
Environmental conditions in streams of warm
arid or semiarid climates favor high primary
production rates that may exceed ecosystem
respiration (Minshall 1978, Cushing and Wolf
1984, Grimm 1987, Lamberti and Steinman
1997, Sinsabaugh 1997). Respiration in streams
mainly occurs in hyporheic and parafluvial
sediments (Grimm and Fisher 1984, Mulhol-
land et al. 1997, Naegeli and Uehlinger 1997).
Jones et al. (1995) found that in Sycamore
Creek, a warm desert stream, benthic produc-
tion fueled more than 80% of the hyporheic
respiration through leaching dissolved mater-
ial. Input of allochthonous organic matter is of
minor importance if a riparian zone is narrow
and upland vegetation is sparse as in arid envi-
ronments (Cushing 1997, Schade and Fisher
1997). However, river corridors may include
floodplain marshes, shrubs, and trees (e.g.,
Prach et al. 1996, Stromberg et al. 1997) that
provide organic matter through aerial deposi-
tion of plant litter, fine root production or re-
lease of organic matter by roots, or processing
of particulate organic matter buried during
floods (Robertson et al. 1999).

The stability of bed sediments is an impor-
tant determinant of the biologically mediated
energy flow through lotic ecosystems. Bed-

moving spates damage benthic primary pro-
ducers but have only a minor influence on the
heterotrophic community of the hyporheic
zone (Grimm and Fisher 1984, Naegeli and Ueh-
linger 1997). These disturbances shift stream
metabolism toward heterotrophy (Fisher et al.
1982, Uehlinger and Naegeli 1998, Uehlinger
2000). Flash floods in desert streams decimate
primary producers, but recovery can be rapid
due to favorable light and temperature condi-
tions and stable substrata after flood recession
(Fisher et al. 1982, Grimm and Fisher 1989).

This study focuses on the metabolism of a
warm desert stream, where light availability,
temperature, and nutrient concentrations are
ample to support high primary production rates.
However, bed sediments consisted of sand,
the superficial layer of which was in continu-
ous motion even at low flow. We hypothesized
that the metabolism of this desert stream would
be dominated by respiration because of this
persistent bedload. Further, we expected that
metabolism rates in the wetted channel would
be smaller than in the parafluvial zone because
low in-stream primary production was thought
to result in low organic matter supply com-
pared to inputs from the riparian vegetation
and riverine marshes to the parafluvial zone.
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METHODS

Study Reach

The Hassayampa River drains a catchment
of about 2000 km2 into the Gila River (central
Arizona). Perennial, intermittent, and ephemeral
reaches characterize the river. The study was
conducted downstream of Wickenburg (Mari-
copa County, AZ, USA), where a shallow bed-
rock layer causes perennial surface flow for
about 8 km. Sand dominates channel sediments
in the bedrock-confined reach (Stromberg et al.
1993), which is an upwelling zone of alluvial-
and basin-filled groundwater ( Jenkins 1989).
The study reach is 1 km downstream of The
Nature Conservancy’s Hassayampa River Pre-
serve, close to the end of the perennial river
section. Elevation is about 610 masl, and chan-
nel slope averages 0.006 (m/m). The reach is
relatively homogenous with respect to channel
structure (pool-riffle-run frequency), depth,
slope, and riparian vegetation. At the Hassa-
yampa River Preserve, mean annual discharge
averages 0.1 m3s–1 (Jenkins 1989). Effluent
from a municipal wastewater treatment plant
upstream of the study area makes up 0.01 to
0.02 m3s–1 of the flow. Large floods (Qmax >
500 m3s–1), which change channel area and in-
stream riparian habitat structure, occur pre-
dominantly in winter (Stromberg et al. 1997).
Emergent macrophytes, such as Typha domin-
gensis Pers., is occasionally dominant within
the river channel and abundant in adjacent
marshlands (Wolden et al. 1994). Baccharis sali-
cifolia [Ruíz et Pavón] Pers. occurs along stream
margins; more distal riparian vegetation is dom-
inated by cottonwood (Populus fremonti Wats.)
and willow (Salix goodnigii Ball). Floodplain
width ranges from 100 to 200 m. Adjacent up-
lands consist of Sonoran Desert scrub vegeta-
tion (Stromberg et al. 1993). The study reach is
unreplicated; therefore, only tentative conclu-
sions about ecosystem metabolism and sediment
respiration of desert streams may be drawn.

Physics and Chemistry

Channel width and depth were measured
along a 260-m reach. In the wetted channel
and the parafluvial zone of a 75-m sub-reach,
we installed 15 permanent piezometers with
sampling depths of 10 cm (6), 30 cm (6), and
80 cm (3) for sampling interstitial water. A
small side channel longitudinally divided the
parafluvial zone.

Interstitial water temperatures were mea-
sured using 2 temperature loggers (StowAway,
Onset Corporation, North Falmouth, MA, USA)
that were installed 20 cm below the sediment-
water interface in the wetted channel and 20
cm below the water table in the parafluvial
zone. Surface water temperatures were contin-
uously recorded with a combination tempera-
ture-oxygen probe (see below). We measured
discharge with the slug injection method
(Gordon et al. 1992), using NaCl as tracer and
a conductivity meter (WTW LF 340, Wissen-
schaftlich-Technische Werkstätten GmbH, Weil-
heim, Germany) as detector. Discharge records
of the Hassayampa River at the Morristown
gage (about 6 km downstream of the study site)
were recorded by the USGS (http://waterdata.
usgs.gov/nwis-w/AZ/).

Surface and interstitial water samples for
chemical analyses were collected in triplicate
on 28 October and 1 November 1998 (surface
water was also sampled on 27 October 1998).
Samples were stored on ice, filtered in the
laboratory (Whatman GF/F glass fiber filters),
and analyzed for nitrate (NO3) and ammonium
(NH4) nitrogen, soluble reactive phosphorus
(SRP), and dissolved organic carbon (DOC).
Analyses were performed as described by
Holmes et al. (1998). Dissolved oxygen (O2) and
temperature of subsurface water were mea-
sured in the field with an oxygen meter (ATI
Orion model 830).

Metabolism

We measured sediment respiration as
changes in O2 concentration over time in
sealed Plexiglas cores (4.5-cm diameter, 32 cm
long), filled with sediments from 10 or 30 cm
depth and water from the respective depths,
and sealed with rubber stoppers (after Jones et
al. 1995). Cores were incubated in situ for 2 to
3 hours. Oxygen concentrations and tempera-
tures were measured with an oxygen meter
(ATI Orion model 830). After incubation, sedi-
ments were analyzed for particulate organic
matter as ash-free dry mass (loss on ignition)
and grain-size distribution. Sampling sites
were located in the main channel and in the
parafluvial zone.

To assess gross primary production and eco-
system respiration in the channel, oxygen con-
centrations and temperatures were continu-
ously measured at the end of the study reach 

2002] HETEROTROPHY OF A DESERT STREAM 467



from 27 October to 1 November 1998 with
Orbisphere equipment (probe 2115 with O2-
meter 2607 of Orbisphere, Geneva, Switzer-
land). Temperature and O2 signals were aver-
aged for 5 minutes and stored (datalogger LI-
1000, LI-COR Inc., Lincoln, NE, USA). We
used an oxygen mass-balance model to calcu-
late gross primary production GPP (g
O2m–2d–1) and ecosystem respiration ER (g
O2m–2d–1). A detailed description of the
model is given by Uehlinger et al. (2000).
Model simulations and parameter estimations
were performed with the computer program
AQUASIM (version 2.0; Reichert, 1994, 1995).
Respiration per volume r (g O2m–3d–1) was
parameterized as: 

ER
r = – ____ (1)

z

where ER is the respiration rate per area (g
O2m–2d–1) and z the mean water depth (m).
Gross primary production was described as a
linear function of incident light (I):

GPP = pIz (2)

where p is the slope of the linear P–I curve (g
O2m–1d–1W–1) and I is incident light intensity
(Wm–2). Linear or almost linear relationships
between ecosystem primary production and
light intensitiy are usually obtained with open
system methods (e.g., Duffer and Dorris 1966,
Hornberger et al. 1976, Uehlinger 1993, Ueh-
linger et al. 2000). We described temperature
dependence of ER and GPP with the following
Arrhenius equation:

X(T)=X(20ºC)βx
(T–20) (3)

where the subscript X is p or r and βX is a con-
stant (βX > 1; Bowie et al. 1985). Saturation
concentrations of O2 at the study site were
calculated using water temperature and the
barometric pressure recorded at Wickenburg
Airport (about 6 km from the study site). We
determined the reaeration coefficient Ks with
propane as tracer gas (Genereux and Hemond
1992). Temperature dependence of Ks was
described according to Elmore and West
(1961). Estimates of the parameters r, p, and
βX were based on the minimization of the sum
of squares (SS):

n

SS = Σ (O2(ti)–O2meas,i)2 (4)
i=1

where O2meas,i is the O2 concentration mea-
sured at the end of the reach at the time ti,
O2(ti) is the O2 concentration at the end of the
reach at the time ti is calculated with the
model, and n is the number of observations.
To judge the identifiability for model parame-
ters, we calculated the collinearity index (γ ),
which is a measure for the degree of approxi-
mate linear dependence of sensibility func-
tions (Brun et al. 2001). Critical values of γ are
in the range of 5 to 20. To evaluate the relative
importance of ER, GPP, and the influence of
temperature on both processes, we performed
model runs by activating and deactivating pri-
mary production, respiration, and temperature
dependence of both processes (i.e., by setting
β = 1 or p or r = 0).

To assess differences in sediment respira-
tion rates and sediment organic matter, we
used 2-way ANOVA. Prior to the analysis, res-
piration data were transformed (log(x + 1)).
Temperature dependence of sediment respira-
tion was evaluated using linear regression
analysis. Differences or regressions were con-
sidered significant when P < 0.05.

RESULTS

Discharge measured on 3 occasions aver-
aged 0.094 ± 0.007 m3s–1. At this flow rate,
width and depth of the wetted channel aver-
aged 6.6 m and 0.034 m, respectively, and
mean current velocity was 0.41 ms–1. Between
0900 and 1200 hours, the main channel stage
decreased by about 1 cm (presumably due to
diel transpiration cycles of the riparian vegeta-
tion). As a consequence, the upper part of the
small side channel fell dry each day during the
investigation. A transient flow increase due to
a rainstorm during the night of 31 October/
1 November 1998 (flood marks indicated a
stage increase by 3–5 cm) scoured some of the
algal patches located along the margins of the
wetted channel.

Main channel surface water temperature
varied between 12.4°C and 26.7°C (Table 1,
Fig. 1). The high diel temperature variation of
the interstitial water in the sediments of the
wetted channel (∆T = 9.5°C) indicated a sub-
stantial water exchange between sediment and
surface water. Temperature in the parafluvial

468 WESTERN NORTH AMERICAN NATURALIST [Volume 62



zone averaged only 14.3°C, and diel variations
were small (∆T = 2.3°C). This pattern sug-
gests minor water exchange between surface
water and parafluvial sediments.

Relatively high concentrations of nitrate
and SRP characterize the surface and intersti-
tial water of the main channel (Table 2). Verti-
cal concentration gradients of the interstitial
water were small or absent, and even at 80 cm
depth O2 was surprisingly high. In the para-
fluvial zone, O2 and nitrate concentrations were
lower than in the channel sediments, and SRP
increased with depth. We found higher DOC
concentrations in parafluvial sediments than in
channel sediments. Ammonium concentrations
were relatively high and uniform at all sites.

Differences in grain-size distribution be-
tween the channel and the parafluvial zone
were small (Fig. 2). Apart from a narrow zone
along the channel margins, surface bed sedi-
ments (D90 about 2 mm) were in continuous
motion (based on average channel characteris-
tics such as width, depth, slope, and D90, the
discharge threshold for initiation of sediment
transport, was estimated to be 0.078 m3s–1;
Günther 1971). Sediment movement occurred
between the beginning of October 1998 (1st
visit to the site) and the end of the study in
mid-November 1998, and also when we re-
turned to the reach in February 1999. This
bedload restricted habitats suitable for algae
to small patches along the channel margins;
we observed that more than 95% of the wetted
channel area was free of algal patches visible
by eye. Site (main channel, parafluvial zone)
and depth had no significant effect on sedi-
ment organic matter, which averaged 4.0 ± 1.8
kg m–3 sediment (Table 3).

Site and depth significantly influenced sed-
iment respiration. Average respiration rates
decreased by about 40% from the parafluvial
zone to the main channel and by 30% from 10

to 30 cm depths (Table 3). During incubation,
average temperatures in the sediment tubes
ranged from 15.8°C to 24.5°C in the channel
and from 12.5°C to 22.7°C in the parafluvial
zone. However, the regression between the
respiration rates and temperature was signifi-
cant only for parafluvial sediments (R2 =
0.198).

Oxygen concentrations in the surface water
were always below saturation concentration
and showed distinct diel variation (∆O2 = 2.3 ±
3 mg O2 L–1) with daily minimum in the early
afternoon (between 1300 and 1500 hours; Fig.
1). The small spate of 30 October resulted in a
distinct but transient increase in O2. The re-
aeration coefficient Ks (20°C) for O2 deter-
mined with the gas tracer method was 89 ± 18
d–1. Table 4 summarizes the results of a series of
calculations with models of different complexity
(number of active processes). The value of the
collinearity index (γ < 5) points out that the 4
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TABLE 1. Temperature of surface water and interstitial water (°C) in the Hassayamapa River. Temperatures were
recorded in 10-minute intervals.

Sediment below Saturated sediments of
Surface water the main channela the parafluvial zoneb

Period 27–31 Oct 27–30 Oct 30 Oct–2 Nov
Minimum 12.4 14.1 13.0
Maximum 26.7 23.6 15.3
Average 17.4 17.6 14.3
a25 cm below the sediment water interface
b25 cm below the water table

Fig. 1. Top: Surface water temperature (bold line) in the
main channel of the Hassayampa River and global radia-
tion (fine line) at Wickenburg airport. Bottom: Dissolved
oxygen concentration in the surface water of the main
channel.



model parameters (ER, p, βr, βp) can be identi-
fied. The sum of squares (SS) of the basic
model, which considered only gas exchange,
was 145.9. Respiration had the largest influence
on SS through all levels of model complexity
and indicates the importance of this process
for oxygen balance. In contrast, primary pro-
duction had no (fits 1, 3, 4) or only a small
effect (fits 6, 7). Temperature dependence of
gross primary production and ecosystem res-
piration reduced SS to 17.0. However, we did
not consider this model in the estimation of
metabolism rates because βp became unrealis-
tically high (a value βp = 1.2311 means an 8-
fold increase in gross primary production if
temperature rises from 10°C to 20°C). Fit 5

was the most parsimonious fit and led to good
agreement between calculated and measured
oxygen data. Estimates of daily gross primary
production and ecosystem respiration based
on fits 5, 6, and 7 are given in Table 5. We
assume that the values provided by fits 5 and
6 most probably delimited the range of gross
primary production and ecosystem respiration
during the investigation.

DISCUSSION

As expected, heterotrophic processes domi-
nated the metabolism of this desert stream.
The permanent motion of the uppermost bed
sediments in most parts of the wetted channel
prevented substantial periphyton accrual and
thus any substantial primary production. Apart
from sediment stability, environmental condi-
tions were favorable for the growth of benthic
algae; the river was open canopied, the water
was clear, and concentrations of major nutri-
ent were high. Algal patches were restricted to
areas with stable substrata such as channel
margins, backwater areas, and parafluvial sedi-
ments inundated for only a few hours a day.
However, the contribution of these stable areas
to the wetted channel area was small (< 5%).

The metabolism of the Hassayampa River
was heterotrophic during this study; estimates
of P/R ranged from 0 to 0.10 depending on the
model applied (fits 5 and 6) to calculate metab-
olism rates. Ecosystem respiration rates were
relatively small (1.33–1.50 g O2 m–2d–1) com-
pared to rates reported from other desert
streams (3.6–6.5 O2 m–2d–1; Grimm 1987, Cush-
ing and Wolf 1984). Algae can provide signifi-
cant quantities of dissolved and particulate
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TABLE 2. Concentrations of oxygen, major nutrients, and DOC on 28 October and 1 November 1998 between 1100 and
1400 hours (channel surface water was also sampled on 27 October 1998).

O2 NH4-N NO3-N SRP DOC
(mg L–1) (µg L–1) (µg L–1) (µg L–1) (mg L–1)

Main channel
Surface water 7.7 ± 0.4 28 ± 15 230 ± 15 53 ± 1 1.67 ± 0.12
Sediments (depth 10 cma) 6.8 ± 1.1 20 ± 11 278 ± 32 48 ± 7 1.61 ± 0.12
Sediments (depth 30 cma) 7.1 ± 0.7 26 ± 23 296 ± 20 42 ± 14 1.53 ± 0.07
Sediments (depth 80 cma) 7.3 ± 0.4 26 ± 19 302 ± 9 51 ± <1 1.52 ± 0.05

Parafluvial zone
Sediments (depth 10 cmb) 3.3 ± 3.6 23 ± 9 165 ± 139 58 ± 20 2.71 ± 1.58
Sediments (depth 30 cmb) 2.8 ± 2.1 31 ± 14 288 ± 343 63 ± 15 2.30 ± 0.88
Sediments (depth 80 cmb) 1.0 ± 0.3 30 ± 16 171 ± 164 73 ± 16 1.83 ± 0.39

aBelow the sediment-water interface
bBelow the water table

Fig. 2. Grain-size distribution of main channel sedi-
ments (10 and 30 cm below the bed surface) and paraflu-
vial sediments (10 and 30 cm below the water table) in the
Hassayampa River.



organic matter supporting respiration in the
hyporheic zone (Jones et al. 1995). We suggest
that the lack of a substantial algal community
may account for the low ecosystem respiration
rates, and we hypothesize that organic matter
released by macrophytes of the riverine marshes
and the riparian vegetation, in addition to or-
ganic matter buried during floods, may have
fueled sediment respiration. Organic matter
from riverine marshlands and the riparian vege-
tation bordering the investigated parafluvial
zone may have accounted for the differences
in respiration rates between parafluvial and
channel sediments; the differences in DOC
concentrations between the parafluvial zone
and channel sediments may reflect different
organic matter sources. Sediment organic mat-
ter in the Hassayampa River averaged 4.0 kg
m–3 sediment in the uppermost 30 cm, which
is in the range of values reported from Syca-
more Creek (2.8–5.7 kg m–3 sediment in the
top 15 cm; Valett et al. 1990). This material is
presumably of suboptimal quality, but it is an

energy reservoir that may increase the resis-
tance of stream metabolism to short-term
environmental fluctuations. Sediment organic
matter was homogeneously distributed in the
uppermost 30 cm of the sediments (channel
and saturated parafluvial zone), but respiration
rates significantly decreased from 10 to 30 cm
depth. This may reflect the increasing refrac-
tory nature of the sediment organic matter
with depth.

One prediction of the river continuum con-
cept is that changes in the relative importance
of primary production and respiration for
energy flow through lotic ecosystems can be
attributed to changes in stream size and ripar-
ian vegetation (Vannote et al. 1980); for exam-
ple, environmental settings in arid or semiarid
regions were found to favor high rates of pri-
mary production exceeding ecosystem respira-
tion (Minshall 1978, Lamberti and Steinman
1997, Sinsabaugh 1997). However, this study
and recent investigations indicate that the sta-
bility of bed sediments has to be considered in
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TABLE 3. Sediment respiration rates and sediment organic matter (mean and standard deviation) in the Hassayampa
River measured on 29 and 31 October, and 10 November 1998. N = number of samples.

Depth Respiration rate Organic matter
Location (cm) (g O2 m–3 sediment h–1) (kg m–3 sediment) N

Main channel 10a 0.96 ± 0.11 3.8 ± 1.8 22
30a 0.55 ± 0.31 4.4 ± 1.9 9

Parafluvial zone 10b 1.39 ± 0.82 4.2 ± 1.9 21
30b 0.78 ± 0.31 4.4 ± 1.2 6

aBelow the sediment-water interface
bBelow the water table

TABLE 4. Evaluation of the processes influencing the oxygen balance in the Hassayampa River. Reaeration, Ks(20°C),
was measured (see text). The other parameters were fitted to the models defined by equations 1, 2, and 3. Standard
error estimates are in parentheses; empty cells mark the parameters not included in a fit.

Number of
parameters Ks(20°C) ER P βr βp SS γ

Fit no. fitted (d–1) (g O2 m–2d–1) (g O2 W–1d–1)

— 0 89 145.9 —
1 1 89 2.90 10–7 a 145.9 1.00
2 1 89 1.290 25.8 1.00

(0.021)
3 2 89 2.77.10–7 a 1.00001a 145.9 4.04
4 2 89 1.295a 0.00a 25.8 1.82
5 2 89 1.476 1.0502 20.3 1.53

(0.022) (0.0034)
6 3 89 1.707 9.04 10–4 1.0698 19.0 3.19

(0.038) (1.27 10–4) (0.0046)
7 4 89 1.958 9.72 10–4 1.1087 1.2311 17.0 4.47

(0.049) (1.30 10–4) (0.0060) (0.0216)
aStandard error could not be estimated.



predictions on the relative importance of stream
metabolism (Uehlinger and Naegeli 1998, Ueh-
linger 2000). During high flow, bed sediments
may become unstable, which mainly affects
benthic algae and primary production (Fisher
et al. 1982, Uehlinger and Naegeli 1998). But
the effects of such events are usually transient
because spates are limited in time and pri-
mary production recovers more or less rapidly
depending on environmental conditions (Fisher
et al. 1982, Uehlinger and Naegeli 1998, Ueh-
linger 2000). At the Morristown gage (about 6
km downstream of our study site), spates were
recorded on 29 March 1998 (Qmax = 21 m3s–1)
and on 12 August 1998 (Qmax ≈ 2 m3s–1). Dur-
ing the spate-free period between August 1998
and the beginning of our measurements, per-
manently moving bed sediments apparently
prevented periphyton accrual in most parts of
the channel; i.e., sediment instability seems to
account for a persistent dominance of het-
erotrophic processes in the metabolism of this
warm desert stream. Streams with sandy, unsta-
ble sediments can be found throughout the
semiarid Southwest of North America, though
we do not know the extent to which they com-
prise a significant proportion of southwestern
river habitat. Conditions of high bedload may
be restricted to certain segments or transient
(e.g., during the wet season). In the Hassa-
yampa River, for example, the study reach rep-
resented a particular successional stage of a
desert river corridor. Large floods dramatically
change prevailing substrata and the spatial
extent of the wetted channel, parafluvial zones,
riverine marshes, floodplain forests, and shrub-
lands within the river corridor (Stromberg et
al. 1997). Such flood-induced alterations in the
configuration of the river corridor may affect
stream metabolism. 

Studies of stream metabolism in the arid
West of North America indicate that desert

streams are autotrophic ecosystems (Minshall
1978, Cushing and Wolf 1984, Grimm 1987).
The results of this investigation suggest that
heterotrophic processes may dominate the
metabolism of desert stream segments over
extended periods of time if unstable sandy bed
sediments prevail. However, a test of this hy-
pothesis needs reliable estimates of annual
metabolism rates. Such estimates require mea-
surements at least during one annual cycle
and with a temporal resolution that accounts
for the hydrological disturbance regime of these
systems.
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