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Abs t rac t 

A notation is given for describing the inverse of multiple functions 
and of functions of multiple arguments. A technique based upon 
this notation is presented for taking a program written in pure LISP 
and automatically deriving a program which computes the inverse 
function of the given program. This technique differs from previous 
such methods in its use of heuristics to invert conditionals. 

1. I n t r oduc t i on 

There are many applications in which it is useful to compute the in­
verse of some program, that is, to find another program such that 
feeding the output of the original program as input to the new pro­
gram produces the original input. One such application is in program 
ming by specification: one would like to define a program to compute 
the square root of a number by the equation (√x)2 = x rather than 
supplying an actual iterative method of solving the equation. Another 
application of program inversion is in debugging. Given a program 
and an erroneous result, one would like to step backwards through 
the program to trace the source of the error. Yet a third application 
is in transforming the input domain of a program, such as the well 
known technique of multiplying polynomials by first performing an 
FFT; to get the result back into the original domain one needs to find 
an inverse transformation. 

Several methods have been suggested for performing such inver 
sion. Unfortunately they each suffer from several defects. McCarthy 
[3] suggests a generate and test approach; this will correctly find 
an inverse when it exists, but is computationally infeasible and can­
not determine whether the inverse is unique. Dijkstra [1] provides 
a technique for inverting programs symbolically, but requires that 
the programmer provide inductive assertions on conditional and loop 
statements. Korf [2] suggests another method that automatically pro­
vides these assertions, but recursions derived using his method a-e 
not guaranteed to be well founded. Several recent efforts [5,6] have 
gone into inverting Prolog; this differs from inverting other program­
ming languages in that Prolog is less procedural and more declarative. 
Methods for inverting procedural languages will thus also be useful 
for Prolog, but the reverse is not necessarily true. 

This paper suggests a method of providing these assertions au­
tomatically by heuristic methods. This method will not always find 
an inverse for a program, but when one is found it will always cor­
rectly terminate when the output of the original program is given as 
input. In addition, if an inverse is found it will be the case that the 
original function was one-to-one—in principle the inverse could itself 
be inverted to recover the original program. 

The method described here has been implemented as a MacLISP 
program. The program was able to derive the inverse of append 
(shown in detail below), a version of reverse as given in [2|, unary 
integer negation defined recursively using add1 and sub1, and sev­
eral other such small programs. The example of unary negation is 
especially interesting as a case where Korf's method is unable to find 
the inverse, because of the existence of two recursive clauses in its 
definition. 

2 . Inversion o f M u l t i p l e Functions o f M u l t i p l e A rgumen ts 
The usual definition of the inverse of a function , is the 
function such that for all x in D. Unfor­
tunately this notation does not lend itself well to inversion of functions 
of more than one argument. For instance, in the LISP programming 
language it is true that 
Thus one intuitively thinks of car and cdr together as being the in­
verses of cons, but there is no one function that we can call cons"1 . 

On the other hand, we can express a relation between / and 
that does extend to multiple arguments and also to multiple functions: 
If we assume that , then by the above definition 
and the converse similarly holds. Thus we have 

are both true. Taking this as our definition of inversion, we say that 
cons inverts to car and cdr. 

In general we will say that some list of n functions fun, of m argu­
ments each inverts to another list of m functions inv3 of n arguments 
each if, for all x3 and y,, the set of equations 

simultaneously hold if and only if the inverse set of equations 

also simultaneously hold. Note that this relationship is symmetric: 
inverting the inverses of a list of functions produces the original list. 
The requirement that all functions have the same number of argu­
ments turns out not to be a problem; if necessary we can add dummy 
arguments to those functions that need them. 

Since we are attempting to invert programs, we will need to have 
inverses for the primitive operations of the language we are inverting. 
In LISP, we will use the fact that cons inverts to car and cdr, and 
that add1 inverts to subb1. These can be used to define the other 
arithmetic and list manipulation functions usually found in a LISP 
implementation. 
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3. The Inversion M e t h o d 

We perform inversion as a search through a state space of program 
descriptions. Each state is a set of facts, each of which is composed 
of a left side, a right side, and a set of preconditions. A fact can be 
interpreted as meaning that, if the preconditions all hold, the left side 
will be equal to the right side. We will use four operators to move 
from state to state: conditional expansion, precondition replacement, 
expression inversion, and conditional contraction. 

For example, suppose we want to invert the function append. 
That is, we want to find two programs that, given the result of a call 
to append, will return the first and second arguments. Unfortunately 
there are many possible pairs of arguments that could have produced 
the same result from append; thus we need to introduce an auxiliary 
function to distinguish among them. One function we might use re­
turns the length of its first argument and ignores its second; we will 
call it f l eng th . We will call the arguments to it and append by the 
names f i r s t n and las tbu tn for reasons that we shall see below. The 
definitions of our two original functions give us our initial state: 

append = (cond ( (nu l l f i r s t n ) lastbutn) 
( t (cons (car f i r s t n ) 

(append (cdr f i r s t n ) 
lastbutn)) ) ) 

f l eng th = (cond ( (nu l l f i r s t n ) 0) 
( t (add ( f leng th (cdr f i r s t n ) 

lastbutn)) ) ) 

The atoms on the left sides correspond to a call to each of the 
functions being defined, and those on the right side correspond to 
the arguments to those calls; there are no unbound variables. Al l 
initial facts have no preconditions, and their left sides are all atomic. 
Similarly we will define a goal state as one in which all sets of precon­
ditions are empty and the right sides are all atomic. No new atoms 
will be introduced by our transformations, and each atom will occur 
only on one side of our facts; thus the original arguments will become 
the names of the inverse programs, and the original program names 
will become the inverse arguments. 

Both facts in the current state have no preconditions, but the 
right side of each is a conditional expression. Before we can perform 
any other transformations on the facts, we first separate out the con­
ditional parts into preconditions. The conditional expansion operator 
does this; it replaces a fact for which the right side is a conditional 
expression with two facts, one corresponding to the case when the 
predicate in the condition is true and one corresponding to the case 
when it is false. Applying this to each of the facts in our initial state 
produces a new state: 

Note that the above state consists of four facts, each of which 
has a precondition of either ( n u l l f i r s t n ) or (not ( n u l l f i r s t n ) ) . 
The preconditions are combined in the above display merely for the 
sake of brevity. 

In our final inverse programs, we will need a conditional expres­
sion to determine which path the original programs took. Another 
way to think of this is that the preconditions in the current state are 
functions of the arguments to the original functions, and we would 
like to replace them with new functions of the arguments to the in­
verse functions that are true exactly when the old ones were. This 
replacement is the heuristic portion of the inversion; in general there 
will be many possible preconditions but there seems to be no analytic 
method of finding them. 

The details of how we find the new precondition will be described 
below; in this case we notice that f length will be zero if and only 
if f i r s t n is null. Once we have found our new precondition, we can 
use the precondition replacement operator. Note that if we simply 
replaced all occurrences of the old precondition with the new one we 
would derive the useless fact 

but we would not produce 

without which we could not complete our derivation. Taking this into 
account, we come up with a new transformed state: 

Now the derivation goes through a sequence of expression inver­
sions, pulling functions from the right side of facts over to the left. 
This process is completely mechanical, but it is somewhat compli­
cated so we will go through it one step at a time. First we notice that 
we have a call to addl as the outer call of the right side of a fact 
When we invert this call to subl , our state becomes 

In this case we inverted one function to one function, so the total 
number of facts in our state didn't change. When we invert cons to 
car and cdr, however, we get two facts where before we had one: 

The above inversions were done on functions for which already 
knew the inverses. We must also invert recursive calls to the original 
functions into recursive calls to our new inverses. Since in this case we 
have two functions of two arguments each, we will replace two facts 
with two new facts. This inversion cannot be split into two steps, 
because each new fact has parts from both of the old facts. Note 
also that the arguments in the calls have to match exactly; it would 
not have changed the result of f length if the second argument in the 
recursive call were different, but it would have made it impossible to 
complete our inversion. Performing the inversion, we get to a new 
state: 
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Now all but two of the right sides are atomic; these two can be 
made atomic by one more inversion, from car and cdr into cone. 

We are almost at a goal state; the only remaining task is to 
remove the preconditions. This can be achieved by the conditional 
contraction operator, which acts inversely to conditional expansion: it 
takes two facts with opposite preconditions and identical right sides, 
and combines them into one fact having as a left side a conditional 
expression evaluating to either of the two previous left sides depend­
ing on which precondition is true. We must be careful here only to 
accept preconditions that are in terms of the inverse arguments, or we 
would not come up with a well-defined program; this is the reason for 
our precondition replacement above. Two applications of conditional 
contraction produce a goal state: 

4. Precond i t ion Replacement 

The above method provides a framework for inversion; we also need 
heuristics to be used in that framework for finding replacement pre­
conditions. One such heuristic that is effective for many simple recur­
sions uses a sort of data type system. Al l objects are members of type 
top, which is divided up into integers, conses, and n i l . Unlike most 
data type systems we have types corresponding to major subsets of 
the integers: the negative numbers, the positive numbers, zero, and 
the unions of pairs of these sets. The main requirement on our type 
system is that it form a lattice; thus we also need a type bottom to 
which no object belongs. 

Functions are assigned types that contain all their possible return 
values. Thus cons always returns a cons, and add1 always returns 
a number, but car and cdr can return anything and so their type is 
top. The type of a function should itself be a function mapping from 
the function's input types to its output type, but for simplicity this is 
only actually done for addl and subl (e.g. addl will return positive 
numbers if its argument is non-negative). 

Given a list of new functions to be inverted, or a list of inverse 
functions to be used in further inversions, we can calculate their types 
by a simple relaxation process: we start by assuming that the return 
type of each of them is bottom. Then we use that in evaluating the 
types of the expressions defining them (making no assumptions about 
the types of their arguments) to arrive at a new assignment of types, 
and iterate until no function's type is changed by the iteration. With 
our definition of f length, for example, the first iteration would result 
in a type of zero from the base clause, and bottom from the recursive 
clause, which combine to a type of zero. Then the second iteration 
gives the same base clause type but the recursive clause is now known 
to return positive numbers, and so the new type becomes that of the 
non-negative numbers. Adding one to a non-negative number as with 
adding one to zero returns a positive number, so in the third iteration 
the overall type doesn't change. Thus the final type of f length is 

that of the non-negative numbers. In a more complicated recursion 
the preliminary types of the recursive clauses might cause their new 
types to change, and so there could be up to as many iterations as 
the depth of the type lattice. 

Now we can use our type system to provide replacement precon­
ditions. This is done by looking for two facts with identical left sides, 
and identical preconditions except for the particular precondition we 
wish to replace, which should be true for one fact and false for the 
other. Then we calculate the types of the right sides of the facts, and 
if the intersection of the two types is bottom then we can replace our 
precondition with a test for membership on the common left side in 
one of the two types. Thus in the append example, f length is zero 
for the fact with precondition f i r s t n true, and it is positive (and 
therefore not zero) with f i r s t n false. 

5. Future Work 

The main obstacle to inversions with the current implementation is 
the inability of the heuristic described above to find replacement pre­
conditions that are functions of more than one argument. More effort 
could be put into methods of finding complex predicates; it might 
prove fruitful for heuristics to notice whether the function being in­
verted is arithmetic or list processing and tailor the search accord­
ingly. 

In the inversion of append we needed to introduce an auxiliary 
function. Because append recurs linearly we could simply count the 
number of recursive calls, but this will not always be sufficient. Work 
could be done in automatic detection of the need for such an auxiliary 
function, and in automatic generation of the function when its need 
is detected. 

Some thought in the program transformation world has gone 
into the idea of a MACSYMA-like system for computer programs. 
The representations and operators used in this paper appear useful 
in other domains than inversion; one might study how applicable they 
would be in a more general program transformation system, and how 
they could be incorporated into such a system. 
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