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Abstract 

An emerging approach in biofabrication is the creation of 3D tissue constructs through scaffold-

free, cell spheroid-only methods. The basic mechanism in this technology is spheroid fusion, 

which is driven by the minimization of energy, the same biophysical mechanism that governs 

spheroid formation. However, other factors such as oxygen and metabolite accessibility within 

spheroids impact on spheroids properties and on their ability to form larger-scale structures. The 

goal of our work is to develop a simulation platform eventually capable to predict the conditions 

that minimize metabolism-related cell loss within spheroids. To describe the behavior and 

dynamic properties of the cells in response to their neighbors and to transient nutrient 

concentration fields, we developed a hybrid discrete-continuous heuristic model, combining an 

Cellular Potts-type approach with field equations applied to a randomly populated spheroid cross-

section of prescribed cell-type constituency. This model allows the description of: i) cellular 

adhesiveness and motility; ii) interactions with concentration fields, including diffusivity and 

oxygen consumption; and iii) concentration-dependent, stochastic cell dynamics, driven by 

metabolite-dependent cell death. Our model readily captured the basic steps of spheroid-based 

biofabrication (as specifically dedicated to scaffold-free bioprinting), including intra-spheroid cell 

sorting (both in 2D and 3D implementations), spheroid defect closure, and inter-spheroid fusion. 

Moreover, we found that when hypoxia occurring at the core of the spheroid was set to trigger cell 

death, this was amplified upon spheroids fusion, but could be mitigated by external oxygen 

supplementation. In conclusion, optimization and further development of scaffold-free bio-

printing techniques could benefit from our computational model able to simultaneously account 

for both cellular dynamics and metabolism in constructs obtained by scaffold-free biofabrication. 

1. Introduction

One of the fundamental properties of cells is their propensity to self-organization. This is 

essential in all biological processes, from bacterial colony formation to mammalian 

embryology, organogenesis and tissue repair [1]. Remarkably, although the molecular 

constituents are encoded in genetic information, there is no genetic “blueprint” for their 

assembling at any dimensional scale [2]. Supramolecular assemblies are emergent 
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structures basically driven by physical principles, such as energy minimization, operating 

under entropic constraints. For example this explains the round shape of cell clusters, 

from embryos to tumors [3], also called for this reason cell “spheroids.” Moreover, if 

there are no additional barriers (such as layers of extracellular matrix) when two such 

spheroids come in contact, they will fuse and collapse in a larger spheroid [4]. This is 

possible because within the spheroids the cells perform continuous random movements 

similar to the Brownian motion of molecules within a liquid droplet [5]. The implications 

of this similarity hold true for fusing spheroids, such as surface tension [6], contact angle 

and “neck” diameter [7]. In addition, energy minimization obliges different cells with 

various adhesiveness to assume an aggregated (often layered) distribution within 

spheroids [6]. This spontaneous process, called “cell sorting,” is of fundamental 

importance in embryogenesis and beyond [8].  

These phenomena are now exploited for rational design of bio-similar constructs with 

tissue engineering applications [4, 9], representing the foundation of the emerging 

“scaffold-free” (i.e., biomaterial-independent) biofabrication. Moreover, cell spheroid 

fusion either in dual or in larger constructs has been modeled using a variety of methods. 

The “building blocks” of biofabrication [10] are either individual cells combined with 

a supporting matrix (called “scaffolds” [11]) or for increased efficacy, pre-formed 

clusters of cells [9]. This second approach is indispensable in the scaffold-free versions of 

biofabrication, where no external materials are used. The goal of producing bio-similar 

constructs can be attained by using mechanic (such as molding [12]), magnetic [13], or 

other means. In this case, the constructs solely depend on the extracellular matrix 

produced by the cells before and during their assembling. Because of biophysical [6] and 

biological [9] reasons, the clusters usually attain a spherical shape, thus being named cell 

spheroids. The bio-assembling process is driven by fusion of these spheroids, powered by 

the same mechanisms which lead to their formation in first place [9]. 

Spheroid fusion can be also used to voluntarily introduce structural variety, 

anatomical relevance and scaling-up during biofabrication [14]. These larger-scale 

constructs often need precise spheroids location for fusion, remodeling and extracellular 

matrix secretion. Several technologies were considered, some relying on spheroids 

incorporation into a hydrogel scaffold, followed by their deployment with a bioprinter 

[15]. However, truly scaffold-free bioprinting methods are preferable, because finding the 

optimal biomaterial which concurrently satisfies the needs for “bio-inks” and of the 

embedded cells at the same time can be challenging. But a sufficiently rapid and accurate 

method to easily combine the spheroids and maintain them for fusion emerged only 

recently, with the invention of the microneedle array (“Kenzan,” in Japanese) method 

[16], and subsequent commercialization of the Regenova robot by Cyfuse Biomedical 

K.K., Japan. Because this instrument basically performs all the operations of a bioprinter, 

and with the same purpose, it is called a “Bio 3D Printer.” In brief, this consists in lacing 

the spheroids in contact to each other in a 3D pattern pre-designed by the robot’s 

computer. Using it, a variety of biological tubes (vascular [16], neural [17], tracheal [18] 

or ureteral [19]) were “printed,” while other tissues obtained this way are in development.  

So far, several computer models of spheroids formation and fusion have been 

proposed. Depending on the aspect of the process considered these are either more 
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biomaterial [4], cellular [20] or mixed [21] orientation. However, due to severe 

computational limitations, these methods took into consideration neither intracellular 

(e.g., metabolism) nor extracellular (e.g., chemotactic) aspects of their environment 

which depend on continuous, diffusive processes. 

In this study, we present a computer model that incorporates both cellular-level 

(discrete) and molecular-level (continuous) phenomena. This model thus represents a 

“hybrid” treatment of the basic steps in scaffold-free biofabrication. We accomplish this 

by relating physical characteristics and processes to the Cellular Potts model (CPM) [22], 

a discrete, lattice-based kinetic Monte Carlo (KMC) method known to reproduce 

dynamical properties and morphological phenomena by considering events at the cellular 

level [23]. While other models like Cellular Particle Dynamics (CPD) [21], Lattice 

Boltzmann (LB)[24] methods, and phase field theory [4] have been shown to also predict 

certain characteristics of bioprinting, we selected the CPM for its well-established ability 

to capture emergent cell dynamics, such as cell sorting and spheroid fusion [23], its 

treatment of cells as , and for the simplicity of its formulation, which we intend to extend 

in future work.  

Although both the CPM and diffusion modeling have been previously formulated in 

both two-dimensional and three-dimensional space [25, 26], we first investigated the 

usefulness of our hybrid treatment of the simulation in a simpler, more readily accessible 

qualitative way (i.e., by ‘heuristic modeling’).  

Materiality in the CPM is accomplished by treatment of the discrete domain similar 

to the discretization of continuous domains in common numerical methods like the finite 

difference and the finite element methods. To this end, we model cells with physical 

attributes like nominal spatial occupancy and metabolic rates, and the domain as having 

physical dimensions, chemical species and diffusion coefficients. We map these 

characteristics onto the discrete domain of the CPM, and conversely map the effects of 

the population in the discrete domain onto expressions of mass diffusion as reaction-

diffusion systems [27]. We then simulate metabolic activities during morphological 

phenomena and corresponding cell death due to the formation of hypoxic regions.  

 

2. The Model 

The modeling of cellular dynamics was formulated according to the CPM [22] and 

implemented in two dimensions in MATLAB R15a. The model consists of a regular, 

discretized 𝑑𝑑-dimensional lattice ℒ of a medium populated by cells. For both the medium 

and all cells, henceforth collectively referred to as agents, each agent 𝑖𝑖 is initialized with 

a unique identification number 𝜎𝜎𝑖𝑖 ∈ ℐ such that those lattice sites occupied by agent 𝑖𝑖 are 

denoted with the corresponding value 𝜎𝜎(𝑟𝑟,𝑘𝑘) = 𝜎𝜎𝑖𝑖, where 𝑟𝑟 ∈ ℒ and 𝑘𝑘 is the virtual time. ℒ is mapped to a physical, continuous domain 𝒫𝒫 by a modeling coefficient 𝛼𝛼 ∶ ℒ → 𝒫𝒫 

such that 𝑥𝑥 = 𝛼𝛼𝑟𝑟 ∈ 𝒫𝒫 is a physical coordinate and 𝛼𝛼𝑑𝑑|ℒ| is the physical 𝑑𝑑-dimensional 

space that corresponds to ℒ.  

Every agent was modeled with a set of modeling descriptors according to its type 𝜏𝜏 =𝜏𝜏(𝜎𝜎), where two cells of the same type are modeled identically. Implementation of the 
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model handles an arbitrary number of agents and agent types, where the medium is 

always simulated with an integer values of zero for cell identification and type.  

The modeling of a concentration field 𝐶𝐶 = 𝐶𝐶(𝑥𝑥, 𝑡𝑡) is performed by a parabolic 

differential equation,  𝜕𝜕𝑡𝑡𝐶𝐶 = 𝐷𝐷𝜕𝜕𝑖𝑖𝑖𝑖𝐶𝐶 + 𝑆𝑆, ( 1 ) 

where all agents are assumed to have the same diffusion coefficient 𝐷𝐷, 𝑆𝑆 = 𝑆𝑆(𝑥𝑥, 𝑡𝑡) is a 

source field and 𝑡𝑡 = 𝛽𝛽𝑘𝑘 is the physical time related to simulation step 𝑘𝑘 by the modeling 

coefficient 𝛽𝛽, which represents the time calibration (currently being in progress). 

Implementation of the model permits an arbitrary number of independent concentration 

fields and solves each diffusion system using second-order central difference scheme, 

forward Euler explicit integration, and Dirichlet boundary conditions with a prescribed 

boundary value 𝐶𝐶0.  

2.1. Cellular Dynamics 

Cell motility is simulated by considering a set of randomly selected copy attempts, 

called a Monte Carlo step (MCS). For each copy attempt in a MCS, a source site 𝑟𝑟𝑠𝑠 ∈ ℒ 

and target site 𝑟𝑟𝑡𝑡 ∈ 𝒩𝒩(𝑟𝑟𝑠𝑠) in the von Neumann neighborhood of range one 𝒩𝒩 ⊆ ℒ of the 

source site are both randomly selected. For all performed simulations, the number of 

copy attempts per MCS was equal to the number of lattice sites, though implementation 

permits an arbitrary specification of copy attempts per MCS. For MCS 𝑘𝑘, if the copy 

attempt is accepted then, at virtual time 𝑘𝑘 + ∆𝑘𝑘 after the copy attempt (i.e., |ℒ|∆𝑘𝑘 = 1), 𝜎𝜎(𝑟𝑟𝑡𝑡 ,𝑘𝑘 + ∆𝑘𝑘) = 𝜎𝜎(𝑟𝑟𝑠𝑠,𝑘𝑘). The probability of each copy attempt is considered as the 

stochastic rule  𝑃𝑃�𝜎𝜎(𝑟𝑟𝑡𝑡 ,𝑘𝑘 + ∆𝑘𝑘) = 𝜎𝜎(𝑟𝑟𝑠𝑠,𝑘𝑘)�
= 𝑒𝑒−max�0,∆ℋℋ∗�, ( 2 ) 

where ∆ℋ is the change in the system Hamiltonian ℋ due to the copy attempt. The 

system temperature ℋ∗ ∈ ℝ+ is a modeling coefficient. In this way, copy attempts are 

accepted such that the system energy tends to decrease, where the likelihood of an 

increase in energy is inversely proportional to the magnitude of the increase.  

We denote here the definition of ℋ as a summation of independent Hamiltonians ℋ 𝑖𝑖 
that pertain to the modeling of various cellular phenomena,  ℋ =�ℋ𝑖𝑖𝑖𝑖 . ( 3 ) 

A spatial constraint 𝑣𝑣𝑐𝑐𝜏𝜏 ∈ ℝ+ is imposed on each cell by the Hamiltonian ℋ𝑣𝑣 such 

that the number of lattice sites |𝒱𝒱𝜎𝜎𝑖𝑖| in the subdomain 𝒱𝒱𝜎𝜎𝑖𝑖 ⊆ ℒ occupied by cell 𝜎𝜎𝑖𝑖 tends 

toward 𝑣𝑣𝜏𝜏(𝜎𝜎𝑖𝑖), satisfying  
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ℋ𝑣𝑣 =�𝜆𝜆𝑣𝑣𝜏𝜏(𝜎𝜎𝑖𝑖)�|𝒱𝒱𝜎𝜎𝑖𝑖|− 𝑣𝑣𝜏𝜏(𝜎𝜎𝑖𝑖)�2|ℐ|
𝑖𝑖=1 , ( 4 ) 

where the geometric Lagrange multiplier 𝜆𝜆𝑣𝑣𝜏𝜏 ∈ ℝ+ is a modeling coefficient for the cell 

type 𝜏𝜏.  

Contact energy is modelled at each agent-agent interface by the Hamiltonian ℋℎ,  

ℋℎ =� � �1− 𝛿𝛿𝜎𝜎�𝑟𝑟𝑖𝑖,𝑘𝑘�,𝜎𝜎�𝑟𝑟𝑗𝑗,𝑖𝑖,𝑘𝑘�� 𝐽𝐽 �𝜏𝜏 �𝜎𝜎�𝑟𝑟𝑖𝑖,𝑘𝑘�� , 𝜏𝜏 �𝜎𝜎�𝑟𝑟𝑗𝑗,𝑖𝑖 ,𝑘𝑘����ℳ�𝑟𝑟𝑖𝑖,𝑘𝑘��
𝑗𝑗=1

|ℒ|
𝑖𝑖=1 , ( 5 ) 

where 𝛿𝛿𝑝𝑝,𝑞𝑞 is the Kronecker-delta, ℳ�𝑟𝑟𝑖𝑖,𝑘𝑘� is the Moore neighborhood of range one of 𝑟𝑟𝑖𝑖 ∈ ℒ, 𝑟𝑟𝑗𝑗,𝑖𝑖 ∈ ℳ�𝑟𝑟𝑖𝑖,𝑘𝑘� ⊆ ℒ is the 𝑗𝑗𝑡𝑡ℎ neighbor of 𝑟𝑟𝑖𝑖 and the contact energy 𝐽𝐽(𝜏𝜏, 𝜏𝜏′) =𝐽𝐽(𝜏𝜏′, 𝜏𝜏) ∈ ℝ+ between the agent types 𝜏𝜏 and 𝜏𝜏′ is a modeling coefficient of the two types. 

Implementation of the model also permits the modeling of ℳ as a Moore neighborhood 

of range two, and as a von Neumann neighborhood of ranges one and two.  

The chemotaxis modeling is performed by the Hamiltonian ℋ𝑐𝑐,  
ℋ𝑐𝑐 =�𝜆𝜆𝑐𝑐𝜏𝜏�𝜎𝜎�𝑟𝑟𝑖𝑖,𝑘𝑘��𝐶𝐶�𝛼𝛼𝑟𝑟𝑖𝑖 ,𝛽𝛽𝑘𝑘�|ℒ|

𝑖𝑖=1 , ( 6 ) 

where the chemotactic Lagrange multiplier 𝜆𝜆𝑐𝑐𝜏𝜏 ∈ ℝ is a modeling coefficient for the cell 

type 𝜏𝜏. For all simulations that did not consider chemotaxis, ℋ =ℋ𝑣𝑣 +ℋℎ, and for 

simulations that considered chemotaxis, ℋ =ℋ𝑣𝑣 +ℋℎ +ℋ𝑐𝑐.  
2.2. Additional Cell-Environment Interactions 

The source field 𝑆𝑆 is related to the agent type found at 𝑟𝑟 in ℒ that corresponds to 𝑥𝑥 in 𝒫𝒫. This is  

𝑆𝑆(𝑥𝑥, 𝑡𝑡) = 𝑠𝑠𝜏𝜏�𝜎𝜎�𝛼𝛼−1𝑥𝑥,𝛽𝛽−1𝑡𝑡���𝒱𝒱𝜏𝜏�𝜎𝜎(𝛼𝛼−1𝑥𝑥,𝛽𝛽−1𝑡𝑡)���𝑣𝑣𝜏𝜏�𝜎𝜎(𝛼𝛼−1𝑥𝑥,𝛽𝛽−1𝑡𝑡)��3𝑑𝑑−1 , ( 7 ) 

where the molar consumption rate 𝑠𝑠𝜏𝜏 is a modeling coefficient of cell type 𝜏𝜏. Each cell 

type 𝜏𝜏 is modeled with a corresponding dead type 𝜏𝜏𝑑𝑑 = 𝜏𝜏𝑑𝑑(𝜏𝜏) such that all modeling 

coefficients are the same except  𝑣𝑣𝜏𝜏𝑑𝑑(𝜏𝜏) = 𝑣𝑣𝜏𝜏
4
, 𝑠𝑠𝜏𝜏𝑑𝑑 = 0. 

( 8 ) 

The phenotypic response of hypoxic cell death is modeled as a stochastic function of 

the mean concentration field 𝐶𝐶𝜎𝜎𝑖𝑖(𝑡𝑡) in the subdomain 𝒳𝒳𝜎𝜎𝑖𝑖 ⊆ 𝒫𝒫 of cell 𝜎𝜎𝑖𝑖 (i.e., 𝒳𝒳𝜎𝜎𝑖𝑖 =𝛼𝛼𝒱𝒱𝜎𝜎𝑖𝑖),  
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𝐶𝐶𝜎𝜎𝑖𝑖(𝑡𝑡) = 1𝛼𝛼3|𝒱𝒱𝜎𝜎𝑖𝑖|� 𝐶𝐶(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥𝒳𝒳𝜎𝜎𝑖𝑖 . ( 9 ) 

The probability of cell death is then considered once every MCS for each cell 

according to a normal distribution,  𝑃𝑃 �𝜏𝜏�𝜎𝜎(𝑟𝑟,𝑘𝑘 + 1)�
= 𝜏𝜏𝑑𝑑 �𝜏𝜏�𝜎𝜎(𝑟𝑟,𝑘𝑘)���
= 𝛽𝛽𝑝𝑝𝜏𝜏�𝜎𝜎(𝑟𝑟,𝑘𝑘)�𝑒𝑒−�𝐶𝐶𝜎𝜎(𝑟𝑟,𝑘𝑘)(𝛽𝛽𝑘𝑘)𝛾𝛾𝜏𝜏�𝜎𝜎(𝑟𝑟,𝑘𝑘)� �2 , 

( 10 ) 

 

where the probability rate 𝑝𝑝𝜏𝜏 and standard deviation 𝛾𝛾𝜏𝜏 are modeling coefficients for the 

cell type 𝜏𝜏. All stochastic state changes are implemented by the following general 

routine: 1) calculate the probability of the occurrence of the state change; 2) draw a 

random variable in [0, 1]; and 3) the state change occurs if the random variable is less 

than or equal to the probability, otherwise the state is unchanged.  

3. Results  

Simulations were performed to demonstrate various emergent phenomena of the 

model described in Section 2. All cell types were assumed to have the same geometric 

constraint and Lagrange multipliers, and cell types were modeled as human induced 

pluripotent stem cells (iPSCs) and iPSC-derived neurons [26]. Unless otherwise 

specified, the modeling coefficients of Table 1 were used for all relevant simulations. All 

CPM coefficients were taken from Graner [22], except for the contact coefficient 

between high-adhesion cells (𝐽𝐽(1, 1)), which was modified to reduce excessive 

deformation of those cells. The discretization length was selected such that for an initial 

square cell geometry, a seven-by-seven square in the lattice is approximately equal to the 

geometric constraint of the cell. We chose this due to that spheroids in all simulations 

were initialized with square-shaped cells, and that initializing cells nearer to their 

geometric constraint reduces initialization artifacts like immediate spheroid expansion or 

contraction. Coarser resolutions (e.g., to produce a four-by-four square cell) demonstrated 

simulation artifacts in both the discrete and continuous domains, particularly concerning 

convergence of diffusion solutions, while a resolution to produce an eight-by-eight square 

cell presented excessive computational cost without contributing any noticeable 

additional accuracy. The time correlation was arbitrarily chosen to produce demonstrative 

results of our hybridization. The medium is shown as blue, iPSCs as yellow and neurons 

as brown. The medium, iPSCs and neurons were assigned the agent-type integer values 

zero, one and two, respectively. 
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3.1. Cell Sorting 

First, we verified if our program can capture the key features of this modeling class, 

namely cell sorting [8] and spheroids fusion [29]. Together, these features are needed to 

validate the program in comparison with the current approaches using similar methods, 

such as CompuCell 3D (CC3D) [30], KMC methods, or CPD [21]. Because the oxygen 

diffusion equations within spheroids were taken from a study calibrated for induced 

pluripotent stem cells cerebral organoids, supposedly not all differentiated 

simultaneously, we assumed that generic cell spheroids would contain a mixture of such 

more primitive and adhesive (considered as iPSC), and more adult (considered as neural) 

cells.  

We found that, indeed, the phenotypic layering known as “cell sorting” readily 

emerged in spheroids composed of two cell types with different intercellular 

adhesiveness (Figure 1). This result is consistent with empirical observations [6] and with 

CPM predictions [31].  We also observed that for all cell proportions, a perimeter of low-

adhesion cells emerged by the end of simulation, the formation of which was observed to 

begin with those low-adhesion cells initialized nearest to the perimeter. Clusters of low-

adhesion cells aggregated very early throughout each spheroid and combined by random 

motion. The perimeter was further populated by those aggregates of low-adhesion cells 

that happened to come into contact with the perimeter, since no mechanisms besides 

Table 1. Modeling coefficients used for all simulations 

(unless otherwise specified). 

Coefficient Symbol Value 

System 

temperaturec 
ℋ∗  10 

Geometric 

constrainta 
𝑣𝑣𝜏𝜏  43.5 μm2 

Discretization 

length 
𝛼𝛼  942 nm 

Time correlation 

(in 2D) 
𝛽𝛽  0.1 s/MCS 

Diffusion 

coefficientb 
𝐷𝐷  2,500 μm2/s 

Geometric 

Lagrange 

multiplierc 
𝜆𝜆𝑣𝑣𝜏𝜏   1 

Contact energy 

coefficientsc 
𝐽𝐽(0, 0)  0 𝐽𝐽(0, 1)  16 𝐽𝐽(0, 2)  16 𝐽𝐽(1, 1)  6 𝐽𝐽(1, 2)  11 𝐽𝐽(2, 2)  14 

Consumption rates 

(mol/cell/s)b 

𝑠𝑠1  -1.8 × 10-18 𝑠𝑠2  -7.7 × 10-16 
aWakao, 2012 [28]  
bMcMurtrey, 2016 [26] 
cGraner, 1992 [22] 
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differential adhesion were considered to direct cell motility. This explains the observed 

final configuration of some spheroids with isolated aggregates (“islands”) of low-

adhesion cells: a lower concentration of low-adhesion cells increases the likelihood of 

their aggregates at the core to be surrounded by a region of high-adhesion cells. Escape of 

cells from such islands is contingent of a number of factors which were beyond the scope 

of our study. Similar observations were made in the 3D implementation of the model 

(below).  

 
 

Figure 1. Simulation of cell sorting process within spheroids. Spontaneous cell layering in a binary cell-type 

spheroid (iPSCs are yellow and neurons are brown), based on the strength of their interaction, for various 

cellular proportions. Note the isolated inner region (“island”) of low-adhesion cells for the greater 

proportions of high-adhesion cells.  

3.2. Spheroids fusion 

We then reproduced the phenomenon of spheroid fusion [14], both with single-cell 

spheroids (not shown), or using heterogeneous spheroids of varying cellular proportions 

(Figure 2). In this case, we also analyzed how spheroid fusion interferes with cell sorting 

(Figure 2A). This occurs as the emerging, single spheroid expands, which creates a 

greater distance from the perimeter for isolated, low-adhesion aggregates near the 

emerging core. In practice, this may highlight occult structural inhomogeneity within 

fusing spheroids [32]. Quantification of fusion was performed by tracking the aspect ratio 

of the construct, which was calculated as the ratio of the neck diameter [7] along the 

vertical dimension to the major diameter along the horizontal dimension (Figure 2B). 

From this, we also found that cell composition has a sizable effect on the rate of fusion, 

which increases with the proportion of stronger interacting cells (Figure 2C). This is 

readily explained by the effects of adhesion properties at the cellular level, where from 
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more high-adhesion intercellular interactions emerges a macroscopic increase in the rate 

of fusion.  

 

 
Figure 2. Modeling of spheroid fusion. A. Simulation of spheroids fusion with concurrent cell sorting 

(iPSCs are yellow and neurons are brown). B. How the aspect ratio and neck dimeter were defined. C. 

Tracking spheroid fusion by measuring neck diameter and aspect ratio vs. virtual time.  

3.3. Self-healing of spheroid defects 

Related to spheroids formation, and driven by the same mechanism, is the eventual 

closure of any defects (“holes”) in the spheroids. This self-healing is particularly relevant 

for the Kenzan method of 3D biofabrication, where the spheroids are temporarily held in 

microneedles as supports for their fusion and post-printing maturation [32]. After 

extraction from the needles, in the spheroids are left hollow cylindrical holes of a 

needle’s size, which were shown to be quickly resorbed [16]. This has been assumed to 

happen due to the same energy minimization process [33] and, in the absence of cell 

division, with a similar kinetics as during cluster rounding and spheroid fusion. Thus, for 

prediction and optimization purposes we also modeled this process in 150 micrometer 

diameter spheroids (Figure 3). We simulated the closure of a round defect as dependent 

on the strength of intercellular adhesions by varying the binary cellular composition 

(Figure 3A). Increasing the proportion of cells with higher adhesiveness generally lead to 

a faster hole closure, which was calculated as the initial hole area divided by the 

simulation time required for closure (Figure 3B). A linear curve was also well fit to the 

area of the hole vs. virtual time for one trial each cellular composition (Figure 3C). 

Results showed extreme rates for homogeneous spheroids, where the fastest closure rate 

occurred for high-adhesion cells, and the lowest for low-adhesion cells. Closure rates for 
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intermediate cellular compositions decrease with increasing low-adhesion cell 

concentration in a nonlinear manner.  

 

 
 

Figure 3. Defect self-healing in heterogeneous spheroids. A. Spheroid configuration immediately after 

hole closure (same color code as in Fig. 2). Note the decrease in time to closure with increasing ratios of 

high-adhesion cells. B. Kinetics of hole closure as dependent on cell composition. C. Mean hole closure rate 

calculated from all trials of each cell concentration. Error bars demonstrate the variance in each set of trials.  

3.4. Oxygen diffusion 

The main purpose to develop our hybrid method was to move beyond spheroid 

simulations performed so far, which mainly consider adhesion and random motion, by 

also taking into consideration their cellular metabolism and survival. To begin with, we 

implemented the diffusion and consumption of oxygen within spheroids made from 

iPSCs and neurons, similarly to McMurtrey [26] . Unlike this previous work, the 

introduction of a diffusion system to the Cellular Potts model permits the study of 

spheroid metabolism due to individual cell consumption while also taking into 

consideration intra-spheroid cell mobility. Then, the hybrid model was applied to 

spheroids of various size, number and cellular consistency while considering cell 

survival.  

First, we analyzed cells with identical intercellular interactions, but with different 

rates of oxygen consumption, under steady-state conditions (Figure 4A). When the cell 

population in each of two fusing spheroids was randomly distributed, the distribution of 

oxygen was approximately symmetrical, whereas uniformly distributed initial 

populations exhibited. As expected, each fusion simulation produced a single, randomly 
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distributed spheroid with indistinguishable oxygen distributions. We then simulated 

partial fusion of two spheroids of 250 micrometers in diameter considering differential 

adhesion ( 

Figure 4B). Results showed the development of greater oxygen depletion at the 

fusion interface of the spheroids as fusion occurred, demonstrating that cells at the core 

of the resulting fused structure experience more severe hypoxia. Concentration values in 

the emergent, single spheroid were observed to be qualitatively consistent with both 

theoretical predictions and measured values in vitro [26, 34, 35]. We then expect that our 

hybridization of the CPM produces reliable predictions about the environmental effects 

of metabolic activities in the simulation space, with particular relevance concerning the 

development of hypoxic regions during morphological phenomena like spheroid fusion.  

 

 
 

Figure 4. Oxygen redistribution during spheroid fusion under steady-state conditions. A. Fusion of 50 

micron-diameter spheroids for different initial cell distributions, with cells of identical adhesive but different 

metabolic properties (𝑪𝑪𝟎𝟎 = 0.02 mM, 𝑱𝑱(𝟏𝟏,𝟏𝟏) = 𝑱𝑱(𝟏𝟏,𝟐𝟐) = 𝑱𝑱(𝟐𝟐,𝟐𝟐) = 6). Besides diffusion, cell mixing also 

contribute to oxygen concertation uniformization across the fused structure. B. Oxygen concentrations during 

fusion of heterogeneous, 150 micron-diameter cell spheroids (𝑪𝑪𝟎𝟎 = 0.22 mM). Note the development of 

greater oxygen depletion in the emerging fused structure.  

3.5. Coupling oxygenation and cell death 

Meaningful results were also obtained after coupling spheroid oxygenation and cell 

survival (Figure 5). For computational reasons, a uniform spheroid of neurons was 
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initiated with a diameter of 150 microns and simulated in a hypothetical 0.16 mM 

environmental oxygen. Cell death was implemented as described in Section 2.2.  

In this experiment, we examined two temporal ranges of the same simulation: one is 

the early development of the concentration gradient and onset of hypoxia, and the other is 

the long-term effects after severe depletion of oxygen. In the early phase, the reduction of 

available oxygen was naturally associated with cell loss and the development of a 

transient necrotic core (Figure 5A), consistently with in vitro results [36, 37]. However, 

in the last phase with massive cell death there was a rebounding of oxygenation (Figure 

5B), due to both decreased total cell consumption and to spheroid shrinkage (given that 

the size of dying cells was set to decrease with 50%). This was observed in the notable 

lack of a concentration gradient at the center of the domain with further development of 

the necrotic core, which measured consistently with in vitro work that demonstrate the 

interactions of diffusive nutrients and cell viability in spheroidal aggregates [34, 35].  

 
Figure 5. Simulation of cell survival kinetics in a 150 micron-diameter spheroid as dependent on O2 

concentration (𝑪𝑪𝟎𝟎 = 0.16 mM). A. Progressive hypoxia and mild cell loss developing as an effect of 

spheroid metabolism (living neurons are brown, dead neurons are green). B. In the insert, interaction of living 

cell population (blue) and minimum value of oxygen distribution (orange). Note the decreasing rate of cell 

death and recovery of oxygen in the main figure. C. Dependence of cell death probability per MCS on 

oxygen concentration. 

3.6. Impact of hypoxia on cell survival in biofabricated constructs 

Equally relevant for biofabrication is to know the impact of size and shape of a 

construct and corresponding metabolism on hypoxia-related cell survival. We simulated 

these here by comparing the oxygen distribution and related cell death in one, two and 

four fusing spheroids (each of an initial diameter of 50 micrometers) (Figure 6). The 

probability of cell death was modeled with the curve in Figure 5C (𝛽𝛽𝑝𝑝𝜏𝜏 = 0.1, 𝛾𝛾𝜏𝜏 = 
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0.045 mM). We found that cell death is proportional to initial construct size (Figure 6A, 

C), but this can be mitigated by increasing environmental oxygen (Figure 6B, C).  

 

 
Figure 6. Impact of hypoxia on cell survival of various constructs. A. Construct initial and final 

configurations for three concentration boundary values (living neurons are brown, dead neurons are green. 

52% of the cellular domain shown). Cell death was modeled with the curve in Figure 5C. B. Steady-state 

concentration field of initial configuration for all trials. C. Dependence of cell survival on construct’s initial 

size (number of cells) and on ambient oxygen concentration. Note the rescuing effect of environmental 

oxygen on cell survival, explaining the benefit of fresh medium perfusion in Kenzan technology. 

3.7. Expansion of the model to the third dimension 

 

The two-dimensional implementation of the model provided a faster testing of its 

capabilities and heuristic insights, but its refinement and some of the actual applications 

require the three-dimensional implementation. This is exemplified by the process of cell 

sorting [8] and shown in Figure 7. Expectedly, the time to perform one MCS step has 

increased about 40 times for a comparable discretization length of 1.2 μm. However, the 

actual cell distribution recapitulates that in the two-dimensional case (Figure 1).  
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Figure 7. Cell sorting in a 3D version of the model. A. 3D view of a mixed spheroid (cell proportions were 

1:1), at the beginning of simulation. B. 3D view of the final configuration at the end of simulation (55,000 

MCS). C. Cross-sectional view of the initial, randomly populated configuration in the XY-plane. D. Cross-

sectional view of the final, sorted configuration in the XY-plane.  

4. Discussion 

In this study we demonstrate a model capable to capture the essential features and 

behavior of cell spheroids as used in scaffold-free biofabrication, similar to other 

methods developed for this purpose, such as CC3D [30], KMC or CPD [21]. However, 

our model goes beyond them by incorporating the coupling of diffusive oxygen 

metabolism and oxygen-dependent stochastic cell death [38]. Another advance is that, 

unlike the previous methods, for every simulated phenomenon we considered two cell 

populations (and more can be easily added), to more realistically account for 

biofabrication practice. 

While acknowledging the fundamental importance of an accurate 3D model, there 

were three reasons to start with this simpler 2D version: a) the computational time is 

much longer in 3D than in 2D; b) for the creation of a ‘hybrid’ with the CPM, our focus 

was more on the implementation of the diffusional field; c) in some applications, such as 

cell sorting, the 2D and 3D versions produce similar results, as shown here as well. 

We applied our model to the basic steps of scaffold-free, microneedle-based 

bioprinting method, where pierced multicellular spheroids are brought in contact to fuse 

and thus generate 3D constructs [32]. Since after removal from the needles, holes in the 

spheroids need to “heal”, we simulated this process and found that its rate of completion 
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indeed depends on the cellular composition of the spheroid. The rate of closure of a 

cylindrical defect was found to be significantly affected by the ratio of high- to low-

adhesion cells, and behave in a nonlinear manner. Homogeneous high- and low-adhesion 

cell populations produced the fastest and slowest rates, respectively, with intermediate 

mixed populations decreasing the closure rate in a nonlinear manner with increasing 

number of low-adhesion cell. Future work simulating more trials and more cellular 

compositions could be performed in conjunction with experimental work to confirm this 

observation, and to investigate the extent to which cell sorting affects closure. To this 

end, simulations could also be performed that compare the rate of closure for spheroids 

that are initialized with sorted and randomly distributed cellular configurations.  

Hypoxia, often combined with nutrient depletion and/or waste accumulation, 

collectively called “ischemia”, is a key factor in determining cell survival and functioning 

in compact cell aggregates [39]. It is known that oxygen is consumed in vivo within about 

200 microns distance, unless a blood supply is provided [40]. But the diameter of cell 

spheroids used for Kenzan bioprinting (which takes hours to perform and days to mature 

[32],  may surpass twice this distance, making the core of spheroids necessarily hypoxic. 

To implement a continuous oxygen diffusion and consumption in spheroids, we 

pursued ideas from a published model using human induced pluripotent stem cells-

derived neurons [26]. This was performed in our model by coupling oxygen 

concentration with cell survival using a distribution function to model the likelihood of 

cell death as dependent on local hypoxia. In conditions of substantial cell loss, we found 

that oxygen levels may rebound, due to both the diminished number of individual 

consumers and the emergent shrinkage of the spheroid. In fact, this effect was observed 

experimentally in our previous study of oxygen distribution in the mouse heart after 

experimental myocardial infarction [41]. Overall, this is a very good illustration of 

emergent phenomena taking place in ensembles such as cell spheroids, which are 

efficiently captured by agent-based modeling simulations.  

From a practical perspective, it is also important to know what happens when 

spheroid fusion is scaled-up to larger constructs. In the absence of a microcirculation, 

oxygen diffusion will naturally be even more impaired in multi-spheroid constructs, thus 

proportionally increasing cell death. Encouragingly however, the system seems to remain 

very sensitive to the boundary (environmental) oxygen concentrations. This suggests the 

exposure to supra-physiological oxygen (‘hyperbaric oxygen’ [42]) as a means to 

mitigate the detrimental effects of hypoxia in bio-fabricated constructs. Future modeling 

work could also be performed using Neumann boundary conditions in the 

implementation of diffusion systems, for predictive capabilities concerning controlled 

perfusion during biofabrication.  

The main advantage of our model comparing to others developed so far is the 

combination of conceptual realism with simplicity and operability. For example, the 

coincident effects of cell mixing, cell death and oxygen diffusion could be simulated in a 

structure complicated enough (i.e., four fusing spheroids), to be meaningful for better 

understanding a basic step in biofabrication. Moreover, our model has these additional 

features: a) puts the emphasis on the analysis of metabolism; b) develops a novel 

formalism for phenotypic response to environment; c) provides the proof of concept of 



16 

 

 

hybridization, opened to further improvement; d) has similar, or even lower 

computational cost to other KMC methods; e) although CPM like CPD and LB methods 

are not well suited for parallelization, the hybridization makes ours acceptable for parallel 

computation of stochastic functional response and diffusion. Among the main limitations, 

we mention the lack of temporal calibration (work in progress), as well modest 

computational efficiency (due to the use of MATLAB). 

Looking ahead for the potential of our model to address other important questions in 

this form of biofabrication after this stage of development, our model is capable of 

refinements and extensions. For example, we will study the effect of microneedle 

puncture on oxygen distribution and cell survival in spheroids. We anticipate that the hole 

created by the needle could be in fact beneficial for overall construct viability, by 

creating another diffusive interface with the environment. Moreover, when comparing 

fusion between intact spheroids and those immobilized in the needles, the latter may 

present an increased efficiency, since the needle occupies some of the region where 

hypoxic cell death is expected to occur.  

But firstly, and mostly needed, is to proceed with the implementation in 3D domain. 

Other extensions will involve the improvement of simulating diffusion systems and 

coupled cellular activities. One example is the implementation of chemotactic fields, with 

the concentration gradient acting as a chemoattractant that facilitates directional cell 

migration as shown in Equation ( 6 ). Within the spheroids, this field may overcome the 

passive cell sorting mechanism of cell positioning. If the cells are of vascular nature, this 

chemoattractant could be the vascular endothelial growth factor, with a secretion 

triggered by hypoxia and with a distribution inversely mirroring of that of oxygen in the 

spheroids [43]. To simulate this effect, we plan to add concentration field interactivity, 

allowing, for example, the crosstalk of oxygenation and cell signaling, and their impact 

on cell survival and migration.  

The model could be even further refined by incorporating other metabolites, such as 

glucose generation and lactate production, each with their separate yet cumulative effects 

on cell survival and mobility. With the simulation of additional chemical species, our 

model may then be relevant for the simulation of other cellular responses, such as cell 

division and differentiation, both of which have already been added in our 

implementation using an expression similar to Equation ( 10 ). For modeling of 

biofabrication methods with controlled perfusion, or alter blood flow in tissue engineered 

constructs in vivo, we will also add functionality to simulate the Neumann and mixed 

boundary conditions. 

Finally, our model, which is now spatially calibrated, needs to be temporally 

calibrated as well. This could be accomplished in several alternative yet complementary 

ways, using different correlation methods like the duration of a complete spheroid fusion 

and/or its sensitivity to cell proportions, kinetics of intra-spheroid cellular migration, time 

or rate of hole closure, etc. The relating of physical and virtual time is particularly 

relevant to our future work concerning chemical species, since diffusion systems 

necessarily introduce physical time to simulation. Accomplishing this time correlation, 

we can then work to calibrate the parameters used to model hypoxic cell death probability 
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as well as additional chemical-dependent cellular responses according to experimental 

evidence.  

5. Conclusions 

Hybrid models of cell spheroids hold the potential of optimization of scaffold-free 

biofabrication. In particular, CPM describes well the dynamics of cell spheroids fusion 

during scaffold-free biofabrication. Incorporation of oxygen metabolism in the models 

shows how it may control the outcome of biofabrication. While expectedly the construct 

size has a proportional effect on oxygen distribution, using our model we found that the 

spheroids show high, sometimes counter-intuitive sensitivity to metabolic and 

environmental O2. This suggested that the ‘treatment’ with hyperbaric oxygen of cell 

constructs could be beneficial for improving the efficiency of biofabrication. This model 

will be improved by completing its 3D implementation, calibration, and expansion to 

include other aspects of cell metabolism. 
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