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Abstract—An AND-OR-EXOR network, where the output
EXOR gate has only two inputs, is one of the simplest
three-level architecture. This network realizes an EXOR of
two sum-of-products expressions (EX-SOP). In this paper,
we show an algorithm to simplify EX-SOPs for multiple-
output functions. Our objective is to minimize the num-
ber of distinct products in the sum-of-products expressions
of EX-SOPs. The algorithm uses a divide-and-conquer strat-
egy. It recursively applies the Shannon decomposition on a
function with more than five variables. The algorithm ob-
tains EX-SOPs for the five-variable functions by using an
exact minimization program, then combines those EX-SOPs
to generate EX-SOPs for the functions with more variables.
We present experimental results for a set of benchmark func-
tions, and show that EX-SOPs require many fewer products
and literals than sum-of-products expressions. This is evi-
dence that AND-OR-EXOR is a powerful architecture to real-
ize many practical logic functions.
Index Terms—Three-level network, AND-EXOR, logic mini-
mization, decomposition, programmable logic device.

I. INTRODUCTION

Many logic design systems use AND and OR gates as
their basic elements. Such systems are suitable for con-
trol circuits and often results in optimal designs. How-
ever, they produce poorly optimized networks for arith-
metic and telecommunication circuits [20, 21, 27, 29]. For
these circuits, two-level AND-EXOR networks require
fewer gates and interconnections than two-level AND-
OR networks [19–21, 23, 27]. This suggests that arith-
metic and telecommunication circuits are well-suited for
EXOR (exclusive-OR) based design. However, two-level
AND-EXOR networks require EXOR gates with unlim-
ited fan-in. In most technologies, EXOR gates with
many inputs are slow and expensive, since they are of-
ten implemented as a cascade or tree of two-input EXOR
gates [32].

In this paper, we consider an AND-OR-EXOR three-
level network, where a single two-input EXOR gate is
used at each output. Each output of the network realizes
an EXOR of two sum-of-products expressions (EX-SOP).
Our objective is to reduce the total number of distinct
products in the sum-of-products expressions (SOPs) of
EX-SOPs. Simplification of an EX-SOP for a function
f (X) is equivalent to finding a decomposition that has

the form f (X) = g(X) � h(X), such that the number of
distinct products in the SOPs for g(X) and h(X) are min-
imal. Figure 1 shows an example of an AND-OR-EXOR
three-level network. Note that the AND-OR-EXOR net-
work in this paper is not an ordinary three-level net-
work. It is a special type of three-level network, where
the output EXOR gate has only two inputs. In a general
three-level network, all the gates have unlimited fan-in.
For example, gates in AND-OR-EXOR and OR-AND-OR
three-level networks in [21] and [24], respectively, have
no fan-in constraints.

An AND-OR-EXOR three-level network is suitable for
implementing arithmetic functions. For example, Texas
Instruments’ SN181 arithmetic circuit and SN283 four-bit
adder have two-input EXOR gates in the outputs [28];
Monolithic Memories’ ZHAL20X8A eight-bit counter real-
izes EX-SOPs [14]. Programmable logic arrays (PLAs)
with two-input EXOR gates at the outputs efficiently
realize high-speed adders [31]. An AND-OR-EXOR is
one of the simplest three-level architecture, since it con-
tains only a single two-input EXOR gate. However,
its logic capability is quite high. Because of this, vari-
ous programmable logic devices (PLDs) with two-input
EXOR gates in the outputs were developed. Espe-
cially, RICOH, Lattice and AMD (MMI) produced se-
ries of such PLDs [14, 16, 17]. An AND-OR-EXOR three-
level network is also suitable for efficient implementa-
tion of many random functions. For example, simpli-
fied EX-SOPs for six-variable pseudo-random functions
require 25 percent fewer products and 40 percent fewer
literals than simplified SOPs [6]. For an arbitrary func-
tion of six variables, minimum SOPs require up to 32
products [11], while minimum EX-SOPs require at most
15 products [6].

It has been shown in [24] that three-level networks are
sufficient to realize most of the logic functions with opti-
mal number of gates. However, no significant reduction
in the number of gates can be obtained by increasing the
number of levels into four or more [24]. Therefore, three-
level networks are especially desirable, because they re-
quire considerably fewer gates than two-level AND-OR
networks for many functions. EX-SOPs produce not only
a network with fewer gates, but also a decomposed net-
work. A decomposed network is suitable for implemen-
tation in PLDs. In many cases, we cannot implement a
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Fig. 1. Example of a minimum AND-OR-EXOR
three-level network.

network in PLDs without decomposition [16]. Since the
networks have only three levels, they are fast and their
propagation delays are easy to estimate.

Design methods for AND-OR-EXOR three-level net-
works were considered in the past [10, 26]. A cut-and-try
method was reported in [16] and a table look-up based
heuristic algorithm to simplify EX-SOPs was shown
in [4]. Several heuristic algorithms to simplify EX-SOPs
were presented in [22], which also showed the bench-
mark results for EX-SOPs for the first time. Another
heuristic algorithm to simplify EX-SOPs was reported
in [9]. To the best of our knowledge, except [9] and [22],
no other published benchmark results for EX-SOPs are
available. Exact minimization algorithms for EX-SOPs
with up to five variables were shown in [5, 7]. Recently,
we developed algorithms to obtain optimal EX-SOPs for
single-output six-variable functions [6]. Upper bounds
on the number of products in minimum EX-SOPs were
reported in [5–8]. Decompositions that have the form
f (X1,X2) = g(X1) � h(X2) have been studied in [13, 25].
AND-OR-AND three-level networks, where the output
AND gate have only two inputs were considered in [12].
Architecture of the PLDs with two-input logic elements
at the outputs were illustrated in [12, 16, 22]. Design
methods for EXOR-AND-OR networks, where EXOR
gates are used at the input parts to reduce the complexity
of the AND-OR networks, were presented in [30].

In this paper, we present an algorithm to simplify
EX-SOPs. The algorithm uses a divide-and-conquer
strategy: An EX-SOP for f is derived from the EX-SOPs
for f jx=0 and f jx=1, where x is a variable on which f
depends. The fewer the products in the EX-SOPs for
f jx=0 and f jx=1, the fewer the products we can expect
in the EX-SOP for f . The algorithm recursively applies
the Shannon decomposition on a function with more
than five variables. It generates minimum EX-SOPs
for the five-variable functions by using a table look-up
approach [5]. We then obtain simplified EX-SOPs for
the six-variable functions by combining EX-SOPs for
the five-variable functions. In the similar way, we ob-
tain EX-SOPs for the n-variable functions by combin-
ing EX-SOPs for the (n � 1)-variable functions. By us-
ing these techniques, we simplified EX-SOPs for a set of
benchmark functions. We found that EX-SOPs require
many fewer products and literals than SOPs for the ma-
jority of these functions.

The remainder of the paper is organized as follows:
Section II introduces terminology. Section III presents the
key concept to simplify EX-SOPs. Section IV develops an
algorithm to simplify EX-SOPs for multiple-output func-
tions. Section V reports the experimental results. Sec-
tion VI presents conclusions.

II. DEFINITIONS AND TERMINOLOGIES

In this paper, we distinguish functions and their expres-
sions. We use lower case letters, such as f , g, and h, to
represent functions, and upper case letters, such as F, G,
and H, to represent expressions of function.

Definition 2.1 A sum-of-products expression (SOP) is the
OR of product terms. An exclusive-OR (EXOR) sum-of-
products expression (ESOP) is the EXOR of product terms.
An EX-SOP is the EXOR of two SOPs.

In the rest of the paper, unless otherwise specified, an
EX-SOP represents an EX-SOP with product sharing.

Example 2.1 Consider the logic function f (x1,x2,x3,x4,x5)
= ∑(5,6,9,10,13,14,17,18,20,22,23,24,25,27,29,30). The net-
work in Figure 1 realizes an EX-SOP for f : F = (x̄4x5 _

x1x2x̄3 _ x̄1x̄2x̄3)� (x̄1x̄2x̄3 _ x1x̄2x3 _ x4x̄5), where x̄1x̄2x̄3
is the shared product between two SOPs of F.

Definition 2.2 An expression of a function is said to be min-
imum if it has the least product terms.

Definition 2.3 Let � (F) be the number of distinct products in
an expression F and � (EX-SOP : f ) be the number of distinct
products in a minimum EX-SOP for f .

Example 2.2 In Example 2.1, � (F) = 5. F is a minimum
EX-SOP, thus � (EX-SOP : f ) = 5.

Remark 2.1 For the function f shown in Example 2.1, the
minimum SOP requires 10 products and 38 literals, while the
minimum EX-SOP requires only 5 products and 13 literals.

Definition 2.4 Two functions that are identical under the
permutation of the variables and/or the negation of one or more
variables are NP-equivalent [11, 15]. NP-equivalent functions
form an NP-equivalence class of functions.

III. BASIC PROPERTIES

When product sharing is not permitted, an EX-SOP for
an n-variable function can be derived from a pair of
EX-SOPs for (n� 1)-variable functions, without increas-
ing the number of products [5, 8]. In this section, we
prove that it is also true when the sharing of products
in an EX-SOP is permitted.

Lemma 3.1 ([7]) If f � g= 0, then f � (h11 � h12)_ g � (h21 �

h22) = ( f h11 _ gh21)� ( f h12 _ gh22):

Theorem 3.1 Let f be an arbitrary function and x be a vari-
able on which f depends. Let g = f jx=0 and h = f jx=1. Let G
and H be the EX-SOPs for g and h, respectively. Then, there
is an EX-SOP F for f , such that � (F) � � (G)+ � (H).



Proof : By using the Shannon decomposition with re-
spect to x, we have

f = x̄g_ xh: (3.1)
Let G= Gas�Gbs, such that Gas = Ga_Gs and Gbs = Gb _
Gs, and let H = Has � Hbs, such that Has = Ha _ Hs and
Hbs = Hb _ Hs. Here Gs and Hs represent shared prod-
ucts in the EX-SOPs G and H, respectively. Thus, � (G)=
� (Ga)+ � (Gb)+ � (Gs) and � (H)= � (Ha)+ � (Hb)+ � (Hs).
By putting the EX-SOPs for g and h into (3.1), we have an
expression Fa for f :

Fa = x̄(Gas �Gbs)_ x(Has � Hbs): (3.2)
By using Lemma 3.1 to (3.2), we have two expressions Fb
and Fc for f :

Fb = (x̄Gas _ xHas)� (x̄Gbs _ xHbs), (3.3)
Fc = (x̄Gas _ xHbs)� (x̄Gbs _ xHas): (3.4)

By putting the expressions for Gas, Has, Gbs, and Hbs into
(3.3), we have an EX-SOP Fd for f :

Fd = (x̄(Ga _Gs)_ x(Ha _ Hs))
� (x̄(Gb _Gs)_ x(Hb _ Hs)):

) Fe = ((x̄Ga _ xHa)_ (x̄Gs _ xHs))
� ((x̄Gb _ xHb)_ (x̄Gs _ xHs)): (3.5)

In (3.5), x̄Gs _ xHs represents shared products in the
EX-SOP Fe for f . We can represent x̄Ga _ xHa, x̄Gb _ xHb,
and x̄Gs _ xHs by the SOPs Faa, Fbb, and Fss, respectively,
such that � (Faa) � � (Ga)+ � (Ha), � (Fbb) � � (Gb)+ � (Hb),
and � (Fss) � � (Gs)+ � (Hs). Thus, we have an EX-SOP F
for f :

F = (Faa _ Fss)� (Fbb _ Fss):
Note that,
� (F) � � (Ga)+ � (Ha)+ � (Gb)+ � (Hb)+ � (Gs)+ � (Hs),

= � (G)+ � (H):
Hence, we have the theorem. ❑

Note that G and H in Theorem 3.1 need not to be min-
imized or simplified. From Theorem 3.1, we have the
following:

Corollary 3.1 Let f be an arbitrary function and x be a vari-
able on which f depends. Then

� (EX-SOP : f ) � � (EX-SOP : f0)+ � (EX-SOP : f1),
where f0 = f jx=0 and f1 = f jx=1:

IV. SIMPLIFICATION TECHNIQUES

Theorem 3.1 shows that an EX-SOP for an n-variable
function can be derived from a pair of EX-SOPs for
(n � 1)-variable functions, without increasing the num-
ber of products. Our simplification technique is based
on this concept.

In the proof of Theorem 3.1, we used (3.3) to derive an
EX-SOP for f . In a similar way, we can derive another
EX-SOP for f by using (3.4). Thus, we can produce a pair
of EX-SOPs for f if EX-SOPs for g and h are available,
and choose the EX-SOP with the fewer products as the
final solution. However, this method often fails to obtain
good quality solutions, because it searches only a limited

part of the entire solution space. To improve the quality
of the solutions, we consider many simplified EX-SOPs
for g and h. Let we have k simplified EX-SOPs for each
of g and h. Then by using the Shannon decomposition
with respect to a particular variable, we can generate 2k2

simplified EX-SOPs for f . For an n-variable function, we
can perform the Shannon decomposition in n different
ways. Thus, we can produce 2nk2 simplified EX-SOPs
for f .

Based on the discussions of this section, we have devel-
oped a recursive procedure, called SIMPLIFY EX-SOP( f ,k).
The procedure returns a set of simplified or minimized
EX-SOPs for the n-variable (n � 5) single-output func-
tion f , such that the number of EX-SOPs in the set is at
most k. Figure 2 shows the pseudocode of the procedure.
In the pseudocode, we use a set of two SOPs to represent
an EX-SOP. For example, fF1,F2g at line 27 represents an
EX-SOP F1 � F2, where F1 and F2 are SOPs. P( f ) holds a
set of EX-SOPs for f . If fF1,F2g 2 P( f ), then f = F1 � F2.
We use the following definition at lines 22 and 26:
Definition 4.1 Let � (G1,G2) be the total number of distinct
products in the SOPs G1 and G2.

When f is a function of five variables, the procedure
generates a set of minimum EX-SOPs for f at line 14,
such that the number of EX-SOPs in the set is at most
k. At line 13, jXj denotes the number of elements in the
set X. Note that many functions have only one mini-
mum EX-SOP. We have a minimization algorithm that
produce a minimum EX-SOP with no product sharing
for the five-variable functions [5]. We modified this al-
gorithm to obtain a set of minimum EX-SOPs with no
product sharing.

When f is a function of six or more variables, we
use lines 16–33 of the pseudocode to obtain a set of
simplified EX-SOPs for f . We use recursive calls
to SIMPLIFY EX-SOP(g,k) and SIMPLIFY EX-SOP(h,k) at
lines 18 and 19, respectively, where g = f jx=0 and h =
f jx=1. The pseudocode shows that, when f is a function
of five variables, no recursive calls are made. At lines 27
and 29, SIMPLIFY SOP( fa, fb) returns a pair of simplified
SOPs for fa and fb, such that the two SOPs can share
products. There are efficient algorithms [1, 18] to obtain
simplified SOPs for multiple-output functions, such that
the SOPs can share products. At line 34, if two or more
EX-SOPs in P( f ) are the same, we eliminate all but one.
We choose the best k EX-SOPs at line 34 by specifying
fewer products as the primary criterion and fewer liter-
als as the secondary criterion.

In order to improve the efficiency of our algorithm, we
save all the intermediate functions and their EX-SOPs in
S at line 36 of the pseudocode. It avoids many redundant
computations. If S contains an element corresponding
to f , then without any computation, we can immediately
return P( f ) from S at line 11. Reuse of intermediate re-
sults is also employed in other areas of computer-aided
design, such as to build binary decision diagrams [2]. By
finding an element corresponding to f in S, we can avoid
many recursive calls necessary to obtain EX-SOPs for f .
The following observation illustrates the effectiveness of
this strategy.



/� This procedure returns at most k simplified or minimized EX-SOPs�/
/� for the single-output n-variable (n � 5) function f (x1,x2, : : : ,xn). �/
1 global var /� define global variables �/
2 S : set of ( fany,P( fany)); /� P( fany) is defined at line 7 �/
3 procedure SIMPLIFY EX-SOP( f ,k) f
4 local var /� define local variables �/
5 x : variable; X : set of variables; g, h : logic functions;
6 F’s, G’s, H’s : SOPs; t : number of products;
7 P( fany) : set of EX-SOPs for fany; W : set of (x,P(g),P(h));
8 if this is the first call to this procedure then
9 S ;;

10 if S has an element corresponds to f then
11 return P( f );
12 X fthe variables of fg;
13 if jXj< 6 then
14 P( f ) fat most k minimum EX-SOPs for fg;
15 else f
16 W ;; t 1; P( f ) ;;
17 for each x 2 X do f
18 P(g) SIMPLIFY EX-SOP((gjg= f jx=0),k);
19 P(h) SIMPLIFY EX-SOP((hjh = f jx=1),k);
20 W W [ f(x,P(g),P(h))g;
21 for each fG1,G2g 2 P(g) and fH1,H2g 2 P(h) do
22 t min(t,� (G1,G2)+ � (H1,H2));
23 g
24 for each (x,P(g),P(h))2W do f
25 for each fG1,G2g 2 P(g) and fH1,H2g 2 P(h) do f
26 if � (G1,G2)+ � (H1,H2) = t then f
27 fF1,F2g SIMPLIFY SOP(x̄G1_ xH1,x̄G2 _ xH2);
28 P( f ) P( f )[ ffF1,F2gg;
29 fF1,F2g SIMPLIFY SOP(x̄G1_ xH2,x̄G2 _ xH1);
30 P( f ) P( f )[ ffF1,F2gg;
31 g
32 g
33 g
34 P( f ) fthe best k distinct EX-SOPs from P( f )g;
35 g
36 S S[ f( f ,P( f ))g;
37 return P( f );
38 g

Fig. 2. Pseudocode of the procedure SIMPLIFY EX-SOP.

Algorithm 4.1 (Simplification of EX-SOPs
for m-output (m � 1) functions)

1. For single-output function f , ob-
tain a set of EX-SOPs by using
SIMPLIFY EX-SOP( f ,k) and choose the
EX-SOP with the fewest products as the
final solution.

2. For m-output (m � 2) function, generate
m single-output functions f1, f2, : : : , fm
and do the following steps.

3. For each fi (1 � i � m), gen-
erate a set of EX-SOPs by using
SIMPLIFY EX-SOP( fi,k).

4. From each set of EX-SOPs, retain the
EX-SOPs with only the fewest products
and delete other EX-SOPs.

5. Randomly choose one EX-SOP from each
set of EX-SOPs. Let an EX-SOP for
fi (1 � i � m) is represented by two
single-output functions fia, fib, such that
fi = fia� fib. Form the functions f1a, f1b,
f2a, f2b, : : : , fma, fmb.

6. Simplify SOPs for f1a, f1b, f2a, f2b, : : : ,
fma, fmb, such that they can share prod-
ucts. There are efficient algorithms to do
this [1, 18].

7. Continue steps 5 and 6 while re-
duction in the number of distinct
products in the simplified SOPs for
f1a, f1b, f2a, f2b, : : : , fma, fmb is possible.

8. The simplified SOPs for f1a, f1b, f2a, f2b,
: : : , fma, fmb with the fewest number of
distinct products, obtained at step 7, is
the final solution for the m-output func-
tion.

Fig. 3. Algorithm 4.1.

Observation 4.1 Let us consider a four-bit adder, namely
adr4. To obtain a simplified EX-SOP for adr4 without using
intermediate results, we must generate EX-SOPs for 12,140
five-variable functions. However, if we save and reuse inter-
mediate results, then we have to generate EX-SOPs for only
509 five-variable functions.

We can further improve the efficiency of our algorithm
by considering NP-equivalence of logic functions. If two
functions fa and fb are NP-equivalent, then we can gen-
erate EX-SOPs for fa from the EX-SOPs for fb without
doing any logic minimization. To generate EX-SOPs for
fa from the EX-SOPs for fb, we find a Boolean match [3]
between fa and fb. There are good algorithms [3] to
find a Boolean match between two functions. Thus, if S
contains an element corresponding to fb, then without
performing any logic minimization, we can return P( fa)
from S at line 11.

Observation 4.2 If we save intermediate results in S and

reuse EX-SOPs for the NP-equivalent functions from S, then
we have to generate EX-SOPs for only 55 five-variable func-
tions to obtain a simplified EX-SOP for adr4. Observation 4.1
shows that EX-SOPs for 12,140 five-variable functions are
necessary when intermediate results are not saved. Note that,
55 is the 0.45 percent of 12,140. This is a significant reduction
in the number of five-variable functions. We found similar
tendencies for many other logic functions.

Based on the procedure SIMPLIFY EX-SOP( f ,k), we
developed Algorithm 4.1 to simplify EX-SOPs (Figure 3).

V. EXPERIMENTAL RESULTS

We implemented Algorithm 4.1 in C. The program re-
quires about 40 megabytes of memory space. The qual-
ity of the solution and the computation time of Algo-
rithm 4.1 for function f depend on the parameter k in
the procedure SIMPLIFY EX-SOP( f ,k). For functions with



TABLE I
NUMBER OF PRODUCTS AND LITERALS TO REALIZE

BENCHMARK FUNCTIONS

Number of products Number of literals
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5xp1 7 10 63 32 34 0.54 278 120 108 0.39
9sym 9 1 84 51 65 0.77 504 374 392 0.77
addm4 9 8 189 91 100 0.53 1225 521 535 0.44
adr3 6 4 31 15 13 0.42 116 44 28 0.24
adr4 8 5 75 31 26 0.35 340 112 78 0.23
clip 9 5 117 67 72 0.62 631 402 354 0.56
cm82a 5 3 23 13 9 0.39 80 33 17 0.21
f51m 8 8 76 32 35 0.46 326 112 109 0.33
inc8 8 9 37 15 16 0.43 100 43 46 0.46
life 9 1 84 49 62 0.74 672 311 443 0.66
log8 8 8 123 104 100 0.81 730 550 514 0.70
mlp4 8 8 121 62 75 0.62 736 305 354 0.48
nrm4 8 5 120 69 80 0.67 716 391 428 0.60
rd53 5 3 31 14 17 0.55 140 39 58 0.41
rd73 7 3 127 35 54 0.43 756 134 254 0.34
rd84 8 4 255 59 99 0.39 1774 267 547 0.31
rdm8 8 8 76 32 35 0.46 325 112 110 0.34
rot8 8 5 57 36 42 0.74 305 197 204 0.67
sqr8 8 16 180 112 134 0.74 1068 546 606 0.57
squar5 5 8 25 20 20 0.80 95 57 49 0.43
z4 7 4 59 29 22 0.37 252 111 107 0.42

6, 7, 8, and 9 variables, we use k = 10, 8, 5, and 3, re-
spectively. We found that a higher value of k drastically
increases the computation time without any significant
improvement in the solution.

We obtained three types of expressions for a set of
benchmark functions. Table I compares the number of
products and literals in these expressions. In this experi-
ment, SOPs were minimized by using Quine-McCluskey
algorithm for multiple-output functions [15]; ESOPs
were simplified by using EXMIN2 [20]; and EX-SOPs
were simplified by using Algorithm 4.1. This table shows
that, for the set of benchmark functions, EX-SOPs require
many fewer products and literals than SOPs. For many
functions, the numbers of products and literals in the
ESOPs and EX-SOPs are nearly the same.

Table II compares experimental results for Algo-
rithm 4.1 and AOXMIN [9], another heuristic simpli-
fication program for EX-SOPs. For all the benchmark

TABLE II
COMPARISON WITH AOXMIN [9]

Number of products in EX-SOPs

Data In Out AOXMIN Proposed
method

Proposed method
AOXMIN

5xp1 7 10 42 34 0.81
9sym 9 1 73 65 0.89
clip 9 5 95 72 0.76
rd53 5 3 19 17 0.89
rd73 7 3 83 54 0.65
rd84 8 4 192 99 0.52

TABLE III
COMPARISON WITH ANOTHER METHOD [22]

Number of products in EX-SOPs

Data In Out Ref.[22] Proposed
method

Proposed method
Ref.[22]

adr4 8 5 37 26 0.70
inc8 8 9 15 16 1.07
log8 8 8 116 100 0.86
mlp4 8 8 109 75 0.69
nrm4 8 5 93 80 0.86
rd84 8 4 135 99 0.73
rdm8 8 8 54 35 0.65
rot8 8 5 49 42 0.86
sqr8 8 16 176 134 0.76

functions shown in this table, Algorithm 4.1 outperforms
AOXMIN. The improvement is up to 48 percent for rd84.
It should be noted that AOXMIN can simplify EX-SOPs
for functions with more inputs and the computation time
of AOXMIN is smaller than that of Algorithm 4.1.

Table III compares the number of products gener-
ated by Algorithm 4.1 with those generated by another
heuristic simplification program for EX-SOPs [22]. For
the nine benchmark functions shown in this table, on
the average, Algorithm 4.1 produced solutions which re-
quire about 23 percent fewer products than the methods
presented in [22]. The greatest improvement, 35 per-
cent is for rdm8. It should be noted that the techniques
presented in [22] can simplify EX-SOPs with large num-
ber of inputs, but Algorithm 4.1 can simplify EX-SOPs
with only small number of inputs. Also, Algorithm 4.1
requires more computation time and memory than the
methods presented in [22].

VI. CONCLUDING REMARKS

In this paper, we developed a heuristic algorithm to de-
sign AND-OR-EXOR three-level network for multiple-
output functions, where EXOR gates at the outputs of
the network have only two inputs. The network realizes
EX-SOPs. Our present data structure for the algorithm
can handle functions with up to nine variables. We are
modifying the data structure. The modified implemen-
tation will be able to handle functions with more vari-
ables. An AND-OR-EXOR network can be efficiently
implemented in many commercial PLDs, or AND-OR
part of the AND-OR-EXOR network can be used as an
initial network for multi-level design by using fan-in
limited gates. For the majority of the functions shown
in Table I, EX-SOPs require many fewer products than
SOPs. However, there are functions for which EX-SOPs
require as many products as SOPs; for those functions we
should use AND-OR two-level networks. To implement
an EX-SOP, we need a two-input EXOR gate in addition
to AND and OR gates. A two-input EXOR gate is several
times more expensive than a two-input OR gate. Let us
consider the function squar5 shown in Table I. Its AND-
OR-EXOR network requires eight more EXOR gates and
five fewer AND gates than AND-OR network. Thus,
AND-OR-EXOR network is unattractive for squar5. On



the other hand, AND-OR-EXOR based design is attrac-
tive for adr4. An AND-OR-EXOR network for adr4 re-
quires five more EXOR gates and 49 fewer AND gates
than AND-OR network. For AND-OR-EXOR and AND-
OR networks of adr4, the ratio of the fan-in of the AND
gates is 0.23. Our experimental results in Table I show
that AND-OR-EXOR network is very attractive for the
efficient realization of many practical logic functions.
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