers via
shared homogeneous interconnects is not cost effective and
may require frequent data alignment operations.

The last group, e.g., [14] and [20], is a heterogeneous array
communicating via hierarchical network interconnects. This
arrangement provides efficient hybrid data computing and low-
cost network interconnects. As an example, our previously
proposed cell array [14] (Fig. 3(d)) is constructed from het-
erogeneous tiles, containing any size, type, and combination
of Resource Cells (RCs). RC is a common name for all
hardware units, categorized into processing and memory cells.
The separation of memory from processing cells significantly
simplifies data sharing, as memory cells can be shared by
multiple processors without physically transferring data. Mem-
ory coherence is preserved by allowing direct data transfers
between memories without involving processors. Communi-
cation between RCs is managed hierarchically: neighbouring
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Fig. 3. Reconfigurable architectures, (a) homogeneous processor array, (b)
FU cluster, (c) heterogeneous array with a shared homogeneous network, (d)
heterogeneous array (an example of four tiles) with A hierarchical network.

cells are bidirectionally interconnected with low-latency high-
bandwidth local links, while inter-tile transfers allow any RC
to communicate through a hierarchical network using routing
cells denoted as ‘R’ in Fig. 3(d). Compared to other inter-
connect topologies, the hierarchical network provides tighter
coupling to RCs. For instance, connections within each tile
can be localized to suffice both bandwidth and efficiency
requirements, while hierarchical links provide flexible routing
paths for inter-tile communication.

In conclusion, the architecture in Fig. 3(d) suffices all hard-
ware requirements for MIMO signal processing. Hence, it is
selected as a hardware infrastructure for further development.

IV. HETEROGENEOUS BASEBAND PROCESSOR

Built upon the cell array framework, the proposed baseband
processor is composed of four heterogeneous tiles that are
partitioned into scalar- and vector-processing domains, see
Fig. 4. In the vector domain, Tile-0 handles vector processing
while Tile-1 provides data storages and various forms of vector
and matrix accesses. In the scalar domain, Tile-3 controls
other RCs during run-time and handles scalar and irregular
operations with memory supports from Tile-2. Data transfers
between the two domains are bridged by memory cells using
a micro-block function [14], which is a technique used to
provide data access with finer wordlength than the physical
memory provides. This feature efficiently supports hybrid data
transfers without additional controls from processors.

A. Hybrid Resource Configuration

Configurations for all RCs are managed in two ways, either
by an external host via hierarchical network or by distributed
controllers inside the cell array, as illustrated in Fig. 5. The
former approach is mainly used for streaming data inputs,
like the received vector y, and off-line configurations, such
as power-up setups. The later approach is used to conduct
run-time configurations, which are issued on a per-clock-
cycle basis and managed jointly by a task manager (i.e.,
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a processing cell in Tile-3) and local controllers distributed
in RCs. Specifically, the task manager tracks the overall
processing flow and controls context switching (e.g., changing
from channel estimation to QRD), while local controllers are
responsible for applying configurations onto processing data-
and memory access-paths (e.g., to switch between operations
listed in Table I). This joint management of run-time config-
uration is advantageous in two aspects. First, local controllers
within RCs are considerably simplified, since no individual
tracking of the processing flow is required. Therefore, only
one set of control circuits common to all local controllers is
required, resulting in reduced overhead compared to that of
a fully distributed configuration scheme. Second, deploying
a dedicated task manager close to RCs inside the cell array
smoothly integrates run-time configurations into the normal
processing flow. For example, configurations are issued as
soon as the current task is completed without interrupting and
waiting for responses from an external host.

B. Vector Data Flow Processor

Figure 6(a) shows the architecture of Tile-0, consisting of
three processing cells (pre-, core-, and post-processing), a
register bank, and a sequencer. The three processing cells,
shown on the upper half of Fig. 6(a), are deployed for vector
computations, while the register bank provides data accesses
from both internal registers and other tiles through register-
mapped IO ports. The sequencer controls operations of the
other cells via a control bus, drawn in dashed lines in Fig. 6(a).
In the following, we present two architectural improvements
for achieving efficient vector processing.

1) Vector enhanced SIMD core: In wireless baseband pro-
cessing, Single Instruction Multiple Data (SIMD) is commonly
used as a baseline architecture to exploit inherent DLP. Sim-
ilarly, an SIMD-based architecture is adopted in the core-
processing cell, consisting of N ×N homogeneous Complex-
valued Multiply-ACcumulate (CMAC) units, see Fig. 6.

Concerning the execution latency of vector operations,
conventional SIMD architectures (e.g., [13] and [15]) are
inefficient, since they are designed to handle parallel inde-
pendent scalar data operands and their internal function units
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Fig. 5. A hierarchical configuration scheme of the baseband processor.

cannot operate collaboratively during instruction execution.
For example, the computation of Vector Dot Product (VDP),
which takes about 80% of entire vector processing in Table I,
requires multiple clock cycles (depending on vector length),
since each VDP operation is performed in a folded fashion
using at most one CMAC unit.

To tackle the latency issue, we adopt an efficient vec-
torization technique to the SIMD core, so that all vector
operations with length N have single-cycle execution speed.
Specifically, each CMAC unit is equipped with an inter-cell
connection (e-path) to link up with neighbouring CMACs
during instruction execution, e.g., the e input in Fig. 6(b) is
connected to the level-2 output (Oe) of the previous CMAC
unit. Using this simple connection, level-2 adders of CMACs
in every processing lane can be concatenated to form an adder-
tree, capable of computing one N -length vector in every clock
cycle, e.g., a VDP with an atomic operation of ‘ab+e’. Vectors
exceeding this length are processed by folding, i.e., they are
decomposed into data segments suitable for atomic operations.

2) VLIW-style multi-stage computing: Another important
observation from the algorithm analysis (Section II-D) is
that most of the vector processing involve several tightly
coupled operations, such as complex conjugation (8) and result
sorting (11) performed before and after vector computations,
respectively. Mapping of such “long” processing solely on the
SIMD core requires multiple operations, causing not only in-
creased execution time but also redundant register accesses for
intermediate result buffering. Therefore, we extend the SIMD
core by adopting a Very Long Instruction Word (VLIW)-style
multi-stage computation chain to accomplish several consecu-
tive data manipulations in one single instruction. Specifically,
two distinct processing cells are arranged around the SIMD
core to pre- and post-process data respectively, see Fig. 6(a).
Benefiting from this arrangement, more than 60% of register
accesses are avoided, as the pre- and post-processing together
take about two-thirds of the total vector computations. As
an example, Table II summarizes operations required for im-
plementing the MMSE-SQRD algorithm. A similar technique
named operation chaining can be found in [13].

One drawback of VLIW-style architectures is the control
overhead caused by the rigid instruction format. For example,
any change of its sub-operations requires loading of a whole
new instruction, resulting in unnecessary program storage and
memory access for those unchanged parts. Although many
code size reduction schemes exist, e.g., [21], they require
a huge area cost to restore the instructions at run-time. In
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TABLE II
AN EXAMPLE OF THE MULTI-STAGE COMPUTING IN MMSE-SQRD.

Pre-process
Pre-1: Complex conjugation
Pre-2: Vector shuffling & broadcast
Pre-3: Matrix data masking

Post-process
Post-1: Barrel shifting
Post-2: Sorting

Operation Pre-process Core-process Post-process
(4) & sort Pre-3 VDP (ab + e) Post-1, 2

(6) − VDP (ab + e) Post-1
(7) Pre-2 bc Post-1
(8) Pre-1 VDP (ab + e) Post-1
(9) Pre-2 a − bc Post-1

contrast, we adopt a distributed control scheme to tackle the
overhead issue by using the available configuration memories
deployed inside RCs (Fig. 6(a)). This is based on an obser-
vation from Table II that operations tend to be used for more
than one instruction, e.g., barrel shifting (Post-1). Therefore,
by preloading data-path configurations into the distributed con-
figuration memories, the run-time instruction control involves
only memory address managements, which have much smaller
code size than the content of configurations. Furthermore,
partial processing updates are issued on-demand to a specific
cell without reloading others.

Implementation of the pre- and post-processing cells de-
pends on the operation profile of target applications. In the
case of MIMO processing, the pre-processor is capable of
performing data negation and absolute calculations, generation
of access patterns using matrix masks, and data shuffling and
broadcasting. The post-processing cell provides support for
barrel shifting, e-path accumulations, and vector permutations.

C. Vector Data Memory Tile

Besides vector computation enhancements, the efficiency
of the vector processor is contingent on memory access with
regard to accessing bandwidth and flexibility. By inspection of
the presented algorithms, it is required that the SIMD core has
access to multiple matrices and/or vectors in each operation,
so as to avoid poor resource utilization and throughput. As

an example, efficient mapping of (6) requires two N × N
matrix inputs, equivalent to having a 2×(4×4)×(16+16)=1024
bits/cycle memory bandwidth for a 16-bit 4×4 MIMO system.
In addition to the bandwidth requirement, various forms of
data accesses are needed, such as row- and column-wise
addressing in matrix transposition. To meet these requirements,
we adopt a hybrid memory organization and a flexible matrix
access mechanism in the vector data memory tile (Tile-1).

1) Hybrid memory organization: To suffice the high mem-
ory accessing bandwidth, Tile-1 consists of vector and matrix
access partitions, allowing simultaneous accesses of both vec-
tors and matrices, see Fig. 7(a). The basic element in both
partitions is a dual-port memory cell, which provides a vector-
level data storage and allows simultaneous read and write
operations to ease memory access and improve processing
throughput at the price of a larger memory footprint. In
addition, the matrix partition provides matrix data access,
which is realized by concurrently accessing a group of memory
cells using only one set of address control. This arrangement
is referred to as a memory page, shown in Fig. 7(a). The
vector accessing wordlength and the number of cells in a
memory page are designed to match the processing capacity
of the SIMD core in Tile-0, i.e., N scalar elements and N
memory cells, respectively. On the other hand, the number
of memory cells and pages are application dependent and
should be optimized with respect to the bandwidth requirement
and hardware cost. In this work, Tile-1 is configured to have
2 memory cells and 5 pages to ensure a sufficient memory
storage required for the MIMO processing.

Memory operations and accessing modes of each cell and
page are managed by a local controller with configurations
stored in embedded registers, see Fig. 7(b). To communicate
with other tiles, memory accesses are multiplexed using a
crossbar network and interfaced through IO ports. For the
array shown in Fig. 4, Tile-1 contains four IO ports, allowing
simultaneous accesses of two N × 1 vectors and two N ×N
matrices for providing accesses to both Tile-0 and Tile-2.
Referring to the aforementioned example, this corresponds to
a memory bandwidth of 1280 bits/cycle.
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2) Flexible matrix data access: The presented multi-page
memory arrangement and the crossbar network allow for the
flexible data access required by the multi-subcarrier process-
ing. For instance, by storing matrices of successive subcarriers
in different memory pages, multiple data sets can be concur-
rently accessed and multiplexed based on arrangement indexes
specified in memory configurations.

To further improve matrix access flexibility, a data arrange-
ment circuit, illustrated in Fig. 7(c), is implemented in each
memory page. Specifically, data loaded from each memory
page are buffered in a local register bank and are capable of
being rearranged vector-wise in a vertical direction, based on
an access index associated with each matrix storage. Benefiting
from this setup, vector readouts from a matrix can be accessed
freely in any order without physically exchanging data. This
is useful, for example, in supporting sorted matrix accesses in
MMSE-SQRD (4). In addition to these index manipulations,
the proposed architecture is capable of outputting matrices in a
transposed form (required in (10)) by selecting either the row
or column output. As a result, processing cells are relieved
from such data arrangement operations, which otherwise result
in enormous underused processing power. Moreover, physical
data exchange and redundant memory accesses (due to read
and write of the same data contents) are completely eliminated.

D. Scalar Resource Cells and Accelerators

In the scalar domain, Tile-2 and 3 perform scalar and
conditional operations as well as dynamic configurations of
other tiles in the array. Among them, Tile-2 consists of two
scalar memories for storing data and configurations, respec-
tively. Tile-3 contains one memory cell for data buffering and
three processing cells, including one generic processor and
two acceleration units, see Fig. 8. The generic processor is a
customized RISC with optimized conditional instructions and
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Fig. 8. Block diagram of the scalar processing cells in Tile-3, containing one
generic RISC-structured processor and two accelerators.

specialized functionality for dynamic RC configurations [14].
The two accelerators behave like co-processors of the generic
cell for performing irregular operations, i.e., the inverse
square-root in (6) and the node perturbation in MMSE-NP,
respectively. Detailed architectures of the generic processor
and the scalar memory cell can be found in [14].

V. IMPLEMENTATION RESULTS AND COMPARISON

To cope with different system configurations and design
constraints, the heterogeneous cell array is fully parametrizable
at system design-time. For the case of 20 MHz 4×4 MIMO
LTE-A downlink, the SIMD core in Tile-0 is configured to
have 16 CMAC units. All computations (Tile-0 and Tile-3)
are performed in 16 bits fixed-point arithmetic with 8 guard
bits for accumulations. Besides, the array contains 2.34 Mb of
memory, in which 88% are data buffers for keeping data re-
quired in one LTE-A time slot (e.g., channel and decomposed
matrices), 2% are control memories for storing instructions and
resource configurations, and 10% are reserved for facilitating
flexible algorithm mappings and future system updates.

A. Implementation Results

Implemented in a 65 nm CMOS technology, the cell array
has a core area of 8.88 mm2 at 74% cell density in chip
layout, equivalent to 2.76 M two-input NAND gates. Data
buffers occupy more than 60% of the area, while logic blocks,
including control memories and the hierarchical network, share
the rest. Excluding those data buffers, it shows in Table III that
most of the logic gates are taken by the vector partition, i.e.,
Tile-0 and 1. At 1.2 V nominal core voltage supply, the cell
array is capable of running at 500 MHz reported from Static
Timing Analysis (STA) of the post-layout design.

1) Timing analysis: The three MIMO processing tasks,
i.e., channel estimation (CE), channel matrix pre-processing
(QRD), and data detection (DT), are manually mapped onto
the cell array with a primary focus on sufficing the stringent
timing constraint and achieving high processing throughput.
Figure 9 illustrates the structure of a 4×4 MIMO LTE-A data
frame and the adopted task-oriented processing flow, which
performs one task on all subcarriers before switching to the
subsequent one. This is different from a subcarrier-oriented
scheme (handling one subcarrier at a time), which requires
more frequent context switching and thus long configuration
time and more power consumption. In this work, processing
is scheduled on a basis of one LTE-A time slot (tslot). Every
iteration starts as soon as the last pilot tone in OFDM symbol
1 is received. To avoid the need for additional data buffers
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TABLE III
AREA AND POWER BREAKDOWN OF THE RECONFIGURABLE CELL ARRAY

WITH DATA BUFFERS EXCLUDED.

Resource cell Gate count [KG] Power [mW]

Tile-0 367 34.77% 164.93 53.75%

Tile-1
Memory cells 96 9.12% 5.99 1.95%

Memory pages 365 34.6% 68.06 22.18%

Tile-2 47 4.44% 3.20 1.04%

Tile-3
RISC 70 6.60% 44.10 14.37%

Others 61 5.83% 16.98 5.53%

Network 49 4.65% 3.56 1.16%

Total 1055 100.00% 306.84 100.00%
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Fig. 9. Timing diagram of MIMO signal processing, (a) processing tasks and
data dependencies, (b) the proposed task-oriented processing flow.

(i.e., more than one time slot), the computation time of each
iteration (titer) is constrained by tslot, i.e., titer ≤ tslot = 0.5mS.

Table IV summaries achieved performance of the three task
mappings. Besides, configurations, such as program loadings
from external host and memory initializations, are presented
separately under “Miscellaneous”. Run-time reconfigurations,
hidden inside the processing time of each task, consume about
2% of the total computation time. This low control overhead
is achieved by conducting the hybrid resource configurations
(Section IV-A). Operating at 500 MHz, the total processing
time for one LTE-A time slot is 469.72µS. This fulfills the
real-time requirement of the target LTE-A setup and results in
about 6% spare time that can be used to map more advanced
algorithms or upgrade system parameters. Based on the pro-
cessing time and the number of tones/bits required to compute,
Table IV presents the corresponding throughput achieved in
each task. On average, recovering one transmitted vector x̂,
with all processing tasks performed, requires 32.62 clock
cycles, which is equivalent to a throughput of 367.88 Mb/s.

2) Computation efficiency: To evaluate the computation
efficiency of the array, resource utilization of the SIMD core
in Tile-0 is measured as a representative, since it contributes
to more than 90% of the total computation capacity. Thanks
to the vector enhanced SIMD structure (Section IV-B), an
average utilization of 77% is achieved during the whole MIMO
signal processing, as illustrated in Fig. 10.

TABLE IV
PERFORMANCE SUMMARY OF THE MIMO SIGNAL PROCESSING.

Time Powera

[µS] Throughput [mW] Energya

Ch. Estimation 41.60 28.84 MEst/s 276.24 9.58 nJ/Est

QRD 30.30 39.60 MQRD/s 315.36 7.96 nJ/QRD

Detection 380.40 454.26 Mb/s 280.82 0.62 nJ/b

Miscellaneous 2.82 N/A 269.99 0.81 nJ/op

Total/Average 469.72 367.88 Mb/s 306.84 0.83 nJ/b
a With data buffers excluded.

3) Power and energy consumption: Working at 500 MHz
and 1.2 V voltage supply, the average power consumption for
processing one data-carrying tone is 548.78 mW, including
306.84 mW from the logic blocks and 241.94 mW from the
data buffers. The corresponding energy consumption for pro-
cessing one information bit is 0.83 nJ/b and 1.49 nJ/b, without
and with data buffers respectively. Table IV summaries average
power and energy consumption of different tasks with data
buffers excluded. As can be seen, power consumption of
different tasks is quite balanced because of the high compu-
tation efficiency of the cell array achieved by the algorithm-
architecture co-design. Moreover, Table III shows a tile-level
power breakdown of the array. Among all, Tile-0 is the most
power consuming block, because of the large area occupation
and high resource utilization. It should be mentioned that
simulated power figures from the post-layout design may be
different for chip measurement results.

4) Flexibility: The flexibility is demonstrated by time-
multiplexing three different tasks onto the reconfigurable cell
array. Additionally, by making use of dynamic hardware re-
configurability, such as loading different programs and config-
urations to processing and memory cells respectively, the plat-
form has the potential to support other system configurations.
Examples include mapping of different algorithms and antenna
setups, and run-time adaption of system performance, e.g.,
adjusting the frequency of channel estimation and detection
parameters. Furthermore, the platform is extendible, thanks to
the tile-based heterogeneous and hierarchical resource deploy-
ments. For example, larger antenna setups can be supported
by extending resource cells and the bandwidth of local links,
higher throughput can be achieved by doubling the number of
tiles, and system performance can be improved by extending
the scalar processing tile (Tile-3) with Log Likelihood Ratio
(LLR) unit to perform soft-output data detection [16]. Based
on the list of candidate vectors generated in the adopted
detection algorithm, a searching unit is needed to find bit-level
vectors required in LLR computations. Other scalar operations
can be mapped onto the generic processor in Tile-3.

B. Comparison Analysis

In Table V, implementation results of the cell array are com-
pared with previously reported designs. In fact, a fair quan-
titative comparison is difficult due to many different design
factors, such as flexibility, algorithm selection, performance
and operating scenario. Therefore, the following discussion
only serves to give an overview of the design efficiency
for related implementations. To ease the discussion, related
hardware architectures are divided into three broad categories:
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TABLE V
COMPARISON OF THIS WORK WITH ACCELERATORS AND RECONFIGURABLE PLATFORMS.

[22] [23] [24] [6] [4] [25] [19] [1] [5] This work

Platform ASIC FPGA GPU Reconfigurable baseband processor

Antenna − 4×4 4×4 4×4 4×4 4×4 4×4 4×2 2×2 4×4

Modulation (QAM) − − 64 64 16 64 64 N/A N/A 64

Mapping (CE | QRD | DT) X|−|− −|X|− −|−|X X|X|X −|−|X −|X|X −|−|X X|X|X X|X|X X|X|X

DT algorithm − − K-Best SIC SD FSD SSFE N/A N/A MMSE-NP

Technology [nm] 65 180 130 90 130 40 130 65 90 65

Area [mm2] 0.68a,c 2.81a N/A 2.02a 26d 306.82d N/A 16.06d 32 8.88

Gate count [KG] 325a,c 152a 340a 505a N/A 4.5e5d 71a 5969d N/A 2760 1055a

Frequency [MHz] 250 100 417 114 251 1150 277 400 400 500

Powerb [mW] 154a,c 51.2a 55a 59.07a 624d 323e3d 20.48a 219d 240 549 307a

T
hr

ou
gh

pu
tb CE [MEst/s] 78 − − N/A − − −

N/A N/A
28.84

QRD [MQRD/s] − 69.23 − 39.46 − N/A − 39.60

DT [Mb/s] − − 2000 N/A 163 10.58 134 454.26

Total [Mb/s] − − − 947 − − − 10.8 150 367.88

A
re

a.
E

ff
.b CE [kEst/s/kG] 240a − − N/A − − −

N/A N/A
10.45 27.34a

QRD [kQRD/s/kG] − 455a − 78.14a − N/A − 14.35 37.54a

DT [kb/s/kG] − − 5882a N/A N/A 0.0235d 1890a 165 431a

Total [kb/s/kG] − − − 1875a − − − 1.81 N/A 133 349a

E
ne

rg
yb

CE [nJ/Est] 1.97a,c − − N/A − − −
N/A N/A

12.70 9.58a

QRD [nJ/QRD] − 2.05a − N/A − N/A − 15.27 7.96a

DT [nJ/b] − − 0.055a N/A 1.32d 3.79e6d 0.304a 0.99 0.62a

Total [nJ/b] − − − 2.07a − − − N/A 2.23 1.49 0.83a

a With data buffers excluded.
b Normalized to 65 nm with 1.2 V core voltage: fclk ∝ s and P ∝ (1/s)(1.2 V/Vdd)

2, where s = Tech./65 nm.
c Scaled up to 4×4 MIMO configuration: {A, P} ∝ d, where d = 4/#Rx-antenna.
d Only counted relevant parts of the chip.

200 400 600 800 1000 1200 1400
0

20

40

60

80

100

Clock cycle

R
e

so
u

rc
e

 u
ti

li
za

ti
o

n
[%

]

Misc.

39.87%

CE

92.3%

QRD

78.57%

DT

75.71%

Fig. 10. Utilization of the SIMD core in Tile-0 during MIMO signal
processing of two LTE-A resource blocks (24 subcarriers). Horizontal lines
in the figure show the average utilization of the corresponding task.

task specific accelerators (ASICs), programmable platforms
(e.g., FPGAs and GPUs), and domain-specific reconfigurable
platforms (i.e., baseband processors).

1) Area efficiency: Area efficiency is evaluated by nor-
malizing the throughput of each processing task to the cor-
responding hardware consumption. The proposed solution
accomplishes three tasks within the tight timing constraint of
the 20 MHz 4×4 MIMO 64-QAM LTE-A downlink, thanks
to the architecture and algorithm co-design, which has more
than 90% of total operations mapped onto the vector core for
exploiting extensive DLP and attaining high resource sharing.
Compared to other baseband processors [1] [5] [19], which
adopt either lower dimensions of MIMO configurations or
mapping of a single task, the cell array achieves the highest
throughput and shows superior area efficiency. Besides, the
processing throughput of the cell array is 2.8 times higher
than that of the FPGA solution [4] and its area efficiency

outperforms the GPU approach [25] by 4 orders of magnitude.
Compared to ASICs [6], [22]–[24], 2−13.6 times less area
efficiency is observed for each individual task mapping.

2) Energy efficiency: Besides the area and throughput eval-
uation, energy consumption per operation is another important
measure for baseband processing. In comparison to related
baseband processors, similar energy figures are observed.
However, it should be pointed out that the cell array operates
in a more complicated system setup (e.g., 4×4 MIMO vs.
2×2) and has more tasks assigned at the same time. Compared
to ASICs, the cell array consumes 4−11 times more energy
for performing each individual task, whereas a 1.3 times
energy gain is obtained compared to the FPGA solution
supporting only upto 16-QAM detection. Moreover, its energy
efficiency outperforms the GPU approach by 6 orders of
magnitude. Such high energy efficiency is achieved mainly
by the hardware developments in the array: the architecture
partitioning for attaining efficient vector and scalar processing,
the hierarchical network topology for reducing communication
costs, the vector processing enhancements and substantial
register-access reduction for improving computation efficiency,
and the flexible memory access schemes for relieving non-
computational operations from processing cores.

VI. CONCLUSION

This paper presents an application-domain specific recon-
figurable platform developed based on a heterogeneous cell
array architecture. The efficiency of the proposed solution is
exhibited by mapping three crucial MIMO processing blocks,
namely channel estimation, channel matrix pre-processing, and
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data detection, onto the processor, while the capability of real-
time processing in a 20 MHz 4×4 MIMO 64-QAM LTE-A
downlink is demonstrated. Achievements in area and energy
efficiency are mainly enabled by algorithm-architecture co-
developments, including unified and vectorized operations in
algorithms, heterogeneous and hierarchical hardware resource
deployments, vector processing enhancements, and flexible
self-governed memory access schemes. Implementation results
show that the proposed cell array platform is well positioned
among the conventional architectures. It outperforms GPU
platforms by 4−6 orders of magnitude in area and energy
efficiency and reveals 1.3−2.8 times gain to FPGAs, and is
2−14 and 4−11 times less efficient than ASICs.
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[3] C.-H. Yang and D. Marković, “A Flexible DSP Architecture for MIMO
Sphere Decoding,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56,
no. 10, pp. 2301–2314, Oct. 2009.

[4] X. Huang, C. Liang, and J. Ma, “System Architecture and Implemen-
tation of MIMO Sphere Decoders on FPGA,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 16, no. 2, pp. 188–197, 2008.
[5] V. Derudder et al., “A 200Mbps+ 2.14nJ/b digital baseband multi

processor system-on-chip for SDRs,” in IEEE Symposium on VLSI

Circuits, 2009, pp. 292–293.
[6] Po-Lin Chiu et al., “A 684Mbps 57mW Joint QR Decomposition and

MIMO Processor for 4×4 MIMO-OFDM Systems,” in 2011 IEEE Asian

Solid State Circuits Conference (ASSCC), Nov. 2011, pp. 309–312.
[7] M.-Y. Huang and P.-Y. Tsai, “Toward Multi-Gigabit Wireless: Design

of High-Throughput MIMO Detectors With Hardware-Efficient Archi-
tecture,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 2, pp.
613–624, Feb. 2014.

[8] O. Edfors, M. Sandell, J.-J. van de Beek, S. Wilson, and P. Börjesson,
“OFDM Channel Estimation by Singular Value Decomposition,” IEEE

Trans. Commun., vol. 46, no. 7, pp. 931–939, July 1998.
[9] D. Wübben, R. Böhnke, V. Kühn, and K. D. Kammeyer, “MMSE

Extension of V-BLAST Based on Sorted QR Decomposition,” in IEEE

58th Vehicular Technology Conference (VTC), vol. 1, 2003, pp. 508–512.
[10] C. Zhang et al., “A Highly Parallelized MIMO Detector for Vector-

Based Reconfigurable Architectures,” in IEEE Wireless Communications
and Networking Conference (WCNC), Apr. 2013, pp. 3844–3849.

[11] L. Liu et al., “Area-Efficient Configurable High-Throughput Signal
Detector Supporting Multiple MIMO Modes,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 59, no. 9, pp. 2085–2096, Sept. 2012.

[12] “3GPP TS 36.101 V11.4.0: User Equipment (UE) radio transmission
and reception (Release 11),” March 2013. [Online]. Available:
http://www.3gpp.org/ftp/Specs/archive/36_series/36.101/36101-b40.zip

[13] L. Hyunseok, C. Chakrabarti, and T. Mudge, “A Low-Power DSP for
Wireless Communications,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 18, no. 9, pp. 1310–1322, 2010.
[14] C. Zhang et al., “Reconfigurable Cell Array for Concurrent Support of

Multiple Radio Standards by Flexible Mapping,” in IEEE International

Symposium on Circuits and Systems (ISCAS), May 2011, pp. 1696–1699.
[15] J. Byrne, “Tensilica DSP Targets LTE Advanced,” March 2011,

http://www.tensilica.com/uploads/pdf/MPR_BBE64.pdf.
[16] R. Fasthuber et al., “Exploration of Soft-Output MIMO Detector

Implementations on Massive Parallel Processors,” Journal of Signal

Processing Systems, vol. 64, pp. 75–92, 2011.
[17] S. Khawam et al., “The Reconfigurable Instruction Cell Array,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, pp. 75–85, 2008.
[18] A. Nilsson et al., “An 11 mm2, 70 mW Fully Programmable Baseband

Processor for Mobile WiMAX and DVB-T/H in 0.12µm CMOS,” IEEE

J. Solid-State Circuits, vol. 44, no. 1, pp. 90–97, Jan. 2009.
[19] J. Janhunen et al., “Fixed- and Floating-Point Processor Comparison for

MIMO-OFDM Detector,” IEEE J. Sel. Topics Signal Process., vol. 5,
no. 8, pp. 1588–1598, 2011.

[20] H. Zhang et al., “A 1-V heterogeneous reconfigurable DSP IC for wire-
less baseband digital signal processing,” IEEE J. Solid-State Circuits,
vol. 35, no. 11, pp. 1697–1704, 2000.

[21] Y. Xie, W. Wolf, and H. Lekatsas, “Code compression for embedded
VLIW processors using variable-to-fixed coding,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 14, no. 5, pp. 525–536, 2006.

[22] I. Diaz et al., “Highly scalable implementation of a robust MMSE
channel estimator for OFDM multi-standard environment,” in IEEE
Workshop on Signal Processing Systems (SiPS), 2011, pp. 311–315.

[23] Z.-Y. Huang and P.-Y. Tsai, “Efficient Implementation of QR Decompo-
sition for Gigabit MIMO-OFDM Systems,” IEEE Trans. Circuits Syst.

I, Reg. Papers, vol. 58, no. 10, pp. 2531–2542, Oct. 2011.
[24] M. Mahdavi and M. Shabany, “Novel MIMO Detection Algorithm for

High-Order Constellations in the Complex Domain,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 21, no. 5, pp. 834–847, 2013.
[25] S. Roger et al., “Fully Parallel GPU Implementation of a Fixed-

Complexity Soft-Output MIMO Detector,” IEEE Trans. Veh. Technol.,
vol. 61, no. 8, pp. 3796–3800, 2012.

Chenxin Zhang (S’09) received his M.S. degree in
electrical engineering from Lund University, Sweden
in 2009. He is currently working toward the Ph.D.
degree in digital circuit design at the Department of
Electrical and Information Technology at the same
University. From Oct. 2012 to Feb. 2013, he was
a visiting scholar at the Department of Electrical
Engineering, University of California, Los Ange-
les. His research mainly focuses on developments
of reconfigurable architectures for high computing
performance and run-time flexible task mappings.

Liang Liu (S’10-M’12) received his B.S. degree in
2005 and Ph.D. degree in 2010 from Fudan Univer-
sity, China. From Jan. 2010 to Apr. 2010, he was
with Electrical, Computer and Systems Engineering
Department, Rensselaer Polytechnic Institute as a
visiting scholar. From 2010 to 2014, he was a post-
doc researcher with the Electrical and Information
Technology Department, Lund University, Sweden.
He is current an assistant professor in Lund Univer-
sity. His research interest is in the field of digital
circuits design for wireless communication system.
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