A Heuristic Approach for Solving Minimum Routing Cost Spanning Tree Problem

Quoc Phan Tan

Abstract

Minimum routing cost spanning tree - MRCT is one of spanning tree optimization problems having many applications in network design. In general cases, the problem is proved as NP-hard. This paper is going to propose 2 heuristic-based algorithms used for MRCT. The general idea of those algorithms is to start at a spanning tree and step by step improve edges to obtain better spanning tree. We conducted experiment implemetations for these proposals and obtained better result than the result of current approximate algorithms.

Index Terms-Routing cost spanning tree, heuristic algorithm, gradually edge-removal algorithm, gradually edgereplacement algorithm.

I. Minimum Routing-Cost Spanning Tree Problem

In this section, we are going to represent some main terms related to MRCT problem, traditional approachs and their drawbacks.

Given $G=(V, E, w)$ is an undirected connected graph having non-negative edge weights (costs); in which V is the node set, E is the edge set, w is the cost matrix. Suppose T is a spanning tree in G, the routing cost of T, denoted by $C(T)$, is the total routing costs of all vertex pairs in T, in which the routing cost of a vertex pair (u, v) in T, denoted by $d_{T}(u, v)$, is the sum over edge costs on the path connecting vertex u and vertex v in T. So, by definitions, we have:

$$
\begin{equation*}
C(T)=\sum_{u, v \in V} d_{T}(u, v) \tag{1}
\end{equation*}
$$

The problem requirement is to to find the one having minimum routing cost among all possible spanning trees in $G[3]$.

Computing spanning tree routing cost of the one having n nodes in MRCT problems by definition occupies $O\left(n^{2}\right)$ time. However, by the definition of "routing load" below we could compute spanning tree routing cost within linear time.

Given a spanning tree T having edge set $\mathrm{E}(\mathrm{T})$. If remove an edge e from T, T is then separated into 2 -subtrees of T_{1} and T_{2} having the node set of $V\left(T_{1}\right)$ và $V\left(T_{2}\right)$ respectively. Routing load of e is defined as follows: $l(T, e)=2\left|V\left(T_{1}\right)\right| .\left|V\left(T_{2}\right)\right|$. The formula (1) is then equivalent to formula (2) as follows:

$$
\begin{equation*}
C(T)=\sum_{e \in E(T)} l(T, e) \cdot w(e) \tag{2}
\end{equation*}
$$

The MRCT problem is proved to be of NP-hard class. Edge weights and spanning tree topology are two factors affecting on spanning tree routing cost. The spanning tree

[^0]topology affects highly on the graphs in which the bias of edge weights is not too high.

Constructing a minimum routing cost spanning tree is equivalent to constructing a spanning tree so that the average length of vertex pairs is at least. The problem plays important role in applications of network system building. Specifically, peer to peer network is an example in which the ability of data transfer and all node priorities are equal (the problems origin and its applications are available in [1][3])

Example 1: Given a spanning tree as Fig. 1

Fig. 1. This spanning tree has spanning cost value of 196
According to formula (1), we have:
$\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{1}, \mathrm{v}_{3}\right)+\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{1}, \mathrm{v}_{4}\right)+\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{1}, \mathrm{v}_{5}\right)+\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+$ $\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{2}, \mathrm{v}_{4}\right)+\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{2}, \mathrm{v}_{5}\right)+\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right)+\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{3}, \mathrm{v}_{5}\right)+\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{4}, \mathrm{v}_{5}\right)=98$.

Since $d_{T}\left(v_{i}, v_{j}\right)=d_{T}\left(v_{j}, v_{i}\right)$, so $C(T)=98 \times 2=196$.

II. Appoximation Approachs Used for Mrct Problems

The first is Wong algorithm proposed by Richard Wong in 1980, Wong algorithm has 2-approximation and occupies $\mathrm{O}\left(\mathrm{nm}+\mathrm{n}^{2} \log \mathrm{n}\right)$. Wong algorithm uses the concept of shortest path tree- SPT starting each vertex and visiting to the others. The main idea of Wong algorithm is to find SPTs having the root starting at each vertex, then select the SPT having at least cost among found SPTs. This algorithm used to establish initial solutions for metaheuristic-based algorithm in solving MRCT problem [1].

The second is an algorithm based on the idea of General Start proposed by author group of Bang Ye Wu and Kun-Mao Chao [3]; this algorithm has 3/2 approximation and occupies $\mathrm{O}\left(\mathrm{n}^{4}\right)$. The author group also proposed Polynomial Time Approximation Scheme - PTAS enabling us to find out a spanning tree having routing cost approximate within $1+\mathrm{e}$ times of the best spanning tree routing cost, where is e is desired quality. The algorithm occupies $O\left(n^{2\left[2 / \varepsilon / l^{-2}\right.}\right)$

The third is Add algorithm proposed by Vic Grout in 2005. Add algorithm occupies $\mathrm{O}(\mathrm{n} \log \mathrm{n})$. Add algorithm considers vertex degree as primary condition to construct spanning tree, instead edge weights. Add algorithm says: Find the vertex v
having the most numbers of unvisited vertices incident to v , then insert all edges incident to v into T so that T has no cycle inside, this process repeats until all vertices in graph have been inserted into T . The algorithm commonly used in homogeneous-graph and nonhomogeneous graph (from here, we call it as uniformed distribution graph i.e. a kind of graph having insignificant bias of edge weights [4].

The fourth is Campos algorithm proposed by the author group of Rui Campos and Manual Ricardo in 2008; the algorithm has 2-approximation and occupies $\mathrm{O}(\mathrm{m}+\mathrm{n} \log \mathrm{n})$.

This is also considered as the fastest 2-approximation algorithm in present; Campos algorithm combines the ideas of Add, Prim, Dijstrak based Prim algorithm [6].

It says possibly: above approximation algorithms could not find out highly exact solutions but it has advantage of time cost and ensuring solution quality when applied into MRCT problem.

III. Heuristic Approach for MRCT Problem

In this section, we are proposing 2-heuristic algorithms to solve MRCT problem.

A. Gradually Edge-Replacement (H1)

The idea of edge-replacement makes use of Prims or Kruskal algorithms to find the minimum spanning tree of graph, then replace gradually each edge of spanning tree with a better edge.

Step 1:Find a minimum spanning tree T in G .
Step 2:Insert respectively edge e in the edge set of E-T into T , certainly $\mathrm{T} \cup \mathrm{e}$ will form a cycle, in this new cycle, we find the best edge e ' so that $\mathrm{T}-\mathrm{e} \cup \mathrm{e}$ ' has better cost than the cost of T ; if there exists edge e , then replace T with $\mathrm{T} \cup \mathrm{e}-\mathrm{e}$ '.

Repeat step 2 until in a loop there is no edge replacement could be done in the spanning tree.

Example 2: Given a graph G as Fig.2:

Fig. 2. The obtained spanning tree has the routing cost value of 250 following Edge-Replacement algorithm.

If we apply Edge-Replacement algorithm into fig.3, the first obtained minimum spanning tree have the set of edges $\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{v}_{3}, \mathrm{v}_{5}\right),\left(\mathrm{v}_{4}, \mathrm{v}_{6}\right),\left(\mathrm{v}_{5}, \mathrm{v}_{6}\right)\right\}$. Apply each step of Edge-Replacement algorithm: When replace the first 4-edges $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{v}_{2}, \mathrm{v}_{4}\right)$ in T , we also obtain a spanning tree having a routing-cost value of 266 ; When we replace $5^{\text {th }}$-edge $\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right)$ with edge $\left(\mathrm{v}_{5}, \mathrm{v}_{6}\right)$, and we then obtained the routing-cost value of 250 . This is just the desired spanning tree.

B. Gradually Edge-Removal (H2)

Step 1:Find the best SPT by Wong algorithm among all possible SPTs in G:

Step 2: Remove gradually each e of T; with each e find the best e^{\prime} within $\mathrm{E}-\{\mathrm{e}\}$, suppose $\mathrm{T}^{\prime}=\mathrm{T}-\mathrm{e}+\mathrm{e}^{\prime}$. If T^{\prime} better than T then replace $\mathrm{T}=\mathrm{T}$ '.

Repeat step 2 until in a loop there is no edge removal could be done in the spanning tree.

IV. EXPERIMENTS

This section is going to compare experimental results of proposed algorithms against Wong, ADD, CAMPOS.

A. Experimental System

All proposed algorithms were implemented in C++ under DEV CPP compiler on the computer powered by a 2.26 Ghz processor and 4 GB RAM.

We first conducted experiments on general graphs, took the obtained results into consideration on some special graphs such as homogeneous graphs, graphs with uniform edge distribution and graphs with non-uniform edge distribution.

Experiment data were generated randomly. The graph size we used in experiments has the number of nodes in range [20..200] and the number of edges in range [50..2400]. The routing costs obtained by the algorithms in experimental table are displayed as $1 / 2$ of the value obtained from the formula (2).

B. General Graph

Generating general graph

General graphs $G=(V, E, w)$ were generated as follows: we first constructed randomly a spanning tree of $n=|V|$ nodes and $n-1$ edges then inserted randomly other $m-(n-1)$ valid edge; all edge weights of graphs are random integers in range [1..2500].

TABLE I A: GENERAL GRAPH

Test	WONG	ADD	CAMPOS	H1	H2
1	3408	5358	3725	3416	3408
2	8760	15670	8569	8552	8552
3	29915	51472	30063	29799	29799
4	14784	41531	15026	14784	14784
5	40242	101790	47270	39945	39945
6	185248	429124	254654	182349	182349
7	1145919	4350050	1420996	1128132	1128132
8	3178505	11375802	3765028	3099462	3099462
9	3374998	17056890	3865164	3360491	3357145
10	5485453	23448926	6303738	5704751	5474075
11	1384422	7064096	1483611	1372739	1372739
12	2964078	16402988	3611100	2934906	2957986
13	5311194	19142486	5903426	5214430	5214430
14	6605587	27951407	8284471	6567690	6567690
15	1908398	6901936	2336558	1923726	1881204

When comparing H_{1} and H_{2} over against WONG, ADD, CAMPOS through 15 general graph tests, we obtained result as Table I B.

TABLE I B: EXPERIMENTAL RESULTS

H1	WONG		ADD		CAMPOS	
	Quantity	$\%$	Quantity	$\%$	Quantity	$\%$
Better	73	15	100	15	100	73
Equivalent	7	0	0	0	0	7
Worse	20	0	0	0	0	20
H2	Quantity	$\%$	Quantity	$\%$	Quantity	$\%$
Better	13	87	15	100	15	100
Equivalent	2	13	0	0	0	0
Worse	0	0	0	0	0	0

C. Homogeneous Graph

Generating homogeneous graph

Homogeneous graphs were generated as follows: we first chose a random value as a homogeneous value for edges, suppose $\Delta \in[1 . .2500]$. Then constructed a random spanning tree of $n=|V|$ nodes and $n-1$ edges, and finally inserted randomly other $m-(n-1)$ valid edges. All edges in G were attached with a positive value $\Delta \pm \mu$ in which μ is a small integer.

TABLE II A: HOMOGENEOUS GRAPH

TABLE II A: HOMOGENEOUS GRAPH						
Test	WONG	ADD	CAMPOS	H1	H2	
16	72818	74094	106012	71642	71714	
17	98150	102307	131853	96971	96758	
18	144751	148596	189264	159118	143076	
19	342910	341099	433157	352204	335517	
20	474658	566614	590918	471100	466340	
21	560523	564263	698049	560838	548735	
22	520997	549681	636465	545616	508497	
23	117392	117676	158210	128354	115736	
24	329528	340386	405366	338660	323524	
25	6461300	7127108	7133250	6603778	6372566	
26	3183150	3369136	3813918	3237188	3107894	
27	1345428	1393342	1774572	1393770	1315424	
28	2242772	2414476	2699136	2219240	2207774	
29	879674	885659	1268719	867713	869739	
30	2952464	2929879	3782156	3205149	2914822	

When comparing H_{1} and H_{2} over against WONG, ADD, CAMPOS through 15 tests of general graphs, we obtained result as Table II B.

TABLE II B: EXPERIMENTAL RESULTS						
H1	WONG		ADD		CAMPOS	
	Quantity	$\%$	Quantity	$\%$	Quantity	$\%$
Better	5	33	10	67	15	100
Equivalent	0	0	0	0	0	0
Worse	10	67	5	33	0	0
H2	Quantity	$\%$	Quantity	$\%$	Quantity	$\%$
Better	15	100	15	100	15	100
Equivalent	0	0	0	0	0	0
Worse	0	0	0	0	0	0

D. Edge Distribution Factor

Generating graphs under edge distribution

Graphs with uniform edge distribution are the graphs in which node degrees are equivalent or insignificant difference.

Graphs with uniform edge distribution we used were generated as follows: we first determined a parameter $r=2 \times$ $[\mathrm{m} / \mathrm{n}]+1$ called as the average number of edges of a node then constructed randomly a spanning tree of $n=|V|$ and $n-1$ edges so that all node degrees did not exceed r , we next
inserted randomly other $m-(n-1)$ valid edges and assured that every node degree did not exceed r, edge weights in the graph were generated randomly in range [1..2500].

TABLE III A: Edge Distribution Factor

Test	WONG	ADD	CAMPOS	H1	H2
31	166232	441740	174190	165052	165052
32	242436	1110048	262110	242708	241096
33	552034	2330760	658246	547204	547204
34	754534	5906702	852214	751180	751180
35	1591536	11757760	2015229	1586588	1586588
36	1931829	14010963	2036603	1921256	1921256
37	193600	1386026	242028	193492	193492
38	7111108	36043876	7705378	7068811	7087501
39	2308062	10356986	2735218	2297704	2297704
40	5640618	19951434	7332050	5632972	5632972
41	935328	3294241	1271022	935328	935328
42	2259932	8717570	2813048	2243368	2246560
43	1408134	5740514	1472156	1408134	1408134
44	3157851	12159738	3625373	3147656	3147656
45	660361	3617234	790670	659906	654767

When comparing H_{1} and H_{2} over against WONG, ADD, CAMPOS through 15 tests of graphs under edge distribution, we obtained result as Table III B.

TABLE III B: EXPERIMENTAL RESULTS

H1	WONG		ADD		CAMPOS	
	Quantity	$\%$	Quantity	$\%$	Quantity	$\%$
Better	12	80	15	100	15	100
Equivalent	2	13	0	0	0	0
Worse	1	7	0	0	0	0
H2	Quantity	$\%$	Quantity	$\%$	Quantity	$\%$
Better	13	87	15	100	15	100
Equivalent	2	13	0	0	0	0
Worse	0	0	0	0	0	0

E. Non-Uniform Edge Distribution

Generating graph under non-uniform edge distribution

Graphs with non-uniform edge distribution $G=(V, E, w)$ were generated as follows: we first selected random k nodes ($[n / 2]+1 \leq k \leq n-1$) then assigned each node an integer r $\in\{1,2\}$ indicates that node degrees cannot be bigger than r; we next constructed a spanning tree and its edges as we did in general graphs. Note that in the case of not being able to construct enough m edges, we would repeat the process (this kind of graph is named as asymmetric graph).

TABLE IV A: NON-UNIFORM EDGE DISTRIBUTION

Test	WONG	ADD	CAMPOS	H1	H2
46	2381866	3403130	2636460	2360598	2360598
47	3683138	6418194	3911224	3667189	3667189
48	199826	388175	206870	195836	195836
49	291837	518199	329238	291457	291457
50	1264912	1843978	1276668	1253872	1252822
51	2606062	4779404	2761861	2603768	2603768
52	1544662	3076550	1729774	1540650	1540650
53	553184	942300	619302	552906	552906
54	1572986	2884650	1684184	1571468	1571468
55	2338095	3819570	2463925	2323776	2323865
56	713830	1193228	822416	706892	706892
57	515746	1029195	565535	506533	506533
58	203599	485323	219841	203599	203599
59	942060	1674603	1023093	939226	939226
60	295842	552842	327948	293685	294642

When comparing H_{1} and H_{2} over against WONG, ADD, CAMPOS through 15 test of graphs under non-uniform distribution, we obtained result as Table IV B.

TABLE IV B: EXPERIMENTAL RESULTS

TABLE IV B: EXPERIMENTAL RESULTS						
H 1	WONG		ADD		CAMPOS	
	Quantity	$\%$	Quantity	$\%$	Quantity	$\%$
Better	14	93	15	100	15	100
Equivalent	1	7	0	0	0	0
Worse	0	0	0	0	0	0
H2	Quantity	$\%$	Quantity	$\%$	Quantity	$\%$
Better	14	93	15	100	15	14
Equivalent	1	7	0	0	0	1
Worse	0	0	0	0	0	0

F. Summarized Table

When comparing H_{1} and H_{2} over against WONG, ADD, CAMPOS through 60 tests in total, we obtained result as Table V.

TABLE V: SUMMARIZED IN GRAPHS (60 TEST)

AABLE V: SUMMARIZED IN GRAPHS (60 TEST)						
H1	WONG		ADD		CAMPOS	
	Quantity	$\%$	Quantity	$\%$	Quantity	$\%$
Better	42	70	55	92	60	100
Equivalent	4	7	0	0	0	0
Worse	14	23	5	8	0	0
H2	Quantity	$\%$	Quantity	$\%$	Quantity	$\%$
Better	55	92	60	100	60	100
Equivalent	5	8	0	0	0	0
Worse	0	0	0	0	0	0

V. Conclusion and Future Works

We have proposed 2 heuristic-based algorithms to solve MRCT problem, we have also compared the results of these algorithm with the results of algorithms WONG, ADD, CAMPOS and the obtained results are possitive.

We are now studying metaheuristic-based algorithms for MRCT problem, and the idea of improving a spanning tree step by step (neighbor exploring) like above 2 algorithms would be main idea of metaheuristic-based.

References

[1] R. Wong, Worst-case analysis of network design problem heuristics, SIAM J. Algebra. Discr, 1:51-63, 1980.
[2] Alan W Johnson, Generalized Hill Climbing Algorithms For Discreter Optimization Problems, 1996.
[3] Bang Ye Wu, Kun-Mao Chao, Spanning Trees and Optimization Problems, Chapman\&Hall/CRC, 2004, 13-139.
[4] V. Grout, Principles of cost minimization in wireless networks, Journal of Heuristics 11 (2005), 115-133.
[5] Lin Lin, Mitsuo Gen, Node-Based Genetic Algorithm for Communication Spanning Tree Problem, IEICE TRANS. COMMUN, vol.E89-B, no. 4 APRIL 2006, 1091-1098.
[6] Rui Campos, Manuel Ricardo A fast Algorithm for Computing Minimum Routing Cost Spanning Trees, Computer Networks, vol. 52, Issue 17, 2008, 3229-3247.

[^0]: Manuscript received May 27, 2012; revised June 15, 2012.
 Quoc Phan Tan is with Department of Information Technology of Saigon University, Ho Chi Minh city, Vietnam (email: phantanquoc@gmail.com).

