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ABSTRACT

Context. Several approaches to estimating frequency, phase, and amplitude errors in time-series analyse have been reported in the
literature, but they are either time-consuming to compute, grossly overestimating the error, or are based on empirically determined
criteria.
Aims. A simple, but realistic estimate of the frequency uncertainty in time-series analyses is our goal here.
Methods. Synthetic data sets with mono- and multi-periodic harmonic signals and with randomly distributed amplitude, frequency,
and phase were generated and white noise added. We tried to recover the input parameters with classical Fourier techniques and
investigated the error as a function of the relative level of noise, signal, and frequency difference.
Results. We present simple formulas for the upper limit of the amplitude, frequency, and phase uncertainties in time-serie analyses.
We also demonstrate the possibility of detecting frequencies that are separated by less than the classical frequency resolution and of
finding that the realistic frequency error is at least 4 times smaller than the classical frequency resolution.
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1. Motivation

In the frequency analysis of time series, a realistic estimate of
the amplitude, phase, and frequency uncertainties can be useful.
A few examples are:

– The comparison of frequencies derived for simultaneously
observed stars allows identifying the instrumental signal, if
the frequencies occur in different data sets but within the fre-
quency uncertainty.

– One needs to know the observed frequency errors to assess
the quality of a fit of models to the observations.

– For mode identifications based on amplitude ratios or phase
differences from multi-color photometry, one also needs a
reliable estimate for the frequency error.

A combination of Fourier and least-square fitting algorithms
(like SigSpec by Reegen 2007; Period04 by Lenz & Breger 2005;
or CAPER by Walker et al. 2005) is a frequently used method
for determining frequencies, amplitudes, and phases of harmonic
signals. For a time series consisting of a perfect sine wave and
white noise, the frequency error is determined by the total time
base of the data set and the signal-to-noise ratio (S/R) of the cor-
responding amplitude in the Fourier spectrum. Montgomery &
O’Donoghue (1999) define the amplitude, phase, and frequency
errors as
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based on an analytical solution for the one-sigma error of a least-
square sinusoidal fit with an rms of σ(m). The total number of
data points, the total time base of the observations, the signal
amplitude, phase, and frequency are N, T , a, φ, and f , respec-
tively. Hence the last term in Eqs. (2) and (3) represents S/R−1 in
the time domain. We want to mention that the time domain S/R
in these relations is not equal to the commonly used S/R in the
amplitude spectrum (peak amplitude divided by the average am-
plitude in a given frequency range), and it scales to the time do-
main S/R by a factor of ≈

√
π/N. Reegen (2007) shows that this

scaling cannot be applied uniquely to the full frequency range
and that systematic effects have to be taken into account if an
exact description of frequency-domain errors is needed.

However, in reality an intrinsic signal is superposed not only
by white noise (e.g. due to photon statistics) but also by corre-
lated noise (e.g. atmospheric scintillation for ground-based data)
or non-Gaussian distributed noise (e.g., introduced by the data
reduction). Even the star itself can contribute correlated noise,
for example due to granulation. All these noise sources increase
the real frequency uncertainty, which leads to the unsatisfying
situation that several empirical parameters can be found in the
literature that tune the frequency error to personal experience.

People quite often use the Rayleigh frequency resolu-
tion (T−1), defined by the total time base of the data set, which is
a dramatic overestimation of the real uncertainty in most cases.
To access the uncertainties of the fitting parameters for the time
series analysis, it turned out to be an appropriate way to per-
form simulations with the actually analyzed data set, as done
by Monte Carlo simulations in Period04 or by bootstrap simu-
lations in CAPER (see Rowe et al. 2006, for details). This ap-
proach has the disadvantage that the simulations can be very
time-consuming especially if the data sets are big and/or include
plenty of signal components.
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2. Mono-periodic signal

To quantify the effect of white noise on the frequency determina-
tion of a coherent mono-periodic signal, a numerical simulation
was performed for 42 597 synthetic data sets. Each data set con-
sists of 10 000 data points uniformly distributed over 10 days
and includes two components: a single sinusoidal signal with
random (uniformly distributed) frequency, amplitude, and phase,
and Gaussian distributed scatter with a random (uniformly dis-
tributed) amplitude (FWHM of the Gaussian random-number
generator). All input parameters are independent of each other.

2.1. Frequency error

The routine SigSpec1 (Reegen 2007) was used for the frequency
analysis. It is an automatic program to detect periodic signals in
data sets, and it relies on an exact analytical solution for the prob-
ability that a given DFT (discrete Fourier transform; Deeming
1975) amplitude is generated by white noise. Its main advantage
over commonly used S/R estimates is its appropriately incor-
porated frequency and phase angle in Fourier space and time-
domain sampling, hence using all available information instead
of mean amplitude alone. The SigSpec spectral significance is
defined as the logarithm of the inverse false-alarm probability
that a DFT peak of a given amplitude arise from pure noise in a
non-equidistantly spaced data set.

On average, an S/R of 4 corresponds to a spectral signifi-
cance value of 5.46. This means that an amplitude of four times
the noise level would appear by chance at a given frequency in
one out of 105.46 cases, assuming white noise.

Figure 1 shows the absolute deviation – scaled to the data set
length – between the input frequency and the SigSpec frequency
as a function of the spectral significance. Given are average val-
ues and the +4σ (and −1σ) distribution in bins of spectral sig-
nificance. Not surprisingly, there is a clear dependency of the
frequency error on the significance (or S/R). Obviously, the real
frequency error quite often (≈30%) exceeds the frequency error
given by Eq. (3). However, we could heuristically define a fre-
quency error criterion (top panel of Fig. 1) as

σ( f )Ka =
1

T ·
√

sig
≈
π · log e

4 · T · S/R
, (4)

representing a good approximation for the upper limit of the fre-
quency uncertainty and showing that the frequency uncertainty
is less than the frequency resolution T−1, at least by a factor of√

sig. Only 4 out of 42 597 simulations result in a frequency error
exceeding the thus defined upper frequency error limit. Aware
that a simulation need not reflect the reality, we added the fre-
quency error of real observations into Fig. 1 derived from the
comparison of ground based data with long-term high-precision
space photometry (MOST) of the same stars. We have to men-
tion that plotting the frequency error as a function of the signal
frequency (or phase) reveals no correlation between these quan-
tities. To be independent of the spectral significance, synthetic
data sets with a fixed S/R have been used.

The deviation from a linear relation at high significances in
the log-log scale of Fig. 1 is due to a distortion of the signifi-
cance scale, which is explained in Fig. 2, where the S/R in the
amplitude spectrum is plotted versus the spectral significance for
frequencies determined from the synthetic data sets. For spec-
tral significances below about 300, the significance is roughly

1 Significance Spectrum, http://www.astro.univie.ac.at/

SigSpec/
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Fig. 1. Top: frequency error σ( f ) normalized to the Rayleigh frequency
resolution given by the data set length T versus the spectral significance.
Given are average values in bins (represented by the horizontal bars) as
a result of a numerical simulation of 42 597 synthetic data sets includ-
ing a single sinusoidal signal with random frequency, amplitude, phase,
and white noise added. Vertical bars indicate the +4σ (and −1σ) dis-
tribution, illustrating that the heuristically determined frequency error
criterion (solid black line) represents a good approximation of the up-
per limit of the frequency uncertainty, which is at least by a factor
significance1/2 smaller than the frequency resolution T−1. Cross sym-
bols correspond to frequency errors derived from the comparison of real
ground-based data with high-precession space photometry of the same
stars. For an explanation of the grey line see the penultimate paragraph
of Sect. 2.1. Middle: relative amplitude error versus the spectral signifi-
cance. The solid line indicates the upper limit for the relative amplitude
error given in this work. Bottom: phase error (in units of 2π) versus
the spectral significance. The solid line shows the “Montgomery phase
error” converted to spectral significance. All panels: the dashed lines
represent the analytically determined one-sigma error of a sinusoidal
least-square fit (Montgomery & O’Donoghue 1999).

equal to (π · log e)/4 times the (S/R)2 in the amplitude spec-
trum (Reegen 2007). Only for extremely significant signals does
one have to take into account that the noise calculation for the
S/R and the spectral significance are different. Whereas the S/R
is based on the average amplitude in a Fourier spectrum after
prewithening the signal (corresponds to the rms residual), the
spectral significance is based on the rms scatter of the time se-
ries including the signal. In other words, a pure signal without
noise has an infinite S/R but still a finite spectral significance
(see Reegen 2007, for details). The grey line in Fig. 1 takes this
effect into account.

To explain the difference between the upper frequency error
limit and the “Montgomery frequency error”, we interpret the

http://www.astro.univie.ac.at/SigSpec/
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latter to be the statistically expected value for the frequency un-
certainty corresponding to the average values in the spectral sig-
nificance bins of our simulation. We also have to mention that the
frequency error distribution of our simulation (for fixed spectral
significance) is neither Gaussian nor symmetric, which makes it
very difficult to define an analytical average value and scatter for
the frequency uncertainty.

2.2. Amplitude error

Whereas the absolute amplitude error only depends on the time

series rms scatter (see Eq. (1)), the relative amplitude error
σ(a)

a
should be correlated with the signal’s spectral significance (or
S/R). The middle panel of Fig. 1 shows the relative amplitude
error (deviation between the input amplitude and the SigSpec
amplitude relative to the SigSpec amplitude) versus the spectral
significance of our simulated white-noise data sets. The dashed
line indicates the relative amplitude error based on the absolute
“Montgomery amplitude error” representing the statistically ex-
pected value. According to our upper limit for the frequency un-
certainty, we could again define an upper limit for the amplitude
error of a sinusoidal least-square fit as,

σ(a)Ka
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=

1
√

sig
≈

2
√

π · log e
·

1

S/R
, (5)

the solid line in the middle panel of Fig. 1. However, the upper
limit of the amplitude error is not defined as well as for the fre-
quency error. But still, ≈98% of the determined amplitude errors
are smaller than the given limit.

2.3. Phase error

The bottom panel of Fig. 1 illustrates the absolute deviation be-
tween the input phase and the SigSpec phase versus the spec-
tral significance of the 42 597 synthetic data sets. Again, the
dashed line indicates the phase error for a sinusoidal least-square
fit according to Eq. (2). Unlike the “Montgomery frequency er-
ror” corresponding to the statistically expected value for the fre-
quency uncertainty, the “Montgomery phase error” is consistent
with an upper limit for the real phase error. All but 4 numerically
determined phase errors are below the given limit. Equation (2)
based on the time-domain S/R, is converted to spectral signifi-
cances (and frequency-domain S/R) as follows,

σ(φ) =

√

log e

2 · sig
≈
√

2

π
·

1

S/R
, (6)

which is indicated by a solid and a dashed line in the bottom
panel of Fig. 1.

3. Multi-periodic signal

Usually the smallest frequency separation of two independent
signals in a data set that can be determined separately is called
frequency resolution.

For two signals with comparable amplitudes, a frequency
separation corresponding to the Rayleigh frequency resolu-
tion (T−1) results in a local minimum between the two peaks in
the amplitude spectrum. Closer frequencies produce an asym-
metric peak, whereas the peak maximum is roughly at the
amplitude-weighted mean of the frequencies. After prewithen-
ing the signal (corresponding to the subtraction of a scaled
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Fig. 2. Amplitude spectrum signal-to-noise ratio (S/R) versus spectral
significance for frequencies determined from 42 597 synthetic data sets.
The deviation from the linear relation (gray line in the log-log plot)
at high significances is due to different noise estimates for S/R and
spectral significance.

spectral window at the given frequency, Roberts et al. 1987),
some signal will still be left in the amplitude spectrum. In other
words, it should be possible to determine frequency, amplitude,
and phase of signals separated in frequency by less than the
frequency resolution, so the uncertainties of these parameters
should be less than given by the Raleigh criterion.

To quantify this uncertainty, a numerical simulation was per-
formed for ∼50 000 synthetic data sets now including two sig-
nals with random frequency, amplitude, and phase for the first
component. The second signal has a frequency randomly sep-
arated from the first one between 0 and 5 times the Rayleigh
frequency resolution (T−1), a random amplitude between 0.1
and 1 times the amplitude of the first one, and a random phase.
Gaussian-distributed scatter with a random amplitude was added
to the synthetic data.

Figure 3 shows the average absolute frequency error in bins
of the spectral significance of the stronger signal for different
ranges of the frequency separation ∆ f (in units of the Rayleigh
frequency resolution) of the two input signals. The presence of
a second signal separated by lower than the Rayleigh frequency
resolution limits the frequency uncertainty of the stronger sig-
nal to (4 · T )−1 (see Fig. 3) if the spectral significance exceeds a
value of 16. This is where both criteria give the same frequency
error. We have to note that this limit is again purely heuristically
determined. For a second signal, separated by more than 3 times
the Rayleigh frequency resolution, the frequency uncertainty of
the stronger signal is limited by the frequency error criterion for
a mono-periodic signal given by Eq. (4) (see bottom panel in
Fig. 3). There seems to be a smooth transition for 1 < ∆ f < 3
(middle panel). Remarkably, only 13 out of ∼50 000 (≈0.026%)
numerically determined frequency errors do not satisfy the fol-
lowing criterion.

If a second signal is present within about three times the
Rayleigh frequency resolution and spectral significance >16, the
upper limit for the frequency error is

σ( f )Ka =
1

4T
· (7)

In all other cases the frequency error is smaller than

σ( f )Ka =
1

T ·
√

sig
, (8)

corresponding to Eq. (4).
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Fig. 3. Same as top panel of Fig. 1 now including two sinusoidal
signals illustrating average frequency errors σ( f ) (normalized to the
Rayleigh frequency resolution) of the stronger signal (first detected in
the prewhitening sequence) in bins of the spectral significance along
with +4σ (and −1σ) environments in the bins. The panels refer to dif-
ferent ranges of the frequency separation ∆ f (in units of the T−1) of
the two input signals. The solid line indicates the upper frequency er-
ror limit for mono-periodic signals. The dashed line corresponds to the
heuristically determined upper frequency error limit for close frequen-
cies and is equal to (4 · T )−1.

4. Conclusions

Based on extensive simulations, we have shown that there is an
upper limit to the amplitude and frequency error in time-series
data analyses. Compared to the statistically expected value for
the uncertainties given by Montgomery & O’Donoghue (1999),
our upper limits cover the possible error due to white noise and
even leaves room for additional error sources like atmospheric
scintillation. A major advantage of calculating amplitude, fre-
quency, and phase errors in terms of spectral significance rather
than S/R is that the time-domain noise need not be Gaussian. As

pointed out by Reegen (2007), the spectral significance does not
depend on the probability distribution associated to the noise,
and the only precondition is the uncorrelatedness of consecu-
tive data points. It also must be mentioned that amplitude, fre-
quency, and phase errors derived from spectral significances are
only comparable to errors derived from S/R if the time-series is
well-sampled (e.g. continuous space observations). Contrary to
spectral significance based errors, S/R based error estimations
(time-domain as well as frequency-domain) do not take the data
sampling into account and can yield as a crude underestimation
of the errors for “bad” sampling as is more or less always the
case for single-site ground-based observations.

We have shown that the phase error defined by Montgomery
& O’Donoghue (1999) is consistent with our simulations.
Furthermore, we have shown that the determination of frequency
pairs closer than the Rayleigh frequency resolution is possible
and that the resulting frequency error is still 4 times smaller
than the Rayleigh frequency resolution. However, our simulation
does not say anything about the reliability of close frequency
pairs in general. It tells us about the frequency uncertainty of a
peak if, after prewhitening this peak, a second significant peak
is present. It tells us that peaks do not influence each other’s
frequency determination if they are separated in frequency by
3 times the Rayleigh frequency resolution. For closer peaks, the
frequency uncertainty is at least 4 times below the Rayleigh res-
olution even for peaks within the Rayleigh resolution.
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