
  

  
Abstract—Minimum routing cost spanning tree - MRCT is 

one of spanning tree optimization problems having many 

applications in network design. In general cases, the problem is 

proved as NP-hard. This paper is going to propose 2 

heuristic-based algorithms used for MRCT. The general idea of 

those algorithms is to  start at a spanning tree and step by step 

improve edges to obtain better spanning tree. We conducted 

experiment implemetations for these proposals and obtained 

better result than the result of current approximate algorithms. 

 
Index Terms—Routing cost spanning tree, heuristic 

algorithm, gradually edge-removal algorithm, gradually edge- 

replacement algorithm. 

 

I. MINIMUM ROUTING-COST SPANNING TREE PROBLEM 

In this section, we are going to represent some main terms 

related to MRCT problem, traditional approachs and their 

drawbacks. 

Given G = (V,E,w) is an undirected connected graph 

having non-negative edge weights (costs); in which V is the 

node set, E is the edge set, w is the cost matrix. Suppose T is a 

spanning tree in G, the routing cost of T, denoted by C(T), is 

the total routing costs of all vertex pairs in T, in which the 

routing cost of a vertex pair (u,v) in T, denoted by dT(u,v), is 

the sum over edge costs on the path connecting vertex u and 

vertex v in T. So, by definitions, we have: 
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The problem requirement is to to find the one having 

minimum routing cost among all possible spanning trees in 

G[3]. 

Computing spanning tree routing cost of the one having n 

nodes in MRCT problems by definition occupies O(n2) time. 

However, by the definition of “routing load” below we could 

compute spanning tree routing cost within linear time. 

Given a spanning tree T having edge set E(T). If remove an 

edge e from T, T is then separated into 2-subtrees of T1 and T2 

having the node set of V(T1) và V(T2) respectively. Routing 

load of e is defined as follows: l(T,e) = 2⏐V(T1)⎪.⏐V(T2)⎪. 

The formula (1) is then equivalent to formula (2) as follows: 
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The MRCT problem is proved to be of NP-hard class. 

Edge weights and spanning tree topology are two factors 

affecting on spanning tree routing cost. The spanning tree 
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topology affects highly on the graphs in which the bias of 

edge weights is not too high. 

Constructing a minimum routing cost spanning tree is 

equivalent to constructing a spanning tree so that the average 

length of vertex pairs is at least. The problem plays important 

role in applications of network system building. Specifically, 

peer to peer network is an example in which the ability of 

data transfer and all node priorities are equal (the problems 

origin and its applications are available in [1][3]) 

Example 1: Given a spanning tree as Fig.1 

 
Fig. 1. This spanning tree has spanning cost value of 196 

 

According to formula (1), we have: 

dT(v1,v2) + dT(v1,v3) + dT(v1,v4) + dT(v1,v5) + dT(v2,v3) + 

dT(v2,v4) + dT(v2,v5) + dT(v3,v4) + dT(v3,v5) + dT(v4,v5) = 98. 

Since dT(vi, vj) =  dT(vj, vi), so  C(T) = 98 x 2 = 196. 

 

II. APPOXIMATION APPROACHS USED FOR MRCT PROBLEMS 

The first is Wong algorithm proposed by Richard Wong in 

1980, Wong algorithm has 2-approximation and occupies 

O(nm + n2log n). Wong algorithm uses the concept of 

shortest path tree- SPT starting each vertex and visiting to the 

others. The main idea of Wong algorithm is to find SPTs 

having the root starting at each vertex, then select the SPT 

having at least cost among found SPTs. This algorithm used 

to establish initial solutions for metaheuristic-based 

algorithm in solving MRCT problem [1]. 

The second is an algorithm based on the idea of General 

Start  proposed  by author group of Bang Ye Wu and 

Kun-Mao Chao [3]; this algorithm has 3/2 approximation and 

occupies O(n4). The author group also proposed Polynomial 

Time Approximation Scheme – PTAS enabling us to find out 

a spanning tree having routing cost approximate within 1+e 

times of the best spanning tree routing cost, where is e is 

desired quality. The algorithm occupies 
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The third is Add algorithm proposed by Vic Grout in 2005. 

Add algorithm occupies O(n log n). Add algorithm considers 

vertex degree as primary condition to construct spanning tree, 

instead edge weights. Add algorithm says: Find the vertex v 
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having the most numbers of unvisited vertices incident to v, 

then insert all edges incident to v into T so that T has no cycle 

inside, this process repeats until all vertices in graph have 

been inserted into T. The algorithm commonly used in 

homogeneous-graph and nonhomogeneous graph (from here, 

we call it as uniformed distribution graph i.e. a kind of graph 

having insignificant bias of edge weights [4]. 

The fourth is Campos algorithm proposed by the author 

group of Rui Campos and Manual Ricardo in 2008; the 

algorithm has 2-approximation and occupies O(m + n log n).  

This is also considered as the fastest 2-approximation 

algorithm in present; Campos algorithm combines the ideas 

of Add, Prim, Dijstrak based Prim algorithm [6]. 

It says possibly: above approximation algorithms could 

not find out highly exact solutions but it has advantage of 

time cost and ensuring solution quality when applied into 

MRCT problem. 

 

III. HEURISTIC APPROACH FOR MRCT PROBLEM 

In this section, we are proposing 2-heuristic algorithms to 

solve MRCT problem.  

A. Gradually Edge-Replacement (H1) 

 The idea of edge-replacement makes use of Prims or 

Kruskal algorithms to find the minimum spanning tree of 

graph, then replace gradually each edge of spanning tree with 

a better edge. 

Step 1:Find a minimum spanning tree T in G. 

Step 2:Insert respectively edge e in the edge set of E-T into 

T, certainly T ∪ e will form a cycle, in this new cycle, we find 

the best edge e’ so that T− e ∪ e’ has better cost than  the cost 

of T; if there exists edge e’, then  replace T with T ∪ e – e’. 

Repeat step 2 until in a loop there is no edge replacement 

could be done in the spanning tree. 

Example 2: Given a graph G as Fig.2: 

 
Fig. 2. The obtained spanning tree has the routing cost value of 250 

following Edge-Replacement algorithm. 

 

If we apply Edge-Replacement algorithm into fig.3, the 

first obtained minimum spanning tree have the set of edges 

{(v1,v2), (v1,v3), (v3,v5), (v4,v6), (v5,v6)}. Apply each step of 

Edge-Replacement algorithm: When replace the first 4-edges 

(v1,v2), (v1,v3), (v2,v3), (v2,v4) in T, we also obtain a spanning 

tree  having a routing-cost value of 266; When we replace 

5th-edge  (v3,v4)  with edge (v5,v6) , and we then obtained the 

routing-cost value of 250. This is just the desired spanning 

tree. 

B. Gradually Edge-Removal (H2) 

Step 1:Find the best SPT by Wong algorithm among all 

possible SPTs in G: 

Step 2: Remove gradually each e of T; with each e find the 

best e’ within E-{e}, suppose T’= T-e+e’. If T’ better than T 

then replace T=T’.  

Repeat step 2 until in a loop there is no edge removal could 

be done in the spanning tree. 

 

IV. EXPERIMENTS 

This section is going to compare experimental results of 

proposed algorithms against Wong, ADD, CAMPOS.  

A. Experimental System 

All proposed algorithms were implemented in C++ under 

DEV CPP compiler on the computer powered by a 2.26Ghz 

processor and 4 GB RAM.  

We first conducted experiments on general graphs, took 

the obtained results into consideration on some special 

graphs such as homogeneous graphs, graphs with uniform 

edge distribution and graphs with non-uniform edge 

distribution. 

Experiment data were generated randomly. The graph size 

we used in experiments has the number of nodes in range 

[20..200] and the number of edges in range [50..2400]. The 

routing costs obtained by the algorithms in experimental 

table are displayed as ½ of the value obtained from the 

formula (2). 

B. General Graph 

Generating general graph 

General graphs G = (V,E,w) were generated as follows: we 

first constructed randomly a spanning tree of n = |V| nodes 

and n − 1 edges then inserted randomly other m − (n − 1) 

valid edge; all edge weights of graphs are random integers in 

range [1..2500]. 

 
TABLE I A: GENERAL GRAPH 

Test WONG ADD CAMPOS H1 H2 

1 3408 5358 3725 3416 3408

2 8760 15670 8569 8552 8552

3 29915 51472 30063 29799 29799

4 14784 41531 15026 14784 14784

5 40242 101790 47270 39945 39945

6 185248 429124 254654 182349 182349

7 1145919 4350050 1420996 1128132 1128132

8 3178505 11375802 3765028 3099462 3099462

9 3374998 17056890 3865164 3360491 3357145

10 5485453 23448926 6303738 5704751 5474075

11 1384422 7064096 1483611 1372739 1372739

12 2964078 16402988 3611100 2934906 2957986

13 5311194 19142486 5903426 5214430 5214430

14 6605587 27951407 8284471 6567690 6567690

15 1908398 6901936 2336558 1923726 1881204

 

When comparing H1 and H2 over against WONG, ADD, 

CAMPOS through 15 general graph tests, we obtained result 

as Table I B. 
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TABLE I B: EXPERIMENTAL RESULTS  

H1 
WONG ADD CAMPOS 

Quantity % Quantity % Quantity % 

Better 73 15 100 15 100 73 

Equivalent 7 0 0 0 0 7 

Worse 20 0 0 0 0 20 

H2 Quantity % Quantity % Quantity % 

Better 13 87 15 100 15 100

Equivalent 2 13 0 0 0 0 

Worse 0 0 0 0 0 0 

C. Homogeneous Graph 

Generating homogeneous graph 

Homogeneous graphs were generated as follows: we first 

chose a random value as a homogeneous value for edges, 

suppose Δ ∈ [1..2500]. Then constructed a random spanning 

tree of n = |V| nodes and n − 1 edges, and finally inserted 

randomly other m− (n − 1) valid edges. All edges in G were 

attached with a positive value Δ ± µ  in which µ  is a small 

integer. 

 
TABLE II A: HOMOGENEOUS GRAPH 

Test WONG ADD CAMPOS H1 H2 

16 72818 74094 106012 71642 71714

17 98150 102307 131853 96971 96758

18 144751 148596 189264 159118 143076

19 342910 341099 433157 352204 335517

20 474658 566614 590918 471100 466340

21 560523 564263 698049 560838 548735

22 520997 549681 636465 545616 508497

23 117392 117676 158210 128354 115736

24 329528 340386 405366 338660 323524

25 6461300 7127108 7133250 6603778 6372566

26 3183150 3369136 3813918 3237188 3107894

27 1345428 1393342 1774572 1393770 1315424

28 2242772 2414476 2699136 2219240 2207774

29 879674 885659 1268719 867713 869739

30 2952464 2929879 3782156 3205149 2914822

 

When comparing H1 and H2 over against WONG, ADD, 

CAMPOS through 15 tests of general graphs, we obtained 

result as Table II B. 

 
TABLE II B: EXPERIMENTAL RESULTS 

H1 
WONG ADD CAMPOS 

Quantity % Quantity % Quantity % 

Better 5 33 10 67 15 100

Equivalent 0 0 0 0 0 0 

Worse 10 67 5 33 0 0 

H2 Quantity % Quantity % Quantity % 

Better 15 100 15 100 15 100

Equivalent 0 0 0 0 0 0 

Worse 0 0 0 0 0 0 

D. Edge Distribution Factor  

Generating graphs under edge distribution 

Graphs with uniform edge distribution are the graphs in 

which node degrees are equivalent or insignificant 

difference. 

Graphs with uniform edge distribution we used were 

generated as follows: we first determined a parameter r =2 × 

[m/n] + 1 called as the average number of edges of a node 

then constructed randomly a spanning tree of n = |V| and n − 1 

edges so that all node degrees did not exceed r, we next 

inserted randomly other m −  (n − 1) valid edges and assured 

that every node degree did  not exceed r, edge weights in the 

graph were generated randomly in range [1..2500]. 
 

TABLE III A: EDGE DISTRIBUTION FACTOR 

Test WONG ADD CAMPOS H1 H2 

31 166232 441740 174190 165052 165052

32 242436 1110048 262110 242708 241096

33 552034 2330760 658246 547204 547204

34 754534 5906702 852214 751180 751180

35 1591536 11757760 2015229 1586588 1586588

36 1931829 14010963 2036603 1921256 1921256

37 193600 1386026 242028 193492 193492

38 7111108 36043876 7705378 7068811 7087501

39 2308062 10356986 2735218 2297704 2297704

40 5640618 19951434 7332050 5632972 5632972

41 935328 3294241 1271022 935328 935328

42 2259932 8717570 2813048 2243368 2246560

43 1408134 5740514 1472156 1408134 1408134

44 3157851 12159738 3625373 3147656 3147656

45 660361 3617234 790670 659906 654767

 

When comparing H1 and H2 over against WONG, ADD, 

CAMPOS through 15 tests of graphs under edge distribution, 

we obtained result as Table III B. 

 
TABLE III B: EXPERIMENTAL RESULTS 

H1 
WONG ADD CAMPOS 

Quantity % Quantity % Quantity % 

Better 12 80 15 100 15 100

Equivalent 2 13 0 0 0 0 

Worse 1 7 0 0 0 0 

H2 Quantity % Quantity % Quantity % 

Better 13 87 15 100 15 100

Equivalent 2 13 0 0 0 0 

Worse 0 0 0 0 0 0 

 

E. Non-Uniform Edge Distribution 

Generating graph under non-uniform edge distribution 

Graphs with non-uniform edge distribution G = (V,E,w) 

were generated as follows: we first selected random k nodes 

([n/2] +  1  ≤  k  ≤  n−1) then assigned each node an integer r 

∈ {1, 2} indicates that  node degrees cannot be bigger than r; 

we next constructed a spanning tree and its edges as we did in 

general graphs. Note that in the case of not being able to 

construct enough m edges, we would repeat the process (this 

kind of graph is named as asymmetric graph). 

 
TABLE IV A: NON-UNIFORM EDGE DISTRIBUTION 

Test WONG ADD CAMPOS H1 H2 

46 2381866 3403130 2636460 2360598 2360598

47 3683138 6418194 3911224 3667189 3667189

48 199826 388175 206870 195836 195836

49 291837 518199 329238 291457 291457

50 1264912 1843978 1276668 1253872 1252822

51 2606062 4779404 2761861 2603768 2603768

52 1544662 3076550 1729774 1540650 1540650

53 553184 942300 619302 552906 552906

54 1572986 2884650 1684184 1571468 1571468

55 2338095 3819570 2463925 2323776 2323865

56 713830 1193228 822416 706892 706892

57 515746 1029195 565535 506533 506533

58 203599 485323 219841 203599 203599

59 942060 1674603 1023093 939226 939226

60 295842 552842 327948 293685 294642
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When comparing H1 and H2 over against WONG, ADD, 

CAMPOS through 15 test of graphs under non-uniform 

distribution, we obtained result as Table IV B. 

 
TABLE IV B: EXPERIMENTAL RESULTS 

H1 
WONG ADD CAMPOS 

Quantity % Quantity % Quantity % 

Better 14 93 15 100 15 100

Equivalent 1 7 0 0 0 0 

Worse 0 0 0 0 0 0 

H2 Quantity % Quantity % Quantity % 

Better 14 93 15 100 15 14 

Equivalent 1 7 0 0 0 1 

Worse 0 0 0 0 0 0 

F. Summarized Table 

When comparing H1 and H2 over against WONG, ADD, 

CAMPOS through 60 tests in total, we obtained result as 

Table V. 

TABLE V: SUMMARIZED IN GRAPHS (60 TEST) 

H1 
WONG ADD CAMPOS 

Quantity % Quantity % Quantity % 

Better 42 70 55 92 60 100

Equivalent 4 7 0 0 0 0 

Worse 14 23 5 8 0 0 

H2 Quantity % Quantity % Quantity % 

Better 55 92 60 100 60 100

Equivalent 5 8 0 0 0 0 

Worse 0 0 0 0 0 0 

 

V. CONCLUSION AND FUTURE WORKS 

We have proposed 2 heuristic-based algorithms to solve 

MRCT problem, we have also compared the results of these 

algorithm with the results of algorithms WONG, ADD, 

CAMPOS and the obtained results are possitive. 

We are now studying metaheuristic-based algorithms for 

MRCT problem, and the idea of improving a spanning tree 

step by step (neighbor exploring) like above 2 algorithms 

would be main idea of metaheuristic-based. 
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