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Abstract

Measurement error models offer a flexible framework for modeling data collected

in studies comparing methods of quantitative measurement. These models generally

make two simplifying assumptions: (a) the measurements are homoscedastic; and (b)

the unobservable true values of the methods are linearly related. One or both of

these assumptions may be violated in practice. In particular, error variabilities of the

methods may depend on the magnitude of measurement or the true values may be

nonlinearly related. Data with these features call for a heteroscedastic measurement

error model that allows nonlinear relationships in the true values. We present such a

model for the case when the measurements are replicated, discuss its fitting, and explain

how to evaluate similarity of measurement methods and agreement between them,

which are two common goals of data analysis, under this model. Model fitting involves

dealing with lack of a closed form for the likelihood function. We consider estimation
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methods that approximate either the likelihood or the model to yield approximate

maximum likelihood estimates. The fitting methods are evaluated in a simulation

study. The proposed methodology is used to analyze a cholesterol dataset.

Keywords: Agreement, calibration, mixed-effects model, nonlinear model, repeated mea-

sures, total deviation index.

1 Introduction

Method comparison studies are concerned with comparing a new cheaper or easier test

method for measuring a quantitative variable with an established reference method. Such

studies are routinely conducted in biomedical disciplines. The variable being measured

often has some clinical interest, e.g., cholesterol level or fat content. The methods may be

medical devices, assays, clinical observers, or measurement protocols. None of the methods

is considered error-free. The data consist of at least one measurement from each method

on every subject in the study. Our focus is on the study design wherein measurements

from both methods are replicated. The primary goal of the comparison, especially if the

methods measure in the same nominal unit, is to evaluate agreement between the methods

to see if they can be used interchangeably. A number of articles have developed statistical

methodologies for this purpose, including [1–6]. See [7, 8] for overviews. Another common

goal of the comparison, irrespective of whether the methods measure in the same nominal

unit or not, is to evaluate similarity of the methods by comparing their accuracies and

precisions, and recalibrate one method with respect to the other. Statistical methodologies

for accomplishing this goal are reviewed in [9].

Regardless of the goal of a method comparison study, modeling of data is a key step in

the data analysis. Two modeling frameworks, namely, a mixed-effects model [10] and a mea-
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surement error model [11], are especially popular. A mixed-effects model is employed when

the methods can be assumed to have the same measurement scale, meaning that the true

(i.e., error-free) values of the methods may differ only by a constant [12–16]. An example

of methods with the same scales is two thermometers, one measuring in Celsius (◦C) and

the other in Kelvin (K) because K − ◦C = 273.15. The assumption of a common scale is

not needed in a measurement error model because it allows the true values to be linearly

related rather than just differ by a constant [17–20]. An example of methods with linearly

related true values is two thermometers, one measuring in ◦C and the other in Fahrenheit

(◦F) because ◦F = 32 + (9/5) ◦C. Note that for methods to have the same scale it is neither

necessary nor sufficient that they have the the same unit of measurement. While thermome-

ters measuring in ◦C and K are an example of methods with different units but same scales,

an example of methods with same units but different scales is two thermometers, both mea-

suring in ◦C, but one consistently giving 10% higher measurement than the other due to

miscalibration. Of course, in these temperature related examples we know the relationships

between the various thermometers. But in most method comparison studies in practice these

relationships need to be estimated from the data.

Obviously since a constant difference in true values is a special case of a linear relation in

them when the slope is one, a measurement error model offers a more flexible framework for

modeling method comparison data than a mixed-effects model. Measurement error models

have been advocated in [17–21]. But these models generally make a simplifying assumption

that the measurements are homoscedastic, i.e., the variability of measurements remains con-

stant over the entire measurement range. In practice, however, it frequently happens that the

variability of a measurement changes with its magnitude [1, 17, 22]. The cholesterol data of

[12], which motivated this work and is analyzed later in this article, provides a specific exam-

ple of this phenomenon. In presence of such heteroscedasticity, the precisions of the methods
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as well as the extent of agreement between them change with the magnitude of measurement.

But these quantities would be treated as constants if the heteroscedasticity is ignored, lead-

ing to potentially misleading conclusions. Variance stabilizing transformation of data may

be used to remove the heteroscedasticity, but the difference of transformed measurements

may be difficult to interpret. This is a problem because the measurement differences need

to be interpretable to evaluate agreement between the methods [22]. Therefore, models that

explicitly incorporate heteroscedasticity are of considerable interest to practitioners.

Recently, a heteroscedastic mixed-effects model was proposed in [23] for replicated method

comparison data. As for the measurement error model framework, heteroscedastic models

have been considered, e.g., in [9, 24, 25], but none is specifically designed for replicated

method comparison data. This brings us to the main goals of this article, which are to

present such a model, discuss computational algorithms for fitting it, and illustrate its appli-

cation. The novelty of our approach also lies in that we allow the true values of the methods

to be nonlinearly related thereby obtaining the standard model with linear relationship as

an important special case. Heteroscedastic models allowing nonlinear relationships have

hitherto not been studied in the method comparison literature.

The rest of this article is organized as follows. Section 2 presents the proposed model.

Section 3 discusses computational methods for fitting it. Section 4 describes a simulation

study to evaluate the model fitting methods. Section 5 shows how to use the model to eval-

uate similarity of measurement methods and agreement between them. Section 6 illustrates

an application by analyzing a cholesterol data set. Section 7 concludes with a discussion.

All the computations in this article have been performed using the statistical software R [26].
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2 The proposed heteroscedastic model

Consider a method comparison study involving two measurement methods and m subjects.

Let Yijk be the kth replicate measurement by the jth method on the ith subject. The data

in the study consist of Yijk, k = 1, . . . , nij, j = 1, 2, i = 1, . . . ,m. Here method 1 represents

the reference method and method 2 represents the test method. The multiple measurements

from a method on a subject are exchangeable in that they are replications of the same

underlying measurement. The replicate measurements from the two methods on a subject

are dependent but they are not paired. In fact, the methods may not even have the same

number of replications on a subject. Let ni = ni1+ni2 be the total number of measurements

on the ith subject. The ni need not be equal. In what follows, we will use bold-face letters

to denote vectors and matrices. By default, a vector is a column vector unless specified

otherwise. The transpose of a vector or matrix A is denoted as AT .

Let Yij = (Yij1, . . . , Yijnij
)T denote the nij-vector of measurements on subject i from

method j. The ni-vector Yi = (YT
i1,Y

T
i2)

T denotes all measurements on subject i. Let

Ỹ = (Ỹ1, Ỹ2)
T denote paired measurements from the two methods on a randomly selected

subject from the population. We think of Ỹ as a “typical” measurement pair in that the

observed (Yi1k, Yi2l) pairs — even though the replications are not paired by design — are

identically distributed as Ỹ.

Let θ be the vector of all unknown model parameters. We use hθ(y1,y2) for the joint

probability density function of (Y1,Y2) and hθ(y1|y2) for the conditional density ofY1|Y2 =

y2. We also use Nd(µ,Σ) to denote a d-variate normal distribution with mean vector µ and

covariance matrix Σ.
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2.1 The model for Ỹ

To prepare the groundwork for presenting a heteroscedastic model for the observed data,

we first present it for Ỹ and then adapt it for the observed data. Let b denote the true

unobservable measurement underlying Ỹ, and e1 and e2 denote the random errors of the two

methods. The basic measurement error model for Ỹ is written as [18]

Ỹ1 = b+ e1, Ỹ2 = β0 + β1b+ e2; b ∼ N1(µ, τ
2), e1 ∼ N1(0, σ

2
1), e2 ∼ N1(0, σ

2
2), (1)

where β0 and β1 are regression coefficients respectively known as fixed and proportional

biases of the test method, and (b, e1, e2) are mutually independent. For reasons of model

identifiability, the true measurement b is also the true value of the reference method. This

model postulates a linear relationship between the true values b and β0 + β1b of the two

methods. The methods have different scales when the slope β1 6= 1. The model (1) is called

a “measurement error” model because the covariate b of Ỹ2 is measured with error as Ỹ1.

We now make three changes to this basic model. First, we replace the linear calibration

function β0 + β1b relating the true values of the two methods by a more general function

f(b,β). The function f has a known parametric form which depends on a fixed unknown

parameter vector β. Moreover, f is differentiable and may be nonlinear in b as well as in β.

Specific examples of f include β0 + β1b (linear model), β0 + β1b + β2b
2 (quadratic model),

and β0 exp(−β1b) (exponential model).

Second, we add independent method × subject interaction effects — b1 ∼ N1(0, ψ
2) and

b2 ∼ N1(0, ψ
2) — to the respective expressions for Ỹ1 and Ỹ2. These effects are essentially

subject specific biases of the methods. They are also known as “equation errors” in the

measurement error literature and as “matrix effects” in analytical chemistry [9]. They appear

additively in the model and are mutually independent of (b, e1, e2). See also the discussion

in Section 7 for a note regarding how the equal variance assumption for the two interaction

6



effects may be relaxed. It may be noted that interaction effects for both methods are almost

always included in the model when a mixed-effects model is used for replicated method

comparison data. However, when a measurement error model is used, they are often included

only for the test method but not for the reference method, see, e.g., [9, pp. 74-77].

Finally, we replace the constant error variance σ2
j by var[ej|b] = σ2

j g
2
j (b, δj), j = 1, 2,

where gj is a variance function that models how the error variance of the jth method depends

on the true value b. This gj is also differentiable and has a known parametric form depending

on an unknown heteroscedasticity parameter vector δj, which is such that gj(b, δj) ≡ 1 when

δj = 0. The two methods may have different variance functions. Examples of a variance

function include |b|δ (power model), δ0 + |b|δ1 (constant plus power model), and exp(δb)

(exponential model) [10]. The model becomes homoscedastic when δ1 = 0 = δ2.

After these changes, the basic model (1) for Ỹ becomes a heteroscedastic measurement

error model,

Ỹ1 = b+ b1 + e1, Ỹ2 = f(b,β) + b2 + e2;

bj ∼ N1(0, ψ
2), ej|b ∼ N1

(

0, σ2
j g

2
j (b, δj)

)

, b ∼ N1(µ, τ
2), j = 1, 2. (2)

Here e1 and e2 are conditionally independent given b. Marginally, they are uncorrelated but

dependent. Further, b is independent of (b1, b2) and (b1, b2, e1, e2) are mutually independent.

This model is nonlinear in b unless f is linear in b and the gj are free of b. By marginalizing

over (b1, b2), we get a hierarchical representation of this model as

Ỹ1|b ∼ N1

(

b, ψ2 + σ2
1 g

2
1(b, δ1)

)

, Ỹ2|b ∼ N1

(

f(b,β), ψ2 + σ2
2 g

2
2(b, δ2)

)

, b ∼ N1(µ, τ
2), (3)

where Ỹ1 and Ỹ2 are conditionally independent given b. In general, further marginalization

over b does not yield a closed-form marginal distribution for Ỹ, albeit its marginal mean
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vector and covariance matrix can be written as

E[Ỹ] =







µ

E[f(b,β)]






,

var[Ỹ] = diag
{

ψ2 + σ2
1 E[g

2
1(b, δ1)], ψ

2 + σ2
2 E[g

2
2(b, δ2)]

}

+ Γ, (4)

where Γ is the covariance matrix of (b, f(b,β))T ,

Γ =







τ 2 cov[b, f(b,β)]

cov[b, f(b,β)] var[f(b,β)]






. (5)

2.2 The model for observed data

We get a model for observed data Yi from that of Ỹ in (2) by simply replacing Ỹj with Yijk

and (b, bj, ej) with its independent copies (bi, bij, eijk) for k = 1, . . . , nij, j = 1, 2, i = 1, . . . ,m.

This gives

Yi1k = bi + bi1 + ei1k, Yi2k = f(bi,β) + bi2 + ei2k;

bij ∼ N1(0, ψ
2), eijk|bi ∼ N1

(

0, σ2
j g

2
j (bi, δj)

)

, bi ∼ N1(µ, τ
2). (6)

In this model, the multiple measurements from method j on subject i are dependent because

they share the same bi and bij. Furthermore, the measurements from different methods on

subject i are also dependent because they share the same bi. The measurements on different

subjects are independent.

To write this model in the matrix form, let 1n and 0n be n-vectors of ones and zeros,

and define eij = (eij1, . . . , eijnij
)T ,

ei =







ei1

ei2






,bi =







bi1

bi2






,Ui =







1ni1

0ni2






,Vi =







0ni1

1ni2






,Zi = [Ui,Vi]. (7)

Also define Σij(b) as a nij × nij diagonal matrix and Σi(b) as a ni × ni diagonal matrix,

Σij(b) = diag
{

σ2
j g

2
j (b, δj), . . . , σ

2
j g

2
j (b, δj)

}

, Σi(b) = diag
{

Σi1(b),Σi2(b)
}

.
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Now the model (6) can be written in the matrix form as

Yi = Uibi +Vif(bi,β) + Zibi + ei;

ei|bi ∼ Nni

(

0,Σi(bi)
)

, bi ∼ N2(0, ψ
2diag{1, 1}), bi ∼ N1(µ, τ

2), i = 1, ...,m. (8)

Proceeding as in (3), we can represent the model in a hierarchical manner as

Yi|bi ∼ Nni

(

Uibi +Vif(bi,β), ψ
2ZiZ

T
i +Σi(bi)

)

, bi ∼ N1(µ, τ
2). (9)

Here Yi1 and Yi2 are conditionally independent given bi because the matrix

ψ2ZiZ
T
i +Σi(bi) = diag

{

ψ21ni1
1Tni1

+Σi1(bi), ψ
21ni2

1Tni2
+Σi2(bi)

}

has a diagonal structure. This is expected since the dependence in Yi1 and Yi2 is induced

only through the common bi. Moreover, analogous to (4), the marginal mean vector and

covariance matrix of Yi are

E[Yi] = Uiµ+ViE[f(b,β)], var[Yi] = ZiΓZ
T
i + ψ2ZiZ

T
i + E[Σi(b)], (10)

with Γ given by (5). In principle, the marginal probability density function hθ(yi) of Yi can

be obtained as

hθ(yi) =

∫ ∞

−∞

hθ(yi, bi)dbi. (11)

Here hθ(yi, bi) = hθ(yi1|bi)hθ(yi2|bi)hθ(bi) from conditional independence. The densities

involved in this expression are normal densities obtained from (9). However, the integral

(11) does not have a closed-form in general.

2.3 The case of linear f

The case of linear calibration function f(b,β) = β0+β1b is of special interest in practice. In

this case, the moments of Ỹ in (4) and Yi in (10) simplify because we explicitly have

E[f(b,β)] = β0 + β1µ, Γ =







τ 2 β1τ
2

β1τ
2 β2

1τ
2






.
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In addition, if the model is homoscedastic then from (9), Yi ∼ Nni
(E[Yi], var[Yi]), where

E[Yi] = Viβ0 + (Ui +Viβ1)µ,

var[Yi] = τ 2(Ui +Viβ1)(Ui +Viβ1)
T + ψ2ZiZ

T
i + diag

{

σ2
11

T
ni1
, σ2

21
T
ni2

}

. (12)

Thus, in this case the marginal density hθ(yi) is a normal density. This exception occurs

because bi appears in the model linearly, allowing it to be explicitly integrated out in (11).

3 Model fitting by maximum likelihood

3.1 Likelihood computation

Let L(θ) denote the likelihood function of parameter vector θ = (µ, τ 2,βT , ψ2, σ2
1, σ

2
2, δ

T
1 , δ

T
2 )

T

under model (6). By definition,

L(θ) =
m
∏

i=1

hθ(yi),

but hθ(yi), given by (11), does not have an explicit expression in general. Therefore, we now

describe two approaches for computing it. The first numerically approximates the integral

(11), whereas the second approximates the original model (6) so that the resulting density

has a closed-form.

3.1.1 Approach 1: Numerical integration

Let lθ(yi, bi) = − log hθ(yi, bi) be the negative logarithm of the integrand in (11); bi,min be

its minimizer with respect to bi; and l
′′

θ(yi, bi,min) = (∂2/∂b2i )lθ(yi, bi)|bi=bi,min
be the corre-

sponding Hessian at the minima. A simple approximation of the integral (11) is the Laplace

approximation (LA) [27],

hθ(yi) ≈ (2π)1/2 |l
′′

θ(yi, bi,min)|
−1/2 hθ(yi, bi,min).

10



Another approximation is given by the Gauss-Hermite quadrature (GH) [27]. To describe

this, let z1, . . . , zM be the nodes and w1, . . . , wM be the associated quadrature weights with

kernel exp(−z2). The nodes are centered and scaled to achieve greater accuracy as [28]

cir = bi,min + 21/2l
′′

θ(yi, bi,min)
−1/2zr, r = 1, . . . ,M.

The approximated integral in this case is

hθ(yi) ≈ 21/2 |l
′′

θ(yi, bi,min)|
−1/2

M
∑

r=1

hθ(yi, cir)wr exp(z
2
r ).

This method reduces to LA when M = 1 because the sole node in this case is zero with

weight π1/2 [28]. This makes it clear that GH is not only more accurate but also more

computationally demanding than LA. In practice, 20-30 nodes tend to provide reasonably

good accuracy for GH method.

3.1.2 Approach 2: Model approximation by linearization

This approach approximates the model (6) by linearizing f and gj functions in bi — an

unobservable random quantity — around an observable non-random quantity b∗i that is close

to bi but is held fixed in model fitting. This kind of linearization is a standard strategy in

fitting of nonlinear mixed-effects and measurement error models [10, 29] and even generalized

linear mixed-effects models [30]. Expanding f and gj functions around bi = b∗i using Taylor

series and keeping the first two terms for f and only the first term for gj, we get

f(bi,β) ≈ f(b∗i ,β) + (bi − b∗i )f
′(b∗i ,β), gj(bi, δj) ≈ gj(b

∗
i , δj), j = 1, 2, (13)

where f ′(b∗i ,β) = (∂/∂bi)f(bi,β)|bi=b∗i . The approximation for f is exact when f is linear in

bi, whereas the approximation for gj is exact when the model is homoscedastic. Replacing
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f and gj in (6) by their approximations in (13) gives the linearized version of (6) as

Yi1k = bi + bi1 + ei1k, Yi2k ≈ f(b∗i ,β) + (bi − b∗i )f
′(b∗i ,β) + bi2 + ei2k;

bij ∼ N1(0, ψ
2), eijk

·
∼ N1

(

0, σ2
j g

2
j (b

∗
i , δj)

)

,

bi ∼ N1(µ, τ
2), k = 1, . . . , nij, j = 1, 2, i = 1, . . . ,m. (14)

Here the notation “
·
∼” means “is approximately distributed as,” and the approximation is

caused by the linearization. Letting

d(b∗i ,β) = f(b∗i ,β)− b∗i f
′(b∗i ,β), (15)

the approximate model (14) can be written in the matrix form as

Yi ≈ Vid(b
∗
i ,β) + (Ui +Vif

′(b∗i ,β))bi + Zibi + ei;

ei
·
∼ Nni

(

0,Σi(b
∗
i )
)

, bi ∼ N2(0, ψ
2diag{1, 1}), bi ∼ N1(µ, τ

2), i = 1, ...,m. (16)

It follows from marginalizing over bi and bi that Yi
·
∼ Nni

(E[Yi], var[Yi]), where

E[Yi] ≈ Vid(b
∗
i ,β) + (Ui +Vif

′(b∗i ,β))µ,

var[Yi] ≈ τ 2(Ui +Vif
′(b∗i ,β))(Ui +Vif

′(b∗i ,β))
T + ψ2ZiZ

T
i +Σ(b∗i ). (17)

Thus, hθ(yi) can be approximated by the density of this normal distribution. We refer to

this model approximation method as MA. This closed-form approximation is made possible

by the way f and gj functions are linearized, which ensures that bi appears in the model

linearly. This also explains why only the first term in the Taylor expansion was kept for gj.

One may think of this approximation method as a pseudo-likelihood approach because the

true model is approximated by model that leads to a normal marginal likelihood.

To implement this method it remains to choose b∗i . A natural choice is b∗i = yi1, the

mean for the reference method. The resulting model (14) with b∗i held fixed can be fit via

maximum likelihood (ML). An alternative choice for b∗i is the best linear unbiased predictor

12



of bi. The model in this case needs to be fit by an iterative scheme because the predictor

itself depends on unknown model parameters [10, 29]. Empirical results in [23] show that

this additional complexity in model fitting is not worthwhile at least for method comparison

studies because the differences in parameter estimates are negligible. Therefore, we only

work with b∗i = yi1 in this article.

3.2 Inference on model parameters

The likelihood function approximated using either of the three methods — LA, GH and

MA — can be maximized by an optimization routine, e.g., optim function in R, to compute

approximate ML estimate θ̂ of θ. Subsequent inference on θ ignores the approximation in θ̂

and employs the standard large-sample theory of ML estimators [31]. In particular, when m

is large, the standard errors (SEs) of estimates and confidence intervals for parameters are

obtained by approximating the distribution of θ̂ by a normal distribution with mean θ and

the inverse of the observed information matrix I = −(∂/∂θ2) logL(θ)|θ=θ̂ as the covariance

matrix. Here L(θ) represents the likelihood function under the model actually fit to the data.

Moreover, the null hypothesis of homoscedasticity (δ1 = 0 = δ2) is tested by performing a

likelihood ratio test wherein the null distribution of the test statistic is approximated by a

chi-square distribution with degrees of freedom equal to number of parameters set to zero

under the null hypothesis. This strategy of ignoring the approximation in θ̂ for further

statistical inference is common in nonlinear mixed-effects and measurement error models

[10, 29] and generalized linear mixed-effects models [30].
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3.3 Fitted values and residuals

Let Ŷi denote the fitted value of Yi, i = 1, . . . ,m. Under the linearized model (16),

Ŷi ≈ Vid(b
∗
i , β̂) + (Ui +Vif

′(b∗i , β̂))b̂i + Zib̂i,

where (b̂i, b̂i) is the estimated best predictor of (bi,bi) given Yi, obtained by substituting

θ = θ̂ in

E[(bi,bi)
T |Yi] ≈ (µ, 0, 0)T + diag{τ 2, ψ2, ψ2}(var[Yi])

−1(Yi − E[Yi]),

with E[Yi] and var[Yi] given by (17). The residuals can be computed as êi = Yi − Ŷi,

i = 1, . . . ,m. These residuals and their standardized counterparts, computed by dividing

residuals by estimated error standard deviations (SDs), are used for model checking.

3.4 Specifying f and gj functions

Specifying the calibration function f and the variance functions gj is a part of model building

exercise which is no different from what we ordinarily do in regression modeling. Therefore,

we proceed just the way we proceed to build a parametric regression model. In particular,

this involves relying on graphical techniques, such as scatterplot of measurements from the

two methods and the residual plot, to come up with preliminary forms for these functions. As

we are dealing with unpaired replicate measurements here, we can plot either the randomly

formed measurement pairs (Yi1k, Yi2l) [14] or the paired averages (yi1, yi2) on the scatterplot.

4 A simulation study

Our next task is to use Monte Carlo simulation to evaluate finite sample performance of

the three model fitting methods — LA, GH, and MA — on four performance measures:
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biases of parameter estimators, their mean squared errors (MSEs), coverage probabilities of

95% confidence intervals, and type I error probability for 5% level likelihood ratio test of

homoscedasticity. We focus on f(b,β) = β0+β1b and gj(b, δj) = |b|δj , j = 1, 2 because these

are the functions we adopt later for analysis of cholesterol data. In addition, we assume a

balanced design with nij ∈ {2, 3} replications per method; let δ1 = δ2 = δ ∈ {0, 0.9, 1, 1.1};

and take m = 50. Table 1 summarizes the actual parameter settings used. These are also

motivated by the cholesterol data.

The simulation study involves simulating data from the true model (6); computing point

and interval estimates and performing the test of homoscedasticity using each of the three

fitting methods; repeating the entire process 500 times; and obtaining the desired estimates

of the performance measures. For greater accuracy, inference on the variance components

(τ 2, ψ2, σ2
1, and σ

2
2) is performed on log scale. The GH method uses M = 30 nodes.

Table 2 presents the estimated biases of point estimators in case of nij = 2. The biases

for β1 and µ are negligible relative to their true values for all settings. The biases are small,

negative for log τ 2 and logψ2. The situation is less clear for other parameters as the biases

of their estimators may be positive or negative, albeit their magnitudes are relatively small.

Moreover, there is no method that produces the smallest bias for all parameters. The same

qualitative conclusions hold in case of nij = 3 (results not presented).

Tables 3 and 4 present estimated efficiencies of LA and MA relative to GH, defined as

MSELA/MSEGH and MSEMA/MSEGH, respectively. We see that the efficiency depends on

the parameter, the level of heteroscedasticity and the number of replications. The entries in

Table 3 lie between 0.98 to 1.29, implying that GH is more accurate than LA. This finding

is not unexpected because LA is a special case of GH with one node. Although there is

no difference in the two methods for homoscedastic case, GH’s gain in accuracy can be

substantial when the extent of heteroscedasticity is high and there are three replications.
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The conclusion is less clear-cut when we look at Table 4 but 90% of entries are between 0.77

to 1.10, implying that in a vast majority of cases MA produces either nearly as accurate or

more accurate estimate than GH. There are a few entries greater than 1.10, but it is hard

to see a simple pattern among them except that most occur when δ > 0.

Table 5 presents estimated coverage probabilities of 95% confidence intervals in case of

nij = 2. All entries are quite close to 95% when δ = 0. But the performance of LA and GH

methods degrades as δ increases, and it is not acceptable when δ ≥ 1, especially in settings 2

and 3. On the other hand, MA method maintains its coverage probability reasonably close

to 95% in all cases. The results for nij = 3 are omitted as they lead to the same conclusion.

Table 6 presents estimated type I error probabilities for 5% level likelihood ratio test

for homoscedasticity. All entries are reasonably close to 5%, implying that there is little to

distinguish between the three estimation methods on this criterion.

Taken together, these findings allow us to conclude that MA is the best choice among the

three model fitting methods. Not only it is simplest to implement but it also generally pro-

duces the most accurate point and interval estimates. Besides, the test of homoscedasticity

based on it has type I error rates close to the nominal level. We also see thatm = 50 subjects

is large enough for acceptable accuracy of this method. The two numerical approximation

methods — LA and GH — do not perform as well with m = 50.

5 Evaluation of similarity and agreement

Evaluation of similarity of measurement methods and agreement between them are two key

goals in a method comparison study. This evaluation is conducted by performing inference

on measures of similarity and agreement, which are functions of the model parameters. Now

we take up the task of obtaining these measures and performing inference on them under
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(6) as the data model. The task includes examining biases and precisions of methods and

also the marginal and joint distributions of their measurements. These entities are easy to

define and interpret when the model is linear in b. Therefore, instead of the original model

(6) we work with its approximation (14) wherein b appears linearly. Further, to make the

exposition simpler, we use the companion model of (14) for Ỹ. It can be written as

Ỹ1 = b+ b1 + e1, Ỹ2 ≈ d(b∗,β) + f ′(b∗,β)b+ b2 + e2;

bj ∼ N1(0, ψ
2), ej

·
∼ N1

(

0, σ2
j g

2
j (b

∗, δj)
)

, b ∼ N1(µ, τ
2), j = 1, 2, (18)

where d is defined in (15) and b∗ — a fixed quantity close to b — serves as a proxy for

the magnitude of measurement. As before, by marginalizing over (b, b1, b2) we see that

Ỹ
·
∼ N2

(

E[Ỹ], var[Ỹ]
)

with

E[Ỹ] ≈







µ

d(b∗,β) + f ′(b∗,β)µ






(19)

and

var(Ỹ) ≈







τ 2 + ψ2 + σ2
1 g

2
1(b

∗, δ1) τ 2f ′(b∗,β)

τ 2f ′(b∗,β) τ 2{f ′(b∗,β)}2 + ψ2 + σ2
2 g

2
2(b

∗, δ2)






. (20)

For the difference D̃ = Ỹ1 − Ỹ2, it follows that D̃
·
∼ N1

(

E[D̃], var[D̃]
)

, where

E[D̃] ≈ −d(b∗,β) +
(

1− f ′(b∗,β)
)

µ,

var[D̃] ≈ τ 2
(

1− f ′(b∗,β)
)2

+ 2ψ2 + σ2
1 g

2
1(b

∗, δ1) + σ2
2 g

2
2(b

∗, δ2). (21)

Both the distributions depend on b∗ ∈ B, which we take as the observed range of the data.

5.1 Measures of similarity

Measures of similarity compare features of marginal distributions of methods, such as biases

and precisions. From models (1) and (18) for Ỹ2 we see that the intercept d(b∗,β) and the
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slope f ′(b∗,β) can be respectively interpreted as the “fixed” bias and the “proportional”

bias of the test method. These biases depend on b∗ unless f(b,β) = β0 + β1b, in which case

d(b∗,β) = β0 and f ′(b∗,β) = β1. If the slope is one, the methods have the same scale. If, in

addition, the intercept is also zero, the methods have the same true values.

Precisions of methods can be compared via their ratio but it requires the methods to

have the same scale [9, pp. 49-50]. The scale of the test method can be made same as the

reference method by dividing Ỹ2 by the slope f ′(b∗,β). The precision ratio then becomes

λ(b∗) = {f ′(b∗,β)}2
σ2
1 g

2
1(b

∗, δ1)

σ2
2 g

2
2(b

∗, δ2)
, b∗ ∈ B. (22)

This ratio depends on b∗ unless the model is homoscedastic and f is linear in b. If λ(b∗) < 1,

the reference method is more precise at b∗ than the test method, and vice versa. While this

ratio compares var[ej], often a comparison of var[bj + ej] is of interest [9, p. 115]. This can

be done by replacing σ2
j g

2
j (b

∗, δj) in (22) with ψ2 + σ2
j g

2
j (b

∗, δj), j = 1, 2.

5.2 Measures of agreement

In contrast to the measures of similarity that compare marginal distributions of methods,

the measures of agreement essentially look at their joint distribution to quantify how close

the individual measurements are. The methods agree perfectly well if their measurements

are identical. Potentially one can directly evaluate agreement between (Ỹ1, Ỹ2). In this case,

the effect of any fixed or proportional bias that may exist in the test method manifests in

the agreement measures, which are functions of parameters of the bivariate distribution of

(Ỹ1, Ỹ2). However, this approach is appropriate only if the similarity evaluation does not

show any proportional bias in the test method because in this case the methods are on the

same scale, and hence are comparable. Otherwise, it is more appropriate to recalibrate the

test method to make its scale same as the reference method prior to evaluating agreement.
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This is just like the rescaling done in (22) before comparing precisions. Taking the rescaling

a step further, one can additionally remove any fixed bias that may be present in the test

method besides the proportional bias by transforming its measurements as

Ỹ ∗
2 =

Ỹ2 − d(b∗,β)

f ′(b∗,β)
. (23)

The recalibrated test method has the same true value as the reference method. It follows

from (18)-(20) that






Ỹ1

Ỹ ∗
2







·
∼ N2













µ

µ






,







τ 2 + ψ2 + σ2
1 g

2
1(b

∗, δ1) τ 2

τ 2 τ 2 +
ψ2+σ2

2
g2
2
(b∗,δ2)

{f ′(b∗,β)}2












. (24)

Moreover, the difference D̃∗ = Ỹ1 − Ỹ ∗
2

·
∼ N1

(

0, var[D̃∗]
)

, where

var[D̃∗] ≈ ψ2 + σ2
1 g

2
1(b

∗, δ1) +
ψ2 + σ2

2 g
2
2(b

∗, δ2)

{f ′(b∗,β)}2
. (25)

The measures of agreement in this case are functions of parameters of the bivariate distri-

bution of (Ỹ1, Ỹ
∗
2 ). While it is true that the recalibration is likely to make the test method

agree more with the reference method, but measuring their agreement is appropriate in the

first place only if the two methods are on the same scale.

The expression for any measure of agreement between either (Ỹ1, Ỹ2) or (Ỹ1, Ỹ
∗
2 ) can be

obtained by simply taking the definition of the measure and plugging-in the relevant pa-

rameters from their respective bivariate distributions. This approach works for any measure

of agreement available in the literature. For example, the two versions of the agreement

measure concordance correlation coefficient (CCC) [2] are

CCC(b∗) ≈
2cov[Ỹ1, Ỹ2]

{E[D̃]}2 + var[Ỹ1] + var[Ỹ2]
, CCC∗(b∗) ≈

2cov[Ỹ1, Ỹ
∗
2 ]

var[Ỹ1] + var[Ỹ ∗
2 ]
, b∗ ∈ B,

where the moments are from (20), (21) and (24). The CCC lies in [−1, 1] and the larger

positive its value the better is the agreement. The starred version of the measure is for the

recalibrated data.
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The total deviation index (TDI) [3, 4] is another agreement measure. It is defined as

the 100pth percentile of absolute difference in measurements, where p is a specified large

probability, typically between 0.80 and 0.95. The two versions of TDI can be written as

TDI(b∗, p) = 100pth percentile of |D̃| ≈ sd[D̃]
{

χ2
1

(

p,
(

E[D̃]/sd[D̃]
)2)}1/2

,

TDI∗(b∗, p) = 100pth percentile of |D̃∗| ≈ sd[D̃∗]
{

χ2
1(p, 0)

}1/2
, b∗ ∈ B, (26)

where the moments are from (21) and (25), and χ2
1(p,∆) denotes the 100pth percentile of a

noncentral chi-squared distributed with one degree of freedom and noncentrality parameter

∆. When the noncentrality parameter is zero, {χ2
1(p, 0)}

1/2 = z
(

(1+ p)/2
)

, the 100(1+ p)th

percentile of a standard normal distribution. The TDI is a non-negative measure and the

smaller its value the better is the agreement. We only focus on TDI with p = 0.90 for the

illustration here.

5.3 Inference on measures of similarity and agreement

All measures of similarity and agreement are functions of θ and b∗. Let φ denote any such

measure and φ(b∗) be its value at b∗ ∈ B. The measure is assumed to be a scalar quantity. Re-

placing θ by θ̂ in its expression gives its ML estimator φ̂(b∗). From delta method [31], when

m is large, φ̂(b∗)
·
∼ N1

(

φ(b∗),G′(b∗)I−1G(b∗)
)

, where G(b∗) = (∂/∂θ)φ(b∗)|θ=θ̂ can be com-

puted numerically. Thus, approximate 100(1− α)% two-sided pointwise confidence interval

for φ(b∗) on a grid of values of b∗ ∈ B can be computed as φ̂(b∗)±z1−α/2 {G′(b∗)I−1G(b∗)}
1/2

.

One-sided pointwise bands for φ(b∗) can by computed by replacing z1−α/2 with z1−α and us-

ing only either the lower limit or the upper limit of this interval. If φ is a measure of

similarity, a two-sided confidence interval for φ is of interest. On the other hand, if φ is a

measure of agreement, an appropriate one-sided confidence bound for φ is of interest. In

particular, if small values for φ imply good agreement (e.g., TDI), we need an upper bound.
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Whereas, if large values for φ imply good agreement (e.g., CCC), we need a lower bound.

These bounds and intervals can be made more accurate by computed them after applying

a suitable normalizing transformation to the measure (e.g., log transformation of TDI or

Fisher’s z-transformation for CCC) and back-transforming the results to the original scale.

These confidence bounds and intervals are used to evaluate similarity and agreement over

the measurement range B.

6 Application to cholesterol data

The cholesterol data come from a trial conducted at Virginia Commonwealth University to

compare two methods for assaying serum cholesterol (mg/dL) [12]. One is Cobas Bio, an

assay standardized by the Centers for Disease Control that serves as the reference method

(method 1). The other is Ektachem 700, a routine laboratory analyzer that serves as the test

method (method 2). There are 100 subjects in this study. Measurements from each assay

are replicated ten times on every subject. The replications from an assay are exchangeable

and the replications across the assays are unpaired. The measurements range between 45

to 372 mg/dL. Figure 1 shows a trellis plot the data from [23]. We see that Ektachem’s

measurements tend to be larger and have higher within-subject variation than Cobas Bio’s.

This variation increases with cholesterol level for both assays. There is also evidence of

assay × subject interaction. In our notation, Yijk represents the kth replicate measurement

of serum cholesterol obtained by the jth assay from the blood sample of the ith subject,

i = 1, . . . , 100, j = 1, 2, and k = 1, . . . , 10.

The first step in the analysis is modeling of data. This involves specifying parametric

forms for the calibration function f and the variance functions gj, j = 1, 2, in (6). Figure 2

shows a scatter plot of (yi1, yi2) pairs and also assay-specific plots of the logarithm of SD of

21



a subject’s ten measurements against the logarithm of their mean. The points in each plot

cluster around a straight line, suggesting f(b,β) = β0 + β1b and gj(b, δj) = |b|δj , j = 1, 2, as

plausible choices. The same choice for gj is suggested when residuals from a homoscedastic

fit are analyzed. With these f and gj, the resulting model (6) has nine parameters. Table 7

summarizes estimates of these parameters and their SEs obtained using the three model

fitting methods described in Section 3. Although the three methods produce practically the

same results, there is a slight difference in the estimates of β0 obtained by numerical approx-

imation methods (LA and GH) and the model approximation method (MA). Nevertheless,

the difference is not large enough to be of concern. Besides, the simulations in Section 4

show that the MA method is generally more accurate than the other two methods anyway.

Therefore, only the results from MA method will be presented hereafter. Figure 2 (d) shows

a plot of standardized residuals against the fitted values. It has no discernible pattern. This,

together with additional model diagnostics suggested in [10] (not presented here), allows us

to conclude that the fit of the assumed model is adequate.

The p-value for the likelihood ratio test of null hypothesis of homoscedasticity is prac-

tically zero, confirming nonconstant error variances. Plugging-in parameter estimates in

(18)-(20) gives the fitted distribution of (Ỹ1, Ỹ2) as







Ỹ1

Ỹ2







·
∼ N2













184.38

190.24






,







4255.97 + (8.0× 10−5)b∗
2.04

4314.78

4314.78 4426.87 + (1.9× 10−4)b∗
1.98












.

This distribution depends on the cholesterol level b∗ ∈ B = [45, 372] mg/dL because of

heteroscedasticity. Notice that the contribution of error variation to the total variation

in response is swamped by other components of variation. In particular, this makes the

estimated correlation between (Ỹ1, Ỹ2) very high — over 0.985 — throughout B.

The second step in the analysis is evaluation of similarity. The estimate of proportional

bias β1 is 1.02 (SE = 0.01) and its 95% confidence interval is [1.00, 1.04]. Thus, there
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is evidence of a slight upward proportional bias of up to 4% in Ektachem assay, but the

evidence is borderline. Further, the estimate of fixed bias β0 is 2.17 (SE = 2.20) and its

95% confidence interval is [−2.14, 6.48]. Although this interval covers zero, it also provides

evidence of a small fixed bias. These findings are consistent with the observation that

Ektachem’s measurements tend to be larger than Cobas Bio’s. Figure 3 presents estimate

and 95% two-sided pointwise confidence band for precision ratio λ, defined in (22), as a

function of cholesterol level b∗. The entire band lies below one. Notwithstanding the fact

this band is pointwise rather than simultaneous, it does indicate that Cobas Bio is more

precise than Ektachem. The former is estimated to be about 40% more precise than the

latter. To summarize, we find that the two assays cannot be regarded as similar. Not only

they do not have the same true values, but also Cobas Bio is more precise than Ektachem.

The third step in the analysis is evaluation of agreement. Since there is evidence of a

slight bias in Ektachem, we use (23) to recalibrate its measurement Ỹ2 as Ỹ ∗
2 to make its

true value same as Cobas Bio’s. The estimated transformation is Ỹ ∗
2 = (Ỹ2 − 2.17)/1.02.

Using (25), the fitted distribution of the difference D̃∗ after the transformation is

D̃∗ ·
∼ N1

(

0, 50.58 + (8.0× 10−5)b∗
2.04

+ (1.8× 10−4)b∗
1.98

)

.

The SD of this distribution ranges between 7.15 to 9.31. Next, we perform inference on the

agreement measure TDI∗ (with p = 0.90), given by (26), as described in Section 5. Figure 3

shows its 95% pointwise upper confidence bound as a function of cholesterol level b∗. This

bound increases from 13.6 to 16.7 as the cholesterol level increases from 45 to 372 mg/dL.

The leftmost bound of 13.6 shows that 90% of differences in measurements from the assays

when the true value is 45 fall within ±13.6. Relative to the true value, this difference is too

large to be deemed acceptable. On the other hand, the rightmost bound of 16.7 shows that

90% of differences in measurements from the assays when the true value is 372 fall within

±16.7. This difference may be considered acceptable. Thus, we may conclude that the
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assays, after the recalibration, have satisfactory agreement for large cholesterol values but

not for small values. Obviously, this means that the Cobas Bio and recalibrated Ektachem

do not agree well enough to be considered interchangeable. In fact, we know from evaluation

of similarity that Cobas Bio is superior to Ektachem by virtue of being more precise. It may

be noted that if Ektachem is not recalibrated prior to agreement evaluation, then the 95%

pointwise upper confidence bound for TDI ranges from 17.2 to 19.8 over B. These bounds

are a bit larger than before because of Ektachem’s bias, and hence imply a somewhat worse

level of agreement between the two assays.

To see the effect of ignoring heteroscedasticity, we repeat the analysis assuming constant

error variances, i.e., setting the heteroscedasticity parameters in (6) to zero. The estimate

of TDI∗ and its 95% confidence bound come out to be 12.9 and 14.5, respectively. Although

these quantities do not depend on the cholesterol value, they are not too far from their

heteroscedastic counterparts that range between 11.8 to 15.3 and 13.6 to 16.7, respectively.

This happens because the error variation, albeit nonconstant, is swamped by other variance

components that do not change with cholesterol value. Nevertheless, it is apparent that the

homoscedastic model underestimates the extent of agreement for small cholesterol values

and overestimates it for large cholesterol values.

7 Discussion

This article presents a measurement error model for replicated method comparison data that

can incorporate heteroscedasticity of errors as well as nonlinear relationships in the true

values of the measurement methods. It also shows how the model can be used to evaluate

similarity and agreement between the methods. A key advantage of the model is that it allows

one method to be recalibrated against the other, either linearly or nonlinearly, to ensure that
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their true values are identical. Here we focussed on comparison of two methods and did not

include covariates. But the model can be extended to accommodate more than two methods

and covariates. We also assumed normality for random effects and error distributions. The

model can deal with skewness and heavytailedness in the data by replacing the normality

assumption with generalizations of normal, such as skew-normal and skew-t distributions.

We, however, require the measurements to be replicated to avoid identifiability issues. The

model also requires the practitioner to specify parametric forms for calibration and variance

functions, as one ordinarily does in regression modeling. Further research is needed to allow

these functions to be specified semiparametrically or even nonparametrically.

A potential limitation of our model (6) or its linearized version (14) is that the interaction

effects of the two methods have the same variance even though the methods may have

different scales. Without the equal variance assumption, the model is not identifiable in the

linear calibration case. If this assumption is a concern, it can be addressed to some extent

by replacing the interaction effect bi2 of the test method in (14) with f ′(b∗i ,β) bi2, making the

new effect’s variance different from that of the reference method. In the linear calibration

case, this means bi2 is replaced with β1bi2. The change in (14) can be easily propagated

through subsequent steps of the analysis to get the analysis based on the new model.
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Table 1: Sets of parameter values used for the simulation study.

Set

θ 1 2 3

(β0, β1) (10, 1.2) (5, 1.1) (0, 1)

(µ, log(τ 2), log(ψ2)) (185, 8, 3) (185, 8, 3) (185, 8, 3)

(log(σ2
1), log(σ

2
2)) homoscedastic model, δ = 0

(1, 2) (1, 1.25) (1, 1)

heteroscedastic model, δ ∈ (0.9, 1, 1.1)

(-9, -8) (-9, -8.75) (-9, -9)
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Table 2: Estimated biases of estimators computed using three model fitting methods.

δ = 0 δ = 0.9 δ = 1 δ = 1.1

Set θ LA GH MA LA GH MA LA GH MA LA GH MA

1 β0 0.24 0.24 0.02 -0.10 -0.02 -0.01 -0.05 -0.04 0.13 -0.22 -0.18 -0.27

β1 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00

µ 0.09 0.11 -0.24 0.78 0.69 0.50 2.13 2.12 0.02 2.27 1.91 -0.01

log τ2 -0.04 -0.04 -0.04 -0.07 -0.07 -0.04 -0.09 -0.09 -0.03 -0.12 -0.12 -0.04

logψ2 -0.07 -0.07 -0.07 -0.04 -0.05 -0.07 -0.07 -0.07 -0.07 -0.15 -0.14 -0.11

log σ21 -0.14 -0.14 -0.28 -0.08 -0.10 0.07 -0.19 -0.15 -0.28 0.03 0.08 -0.12

log σ22 -0.50 -0.50 -0.46 0.50 0.49 -0.52 0.57 0.58 -0.25 0.11 0.11 -0.19

δ1 0.01 0.01 0.02 0.00 0.01 -0.01 0.01 0.01 0.02 -0.01 -0.01 0.01

δ2 0.04 0.04 0.04 -0.05 -0.05 0.04 -0.06 -0.06 0.02 -0.01 -0.01 0.02

2 β0 -0.31 -0.31 -0.07 0.12 0.10 -0.03 0.05 0.05 0.09 -0.36 -0.43 -0.20

β1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

µ -0.04 -0.05 0.03 0.80 0.56 -0.08 1.74 1.67 0.09 2.36 2.34 0.16

log τ2 -0.06 -0.06 -0.03 -0.05 -0.04 -0.04 -0.10 -0.09 -0.02 -0.12 -0.12 -0.05

logψ2 -0.06 -0.06 -0.07 -0.03 -0.03 -0.04 -0.05 -0.05 -0.10 -0.09 -0.09 -0.10

log σ21 -0.15 -0.17 -0.32 0.04 0.03 -0.27 0.19 0.18 -0.22 0.14 0.17 0.04

log σ22 -0.40 -0.39 -0.25 0.22 0.18 -0.33 0.41 0.39 -0.36 0.05 -0.04 -0.19

δ1 0.01 0.01 0.03 -0.01 -0.01 0.02 -0.02 -0.02 0.02 -0.02 -0.02 -0.01

δ2 0.03 0.03 0.02 -0.03 -0.02 0.03 -0.04 -0.04 0.03 -0.01 0.00 0.01

3 β0 -0.03 -0.02 -0.11 -0.17 -0.15 -0.22 -0.26 -0.29 -0.05 -0.20 -0.21 -0.35

β1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

µ -0.35 -0.40 -0.32 0.03 -0.11 -0.06 1.89 1.74 0.04 2.52 2.49 -0.14

log τ2 -0.03 -0.03 -0.05 -0.05 -0.04 -0.03 -0.08 -0.08 -0.04 -0.12 -0.12 -0.02

logψ2 -0.07 -0.07 -0.07 -0.05 -0.05 -0.05 -0.07 -0.07 -0.07 -0.09 -0.08 -0.07

log σ21 -0.40 -0.41 -0.29 -0.09 -0.05 -0.33 0.17 0.15 -0.25 -0.14 -0.11 -0.29

log σ22 -0.13 -0.13 -0.24 0.11 0.14 -0.34 0.12 0.16 -0.49 0.16 0.15 -0.19

δ1 0.03 0.04 0.02 0.00 0.00 0.03 -0.02 -0.02 0.02 0.01 0.01 0.03

δ2 0.01 0.01 0.02 -0.01 -0.02 0.03 -0.02 -0.02 0.04 -0.02 -0.02 0.02
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Table 3: Relative efficiencies (MSELA/MSEGH) of estimates obtained by LA and GH meth-

ods.

θ

δ nij Set β0 β1 µ log τ 2 logψ2 log σ2
1 log σ2

2 δ1 δ2

0 2 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.02 1.00

3 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00

3 1 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 1.00 1.00 1.00 1.00 0.99 1.01 1.00 1.01

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.9 2 1 1.08 1.07 1.02 1.01 1.00 1.04 1.02 1.04 1.02

2 1.06 1.05 1.02 1.00 1.01 1.04 1.05 1.04 1.05

3 1.08 1.08 1.02 1.04 1.05 1.09 1.06 1.09 1.06

3 1 1.14 1.14 1.14 1.01 1.06 1.18 1.08 1.18 1.09

2 1.21 1.21 1.24 1.20 1.18 1.29 1.25 1.29 1.25

3 1.14 1.13 1.10 1.14 1.10 1.21 1.13 1.20 1.13

1 2 1 1.03 1.03 1.00 1.01 1.02 1.11 1.05 1.10 1.05

2 1.01 1.01 1.04 0.98 1.01 1.01 0.99 1.01 1.00

3 1.03 1.03 1.02 1.04 1.02 1.02 1.08 1.02 1.08

3 1 1.19 1.20 1.25 1.05 1.07 1.24 1.21 1.24 1.21

2 1.21 1.20 1.14 1.10 1.02 1.21 1.18 1.21 1.18

3 1.22 1.18 1.23 1.11 1.11 1.12 1.18 1.13 1.18

1.1 2 1 1.12 1.10 1.12 1.07 1.06 1.11 1.13 1.11 1.13

2 1.06 1.04 1.06 1.01 0.98 1.09 1.04 1.09 1.04

3 1.05 1.05 1.03 1.01 1.03 1.06 1.03 1.06 1.03

3 1 1.19 1.16 1.21 1.11 1.10 1.19 1.15 1.19 1.15

2 1.15 1.15 1.26 1.06 1.02 1.22 1.18 1.21 1.19

3 1.07 1.06 1.05 1.03 1.04 1.12 1.16 1.12 1.16
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Table 4: Relative efficiencies (MSEMA/MSEGH) of estimates obtained by MA and GH meth-

ods.

θ

δ nij Set β0 β1 µ log τ 2 logψ2 log σ2
1 log σ2

2 δ1 δ2

0 2 1 0.99 1.00 0.95 1.00 1.00 0.86 1.01 0.86 1.02

2 0.99 0.92 0.97 1.00 1.07 1.07 0.84 1.07 0.85

3 1.12 1.16 1.02 1.11 1.02 0.93 0.91 0.95 0.91

3 1 0.91 0.92 0.94 0.95 0.98 0.93 0.93 0.93 0.93

2 0.94 0.94 0.96 0.96 0.97 0.92 0.92 0.92 0.91

3 0.93 0.94 0.95 0.97 0.98 0.92 0.95 0.92 0.95

0.9 2 1 0.96 0.91 1.18 0.95 0.97 1.09 0.95 1.10 0.96

2 1.04 0.99 0.83 1.05 1.02 1.16 0.91 1.18 0.91

3 1.02 0.97 0.98 0.96 1.22 1.13 1.09 1.12 1.09

3 1 1.00 0.99 0.95 0.96 0.92 0.93 0.91 0.92 0.91

2 1.00 0.98 1.06 1.07 1.07 1.07 1.01 1.06 1.01

3 0.97 0.96 0.96 1.01 0.96 1.01 0.98 1.01 0.98

1 2 1 1.11 1.11 1.19 0.84 1.22 1.11 1.03 1.11 1.03

2 0.94 0.98 1.14 0.82 1.15 0.85 0.82 0.85 0.82

3 0.90 0.88 0.89 0.99 1.00 1.00 1.01 0.99 1.01

3 1 1.09 1.10 1.10 1.02 1.11 1.01 1.07 1.01 1.07

2 1.01 1.03 1.00 1.02 1.05 0.99 1.04 1.00 1.04

3 1.04 1.02 1.07 1.02 1.03 0.95 0.94 0.95 0.94

1.1 2 1 0.81 0.86 0.99 1.03 0.81 1.01 0.90 1.02 0.89

2 1.00 0.98 1.04 0.83 1.05 0.80 0.83 0.80 0.86

3 1.01 1.00 1.02 0.77 0.97 1.03 0.97 1.04 0.98

3 1 1.06 1.04 1.06 1.07 1.00 1.04 1.00 1.05 1.01

2 1.09 1.08 1.27 1.07 1.01 1.08 1.07 1.07 1.08

3 1.12 1.13 1.18 1.07 0.99 1.06 1.06 1.06 1.06
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Table 5: Estimated coverage probabilities (in %) of 95% confidence intervals computed using

three model fitting methods in case of nij = 2.

δ = 0 δ = 0.9 δ = 1 δ = 1.1

Set θ LA GH MA LA GH MA LA GH MA LA GH MA

1 β0 94.6 94.6 93.6 92.0 92.4 94.6 87.4 86.6 95.0 91.2 92.0 94.8

β1 94.2 94.2 93.6 92.0 92.4 95.2 78.0 79.2 94.6 91.4 92.2 95.6

µ 95.4 95.4 94.8 95.2 95.2 95.2 90.6 90.6 96.0 93.0 93.4 94.6

log τ2 92.8 92.8 93.0 91.0 91.2 93.6 80.4 80.4 94.8 91.6 92.4 93.8

logψ2 94.2 94.2 94.2 92.4 92.6 94.2 81.2 81.6 93.8 94.2 94.6 96.4

log σ21 95.4 96.0 94.2 94.0 94.8 93.6 84.8 84.0 95.8 94.6 96.0 95.6

log σ22 94.6 95.6 94.8 94.4 94.6 94.6 81.4 80.8 94.6 91.4 93.8 94.4

δ1 95.2 95.8 94.8 92.6 93.6 93.6 75.0 76.0 95.8 95.0 95.8 95.4

δ2 94.8 95.6 95.0 93.0 93.2 94.8 73.8 73.2 94.6 91.0 93.0 94.4

2 β0 94.2 95.0 93.2 93.6 95.8 95.4 88.6 89.4 95.0 87.4 90.6 92.4

β1 94.2 95.0 94.4 93.4 95.0 94.4 84.8 87.2 94.6 86.2 89.4 93.6

µ 92.0 92.0 94.0 93.6 93.4 95.6 93.4 93.6 95.2 89.6 91.0 96.4

log τ2 93.8 93.8 95.0 93.8 93.0 92.6 88.6 87.8 95.8 83.8 85.0 93.4

logψ2 93.8 93.8 94.0 93.0 92.6 93.6 87.6 86.6 93.8 89.0 90.0 94.8

log σ21 94.6 95.2 95.4 95.6 95.4 91.8 88.4 86.6 94.2 86.8 89.6 95.4

log σ22 94.0 94.4 94.6 94.4 94.8 94.2 86.6 85.0 93.6 88.6 89.4 95.8

δ1 96.0 96.8 95.4 94.4 94.8 91.8 84.2 83.6 94.0 85.4 87.4 95.2

δ2 94.0 94.4 94.4 93.2 93.8 94.6 85.6 83.8 93.4 87.8 88.2 96.0

3 β0 94.0 94.4 92.6 93.6 94.2 96.4 87.0 87.4 95.4 88.8 87.6 93.8

β1 95.0 95.4 93.0 92.6 93.8 95.8 87.4 88.6 95.2 88.0 88.8 94.4

µ 93.4 93.4 92.2 95.0 94.8 95.4 91.6 91.2 95.0 91.6 91.4 93.8

log τ2 94.4 94.6 93.2 95.0 95.0 95.8 87.2 87.8 94.4 84.8 85.2 95.6

logψ2 92.0 92.4 92.6 94.6 94.8 92.4 85.6 85.4 93.6 89.0 89.4 95.2

log σ21 94.4 94.8 96.2 95.0 94.8 94.2 89.2 89.2 95.0 88.4 88.8 95.2

log σ22 93.8 94.6 95.8 95.8 96.0 95.2 87.2 88.4 94.0 87.2 88.4 95.4

δ1 94.6 95.0 95.8 95.0 95.2 94.6 86.2 86.2 95.8 85.6 86.0 95.0

δ2 93.6 94.2 95.8 95.6 96.4 95.2 83.4 85.4 94.0 83.8 84.4 95.2
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Table 6: Estimated type I error probabilities (in %) for 5% level likelihood ratio test of

homoscedasticity performed using three model fitting methods.

LA GH MA

Set nij = 2 nij = 3 nij = 2 nij = 3 nij = 2 nij = 3

1 3.6 4.6 3.6 4.6 4.4 4.6

2 4.0 5.0 4.0 4.4 5.4 4.2

3 6.2 4.0 5.6 4.0 5.6 3.8

Table 7: Estimates of parameters and their standard errors (SEs) for cholesterol data com-

puted using three model fitting methods.

LA GH MA

Parameter Estimate SE Estimate SE Estimate SE

β0 1.99 2.20 1.97 2.21 2.17 2.20

β1 1.02 0.01 1.02 0.01 1.02 0.01

µ 184.50 6.53 184.41 6.53 184.38 6.54

log τ 2 8.35 0.14 8.35 0.14 8.35 0.14

logψ2 3.27 0.15 3.27 0.15 3.25 0.14

log σ2
1 -9.50 0.60 -9.50 0.60 -9.43 0.57

log σ2
2 -8.51 0.61 -8.52 0.61 -8.57 0.59

δ1 1.02 0.06 1.02 0.06 1.02 0.06

δ2 0.98 0.06 0.98 0.06 0.99 0.06
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Figure 1: A trellis plot of cholesterol measurements from Cobas Bio and Ektachem assays.
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Figure 2: (a) Scatterplot of paired within-subject means with 45◦ degree line superimposed;

(b-c) plots of within-subject SD versus within-subject mean on logarithmic scale; and (d)

residual plot for cholesterol data.
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Figure 3: (a) Estimate (solid line) and 95% pointwise two-sided confidence band (broken

lines) for precision ratio λ; and (b) estimate (solid line) and 95% pointwise upper confidence

bound (broken line) for agreement measure TDI∗ with p = 0.90.
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