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Abstract 
 
Partial discharge (PD) pattern classification has recently become popular since the automated acquisition of PD 
signals has become vital and cogent. A novel method for identification of defects due to partial discharge is de-
scribed in this paper. Starting from different PD families of specimen, several sets of characteristic vectors are 
determined and then used as input variables to the proposed neural network. The innovative trend of using prob-
abilistic neural network (PNN) towards classification of PD patterns is coherent and perceptible. The paper eluci-
dates the structure of PNN, which has been appropriately customized for determining the optimum value of 
smoothing parameter. PD is measured using the conventional discharge detector and previously developed statis-
tical tools that processed the PD patterns. Satisfactory results in the past have revealed that the analysis of the 
properties of the phase position distributions can be made using mathematical descriptors. The ability of PNN to 
classify these descriptors in addition to classifying the inputs derived from the measures based on central ten-
dency, dispersion, and maximum and minimum values are investigated. The classification of single-type insula-
tion defects has been envisaged. The paper also expounds a novel complex technique adopted for precise PD 
classification. 
 
Keywords: Partial discharge (PD), probabilistic neural network (PNN), smoothing parameter, Bayes strategy, 
pattern classification. 

 
1. Introduction 

The incidence of minor flaws such as voids, surface imperfections, etc. is inevitable in elec-
trical insulation system of any power apparatus, leading to partial discharges (PD). Partial 
discharge is an incomplete electrical breakdown, which commonly occurs in HV equip-
ment. One of the prime causes for the failure of electrical insulation system in HV equip-
ment stems from the concept of partial discharge that occurs in gas-filled cavities that 
undergo ionization and subsequent discharge when subjected to elevated electrical stress. 
The cavities may perhaps be intrinsic in the insulation systems due to faulty manufacturing 
process or evolve during operation as a result of breakdown in the presence of intensified 
electrical fields at protrusion points, thermal expansions, contraction effects and other me-
chanically induced stresses. PD may also be due to surface discharge, corona, treeing, etc. 
Every PD event causes deterioration of the insulation material by the energy impact of 
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high-energy electrons or accelerated ions. Since, each defect has a particular deterioration 
mechanism, it is imperative to discern the correlation between the discharge patterns and 
the kind of defect in order to ascertain the quality of the insulation. 

 This paper illustrates the novel probabilistic neural network (PNN) for classifying partial 
discharge patterns of various defects. Applications of neural network to partial discharge 
pattern classification have been extensively studied and implemented in the past [1–7]. The 
studies reveal that various kinds of neural network architectures including multilayer per-
ceptron (MLP), radial basis function (RBF), self-organizing map (SOM), backpropagation 
network (BPN), adaptive resonance theory (ART) and counter propagation network (CPN) 
were analyzed and tested for its classification capability. This paper demonstrates and sub-
stantiates the use of PNN for classifying partial discharge patterns of various defects.  

1. Partial discharge pattern recognition 

Classification of PD aims at recognition of discharges of unknown origin. This classifica-
tion is vital for the evaluation of discharges in tested construction. Classification aims at 
recognizing the defect causing the discharge, such as internal or external (surface, corona, 
etc.). This information gives vital clues to the health of the insulation due to a variety of 
partial discharges. PD is a stochastic process. However, the correlation between the de-
tected signals and the type of PD is describable [8]. For a long time, classification of PD 
was done using an oscilloscopic display system, usually on an elliptical time base. The suc-
cess with this system largely depends on the experience of test engineers, since different PD 
sources often give rise to similar visual displays. The advent of high-speed computers and 
rapid developments made in digital signal processing and pattern recognition techniques 
have made automatic identification of PD sources feasible. This approach is now a well-
recognized and accepted technique with which the PD pulse patterns as well as the discrete 
PD pulses have been utilized as a recognition tool [9] for identifying the type of discharge 
in power apparatus. 

 Since pattern recognition and classification is concerned with making decisions from 
complex patterns of information, considerable research work has been done recently on 
recognition and classification of various sources of PD. They include artificial neural net-
work (ANN) with statistical and fractal parameters, fuzzy logic-based pattern recognition 
for various cavity sizes, PD pulse height and phase distributions, computer-based pattern 
recognition with Φ – q, Φ – n distributions and phase-resolved pulse sequence analysis, 
classification by hidden Markov models (HMM) using the apparent charge magnitude, etc. 
Most of the current work has been concerned with the application of ANN [1–7] to PD pat-
tern recognition involving MLP with error backpropagation as the learning algorithm. Pre-
liminary studies by various researchers indicated better defect classification accuracy by the 
feed forward backpropagation Network (FFBPN). 

 Since each defect has its own characteristic degradation mechanism, it is imperative and 
obvious to use the idea for correlating the discharge patterns with the kind of defect in order 
to ascertain the quality of the insulation as a part of the diagnosis. However, PD phenomena 
are inherently a complex stochastic process in which there can be significant statistical 
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variability. Hence, diagnose such PD patterns, the ideology of classification of defects as 
suggested by CIGRE Working Group 21.03 [10] has been adopted. 

1.1. PD Data acquisition and feature extraction 

PD is a complex random process. In order to obtain meaningful data for pattern recognition, 
it is necessary to acquire the fingerprints of the PD signals under well-defined conditions 
for which the cause of PD is known. For many years, PD recognition was performed by 
visual examination, i.e. on an oscilloscope screen. In recent years, the use of computer-
aided processing technique has facilitated the automation of the recognition task. As a re-
sult, the PD pulses are grouped by their phase angle with respect to 50 Hz (or 60 Hz) sine 
wave. Consequently, the voltage cycles are divided into phase windows representing the 
phase angle axis (0 to 360°). If the observation takes place for several voltage cycles, the 
statistical distribution of individual PD events can be determined in each window. By tak-
ing appropriate averages of these statistical distributions, the observed PD patterns 
throughout the whole phase angle axis result in two or three-dimensional patterns. 

 A two-dimensional PD distribution Φ – q represents the PD magnitude apparent charge 
(q) as a function of phase angle (Φ) while a three-dimensional Φ – n – q represents the rela-
tionship between the PD magnitude ‘q’ and the pulse count ‘n’ as a function of phase angle. 
Each discharge pulse in the pattern reflects the physical process at the discharge site and a 
strong relationship has been found between the features of these patterns and the type of de-
fect causing them. The method is independent of the electrical circuit between the defect 
and the detector. As long as the detection circuit reveals the phase angle and the relative 
phase height of the impulses it does not matter whether a discharge signal comes from 
complicated transformer windings or from a simple capacitor; the characteristics Φ – q is of 
interest. 

 In order to ascertain the rationale behind the technique an investigation on the PD data is 
carried out using a PD meter (W.S. Test Systems Make, Type DTM-D), which has a fre-
quency band of 1 MHz, with a built-in oscilloscope to display the PD pattern. Also ‘PD 
gold’ software (developed by HV Solutions Inc, UK) in a tablet PC is interfaced with the 
PD meter for displaying PD patterns in elliptical or on sinusoidal form. The software cap-
tures PD signals synchronously across 50 Hz (or 60 Hz) power cycle allowing the user to 
observe familiar phase-related patterns of discharge, online and in real time. The software 
provides an automatic PD threshold level for recording the number of pulses per power cy-
cle. It also includes an automatic RF noise-reduction function, which uses single-frequency 
spectral subtraction. It also displays graphically the relation between Φ – q, q – n and time 
vs PD magnitude, respectively (Figs 1 and 2). 

 For the purpose of recognition and classification, three PD sources of known fault have 
been fabricated. The internal discharge was generated by a void of dimension 1 mm diame-
ter and 1.5 mm depth on a 12 mm-thick Perspex material of diameter 80 mm (Fig. 3(a)). 
The corona discharge (external discharge) was generated by an electrode of apex angle 85° 
attached to the HV bus (Fig. 3(b)). The corona discharge in oil (internal discharge) was 
generated with a sharp point immersed in transformer oil (Fig. 3(c)). The experimental set-
up, the discharge detector and software interfaced tablet PC are shown in Fig. 4. 



B. KARTHIKEYAN et al. 282

 
FIG. 1. Relation between (a) Φ – q (void) and (b) q – n (void). 

 
 In this specific case, it has been found that for the discharge sources listed in Table I, 
time duration of 5 min is sufficiently long to capture the inherent characteristics of PD. It is 
very difficult to identify the input feature vector of the PD pattern for which the networks 
will respond better to a particular pattern of input. It is found in practice that the magnitude 
of discharge pulse (q), the number of discharge pulses (n) and the phase angle (ϕ) at which 
the discharge occurs are the three basic and major parameters used for pattern recognition. 
The numbers of fingerprints in the database were 55, of which 21 were patterns of defect 
type ‘A’, 17 of defect type ‘B’, and 17 of defect type ‘C’. The database and the correspond-
ing applied voltage are shown in Table I. 
 

 
FIG. 2. Time vs cumulative PD for an internal discharge (void). 
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Fig. 3. Fabricated PPD sources: (a): an electrode bounded void of size 1 mm diameter and 1.5 mm depth on 12 mm-
thick Perspex dielectric material; (b): a sharp edge of apex angle 85° for obtaining discharge patterns (external dis-
charge); (c): a sharp edge of apex angle 85° in oil for obtaining discharge patterns (internal discharge). 

 
 

FIG. 4. (a) Experimental set-up and (b) discharge detector, tablet PC with PD analyzer. 
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Table I 
Applied voltage for PD fingerprints 

Defect type Description Applied  Number of  Total number 
  voltage (kV) patterns of patterns 
 

A Electrode-bounded 7.28 5 55 
 cavity at the 9.1 5 
 HV electrode (Fig. 3(a)) 9.555 5 
  10.01 6 

B Point-to-dielectric 13.65 6 
 gap in air (Fig. 3(b)) 20.93 5 
  22.75 6 

C Point-to-dielectric  20.93 5 
 gap in oil (Fig. 3(c)) 29.12 5 
  31.85 7 

1.2. Knowledge-based feature extraction 

Classification of PD is based on recognition. There are two basic possibilities for recogniz-
ing discharges: phase- and time-resolved recognition. Time-resolved recognition has attrac-
tive advantages, since a direct relationship between the physics in the defect and the shape 
of the signal can be established and stages in the aging of the dielectric materials can be 
recognized. However, phase-resolved recognition is used in this approach for pattern recog-
nition and classification since each discharge pulse in the pattern reflects the physical proc-
ess at the discharge site and a strong relationship has been found between the characteristics 
of these patterns and the type of the defect causing them. Phase-resolved PD patterns 
(PRPD) are discharge patterns in relation to AC cycle [8]. 

 The ϕ – q – n data assimilated with the assistance of computer-aided PD measurement 
and acquisition system is provided to the ANN black box as input in a suitable and compact 
form, which captures the attributes that correlate with the discharges. The compact form of 
representing the input data is called the preprocessed input and serves as fingerprints and 
forms the basis for classification. 

 Many forms of features are extracted from the same PRPD pattern so as to identify the 
apt input characteristics vector for which the network responses well. The presence of a 
large number of input variables can present problems commonly referred to as the ‘curse of 
dimensionality’ in the pattern recognition task. One simple technique to help alleviate such 
problems is to combine input variables together in knowledge-based way to make a smaller 
number of new variables called ‘features’. These might be formed based on the understand-
ing of the particular problem to be tackled. Various features are extracted from the deduced 
quantities based on measures of maximum and minimum values. Since PD phenomena that 
occur in dielectric media are inherently complex stochastic processes that exhibit signifi-
cant statistical variability in properties such as pulse amplitude, shape and time of occur-
rence, the PD distribution is analyzed on two aspects, one it is viewed as discrete random 
process and on the other as continuous random process. Hence the statistical and stochastic 
measures have been introduced. 
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Various forms of fingerprints are: 

1. Measures of maximum and minimum values from the PRPD patterns  

(a) Φ – qmax – n (phase window of 10° phase window width) 
(b) Φ – qmin – n (phase window of 30° phase window width) 
(c) ϕ – q – nmax (phase window of 10° phase window width) 
(d) ϕ – q – nmin (phase window of 30° phase window width) 
(e) Φ – qmax – n/Φ – qmin-n (phase window of 10° phase window width) 
(f) Φ – qmax – n/Φ – qmin-n (phase window of 30° phase window width) 
(g) ϕ – q – n (phase window of 360° phase window width) 
(h) ϕ – q (phase window of 360° phase window width) 
(i) Time vs PD (phase window of 360° phase window width) 
(j) Time vs PD (phase window of 18° phase window width) 

 This method is simple and straightforward and involves using maximum/minimum values 
of q or n in each phase window as input to the NN. The phase angle of 10° and 30° is con-
sidered here so as to study the network response with small and large vector length. For in-
stance, the Φ – qmax – n characteristic vector comprises an input length of 108 units for 10° 
(i.e. 3 characteristic parameters for each phase window width of 10°) and 36 units for 30° 
phase window width. 
 
2. Measures of central tendency (values of q, n)  

(a) Mean, median and mode-phase window of 10� width  
(b) Mean, median and mode-phase window of 30° width 

3. Measures of dispersion (values of q, n) 

(a) Range, mean deviation, standard deviation and quartile deviation–phase window of 
10° width. 

(b) Range, mean deviation, standard deviation and quartile deviation–phase window of 
30° width. 

 Preprocessing ensures compactness and thus reduces the number of components of input 
to the NN. Also the efficacy of input is analyzed by providing the network with both re-
duced component vector and the entire data from the full window. The original probabilistic 
neural network is trained and tested for the aforesaid input vectors. 

2. Pattern recognition and classification using neural networks 

The complexity of analyzing such PD patterns obtained from digital computer acquisition 
system is evident as this is a complex nonlinear problem. The process being stochastic the 
associated effects of memory propagation with the influence of residues from the previous 
PD pulses, etc. has made the classification of such PD patterns in terms of ϕ – q – n even 
more complex. Pattern recognition basically involves the identification of similar data 
within a collection, which resembles the new input. Since ANN has the ability to learn from 
examples, generalize well from training, handle noisy data conveniently, create its own re-
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lationship amongst information and hence no equations, it has become an innovative tech-
nique suitable for PD pattern recognition and classification. 

 Several types of ANNs have been used till date for the classification of PD patterns [1–
7]. However, a novel approach of using PNN [11–15] has been used for the classification of 
PD patterns for the following reasons: 

n Training is minimal and instantaneous. 
n Good generalization capability. 
n It is easy to use and is extremely fast for moderate-sized data bases. 
n Can be used in real time because as soon as one pattern representing each category has 

been obtained, the network can begin to generalize new patterns.  
n On comparing the popular back propagation network (BPN) with the PNN it is observed 

that PNN trains faster than the BPN. 
n The generalization accuracy is almost as good as and often better than that of BPN. 
n The shape of the decision surface can be made as complex as necessary or as simple as 

desired by choosing an appropriate value of the smoothing parameter. However, this 
value influences the number of misclassifications. 

n The decision surface can approach the optimal minimum risk decision surfaces. 
n Erroneous samples and sparse samples are tolerated. 
n An inherently parallel structure. 
n Training samples can be added or removed without extensive retraining. 
n No local minima issues as in BPN 

2.1. Probabilistic neural network 

PNN was developed and formulated by Donald Specht [11], and is predominantly a classi-
fier that maps input patterns to a number of classifications and can be utilized into a more 
general function approximator. It is a network formulation of ‘probability density estima-
tion’ and is a model based on competitive learning with a ‘winner takes all attitude’ and the 
core concept based on multivariate probability estimation. It has no feedback path. It works 
on estimation of probability density function (pdf). The development of PNN relies on the 
Parzen window concept of multivariate probabilities.  

 The Parzen window method is a nonparametric procedure that synthesizes an estimate of 
a pdf by superposition of a number of windows, replicas of a function. Its classifier takes a 
classification decision after calculating the pdf of each class using the training examples. 
The multicategory classifier decision is expressed as pk fk > pj fj, for all j = / = k where Pk is 
the prior probability of occurrence of examples from class k and fk is the estimated pdf of 
class k. The Parzen window classifier uses the entire training set of examples to perform 
classification, i.e. it requires storage of the training set in the computer memory. The speed 
of computation is proportional to the training set size. 

 PNN is an implementation of a statistical algorithm called kernel discriminant analysis in 
which operations are organized into a multilayered feedforward network with four layers 
(Fig. 6): Input layer, pattern layer, summation layer and output layer. The input layer does 
not perform any operation and simply distributes the input to the exemplar layer. On receiv-
ing a pattern x from the input layer, the neuron Φij of the pattern layer computes its output
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FIG. 5. Architecture of probabilistic neural network. 

  Φij(x) = exp[(XTWki – 1)/σ2], 

where σ is the smoothing parameter, x, the input neuron vector, and W, the weight vector. 
The summation layer neurons compute the maximum likelihood of pattern x being classi-
fied into Ci by summarizing and averaging the output of all the neurons that belong to the 
same class 

 2

1

exp[( 1/ ],
NK

T
ki

i

x w σ
=

−∑  

where N is the number of examples and K, the number of classes. 

 If the a priori probabilities for each class are the same, and the losses associated with 
making an incorrect decision for each class are the same, the decision layer unit classifies 
pattern x in accordance with the Baye’s decision rule based on the output of all summation 
layer neurons 

 C(x) = arg(max{pi(x)}), i = 1, 2, …, m, 

where C(x) denotes the estimated class of the pattern x and m the total number of classes in 
the training samples. One outstanding issue in PNN is structure determination of the net-
work, i.e. an appropriate smoothing parameter. 

2.2. Significance of smoothing parameter 

The only parameter that has to be selected during training is the smoothing parameter σ. 
The role of the smoothing parameter on PNN is summarized after a detailed analysis. The 
important observations are as follows: 

Input 
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1. The recognition significantly depends on the value of sigma σ, which is selected on a 
trial-and-error basis. 

2. The optimum value of smoothing parameter is obtained after conducting a detailed 
analysis and hence is time consuming. 

3. In the actual case of training and testing, it has been observed that small changes in the 
value of the smoothing parameter do not change the misclassifications dramatically. 

4. A quite obvious yet an important observation indicated is that a decrease in the value of 
the smoothing parameter led to the formation of the required decision surface, while at 
higher values over the actual responsive range insignificant changes were observed in 
the classification of the input of the network. 

5. On detailed investigation it is inferred that the optimum value of sigma differs for each 
input vector type and also varies with respect to the length of the input (dimensionality). 
During the investigation it is observed that the recognition is optimum only for a par-
ticular value of sigma for any type of input. 

 After a detailed analysis, it is observed that the smoothing parameter plays a vital role in 
classification and hence it is deciphered that the training pattern itself should take into ac-
count the optimum value of smoothing parameter. 

2.3. Selecting the smoothing parameter on conditional grounds 

Generally the smoothing parameter is set to a value on trail-and-error basis. But an appro-
priate smoothing parameter is often data dependent. Therefore, it requires a proper proce-
dure for the selection of smoothing parameter. A few studies [11] expound a way of finding 
the optimal value of sigma using genetic algorithm. When a neural-network classifier is 
constructed, classification accuracy and network size are the most important factors that 
need to be taken into consideration. The proposed flowchart runs in an iterative manner till 
the optimal value of σ is found. It is observed during investigations that the value of σ for 
which the summation layer produces an output other than zero for all classes is almost op-
timum. Here initially a smoothing parameter is randomly assumed as a small positive num-
ber. Further the algorithm of original PNN is altered in such a manner that an automatic 
adjustment to the parameter is made appropriately using the training patterns and the classi-
fication categories of the training patterns themselves. The modified flowchart of OPNN is 
shown in Fig. 6. 

3. Discrimination of PD patterns using PNN 

The PNN paradigm has been evaluated experimentally for its ability to recognize the dis-
charge pulse patterns associated with different discharge patterns. The number of discharge 
patterns, the applied voltage and their sources are shown in Table I. Various forms of inputs 
have been applied as features or attributes of the pattern form to the NN model to perform 
PD recognition. 

 Initially the PNN is trained with nine patterns. The recognition task is first attempted 
with nine randomly selected patterns for training. The remaining patterns including the 
training exemplars are tested and observations are tabulated (Table II). The recognition is 
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FIG. 6. Flowchart of modified PNN. CR–Classification rate (ratio of training patterns correctly classified to the 
total training exemplars), θ: parameter (user defined), σ-smoothing parameter, σo: optimal sigma. 
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Table II 
Classification rate in percentage before and after hold-one-out validation 

Feature Feature Nine training exemplars Twelve training exemplars 
identification type First set  Second set First set Second test 
number  BV AV BV AV BV AV BV AV 
 

 1 Φ – qmax – n – 10° 78.18 84.31 81.8 88.23 87.27 94.12 87.27 94.12 
 2 Φ – qmax – n – 30° 92.72 100 87.27 94.11 94.55 100 90.90 96.08 
 3 Φ – q – nmax – 10° 60 64.7 69.09 74.5 83.63 90.19 90.90 98.04 
 4 Φ – q – nmax – 30° 61.81 66.66 61.81 66.66 76.36 82.35 76.36 80.39 
 5 Φ – qmax – n/Φ – qmin – n – 10° 69.09 74.51 80 86.27 80 86.27 85.45 92.15 
 6 Φ – qmax – n/Φ – qmin – n – 30° 89.09 96.08 72.72 78.43 92.72 100 78.18 84.31 
 7 Φ – qmax – n – 360° 61.81 66.66 67.27 72.55 80 86.27 76.36 82.35 
 8 Φ – q – 360° 61.8 66.66 69.09 74.5 80 86.27 76.36 82.35 
 9 Measures of central tendency–10° 80 86.27 76.36 83.25 81.8 90.19 76.36 84.31 
10 Measures of central tendency–30° 87.27 94.11 89.09 94.11 89.09 94.12 92.73 98.04 
11 Measures of dispersion–10° 80 86.27 85.45 90.19 85.45 92.16 89.09 92.16 
12 Measures of dispersion–30° 92.72 100 89.09 96.08 96.36 100 92.73 96.08 
Discarded Time vs PD – 360° 43.6 – 40 – 40 – 47.27 – 
input types Time vs PD – 18° 49.1 – 49 – 49 – 58 – 

BV: Before validation; AV: After validation. 

 
quite good, mostly for all types of input. The paradigm has again been tested for its ability 
by another nine randomly selected training exemplars. The classification rate was not con-
sistent with different training sets of same sequence and hence the paradigm has been pre-
sented by another 12 randomly selected training exemplars of two sets as above. Their test 
results and recognition rate as a measure of percentage are tabulated in Table II. 

 It can be well construed that with a few training exemplars of each class, the PNN can 
capture the inherent attribute of each class and can respond satisfactorily. The performance 
of the network is also analyzed with 12 training exemplars. It can be observed that with in-
crease in the number of training exemplars, the recognition rate has increased for all types 
of input feature vector. It can be inferred that with increase in the number of training exem-
plars, the number of misclassifications can be brought down; however, there exists incon-
sistency in recognition rate for some types of input types on both sets of training exemplars. 
An attempt is made in the next section to bring down the number of misclassifications by 
validating the inputs. 

3.1. Training and performance evaluation 

The performance of a network after training has been completed is to be evaluated. Several 
methods are adopted for the validation of the network and the input, viz. partial set training, 
hold-one-out Training, and pathology analysis. The hold-one-out and the partial set training 
method are being adopted to evaluate the same. 

3.1.1. Hold-one-out training 

A technique used to measure the effectiveness of network training is called, appropriately 
enough, the hold-one-out technique. 
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FIG. 7. Observations of partial set validation after removal of  
patterns found noisy using hold-one-out technique. 

 During the validation step adopted over the various forms of inputs, it is observed that a 
few patterns showed consistency in being misclassified. The patterns which showed 
inconsistency were identified and removed from the PD database and the training and 
testing procedure is repeated. Also the input feature vector involving time-resolved patterns 
(time vs PD) showed large number of misclassifications (Table II). These have been 
removed from the database of finger prints. 

 It can be observed from Table II that the efficacy of recognition has greatly improved for 
all input vectors and for all sets of training patterns after validating the inputs. 

3.1.2. Partial set training 

Apart from the hold-one-out technique, the effectiveness of the network is measured by 
presenting the network that is not a part of the training set. This is to evaluate how well the 
network can successfully learn from training exemplars. Among the 51 patterns, 27 have 
been used as training exemplars and the others including the training exemplars are tested. 
Similarly, the remaining 24 patterns are used as the second partial set and the above analy-
sis is repeated. The observations are shown in Fig. 7. 

 It is observed that the recognition rate is good in both the partial training set and is not 
even approximately the same for any type of input. Also, the partial set training methodol-
ogy has inherent potential failings and can cause misleading interpretation of results. The 
common problem encountered is the sequence of the training set during network training. It 
is observed that there is inherent difficulty in identifying the exact training exemplars and 
the type of input vector for which the network will respond well. 

 Hence a system needs to be developed which has a consistent recognition rate and is in-
dependent of the training exemplars set and the input vector. The problem is overcome by 
developing a composite network, which utilizes the benefit of all input features for good 
recognition rate. 

4. Complex probabilistic neural networks 

It is observed from the analysis that each input feature vector has shown a few misclassifi-
cations; moreover, the misclassified patterns are not the same for all other types of input
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FIG. 8. Architecture of composite probabilistic neural network system. 

 
feature vector analyses for the same source data. It is also observed that the number of mis-
classifications depends upon the type and length of the input. Hence it is mandatory to de-
sign a complex system utilizing all forms of input vector at a time, so that the expected 
classification is of the highest order. 

 This is accomplished with a simple composite network system shown in Fig. 8. In com-
plex network system, one PD pattern is taken for classification. All types of input feature 
vector is extracted from the raw data in parallel. The input feature vectors are given to the 
corresponding networks. All the networks are trained by the same source of data. Output of 
all the networks is compared and frequently appearing class is taken as an output. 

 A composite neural network system was designed and tested. It is clear from Table III 
that the CNN system has shown consistency in recognition rate for all the number of training 
exemplars and with any training set. So a deterministic decision can be made with CNN and 
necessary action can be taken on the insulation system offering PD. 
 
Table III 
Recognition rate with composite neural network 

Sets Observations with 
 

 Nine training Twelve training  Partial set of training 
  exemplars exemplars exemplars 
 

First  86.27 92.15 100 
Second  88.23 94.11 96.16 
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5. Conclusions 

Several important conclusions have been deduced. They are: 

1. The heuristic approach of finding the optimum value of smoothing parameter has re-
duced greatly the time for determining the optimum value manually and has obviated 
the need of an expert in the area of PNN. Also it is observed that the value of sigma 
found by trial-and-error basis almost matches with the automated value. 

2. It is observed that the measures based on statistical operators responds better than the 
measures based on maximum and minimum values. 

3. Validation using hold-one-out approach helps in resolving inconsistency in the inputs 
and assists in eliminating incompatible patterns. 

4. The recognition rate is increased in partial set validation after removal of the mis-
matched patterns. 

5. The complex neural network system involves all forms of inputs and enables in provid-
ing a deterministic decision about the class to which a defect belongs to. 

6. This study can be extended to complex OPNN involving various kernel functions such 
as rotated kernel function, elliptical basis kernel function which may result in better rec-
ognition rate (The current work on CPNN adopts Gaussian kernel function). 

7. Multidefect-type PD pattern classification and rejection of noise have not been taken up 
since the emphasis of the paper is primarily on ascertaining the ability and effectiveness 
of the proposed complex neural network to classify complex nonlinearity involved in 
PD patterns. 

8. The analysis undertaken in this OPNN can also be studied on other versions of PNN, 
which may yield better recognition rate. Also, a hybrid network comprising various 
complex networks on PNN can be developed for validation on one type of PNN with 
other variations of the same kind. 

9. The development of this technique has now reached a stage that needs some more ex-
perience on the actual use of system. Improvements might be obtained by trying out this 
complex technique with a few alternative neural networks meant for the classification 
task. 
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