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 Maximising the patient flows throughout the emergency care patient pathway is one of the most 

important objectives in the healthcare system. The emergency department (ED) is the critical 

point of this pathway in most hospitals, as the potential delays reduce the number of patients 

seen in the recommended time. One of the key delays in the ED is the waiting time of a patient 

prior to treatment, which can be reduced by optimising the patient treatment schedules with 

priorities. In this paper, a novel blocking patient flow (BPF) algorithm is developed and tested 

using the real data from a hospital in Brisbane, Australia. Initially, a simulation model of real-

life ED operations is developed by characterising patient interarrival and treatment times 

according to different disease categories. Subsequently, a BPF heuristic algorithm is designed 

and benchmarked via computational experiments using two dominance rules: first come first 

served (FCFS) and shortest processing time (SPT). The computational results show that the 

proposed approach leads to a reduction of the total waiting time by more than 8 % in comparison 

to the current hospital practice, which implies that more patients will be served in a specified 

time window. 

© 2020 by the authors; licensee Growing Science, Canada 
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1. Introduction 

 

 

The emergency department (ED) plays a vital role in the community as it provides appropriate and timely 

care 24/7 for the public. The number and growth rate of emergency visits have increased rapidly in the 

last two decades, and this has led to an imbalance between patients (demand side) and medical resources 

(supply side) (Carter et al., 2014). This stretching of resources has led to crowding in the ED, longer 

waiting times, and a reduction in patient privacy. In 2014–2015, approximately 7.4 million people visited 

an ED in Australia, of whom 73 % spent four hours or less in the ED and 29.73 % were admitted from 

the ED, with 47 % being admitted within four hours (Australian Institute of Health and Welfare, 2015). 
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Authors estimate that the rate of patients who leave without being seen (LWBS) can be above 6 % 

(Saghafian et al., 2015) due to long waiting times. According to Pines et al. (2011), reducing the ED 

processing time by one hour can reduce the number of patients who leave without being seen. Therefore, 

busy healthcare systems are creating new challenges for the healthcare industry and driving the desire 

for analytical solutions (Carter et al., 2014). 

Due to budget constraints, increasing the resources allocated to the ED is not always feasible. However, 

the ED capacity depends heavily on the ED configuration and operations. Many studies have been 

conducted to increase operational efficiency, including simulation studies (Aboueljinane et al., 2013; 

Azadeh et al., 2016; Carmen et al., 2015; Paul & Lin, 2012; Wang et al., 2009), bed management in ED 

and other units (Abo-Hamad & Arisha, 2013; Landa et al., 2018; Proudlove et al., 2003), optimising the 

configuration of the ED (Cabrera et al., 2011; Keshtkar et al., 2015), optimising staff schedules (Feili, 

2013; Gutjahr & Rauner, 2007; Jones & Evans, 2008; Kim & Mehrotra, 2015; Omar et al., 2015; 

Topaloglu & Ozkarahan, 2011), optimising the patient treatment schedules (Castaing et al., 2016; Das et 

al., 2016; Kiris et al., 2010; Turkcan et al., 2011), and the deployment of lean tools (Chan et al., 2014). 

Among these approaches, the scheduling of patients and staff has shown significant promise as a way to 

increase the capacity of the ED and reduce patient waiting times at low cost (Chien et al., 2008; Z. Liu 

et al., 2017; Luscombe & Kozan, 2016; Memari et al., 2016; Ozcan et al., 2017). 

Recently, there have been many academic studies on scheduling approaches in healthcare management 

(Kim & Mehrotra, 2015); however, real-world cases are rarely found in the literature. Many studies have 

focused on the scheduling of staff. Wang et al. (2009) developed a discrete event simulation (DES) in 

the ED and examined various scenarios for improving the patient waiting time. Omar et al. (2015) 

minimised the number of waiting patients in the ED using a mixed integer linear program (MILP) to 

schedule personnel shifts. Azadeh et al. (2016) presented a detailed review of DES in the ED and 

developed an ED simulation that considered human error. This simulation was subsequently used to 

evaluate the impact of staff allocation and training changes. A decision support system was developed in 

Carmen et al. (2015), where DES was used to evaluate the impact of bed and staffing changes on patient 

length of stay (LOS). Feili (2013) utilised a simulation-optimisation approach to determine the staffing 

levels that maximise the patient flow under cost constraints. An agent-based simulation tool was 

developed by Jones and Evans (2008) to evaluate the impact of various physician schedules on patient 

waiting times in the ED. A mixed integer programming model was developed by Topaloglu and 

Ozkarahan (2011) to schedule residents’ duty hours, considering the on-call night, day off, rest period, 

and total work hours. Gutjahr and Rauner (2007) proposed applying an ant colony optimisation approach 

to a nurse scheduling problem with a variety of constraints regarding nurses’ qualifications, working date 

and time, nurses’ and hospitals’ preferences, working patterns, and costs. 

A number of studies examined the scheduling of patients for procedures across the different units of the 

hospital. Many of these studies addressed the scheduling of patients for surgical procedures. A stochastic 

dynamic programming model was proposed by Min and Yih (2010) for scheduling patients in a surgical 

facility with limited capacity according to patients’ priority. A heuristic algorithm was developed by Liu 

et al. (2011) to solve an operating room scheduling problem with an open scheduling strategy to minimise 

the overtime cost and maximise the operating room’s efficiency. A new surgical case scheduling 

approach was developed by Pham and Klinkert (2008) using an extension of the job shop scheduling 

problem to allocate hospital resources to individual surgical cases and decide on the time to perform the 

surgeries. Chien et al. (2008) developed an evolutionary approach based on a genetic algorithm to solve 

the problem of rehabilitation patient scheduling and modelled it as a hybrid shop scheduling problem. 

Other authors have examined patient scheduling in the ED. Azadeh et al. (2014) optimised the scheduling 

of ED laboratories using a MILP. A stochastic mixed integer programming model was proposed by 

Castaing et al. (2016) to minimise the total expected patient waiting times, where the sample average 
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approximation approach was used as a solution technique. This approach considered three queues of 

patients: an assessment queue before and another after having ancillary examinations by physicians and 

a queue supervised by nurses for the treatment. Allihaibi et al. (2017) proposed a new ED optimisation 

model using a stochastic mathematical programming approach under limited budget and resource 

capacity to optimise the total patient waiting time. Moreover, some researchers focused on minimising 

the total patient tardiness or waiting time through the timelines of the system (Das et al., 2016). The 

constraint-based approach was used by Turkcan et al. (2011) to develop sequential appointment 

scheduling with service criteria and other criteria such as queue length and expectation and variance of 

patients’ waiting times. A knowledge-based reactive scheduling system for EDs has been developed to 

minimise patient waiting times by determining the patients who have higher priorities initially according 

to arrival times, patients’ priorities, flow time, and doctors’ workload (Kiris et al., 2010). Luscombe and 

Kozan (2016) developed a dynamic scheduling framework for the ED to provide fast solutions that 

respond to unscheduled arrivals, competing priorities and heterogeneous patient care needs by scheduling 

patient-bed assignments and task-resource allocations. Fuzzy logic and an evolutionary algorithm were 

proposed to solve a stochastic optimisation problem with multiple objectives, such as minimising the 

total patient waiting time and the makespan (Othman & Hammadi, 2017). 

Due to the random arrivals of patients, ED scheduling tends to be very dynamic. When a new patient 

arrives, the schedule should be re-optimised, which makes the implementation of complex optimisation 

approaches difficult. For this reason, several researchers have examined the use of scheduling rules from 

operations research, including prioritising shortest processing time, greatest waiting time ratio, earliest 

due date, and triage shortest processing time (Azadeh et al., 2014; Diefenbach & Kozan, 2010; Kiris et 

al., 2010; Luscombe & Kozan, 2016). 

In this paper, the benefits of implementing scheduling heuristics in a real hospital are investigated. First, 

a simulation model of a real-world ED in Brisbane, Australia, is developed using real data and expert 

knowledge. Subsequently, a new blocking patient flow (BPF) scheduling heuristic is developed to 

schedule patients dynamically in a stochastic ED system to lead patients smoothly though the system. 

Using the simulation model, this is compared to both the current scheduling practice and a benchmark 

scheduling heuristic. The results show that the novel BPF heuristic significantly improves the total patient 

waiting time and on-time treatment performance compared to both benchmark approaches. 

The rest of this paper is structured as follows. In Section 2, a simulation model for an Australian ED is 

developed. In Section 3, the BPF heuristic algorithm is proposed and integrated into the simulation 

process. The computational results and analysis are reported in Section 4. Finally, the conclusions are 

presented in Section 5. 

2. ED Simulation Model 

The ED system under investigation includes the following main processes and activities: patients’ arrival, 

triage, physician assessment, treatment planning, decision to discharge or admit, and access to inpatient 

beds. These activities occur in a predefined sequence, and any delays in the operations of the patient flow 

in the ED can have an impact on patient throughput and may cause bottlenecking (Kozan & Diefenbach, 

2008). The operation of the current ED is as follows. Fig. 1 shows the general treatment workflow along 

the ED treatment pathways. After arrival and triage, the patient is assigned a severity and subsequently 

assigned to one of the pathways. Fig. 2 shows the three types of pathway: one for patients with high-

complex problems (Resuscitation), one for patients with medium-complex problems (Acute), and one 

for patients with less-complex problems (Fast Track). The patients in the Acute and Fast Track pathways 

proceed to waiting rooms where they (potentially) await a bed. Conversely, patients on the Resuscitation 

pathway are immediately provided with a bed. If a bed is available, then the patient is assigned a bed and 

awaits an available doctor and treatment commences. As can be seen in Fig. 1, the time between arrival 

and the initial treatment is classified as the waiting time, which includes the time spent in triage and bed 
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assigned. Treatment time starts with doctor assigned and continues to the ready for departure time. Once 

the treatment has been completed, the patient is either ready for discharge or is ready to receive an 

inpatient review for admission. If a patient is admitted, additional waiting time, called the post-treatment 

waiting time, may be incurred while the patient awaits a specialist consultation and a bed in the admitting 

unit. Post-treatment waiting time starts with the inpatient review and continues to the departure from the 

ED, including a bed request. Fig. 1 describes the patient LOS in the ED (LOSED), where the LOSED of 

each patient includes three main stages: waiting time, treatment time, and post-treatment waiting time, in 

other words, LOSED = ED departure time – ED arrival time. 

 

Fig. 1. ED patient workflow and definitions of important time spans 

 

 
Fig. 2. Patient flow chart from a real ED system 
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3. Blocking Patient Flow (BPF) Heuristic Algorithm 

In this section, a blocking patient flow (BPF) heuristic algorithm is developed to improve the simulation 

solution. The bed blocking time is the expected time for a patient to complete the proposed treatment and 

post-treatment waiting time. Many hospitals have tackled the blocking issue by using buffer areas that 

can handle the waiting patients, whereas the proposed approach solves this problem operationally by 

optimising patients’ schedule based on three main steps: 

1) Produce the ED’s stochastic variables, such as patient interarrival and treatment times, using 

statistical distributions. Patient interarrival times are classified into four shifts: day, afternoon, 

evening, and night, while treatment times are distributed statistically according to 26 types of 

disease and each disease is distributed to five categories of patients. 

2) Obtain the solution of the ED simulation model (the performance regarding the objectives) using 

ExtendSim software. 

3) Apply a novel BPF heuristic algorithm to the simulation process using the stochastic variables 

produced in Step 1 and then compare the result of the ED simulation model with the obtained 

result in Step 2. 

The stochastic variables in Step 1, such as patient interarrival per shift for each disease, treatment time 

per disease, and each disease, are distributed to the five categories of the Australasian triage scale (ATS) 

by specific ratios that are produced. The ATS is a clinical tool used to establish the maximum waiting 

time for medical assessment and treatment of a patient, and to describe clinical urgency. The ATS 

categories split into five categories, where category 1 is an immediately life-threatening condition that 

requires immediate treatment and category 2 is an imminently life-threatening condition which can be 

treated within 10 minutes. Additionally, category 3 is a potentially life-threatening condition which can 

be treated within 30 minutes, category 4 is a potentially serious condition which can be treated within 60 

minutes, and finally, category 5 is a minor condition which can be treated within 120 minutes 

(Australasian College for Emergency Medicine, 2005). 

A BPF algorithm is developed to arrange the priority of bed assignment for the patients arriving at the 

ED to be assigned to beds in the ED. This algorithm aims to minimise the total waiting time and to 

increase the number of patients that will be seen in the recommended times by increasing the bed 

utilisation. 𝑃 is the number of patients and 𝐵 is the number of beds. 𝐴𝑇  denotes the ED arrival time for 

each patient 𝑖, where the patients with indices 𝑖 = 1,2, … ,𝑃. 𝐸𝑇𝑇  represents the expected treatment time 

for each patient 𝑖, and 𝐸𝐹𝑇  represents the expected finish time for each patient 𝑖. Eq. (1) calculates 𝐸𝐹𝑇 : 

 𝐸𝐹𝑇 = 𝐴𝑇 + 𝐸𝑇𝑇 , 𝑖 = 1,2, … ,𝑃 (1) 

The available beds in the ED are divided into a number of queues that can accept all ATS categories of 

patients, i.e. each bed queue has a type, and each type has 𝐵  beds. 𝑐 ∈ 𝒞 = 1,2,3,4,5  denotes the ATS 

category of patient 𝑖, and 𝒞 ⊆ 𝒞 denotes the categories of patients that are admissible for bed type 𝑡. 
In the hospital used in this case study, there are three types of beds 𝑡 ∈ 𝑅,𝐴,𝐹 . The first type is 

Resuscitation (type 𝑅) beds which only accept critical patients, i.e. those with 𝑐 = 1,2,3,4,5, and thus 𝒞 = 1,2,3,4,5 . Secondly, the Acute (type 𝐴) beds can accept all patients that have ATS categories 1–

5, 𝑐 ∈ 𝒞 = 1,2,3,4,5 , and finally the Fast Track (type 𝐹) beds can have 𝑐 ∈ 𝒞 = 1,2,3,4,5 . 𝑆  

denotes the queue for the beds of type 𝑡, as shown in Eq. (2): 

 𝑆 = 𝑝 , ,𝑝 , , … ,𝑝 ,  (2) 

Furthermore, where 𝑝 , ∈ 𝒯  is the patient index with priority or position 𝑙 in queue 𝑡, 𝒯 ≜  𝑖 | 𝑐 ∈ 𝒞  

is the set of patients that may be assigned to bed type 𝑡, and 𝑁 = |𝒯 | is the number of patients in type 𝑡. 𝒳 ⊆ 𝒯  are the patients of type 𝑡 that are currently assigned a bed and 𝐸𝐴𝑇  is the expected available 

time for bed 𝑡, as shown in Eq. (3): 
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 𝐸𝐴𝑇 = min∈𝒳 𝐸𝐹𝑇  (3) 

Before explaining the details of the BPF algorithm, let look at the simple example to understand the 

advantages of the algorithm. A simple example has one bed and two patients, where patient 𝑖 is already 

in the queue waiting for an ED bed, so the PBF algorithm works as follows (as shown in Fig. 3). Fig. 3 

shows that when patient 𝑗 arrived at the queue, then the algorithm computes the first waiting time for 

each patient would have if 𝑖 is in front of 𝑗 𝐸𝐹𝑇 𝐴𝑇  or 𝑗 is in front of 𝑖 𝐸𝐹𝑇 𝐴𝑇  (the two 

possible ordering of the queue). Next, the algorithm calculates the second waiting time based on the 

different arrival time of patient 𝑖 and 𝑗 and the expected available time of bed for each patient. Then the 

algorithm sums these two waiting times and chooses the queue ordering that has minimum waiting time. 

If patient 𝑖 has been setting for a long time, the expected available time for bed 𝑡 minus the arrival time 

is going to be very long for patient 𝑖 because patient 𝑖 arrived a long time ago. His or her waiting time 

has already lengthened, so that the preference is to take 𝑖, 𝑗 ordering. On the other hand, if 𝑖 and 𝑗 arrived 

close to the same time, their waiting times will be determined by the ordering. The first term 𝐸𝐴𝑇 𝐴𝑇  is the waiting time that is already occurring because a bed is occupied, and the second term 𝐸𝐹𝑇 𝐴𝑇  is the waiting time that is determined by ordering in the queue. So, the total waiting time 

is the sum of these two factors: the waiting time until a bed is available plus the waiting time that is 

determined by how the queue is ordered. The BPF algorithm is ordering these patients by minimising the 

total of those two factors. 𝑓 ,  contains two terms: the first term is calculated by the waiting time to the 

different arrival time of patient 𝑖 and 𝑗, and the bed availability, which means that this term sorts patients 

based on different arrival times. Then the second term is calculated by the waiting time that responsible 

on the different treatment time of patient 𝑖 and 𝑗. The BPF algorithm considers both terms and sorts 

patients by looking for the minimum waiting time of these two terms. This idea extends to a large number 

of patients by using this pairwise comparison to every patient in the queue. When a new patient arrives 

at the existing queue, we then count the pairwise ordering for every patient 𝑖 in the queue. Algorithm 1 

below illustrates the steps of the BPF heuristic algorithm, and these steps will be repeated whenever a 

patient arrives at the queue. 

 

Fig. 3. Describe the BPF algorithm by using a simple example (one bed and two patients) 
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Algorithm 1. The BPF heuristic algorithm 

Input 𝐴𝑇 ,𝐸𝑇𝑇 , 𝑖 = 1,2, … ,𝑃 

Compute 𝐸𝐹𝑇 = 𝐴𝑇 + 𝐸𝑇𝑇 , 𝑖 = 1,2, … ,𝑃 for all patients 

Initialize 𝑆 = 𝑝 , ,𝑝 , , … ,𝑝 , , the patient queue for bed type 𝑡 in any order (e.g. FCFS) 

Set Swapped = True 

While Swapped 

Swapped = False 

For 𝑖 = 2,3, … ,𝑃 

Calculate 𝑓 , = 𝐸𝐴𝑇 𝐴𝑇 + 𝐸𝐹𝑇 𝐴𝑇 , ∀ 𝑖 1, 𝑖 ∈ 𝒯 , 𝑖 1 𝑖 
Calculate 𝑓 , = 𝐸𝐴𝑇 𝐴𝑇 + 𝐸𝐹𝑇 𝐴𝑇 , ∀ 𝑖, 𝑖 1 ∈ 𝒯 , 𝑖 𝑖 1 

If 𝑓 , 𝑓 ,  

Then Swap the position place of the patient 𝑖, 𝑖 1  in the queue  𝑆  

Swapped = True 

End If 

End For 

End While 

Return 𝑆  

The goal of the scheduling problem is to place the patients with indices 𝑖 = 1,2, … ,𝑃 into appropriate 

triage queues in the order that minimises the total waiting time. 

Fig. 4(a) and Fig. 4(b) below show that 10 patients have been assigned to seven beds according to first 

come first served (FCFS) and BPF respectively. The patient waiting time and bed blocking times are 

detailed in the Figures, where the patient waiting time is dots and a box filling with up light diagonal 

lines and the bed blocking time is a solid coloured box. BPF has improved the patient waiting time 

accordingly by using an efficient patient. The total waiting time and average LOS for 10 patients have 

been reduced from 308.92 minutes to 45.46 minutes and from 130.06 minutes to 103.71 minutes 

respectively by using FCFS and BPF respectively, as shown in Fig. 4(a) and Fig. 4(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4(a). Patient scheduling using FCFS 
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Fig. 4(b). Patient scheduling using BPF 

 

4. Case study using real hospital data 

In this section, the methods developed in this paper are applied using data that was collected from the 

Royal Brisbane and Women’s Hospital (RBWH). In this paper, the ED operations are formulated as a 

simulation model. A simulation is a useful technique that assists the healthcare decision makers to 

reconfigure the existing system to improve service performance and reduce operating costs. The 

simulation model for the ED was developed to evaluate the effects of the newly proposed heuristic in the 

following manner. Generally, the arrival and treatment times of patients depend on the classification and 

severity of their disease. In the proposed simulation model, the arrival characteristics and treatment times 

are modelled for each of the 26 classifications of the World Health Organisation’s International 

Classification of Diseases (ICD-10). The severity of the patient’s condition is specified using the five 

categories of ATS. 

Stat::Fit (Benneyan, 1998) was used to fit distributions to the data for each disease. The distributions for 

treatment times per disease and interarrival times per shift for each disease fit the data much better with 

the use of the new 26 categories than previous studies, which mainly used triage categories or the option 

to use broad presenting conditions. The patient interarrival times per shift for each disease and the 

treatment times for each disease are established using the real data collected from the RBWH, where 

each disease is distributed to the different ATS categories by specific ratios, as shown in Appendix A. 

Furthermore, the simulation model, interarrival times and treatment times are not deterministic. 

Statistical distributions are constructed depending on disease type and whether this distribution is 

appropriate for that type of disease by using Stat::Fit Distribution Fitting Software, as shown in Appendix 

B. Fig. 5 shows the probability of each type of bed in the ED for each ATS category. The patient’s service 

priority depends on the patient type and the availability of medical resources, such as beds and doctors. 

Patients are discharged from the ED or admitted into hospital to receive more treatment. In the 

Resuscitation pathway, all categories will be sorted from 1 to 3, which means from the highest priority 

to be served without waiting time to the lowest priority. In the Acute and Fast Track pathways, all 

categories are sorted as FCFS, and the waiting room is used if there is no bed or doctor available. 
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Fig. 4. Patient waiting time and bed blocking time using FCFS and BPF 
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Fig. 5. The probability of each type of bed in ED for each ATS category 

The patients occupied three types of bed: a Resuscitation, Acute and Fast Track bed. There were nine 

Resuscitation beds, 27 Acute beds, and six Fast Track beds. Moreover, the ED has three types of doctor: 

Consultant, Registrar, and other doctors. There were five Consultants during the day shift, three during 

the afternoon shift, and no Consultant during the night shift. There were four Registrars during the day 

shift and the afternoon shift, and two Registrars during the night shift. There were six other doctors during 

each shift (day, afternoon and night shift). An ED doctor has three shifts during the day: day, afternoon 

and night shift, as shown in Table 1 below. 

Table 1 

The start and finish time of each shift for ED doctor 

Shift name Start time Finish time 

Day 8am 6pm 

Afternoon 1pm 11pm 

Night 11pm 8am 

Fig. 6 depicts the main ED-ExtendSim model that includes the patient arrival model, ED processes, 

EDLOS, and patient discharge. Fig. 7 displays the ED pathways according to the ATS category, and Fig. 

8 illustrations the ED processes in detail for each pathway, where the processes in the ED are detailed 

using ExtendSim software. The ED simulation model was coded by using ExtendSim software based on 

multiple objectives and several realistic constraints. The aim was to minimise the patient’s total waiting 

time, minimise the patient’s LOS, and improve the utilisation of resources. The constraints are developed 

according to real-life case studies that include the upper and lower bounds of patient arrival times, patient 

treatment times, personnel (doctors), and daily shifts. 

 

Fig. 6. ExtendSim model of the patient flow in the ED 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5

P
ro

b
a

b
il

it
y

ATS category

The probability of each type of bed in ED for all ATS Category

Resuscitation

Acute

Fast Track



 

 

574 

 

Fig. 7. ExtendSim model of the ED pathway 

 

Fig. 8. ExtendSim model of the ED processes 

The arrival characteristics of patients are modelled as follows. Patients are classified into 26 types of 

diseases. The interarrival times and probability of a particular triage category are modelled individually 

for each disease category and shift (day, afternoon, evening, and night). The interarrival time of each 

patient during a particular shift follows a statistical distribution which is found by fitting a distribution 

to the real interarrival times (as described in Section 2). The patient interarrival time distributions are 

shown in Appendix B. Triage categories in Australia are adopted according to the Australian College of 

Emergency Medicine (Australasian College for Emergency Medicine (ACEM), 2013), as shown in Table 

2 below. According to the data, the triage percentages for each ATS category are shown in Fig. 9. Most 

of the patients are in category 3 (42 %) and category 4 (33 %), while category 2 and category 5 include 

13 % and 11 % of the patients respectively. The lowest number of patients is in the most severe category 

(category 1) with 1 %. 
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Table 2 

Patient categories and recommended response times 

Australasian Triage Scale (ATS) Category Recommended Response Time 

Category 1 Immediate 

Category 2 10 minutes 

Category 3 30 minutes 

Category 4 60 minutes 

Category 5 120 minutes 

 

 

Fig. 9. Percentage of patients’ arrival for ATS categories 

Table 3 shows the percentage of patients who arrive during the four shifts: day shift from 8am to 1pm, 

afternoon shift from 1pm to 6pm, evening shift from 6pm to 11pm, and night shift from 11pm to 8am. It 

can be seen in Table 3 that most of the patients arrived during the day shift. To test the effectiveness of 

the proposed BPF heuristic algorithm, several benchmark algorithms were also implemented. The first 

is a FCFS policy, in which patients are treated in the order of their arrival. The second benchmark is the 

shortest processing time (SPT) algorithm, where patients with the shortest (estimated) treatment time are 

scheduled first. The SPT and BPF algorithms use the treatment time in scheduling patients. In this study, 

two cases are considered: 1) the perfect knowledge case, where the actual treatment time of the patient 

is known at scheduling time; and 2) where the historical mean treatment time of the disease category is 

used for scheduling. The first case gives an indication of the maximum possible improvement for each 

method, while the second case simulates the more realistic scenario that the real treatment time is 

unknown during scheduling. Table 4 presents a comparative study using the simulation model with 

different heuristic algorithms. BPFATT denotes the BPF heuristic algorithm using the actual treatment 

times for each patient, while BPFMTT denotes the case where BPF is used with the mean historical 

treatment times for patients in the identified disease category. Similarly, the SPT algorithm, using mean 

processing times, is denoted as SPTMTT. Each heuristic algorithm was run using 50 simulations over three 

months of operation of the hospital with the same resources (beds, doctors, etc.). Since FCFS is the 

existing policy of the hospital, it is used to evaluate the effectiveness of the other heuristics. The total 

waiting time of all patients was found to be 692251.02, 609056.47, 627600.00 and 633575.92 minutes 

for the FCFS, BPFATT, BPFMTT and SPTMTT approaches respectively with improvement of 15652.98, 

98847.53, 80304.00 and 74328.08 minutes in comparison to the current practice (707904.00 minutes 

1%

13%

42%

33%

11%

Percentage of patients’ arrival at ED for each ATS category

Category 1 Category 2 Category 3 Category 4 Category 5
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during the three-month period for 18,345 patients). The average LOS was found to be 166.27, 161.79, 

162.68 and 163.17 minutes for the FCFS, BPFATT, BPFMTT and SPTMTT approaches respectively. 

Table 3 

Percentage of patients’ arrival for three shifts 

Shift name Start time Finish time 
Number of 

patients 

Percentage of arrivals for 

each shift hourly 

Percentage of total 

arrivals hourly 
Day 8:00am 9:00am 806 14.99% 4.39% 
Day 9:00am 10:00am 1098 20.42% 5.99% 
Day 10:00am 11:00am 1202 22.35% 6.55% 
Day 11:00am 12:00pm 1198 22.28% 6.53% 
Day 12:00pm 1:00pm 1074 19.97% 5.85% 

Afternoon 1:00pm 2:00pm 1100 21.48% 6.00% 
Afternoon 2:00pm 3:00pm 1083 21.14% 5.90% 
Afternoon 3:00pm 4:00pm 1037 20.25% 5.65% 
Afternoon 4:00pm 5:00pm 946 18.47% 5.16% 
Afternoon 5:00pm 6:00pm 956 18.66% 5.21% 
Evening 6:00pm 7:00pm 958 22.80% 5.22% 
Evening 7:00pm 8:00pm 910 21.66% 4.96% 
Evening 8:00pm 9:00pm 876 20.85% 4.78% 
Evening 9:00pm 10:00pm 771 18.35% 4.20% 
Evening 10:00pm 11:00pm 686 16.33% 3.74% 

Night 11:00pm 12:00am 591 16.22% 3.22% 
Night 12:00am 1:00am 502 13.78% 2.74% 
Night 1:00am 2:00 am 422 11.58% 2.30% 
Night 2:00am 3:00am 389 10.68% 2.12% 
Night 3:00am 4:00am 329 9.03% 1.79% 
Night 4:00am 5:00am 280 7.68% 1.53% 
Night 5:00am 6:00am 281 7.71% 1.53% 
Night 6:00am 7:00am 327 8.97% 1.78% 
Night 7:00am 8:00am 523 14.35% 2.85% 

 

As shown in Table 4, waiting time performance, bed utilisation and doctor utilisation improved by using 

the BPFATT, BPFMTT and SPTMTT algorithms, where three bed types and three doctor types per shift day 

were assessed according to their utilisation. Generally, BPFATT gave better results using several 

performance criteria, compared with other techniques, and BPFATT has a significant improvement 

compared with FCFS. Based on the ATS categories, the main improvements occurred in category 4 and 

category 5, with more than 14 % and 25 % respectively, by using the BPFATT algorithm to optimise 

waiting time performance. There was a slight improvement in categories 1, 2 and 3. Conversely, based 

on the bed type and doctor type for each shift, the improvement in utilisation was less than 1 %. By 

comparing the algorithms of BPFATT and BPFMTT values, the improvement was significant if the BPFMTT 

value was close to the BPFATT. Table 4 also shows that the total waiting time for all patients in the system 

improved by 83194.55 minutes when using the BPFATT algorithm during the three-month time window 

(up to 12.02 % on efficiency improvement). However, when using the BPFMTT and SPTMTT algorithms, 

the total waiting time for all patients in the system improved by 64651.02 minutes and 58675.1 minutes 

respectively, during the three-month time window (up to 9.34 % and 8.48 % respectively on efficiency 

improvement). Table 4 shows that the average LOS in the system improved by 4.48 minutes when using 

the BPFATT algorithm during the three-month time window (up to 2.69 % on efficiency improvement). 

However, when using the BPFMTT and SPTMTT algorithms, the average LOS in the system improved by 

3.59 minutes and 3.1 minutes respectively during the three-month time window (up to 2.16 % and 1.86 

% respectively on efficiency improvement). All statistical analyses were set at a significance level of p 

< 0.05 by using Welch’s two sample t-test. These results show that there is a significant difference in 

calculating the mean for each algorithm. Fig. 10(a) and Fig. 10(b) below show a small example of patient 

scheduling: 52 patients and 27 Acute beds in the three-month treatment period using FCFS and BPF. The 

total waiting time for 52 patients has been calculated for both algorithms considering the bed blocking 

time. The total waiting time and average LOS for 52 patients have been reduced from 1458.1 minutes to 

1140.85 minutes and from 189.95 minutes to 183.84 minutes respectively by using FCFS and BPF 

respectively. 
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Fig. 10(a). Patient scheduling using FCFS 

Fig. 10(b). Patient scheduling using BPF 

5. Conclusion 

This paper has developed a new BPF heuristic algorithm to improve the overall efficiency and 

effectiveness of the ED under limited budget and resource capacity. A simulation approach is developed 

Total Waiting Time 1140.85 

Average LOS 183.84 

Fig. 10. Patient waiting time and bed blocking time using FCFS and BPF 

Total Waiting Time 1458.10 

Average LOS 189.95 
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to deal with the uncertainties by defining stochastic variables, such as patient interarrival times and 

treatment times in the ED system. Based on the real-world data collected from the RBWH, extensive 

computational experiments show that the proposed approach results in an average improvement in the 

total waiting time performance of 12.02 % by using BPFATT, 9.34 % by using BPFMTT, and 8.48 % by 

using SPTMTT. Furthermore, the proposed approach results in an average improvement in the average 

LOS in the system performance of 2.69 % by using BPFATT, 2.16 % by using BPFMTT, and 1.86 % by 

using SPTMTT. By using the proposed BPF heuristic algorithm for a real-world case study, the patient 

queue length can be significantly reduced during the three-month time window. Three bed types are 

investigated in this paper, and their improvement rates are calculated and compared using the FCFS, 

BPFATT, BPFMTT and SPTMTT algorithm. The improvement rate for the utilisation of the three types of 

bed is 0.65 % on average by using BPFATT, 0.48 % on average by using BPFMTT, and 0.19 % on average 

by using SPTMTT. In summary, the proposed BPF heuristic algorithm is promising for real-world 

application to improve efficiency in the ED. 
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Appendix A 

Percentage of ATS categories for each type of disease 
Disease 

number 
Diseases name Category 1 Category 2 Category 3 Category 4 Category 5 

1 CARDIOVASCULAR 0.024 0.4202 0.4099 0.1397 0.0062 

2 DERMATOLOGY 0 0.0221 0.3122 0.4641 0.2016 

3 ENDOCRINE 0.0465 0.1744 0.593 0.1628 0.0233 

4 ENT & MOUTH 0.0041 0.0343 0.3677 0.4554 0.1385 

5 
ENVIRONMENTAL 

CONDITIONS 
0.0126 0.2363 0.3418 0.308 0.1013 

6 GASTROINTESTINAL 0.0006 0.0461 0.624 0.3098 0.0195 

7 HAEMATOLOGY 0 0.1575 0.5827 0.2362 0.0236 

8 
IATROGENIC 

CONDITIONS 
0.0033 0.0396 0.4258 0.3333 0.198 

9 IMMUNOLOGICAL 0 0.25 0.625 0.125 0 

10 INFECTIOUS 0.0008 0.0587 0.4199 0.4116 0.109 

11 
METABOLIC 

DISORDERS 
0 0.1308 0.5047 0.3271 0.0374 

12 
MISCELLANEOUS 

CONDITIONS 
0 0.0369 0.2435 0.2657 0.4539 

13 NEOPLASIA 0.0202 0.0909 0.6061 0.2424 0.0404 

14 NEUROLOGICAL 0.0266 0.142 0.572 0.2426 0.0168 

15 OBSTETRIC & GYNAE 0 0.0411 0.6628 0.2805 0.0156 

16 OPHTHALMOLOGY 0 0.1111 0.4294 0.3604 0.0991 

17 
ORTHOPAEDIC 

CONDITIONS 
0 0.029 0.2586 0.5198 0.1926 

18 
PAEDIATRIC 

CONDITIONS 
0.0067 0.06 0.6466 0.26 0.0267 

19 PSYCHIATRIC 0.0019 0.2911 0.3801 0.1977 0.1292 

20 RENAL 0 0.0595 0.7263 0.2063 0.0079 

21 RESPIRATORY 0.0184 0.1868 0.5789 0.1948 0.0211 

22 
SYMPTOM CODES - NO 

DIAGNOSIS 
0 0.0588 0.6163 0.3008 0.0241 

23 TOXICOLOGY 0.0099 0.1533 0.2955 0.2591 0.2822 

24 TRAUMA 0.012 0.1102 0.3067 0.4625 0.1086 

25 UROLOGY 0.0048 0.0666 0.5381 0.3476 0.0429 

26 Unknown Diagnostic 0 0.0248 0.2837 0.3857 0.3058 
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Appendix B 

Interarrival and treatment times’ distribution for each type of disease 
Disease number Diseases name Treatment time distribution Day shift Interarrival time distribution 

1 CARDIOVASCULAR Weibull,0.,1.47709,186.092 

Day Weibull,0.,1.03,52.4 

Afternoon Pearson Type 6,0.,187,1.2,4.59 

Evening Pearson Type 6,0.,111,1.38,2.48 

Night Exponential,0.,146 

2 DERMATOLOGY Gamma,0.,66.,1.8 

Day Pearson Type 6,0.,1.67e+003,0.932,5.93 

Afternoon Johnson SB,0.,2.95e+003,1.47,0.589 

Evening Beta,0.,1.5e+004,1.39,40.4 

Night Gamma,0.,366,1.29 

3 ENDOCRINE LogLogistic,0.,2.44,144 

Day Pearson Type 6,0.,1.08e+004,0.934,8.01 

Afternoon Erlang,0.,1.6e+003,1. 

Evening Weibull,0.,1.08,1.68e+003 

Night Pearson Type 6,0.,3.54e+003,1.35,3.96 

4 ENT & MOUTH Pearson Type 6,0.,580,2.03,11.4 

Day Pearson Type 6,0.,363,1.24,4.5 

Afternoon Weibull,0.,0.943,158 

Evening Weibull,0.,0.885,196 

Night Beta,0.,1.25e+003,1.09,4.6 

5 ENVIRONMENTAL CONDITIONS Pearson Type 6,0.,354,2.44,9.48 

Day Pearson Type 6,0.,2.33e+003,0.977,5.49 

Afternoon LogLogistic,0.,1.29,263 

Evening Exponential,0.,624 

Night Weibull,0.,1.3,699 

6 GASTROINTESTINAL Weibull,0.,1.49553,185.752 

Day Exponential,0.,59.1 

Afternoon Weibull,0.,1.01,66.7 

Evening Pearson Type 6,0.,197,1.15,3.63 

Night Beta,0.,979,0.944,6.25 

7 HAEMATOLOGY Erlang,0.,161,2. 

Day Weibull,0.,0.813,757 

Afternoon Gamma,0.,1.19e+003,0.842 

Evening Weibull,0.,1.11,1.31e+003 

Night Pearson Type 6,0.,6.98e+003,1.29,10. 

8 IATROGENIC CONDITIONS Gamma,0.,92.7,1.4 

Day Pearson Type 6,0.,450,1.11,2.74 

Afternoon Johnson SB,0.,3.37e+003,1.66,0.604 

Evening Beta,0.,3.32e+003,0.993,5.43 

Night Weibull,0.,1.17,461 

9 IMMUNOLOGICAL LogLogistic,0.,2.29,126 

Day Johnson SB,0.,3.09e+004,0.776,0.442 

Afternoon Weibull,0.,0.866,7.27e+003 

Evening LogNormal,0.,8.25e+003,1.24e+004 

Night Exponential,0.,1.04e+004 

10 INFECTIOUS Weibull,0.,1.36123,158.903 

Day Exponential,0.,79.6 

Afternoon Weibull,0.,0.966,79.2 

Evening Pearson Type 6,0.,171,1.08,2.34 

Night Beta,0.,900,0.912,3.26 

11 METABOLIC DISORDERS LogLogistic,0.,2.67,154 

Day Pearson Type 6,0.,2.29e+004,0.751,19.2 

Afternoon Beta,0.,7.85e+003,0.932,4.55 

Evening Erlang,0.,1.5e+003,1. 

Night Pearson Type 6,0.,2.66e+003,1.29,3.52 

12 MISCELLANEOUS CONDITIONS Gamma,0.,82.,1.11 

Day Weibull,0.,0.927,177 

Afternoon Pearson Type 6,0.,409,1.09,3.26 

Evening Johnson SB,0.,3.29e+003,2.08,0.654 

Night Beta,0.,2.36e+003,1.01,6.71 

13 NEOPLASIA Beta,0.,1.32e+003,1.01,7.26 

Day Weibull,0.,0.79,917 

Afternoon Beta,0.,9.12e+003,0.767,5.26 

Evening Pearson Type 6,0.,9.82e+003,1.45,10.9 

Night LogNormal,0.,1.67e+003,2.69e+003 

14 NEUROLOGICAL Weibull,0.,1.41333,194.951 

Day Weibull,0.,1.02,76.9 

Afternoon Pearson Type 6,0.,187,1.25,3.45 

Evening LogNormal,0.,205,464 

Night Beta,0.,999,1.01,3.74 

15 OBSTETRIC & GYNAE Beta,0.,1.01e+003,1.63,10. 

Day Pearson Type 6,0.,667,1.14,7.07 

Afternoon Pearson Type 6,0.,419,1.08,3.99 

Evening Johnson SB,0.,1.4e+003,1.36,0.613 

Night Beta,0.,1.62e+003,1.21,5.82 

16 OPHTHALMOLOGY Beta,0.,1.37e+003,1.25,15.8 

Day Pearson Type 6,0.,200,1.05,2.1 

Afternoon Pearson Type 6,0.,363,0.983,2.21 

Evening Beta,0.,4.13e+003,0.704,4.83 

Night Beta,0.,2.68e+003,0.899,3.56 

17 ORTHOPAEDIC CONDITIONS Gamma,0.,66.7,1.91 

Day Pearson Type 6,0.,430,1.04,2.73 

Afternoon Johnson SB,0.,6.22e+003,2.41,0.681 

Evening Beta,0.,2.37e+003,0.794,3.43 

Night Gamma,0.,249,1.44 
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Interarrival and treatment times’ distribution for each type of disease (Continued)  

18 PAEDIATRIC CONDITIONS Beta,0.,1.18e+003,1.78,10.6 

Day Pearson Type 6,0.,919,1.03,2.78 

Afternoon LogNormal,0.,629,1.39e+003 

Evening Gamma,0.,746,0.884 

Night Weibull,0.,1.12,623 

19 PSYCHIATRIC Weibull,0.,0.773505,93.5974 

Day Weibull,0.,1.05,61.9 

Afternoon Pearson Type 6,0.,154,1.38,5. 

Evening Pearson Type 6,0.,149,1.25,3.31 

Night Erlang,0.,134,1. 

20 RENAL Beta,0.,2.05e+003,1.37,14.3 

Day Weibull,0.,0.893,475 

Afternoon Gamma,0.,703,0.848 

Evening Beta,0.,5.71e+003,0.872,6.53 

Night Pearson Type 6,0.,5.45e+003,1.43,14.6 

21 RESPIRATORY Beta,0.,2.69e+003,1.34,17.5 

Day Weibull,0.,0.932,192 

Afternoon Pearson Type 6,0.,507,1.14,3.37 

Evening Gamma,0.,369,0.856 

Night Beta,0.,1.72e+003,1.1,4.66 

22 SYMPTOM CODES - NO DIAGNOSIS Beta,0.,1.65e+003,2.04,17.5 

Day Pearson Type 6,0.,894,1.14,8.17 

Afternoon Pearson Type 6,0.,390,1.1,3.48 

Evening Johnson SB,0.,1.87e+003,1.68,0.644 

Night Beta,0.,2.18e+003,1.14,7.57 

23 TOXICOLOGY Beta,0.,1.47e+003,1.42,11.7 

Day Pearson Type 6,0.,386,1.12,4.44 

Afternoon Weibull,0.,0.946,161 

Evening Pearson Type 6,0.,456,1.18,4.31 

Night Weibull,0.,0.863,123 

24 TRAUMA Weibull,0.,1.40701,148.824 

Day Weibull,0.,1.0335,20.4038 

Afternoon Weibull,0.,1.02083,21.6583 

Evening Weibull,0.,0.945456,26.1579 

Night Beta,0.,827,0.847,11.4 

25 UROLOGY Beta,0.,1.21e+003,1.76,11.9 

Day Johnson SB,0.,4.1e+003,1.82,0.696 

Afternoon Beta,0.,5.29e+003,0.654,4.61 

Evening Beta,0.,4.76e+003,0.923,5.35 

Night Gamma,0.,460,1.28 

26 Unknown Diagnostic Gamma,0.,64.1,1.17 

Day Pearson Type 6,0.,675,1.13,3.2 

Afternoon Pearson Type 6,0.,436,1.05,2.51 

Evening LogNormal,0.,404,1.21e+003 

Night Gamma,0.,573,0.744 
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