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How an insect evolves to become a successful herbivore is 
of profound biological and practical importance. Herbivores 
are often adapted to feed on a specific group of evolutionarily 
and biochemically related host plants1, but the genetic and 
molecular bases for adaptation to plant defense compounds 
remain poorly understood2. We report the first whole-genome 
sequence of a basal lepidopteran species, Plutella xylostella, 
which contains 18,071 protein-coding and 1,412 unique genes 
with an expansion of gene families associated with perception 
and the detoxification of plant defense compounds. A recent 
expansion of retrotransposons near detoxification-related 
genes and a wider system used in the metabolism of plant 
defense compounds are shown to also be involved in the 
development of insecticide resistance. This work shows the 
genetic and molecular bases for the evolutionary success of 
this worldwide herbivore and offers wider insights into insect 
adaptation to plant feeding, as well as opening avenues for 
more sustainable pest management.

The global pest P. xylostella (Lepidoptera: Yponomeutidae) is thought 

to have coevolved with the crucifer plant family3 (Supplementary 

Fig. 1) and has become the most destructive pest of economically 

important food crops, including rapeseed, cauliflower and cabbage4. 

Recently, the total cost of damage and management worldwide was 

estimated at $4–5 billion per annum5,6. This insect is the first species 

to have evolved resistance to dichlorodiphenyltrichloroethane (DDT) 

in the 1950s7 and to Bacillus thuringiensis (Bt) toxins in the 1990s8 and 

has developed resistance to all classes of insecticide, making it increas-

ingly difficult to control9,10. P. xylostella provides an exceptional sys-

tem for understanding the genetic and molecular bases of how insect 

herbivores cope with the broad range of plant defenses and chemicals 

encountered in the environment (Supplementary Fig. 2).

We used a P. xylostella strain (Fuzhou-S) collected from a field in 

Fuzhou in southeastern China (26.08 °N, 119.28 °E) for sequencing 

(Supplementary Fig. 1). Whole-genome shotgun–based Illumina 

sequencing of single individuals (Supplementary Table 1), even after 

ten generations of laboratory inbreeding, resulted in a poor initial 

assembly (N50 = 2.4 kb, representing the size above which 50% of the 

total length of the sequences is included), owing to high levels of hetero-

zygosity (Supplementary Figs. 3 and 4 and Supplementary Table 2). 

Subsequently, we sequenced 100,800 fosmid clones (comprising ~10× 

the genome length) to a depth of 200× (Supplementary Fig. 5 and 

Supplementary Tables 3–5), assembling the resulting sequence data 

into 1,819 scaffolds, with an N50 of 737 kb, spanning ~394 Mb of the 

genome sequence (version 1; Supplementary Fig. 6 and Supplementary 

Table 6). The assembly covered 85.5% of a set of protein-coding ESTs 

(Supplementary Tables 7 and 8) generated by transcriptome sequenc-

ing11. Alignment of a subject scaffold against a 126-kb BAC (GenBank 

GU058050) from an alternative strain (Geneva 88) showed extensive 

structural variations between haplotypes. However, the coding sequence 
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of the nicotinic acetylcholine receptor α6 gene (spanning >75 kb)12 on the 

BAC and the genome scaffold was relatively conserved (Supplementary 

Fig. 7). Whole-genome shotgun reads from three libraries (500 bp,  

5 kb and 10 kb) were mapped to the BAC and corresponding scaffold, 

covering 86.7% and 98.1% of sites, respectively (Supplementary Fig. 7), 

indicating high polymorphism levels between the alleles. Genome-wide 

exploration of variation identified abundant SNPs, insertions and/or 

deletions (indels), structural variations and complex segmental duplica-

tion patterns within the sequenced population of the Fuzhou-S strain 

(Fig. 1, Supplementary Figs. 8 and 9, Supplementary Tables 9–13 

and Supplementary Note). Thus, we generated a genome of ~343 Mb 

(version 2) for annotation and analysis by masking ~50 Mb of possible 

allelic redundancy in the version 1 assembly (Supplementary Fig. 10, 

Supplementary Table 14 and Supplementary Note).

The P. xylostella genome is predicted 

to contain 18,071 protein-coding genes 

(Supplementary Fig. 11 and Supplementary 

Tables 15–18) and 781 non-coding RNAs 

(Supplementary Table 19), with 33.97% of 

the genome made up of repetitive sequences 

(Supplementary Fig. 12, Supplementary 

Table 20 and Supplementary Note). Compared 

with the genomes of other sequenced insect 

species, the P. xylostella genome possesses a 

relatively larger set of genes and a moderate 

number of gene families (Supplementary 

Table 21), suggesting the expansion of cer-

tain gene families. In addition to 1,683 Lepidoptera-specific genes 

(Supplementary Table 22 and Supplementary Note), we found 1,412  

P. xylostella–specific genes (Supplementary Fig. 13), exceeding in 

number the 463 Bombyx mori–specific genes13 and the 1,184 Danaus 

plexippus–specific genes14 (Fig. 2). The P. xylostella–specific genes 

were largely involved in biological pathways essential for environmen-

tal information processing, chromosomal replication and/or repair, 

transcriptional regulation and carbohydrate and protein metabolism 

(Supplementary Fig. 14 and Supplementary Table 23). These findings 

suggest that P. xylostella has an intrinsic capacity to swiftly respond to 

environmental stress and genetic damage.

Phylogenetic analysis indicated that the estimated divergence time of 

insect orders was approximately 265–332 million years ago (Fig. 2). This  

is around the time of the divergence of mono- and dicotyledonous 
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plants (~304 million years ago)15, consist-

ent with the coevolution and concurrent 

diversification of insect herbivores and 

their host plants. It can be predicted that 

P. xylostella became a cruciferous specialist 

when Cruciferae diverged from Caricaceae  

(~54–90 million years ago)16, which provides 

additional evidence to support our estima-

tion of the divergence time (~124 million 

years ago) of P. xylostella from two other Lepidoptera, B. mori and 

D. plexippus (Fig. 2). The genome-based phylogeny showed that 

P. xylostella is a basal lepidopteran species (Fig. 2), and this idea is 

well supported by its modal karyotype of n = 31 (refs. 17,18) and the 

molecular phylogeny of Lepidoptera19,20, indicating the importance 

of P. xylostella in the history of lepidopteran evolution.

On the basis of P. xylostella transcriptome data11, we identified 354 

preferentially expressed genes in larvae (Supplementary Fig. 15), 

and a set of these genes is involved in sulfate metabolism, some of 

which were validated using quantitative RT-PCR for gene expression 

analysis (Supplementary Figs. 16–18, Supplementary Table 24 and 

Supplementary Note). Glucosinolate sulfatase (GSSs) enables P. xylos-

tella to feed on a broad range of cruciferous plants by catalyzing the  

conversion of glucosinolate defense compounds into desulfogluco-

sinolates, thus preventing the formation of toxic hydrolysis products3 

(Supplementary Fig. 2). In order to function, all sulfatases require post-

translational modification by sulfatase-modifying factor 1 (encoded 

by SUMF1)21, which regulates the sulfatase whose higher activities 

depend on greater amounts of sulfatase and SUMF1 transcripts22. We 

found that high expression of P. xylostella SUMF1 in third-instar lar-

vae was coupled with significantly higher expression of the GSS1 and 

GSS2 genes relative to other members of the P. xylostella sulfatase gene 

family (Fig. 3). We propose that the coevolution of SUMF1 and GSS 

genes was key in P. xylostella becoming such a successful herbivore of 

cruciferous plants (Supplementary Fig. 2). Furthermore, a new gene, 

predicted to be a sodium-independent sulfate anion transporter, was 

highly expressed in all larval stages and in the midgut (Fig. 4) and is 

likely associated with the excretion of toxic sulfates23.

In comparisons with the larval midgut proteome of the poly-

phagous lepidopteran Helicoverpa armigera24, we found similar  

digestive enzymes encoded by P. xylostella larval preferentially 

expressed genes that were expressed predominantly in the midgut 
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(Supplementary Fig. 19 and Supplementary Table 25). The abun-

dant larval midgut-specific serine proteinase genes in the P. xylostella 

genome may circumvent the action of insecticidal plant protease 

inhibitors through differential expression in response to different 

plant hosts25 (Supplementary Fig. 20). Among the P. xylostella larval 

preferentially expressed genes, we identified a set of genes, including 

GOX (encoding glucose oxidase), related to the host range of her-

bivores26 and involved in the perception of chemical signals from 

host plants and defense against secondary plant compounds (Fig. 4, 

Supplementary Table 25 and Supplementary Note), suggesting the 

presence of a complex chemoreception network and multiple detoxi-

fication mechanisms.

We identified five chemoreception gene families related to larval 

feeding preferences and adult searching for host plants: odorant recep-

tors (ORs), odorant-binding proteins (OBPs), gustatory receptors 

(GRs), ionotropic receptors (IRs) and chemosensory proteins (CSPs) 

(Supplementary Fig. 21, Supplementary Table 26 and Supplementary 

Note). Notable among these genes is an expansion of ORs but not GRs, 

as reported in the B. mori genome27. Species-specific expansion of 

CSPs in moths is less than that observed in butterflies18. Lifecycle- and 

tissue-specific expression of ORs identified 30 variable, 23 constitu-

tive and 9 adult-specific expression patterns (Supplementary Fig. 22), 

indicating that P. xylostella possesses a high potential for adaptation to 

chemical cues from host plants (Supplementary Fig. 2).

Detoxification pathways used by insect herbivores against plant 

defense compounds may be co-opted for insecticide tolerance28  

or resistance (Supplementary Fig. 2). We found that P. xylostella  

possessed an overall larger set of insecticide resistance–related genes 

than B. mori, which is monophagous and has had little exposure to insec-

ticide over 5,000 years of domestication13 (Supplementary Table 27).  

We identified in the P. xylostella genome apparent gene duplications 

of most ATP-binding cassette (ABC) transporter families and three 

classes of major metabolic enzymes, the cytochrome P450 monooxyge-

nases (P450s), glutathione S-transferases (GSTs) and carboxylesterases  

(COEs) (Supplementary Fig. 23 and Supplementary Table 26). 

These genes are known to have important roles in xenobiotic detoxi-

fication in insects29,30 (Supplementary Note). Among the four gene 

families, the ABC transporter gene family in P. xylostella is much more 

a
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expanded compared to the corresponding family in B. mori (Fig. 5a). 

Larval transcriptomes were sequenced from the Fuzhou-S strain that 

was genotyped and from two substrains selected for resistance to 

chlorpyrifos or fipronil11. ABC transporter genes were upregulated 

more frequently than GSTs, COEs or P450s in insecticide-resistant 

larvae (Supplementary Fig. 24), highlighting the potential role of 

ABC transporters in detoxification.

We then investigated the genomic variations and transposable 

elements in genes and their 2-kb upstream regions in these four 

families, some of which were validated using Sanger sequencing 

(Supplementary Tables 28–31 and Supplementary Note). On average, 

transposable elements (~20 per gene) were abundant, followed in fre-

quency by structural variations (~16), SNPs (~6) and indels (<1), near 

these gene families (Supplementary Fig. 25). The coding sequences 

of COEs were rich in SNPs (Supplementary Fig. 25a), which can be 

critical in determining COE substrate specificity and catalytic activity 

under xenobiotic stresses31. Principal-component analysis indicated 

that intronic regions consistently harbored all types of polymorphic 

variations, whereas coding sequences were frequently polymorphic 

for structural variations and transposable elements, which may have 

a pronounced effect on gene function (Fig. 5b). Transposable ele-

ments were abundant within or near the P450s involved in induced 

xenobiotic detoxification in insects, whereas those related to consti-

tutive developmental metabolism were free of transposable element 

insertions32. Our findings show that numerous transposable elements 

accompany the gene families involved in metabolic detoxification sen-

sitive to external stresses (Supplementary Table 32). These associa-

tions seem to be a consistent trend in Lepidoptera (Supplementary 

Fig. 25b). The transposable element orders of long terminal repeat 

(LTR) and long interspersed nuclear element (LINE) were predomi-

nant in P. xylostella and B. mori, respectively, and the proportional 

composition of various transposable element orders tended to be 

similar in different gene families for each of the species (Fig. 5c).  

A recent expansion of the LTR retrotransposons (>90%) in the  

P. xylostella genome has occurred over the past 2 million years, occur-

ring much later than the expansion of B. mori LTRs (Fig. 5d) and pos-

sibly reflecting the timing of extensive adaptive evolutionary events 

in P. xylostella33. The polymorphism within the P. xylostella genome 

might support adaptation to host plant defenses and insecticides by 

providing a repertoire of alternative alleles or cis-regulatory elements29 

and genetic variations34 for gene expression.

In this project, we developed a new approach for non-model insect 

genome sequencing using next-generation sequencing technology and 

de novo assembly of the highly polymorphic genome. Analyses iden-

tify complex patterns of heterozygosity, the expansion of gene families 

associated with perception and the detoxification of plant defense 

compounds and the recent expansion of retrotransposons near detoxi-

fication genes. These adaptations reflect the diversity and ubiquity of 

toxins in its host plants and underlie the capacity of P. xylostella to rap-

idly develop insecticide resistance. This study provides insights into the 

genetic plasticity of P. xylostella that underlies its success as a worldwide 

herbivore. The genomic resources described here will facilitate future 

studies on the adaptation and evolution of other arthropods and sup-

port the incorporation of molecular information into the development 

of strategies for more sustainable agriculture.

URLs. FTP site for data from PCR validation of genomic variations, 

Rabbit software and scaffolds containing missing coding sequences 

in the version-2 genome assembly, ftp://ftp.genomics.org.cn/pub/

Plutellaxylostella/; LASTZ, http://www.bx.psu.edu/miller_lab/dist/

README.lastz-1.02.00/README.lastz-1.02.00a.html; Infonet Biovision, 

http://www.infonet-biovision.org/; North American Moth Photographers 

Group, http://mothphotographersgroup.msstate.edu/MainMenu.shtml; 

Interactive Agricultural Ecological Atlas of Russia and Neighboring 

Countries, http://www.agroatlas.ru/; the diamondback moth (DBM) 

genome database, http://iae.fafu.edu.cn/DBM/.

METHODS
Methods and any associated references are available in the online 

version of the paper.

Accession codes. The genome described herein is the first reference 

genome of P. xylostella, AHIO01000000. Genome assemblies and 

annotations described here have been deposited at the DNA Data 

Bank of Japan (DDBJ), the European Molecular Biology Laboratory 

(EMBL) and GenBank under accession AHIO00000000. Raw  

sequencing data from the transcriptome have been deposited at the 

NCBI Short Read Archive (SRA) under accession SRA034927.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Strain for sequencing. A strain of the diamondback moth (DBM) (Fuzhou-S), 

P. xylostella, was reared on radish seedlings without exposure to insecticides 

for 5 years, spanning at least 100 generations. An inbred line was devel-

oped by successive single-pair sibling matings. Male pupae were used for  

genome sequencing.

Whole-genome shotgun sequencing and assembly. Individual DNA from the 

inbred F1, F4 and F10 insects was used for construction of paired-end librar-

ies (Supplementary Table 1). Sequencing was performed using the Illumina 

Genome Analyzer IIx or HiSeq 2000 platform. Short reads were assembled 

using SOAPdenovo35.

Fosmid-to-fosmid sequencing and assembly. DNA was extracted from a pool 

of ~1,000 male pupae using a cetyltrimethylammonium bromide (CTAB)-

based method. Fosmid libraries with insert sizes ranging from 35 to 40 kb were 

constructed. We sequenced 100,800 single colonies to achieve 10× coverage 

of the genome. For each colony, two paired-end libraries with 250-bp and  

500-bp fragments were constructed and sequenced. On average, each library 

was sequenced >200× with a total of 114 lanes and an output of 855 Gb. Vector 

or contaminated DNA and poor reads with >10% unknown nucleotides or >40 

bases with quality value of ≤5 were filtered out36.

Genome assembly. We developed custom software (Rabbit) for assembling 

sequences with large overlaps (>2 kb). Rabbit contains three modules: Relation 

Finder, Overlapper and Redundancy Remover.

We used the Poisson-based K-mer model to determine repeat sequences, 

segmental duplications or divergent haplotypes. Each K-mer was defined 

as either a ‘repeat’ or ‘unique’ K-mer, depending on whether its occurrence 

frequency was greater or less than twice the average frequency, respectively 

(Supplementary Fig. 10), using the Poisson model 
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where λ is the expected frequency for K-mers, y is the given frequency of a 

particular K-mer and P is the occurrence probability of a given K-mer fre-

quency. Therefore, the probability of a unique K-mer being greater than twice 
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Few unique K-mers can occur with a frequency larger than twice the 

expected value, especially when the expected frequency is ≥20 (Supplementary 

Table 14). Rabbit is capable of connecting these unique regions and remov-

ing redundancy. We chose K = 17 bp36,37 and trimmed repeat sequence ends 

(Supplementary Fig. 4).

We used SSPACE38 to build scaffolds and SOAP-GapCloser35 to fill the gap 

with 131.2× whole-genome shotgun short reads (Supplementary Table 1). This 

resulted in a genome with 394 Mb (version 1), slightly larger than the estimated 

haploid genome size (339.4 Mb)17. We extracted all similar sequences with LAST39 

and retained one copy of the sequences containing >40% unique K-mers and 

masked the others with ‘n’ to generate a revised genome of ~343 Mb (version 2).

Digital gene expression (DGE). Quantitative RNA-seq was conducted for 

newly laid eggs, fourth-instar larvae, the midguts of fourth-instar larvae, pupae 

(>2 d after pupation), virgin male and female adults, and the heads of fourth-

instar larvae and male or female adults. Paired-end libraries (insert size of 

200 bp) were sequenced with read length of 49 bp. The RPKM40 values were 

calculated for DGE profiling.

Larval preferentially expressed gene analysis. On the basis of the DBM 

genome and the transcriptomes for newly laid eggs, third-instar larvae, 

pupae and virgin adults, we analyzed differential gene expressions in four 

 developmental stages using the same statistical approach11. The larval prefer-

entially expressed genes were defined as genes that were highly expressed in 

the larval stage compared to the other three developmental stages, with RPKM 

ratio ≥ 8 fold (upregulated) and false discovery rate (FDR) ≤ 0.001.

Gene prediction. We used Augustus (v 2.5.5)41, Genscan42 and SNAP43 for  

de novo gene prediction, compared the candidate genes to the transposable ele-

ment protein database using BLASTP (1 × 10−5) and removed genes that showed 

over 50% similarity to the transposable elements. The predicted proteomes of  

D. melanogaster, B. mori, Anopheles gambiae and Tribolium castaneum were 

aligned with the DBM genome using TBLASTN (E value ≤ 1 × 10−5). High-

scoring segment pairs (HSPs) were grouped using Solar (v. 0.9.6)36. We extracted 

 target gene fragments and extended 500 bp at both ends. GeneWise (v. 2.2.0)44 

was used for the alignment of fragments to a protein set. We clustered the 

predicted genes with an overlap cutoff of >50 bp. The results of de novo and 

homolog-based predictions were incorporated into a gene set using GLEAN45.

Integration of transcriptome data with the GLEAN set. Transcriptome 

reads11 were mapped onto the genome using TopHat46. We then used 

Cufflinks47 (with default parameters) to assemble transcripts and integrated 

the transcripts with the GLEAN set by filtering out redundancy and the genes 

with ≥10% uncertain bases and coding region lengths of ≤150 bp.

Functional annotation. The integrated gene set was translated into amino-

acid sequences, which were used to search the InterPro database48 by Iprscan  

(v 4.7)49. We used BLAST to search the metabolic pathway database50 

(release58) in KEGG and homologs in the SwissProt and TrEMBL databases 

in UniProt51 (release 2011-01).

Annotation of repetitive sequences. We used RepeatProteinMask and 

RepeatMasker (version 3.2.9) from Repbase (version 16.03)52 to search 

for transposable elements. We constructed a de novo repeat library using 

RepeatScout (v 1.0.5)53, Piler (v 1.0)54 and LTR_FINDER (v 1.0.5)55 and anno-

tated the transposable element regions with RepeatMasker. Simple tandem 

repeats were annotated using TRF (v 4.04)56.

We used the shortest length standards for each transposable element order 

from Repbase (v 16.03)52 to filter the integrated results. To estimate the expan-

sion time of LTRs in the P. xylostella and B. mori genomes, we investigated the 

LTRs using LTR_STRUC57. Both 5′ and 3′ LTR regions of the LTR retrotrans-

posons were extracted and aligned to each other using MUSCLE58. Distmat 

from EMBOSS59 was used to calculate the times since the divergence of the 

5′ and 3′ LTRs.

Annotation of non-coding RNA. We used tRNAscan-s.e.m. (v 1.23)60 to 

search for tRNA-coding sequences. Invertebrate rRNA from the European 

ribosomal RNA database61 was used to predict DBM rRNA sequences. Rfam62 

(v 9.1) was used in conjunction with INFERNAL63 to predict small nuclear 

RNAs (snRNAs) and microRNAs (miRNAs).

Gene family construction. The predicted proteomes in the DBM genome and 

those from the genomes of 11 insect species13,14,64–71 and 1 Arachnida outgroup 

species72 were used in BLAST (1 × 10−7). The fragmental alignments of HSPs 

were joined using Solar36. Clustering was performed to generate gene families 

using hcluster_sg73. The species-specific genes are those for which we could not 

find orthologs in the predicted gene repertoires of the compared genomes.

Genome evolution. We used phase 1 nucleotides of single-copy genes from 

different genomes and MCMCTREE from PAML74 to estimate the time diver-

gence time of DBM. Sampling was replicated 100,000 times with a frequency 

of 2 (the first 10,000 trials were disregarded).

Linkage mapping of scaffolds. RADseq data generated from a cross between 

DBM strains Pearl-Sel and Geneva88 (ref. 17) were used. Read mapping for 

each individual was performed using Stampy (v. 1.0.13)75. Polymorphisms 

were called using the UnifiedGenotyper (v. 1.3-21)76. A custom PERL script 

identified segregating polymorphic patterns. A genotype file formatted for 

JoinMap (v. 3.0)77 was produced. Scaffolds were assigned onto corresponding 

linkage groups on the basis of the alignment result with the RAD alleles 

(Supplementary Table 9).
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Comparison of genomic synteny. We used a set of lax parameters36 to perform 

LASTZ (v. 1.01.50) and MCSCAN78 (v. 0.8) to search for syntenic blocks in  

P. xylostella and B. mori or D. melanogaster.

Genomic variation. We fragmented the fosmid sequences in silico into 

100-bp single-end reads or paired-end reads (insert size of 500 bp). We 

used SOAPaligner/soap235 to map the reads onto reference sequences and 

SOAPsnp79 and SOAPIndel35 to annotate SNPs and indels, respectively (with 

acceptable depths ranging from 3 to 30). On the basis of the sequencing of 

a single Fuzhou-S individual (Supplementary Table 1, SI), SOAPsv80 was 

employed for annotating structural variations. We performed whole-genome 

alignment comparison using LASTZ. The regions that were ≥1 kb with identity 

of ≥90% were regarded as segmental duplications.

Annotation of genes concerned. On the basis of available protein sets 

(Supplementary Table 26) and the predicted proteomes of P. xylostella, B. mori 

and D. melanogaster, BLASTP was used to search for the homologs in each of 

the three genomes. We applied cutoffs at 1 × 10−20, bit-score of 100 and coverage 

of 100 continuous amino acids for gapped alignment. We filtered out the results 

with total coverage of alignment of <70% for the same species and <40% for 

different species. We also used InterProScan81 to search for candidate genes on 

the basis of conserved motifs from InterPro48. The candidates were manually 

checked against the Conserved Domain Database82 in NCBI to validate the gene 

searching results and confirm that the method used in our DBM genome was as 

effective and reliable as the methods used in other insect genomes.

PCR validation. We randomly selected 20 each of annotated SNPs, structural 

variations (≥50 bp and ≤200 bp) and transposable elements (≥300 bp and  

≤600 bp) within or around the metabolic detoxification genes. PCR primer sets 

were designed for each of them to amplify an 800-bp region (Supplementary 

Table 31). Direct Sanger sequencing was performed for PCR products from 

both ends. Alignments between sequencing results and the reference genome 

were performed using BLAST or BLAT83.

Quantitative RT-PCR validation. We used 20 genes for validation of host 

plant responsiveness, and another 20 genes to examine differential expressions 

over the life cycle (Supplementary Table 24). We also used a B. thuringiensis 

strain containing CryIIAd (GenBank DQ358053) to infect the DBM strain 

and determine the gene expression for sulfate metabolism. Third-instar larvae 

were treated with CryIIAd (7.589 µg·/ml) by the leaf-soaking method84, with 

double-distilled water as control or no food supply for starvation. RT-PCR was 

performed for quantitative gene expression based on the 2–∆∆CT method85, with 

the ribosomal protein L32 (RPL32) gene (GenBank AB180441) serving as an  

internal reference. Each experiment was repeated three times.
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